Diastereoselective Synthesis of *syn*-1,3-Polyols and Studies towards the C1-C31 and C32-C52 Fragments of Amphidinol 3

Thesis submitted in accordance with the requirements of the University of Liverpool for the Doctor in Philosophy

By

Aleksandr Grišin

September 2012
Abstract

Diastereoselective Synthesis of \textit{syn}-1,3-Polyols

The stereoselective construction of polyacetate 1,3-diols has attracted considerable attention due to the ubiquity of this motif in complex biologically active polyene macrolides (amphotericin B, RK-397, mycoticin, candidin). We have developed a highly stereoselective bismuth(III)-mediated two-component hemiacetal/oxa-conjugate addition reaction, which directly provides \textit{syn}-1,3-diols in the form of cyclic acetals having an adjacent electron-withdrawing group in the form of aldehydes and ketones. The scope and limitations of this transformation were examined and culminated with the synthesis of the C18-C28 fragment of antibiotic RK-397.

Studies towards the C1-C31 and C32-C52 Fragments of Amphidinol 3

Temporary-tethered reactions provide an important strategy for target-directed synthesis, since they circumvent the problems encountered with entropically unfavorable reactions. The temporary silicon-tethered ring-closing metathesis (TST-RCM) allows for the highly (Z)-selective coupling of mixed silaketals in the formation of the medium sized rings. The latter compounds can undergo a substrate controlled stereoselective electrophilic functionalisation, for example, hydroboration, dihydroxylation or epoxidation, and produce polyoxygenated motifs that are present in many biologically important natural products.

In the course of these studies we have developed a highly convergent asymmetric synthesis of the C1-C31 polyol fragment of amphidinol 3, where the TST-RCM/hydroboration reaction is successfully employed for the efficient coupling
of the C16-C23 and C24-C30 units of the natural product with concomitant introduction of the crucial propionate-type C23-C24 stereocentres.

In the final part of thesis the investigation of the stereoselective dihydroxylation reaction of mixed syn and anti eight-membered cyclic silaketals was carried out. The resulting oxygenated products can be efficiently transformed via an intramolecular cyclisation of δ-hydroxy epoxides into the highly substituted syn- and anti-tetrahydropyrans (THPs), a strategy that could also have application in related natural products, for example, ladder polyether polyketides. The merit of the developed methodology was highlighted in the asymmetric synthesis of the common C31(52)-C39(44) THP fragment of amphidinol 3, which could be ultimately used in the bidirectional route towards the bis-THP segment of the natural product.
Acknowledgements

I would like to acknowledge my research supervisor Professor P. Andrew Evans for the opportunity to conduct research and continued support through the years. His unfettered patience, guidance and high-standards have allowed me to develop as a scientist and laid the foundation for the following steps in my career.

I also thank Katie Evans for taking care of the day-to-day organisation and administration of the Evans’ group.

I would extend my appreciation to all Evans’ group members past and present for making an outstanding atmosphere during the studies and for constructive advices and discussions during group meetings. I am particularly grateful to an outstanding scientist Dr. Sergio Maroto for his endless aid and extremely valuable suggestions, which helped me to grow as a chemist.

The entire process of writing this thesis would have been much more difficult if not for the proofreading of my co-workers. I would like to specially acknowledge Dr. Phillip A. Inglesby, Tomass Baikstis, Ryan O’Connor, Stephanie Yip and Dr. Samuel Oliver. Thank you guys!

I would like to appreciate the University of Liverpool for financial support.

I would like to thank my parents, Aleksandr and Svetlana, for their everlasting love, support and faith in me over all these years. Without their help and encouragement this degree would not have been possible. I would like to especially acknowledge my aunt Tanya for her invaluable support back in the days and helpful suggestions.

Finally, I would like to thank my partner, Julija Aleksina, for her love, support and commitment over the last four years. Love you.
For my family
Table of Content

Abstract ii
Acknowledgements iv
Dedication v
Table of Content vi
List of Tables xi
List of Figures xiii
List of Schemes xvi
List of Publications xxii
List of Abbreviations xxiii

Chapter 1 Bismuth(III)-catalysed C-O bond forming transformations 1
1.1 Introduction 1
1.2 Intermolecular Etherification 2
1.3 Etherification via O-Glycosylation 14
1.4 Intramolecular Etherification 19
1.4.1 Tandem Two-Component Intramolecular Etherification 20
1.5 Synthesis of Cyclic Ethers via the Oxa-Conjugate Addition Reaction 28
1.6 Etherification via a Tandem Processes 30
1.7 Bismuth(III) Mediated Hetero-Diels-Alder Reaction 36
1.8 Cyclic Ether Synthesis via Condensation Reaction 37
1.9 Cyclic Ethers Synthesis via Oxa-Addition Reaction to Unactivated \(\pi \)-Systems 39
1.10 Conclusion 43
1.11 References 44

Chapter 2 Diastereoselective Synthesis of Protected syn-1,3-Diols via the Intramolecular Conjugate Addition of Hemiacectal Nucleophiles 49
2.1 Introduction to the Polyene Macrolides 49
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Background of 1,3-Polyol Syntheses</td>
<td>49</td>
</tr>
<tr>
<td>2.3</td>
<td>Mechanistic Proposal for the Bismuth(III) Mediated</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Construction of the Protected syn-1,3-Diols</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Reaction Optimisation for the δ-Hydroxy α,β-Unsaturated Ketones</td>
<td>53</td>
</tr>
<tr>
<td>2.5</td>
<td>Reaction Substrate Scope for the δ-Hydroxy α,β-Unsaturated Ketones</td>
<td>56</td>
</tr>
<tr>
<td>2.6</td>
<td>Reaction Optimisation for the δ-Trialkylsilyloxy α,β-Unsaturated</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Aldehydes</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Reaction Substrate Scope for the δ-Trialkylsilyloxy α,β-Unsaturated</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Aldehydes</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Confirmation of Stereochemistry</td>
<td>60</td>
</tr>
<tr>
<td>2.9</td>
<td>Deprotection of the 1,3-Ethylidene Acetal</td>
<td>64</td>
</tr>
<tr>
<td>2.10</td>
<td>Synthetic Application of the Developed Methodology.</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Synthesis of the C18-C28 Fragment of Antibiotic RK-397</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Conclusion</td>
<td>67</td>
</tr>
<tr>
<td>2.12</td>
<td>Experimental Part. General information</td>
<td>68</td>
</tr>
<tr>
<td>2.13</td>
<td>Preparation of the δ-Hydroxy α,β-Unsaturated Ketones</td>
<td>69</td>
</tr>
<tr>
<td>2.14</td>
<td>Preparation of the δ-Triethylsilyloxy α,β-Unsaturated Aldehydes</td>
<td>79</td>
</tr>
<tr>
<td>2.15</td>
<td>Reaction of the δ-Hydroxy α,β-Unsaturated Ketones with</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Aliphatic Aldehydes</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>Reaction of the δ-Triethylsilyloxy α,β-Unsaturated Ketones with</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Aliphatic Aldehydes</td>
<td></td>
</tr>
<tr>
<td>2.17</td>
<td>Synthesis of the Protected anti-1,3-Diol</td>
<td>107</td>
</tr>
<tr>
<td>2.18</td>
<td>Deprotection of the Ethylidine Acetal</td>
<td>111</td>
</tr>
<tr>
<td>2.19</td>
<td>Synthesis of the C18-C28 Fragment of RK-397</td>
<td>113</td>
</tr>
<tr>
<td>2.20</td>
<td>References</td>
<td>119</td>
</tr>
<tr>
<td>2.21</td>
<td>Appendix A. 1H and APT Spectrums for Compound</td>
<td>123</td>
</tr>
</tbody>
</table>
Chapter 3 Dinoflagellate Derived Polyketides and Synthetic Studies of the Polyol Fragment of Amphidinol 3

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction to Marine Dinoflagellates</td>
<td>125</td>
</tr>
<tr>
<td>3.2</td>
<td>Ladder Polyether Polyketides</td>
<td>125</td>
</tr>
<tr>
<td>3.3</td>
<td>Macrocyclic Polyketides</td>
<td>126</td>
</tr>
<tr>
<td>3.4</td>
<td>Linear Polyethers</td>
<td>126</td>
</tr>
<tr>
<td>3.5</td>
<td>Background of Amphidinols</td>
<td>127</td>
</tr>
<tr>
<td>3.6</td>
<td>Biological Activity of Amphidinols</td>
<td>129</td>
</tr>
<tr>
<td>3.7</td>
<td>Other Amphidinol Homologues</td>
<td>130</td>
</tr>
<tr>
<td>3.8</td>
<td>Introduction to the Polyol Fragment of Amphidinol 3</td>
<td>133</td>
</tr>
<tr>
<td>3.9</td>
<td>Cossy’s Synthesis of the C1-C14 Fragment of Amphidinol 3</td>
<td>133</td>
</tr>
<tr>
<td>3.10</td>
<td>Roush’s Synthesis of the C1-C25 Fragment of Amphidinol 3</td>
<td>135</td>
</tr>
<tr>
<td>3.11</td>
<td>Paquette’s Synthesis of the C1-C30 Fragment of Amphidinol 3</td>
<td>137</td>
</tr>
<tr>
<td>3.12</td>
<td>Rychnovsky’s Synthesis of the C1-C26 Fragment of Amphidinol 3</td>
<td>138</td>
</tr>
<tr>
<td>3.13</td>
<td>Cossy’s and Marko’s Synthesis of the C18-C30 Fragment of Amphidinol 3</td>
<td>140</td>
</tr>
<tr>
<td>3.14</td>
<td>Oishi’s and Murata’s Synthesis of the C1-C14 Fragment of Amphidinol 3</td>
<td>142</td>
</tr>
<tr>
<td>3.15</td>
<td>Polyol Syntheses Overview</td>
<td>144</td>
</tr>
<tr>
<td>3.16</td>
<td>References</td>
<td>146</td>
</tr>
</tbody>
</table>

Chapter 4 Synthesis of the Polyol Fragment of Amphidinol 3

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>177</td>
</tr>
<tr>
<td>4.2</td>
<td>Retrosynthetic Analysis of the Polyol Fragment of Amphidinol 3</td>
<td>177</td>
</tr>
<tr>
<td>4.3</td>
<td>Synthesis of Fragment 3</td>
<td>177</td>
</tr>
<tr>
<td>4.4</td>
<td>Stereochemistry Proof of Fragment 3</td>
<td>180</td>
</tr>
<tr>
<td>4.5</td>
<td>Synthesis of Fragment 4</td>
<td>184</td>
</tr>
<tr>
<td>4.6</td>
<td>Synthesis of Fragment 2</td>
<td>184</td>
</tr>
</tbody>
</table>

References | 170 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9</td>
<td>References</td>
<td>324</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Synthesis of the Common THP Fragment of Amphidinol 3</td>
<td>328</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>328</td>
</tr>
<tr>
<td>6.2</td>
<td>Analysis of the Common THP Fragment of Amphidinol 3</td>
<td>328</td>
</tr>
<tr>
<td>6.3</td>
<td>Synthesis of the Model anti-THP Ring</td>
<td>331</td>
</tr>
<tr>
<td>6.4</td>
<td>Retrosynthetic Analysis of the syn-THP Ring</td>
<td>336</td>
</tr>
<tr>
<td>6.5</td>
<td>Synthesis of the syn-THP Ring</td>
<td>339</td>
</tr>
<tr>
<td>6.6</td>
<td>Retrosynthetic Analysis of the Common THP Fragment of Amphidinol 3</td>
<td>343</td>
</tr>
<tr>
<td>6.7</td>
<td>Synthesis of the Common THP Fragment of Amphidinol 3</td>
<td>343</td>
</tr>
<tr>
<td>6.8</td>
<td>Conclusion</td>
<td>350</td>
</tr>
<tr>
<td>6.9</td>
<td>Experimental</td>
<td>352</td>
</tr>
<tr>
<td>6.9.1</td>
<td>General Information</td>
<td>352</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Experimental Procedures</td>
<td>352</td>
</tr>
<tr>
<td>6.10</td>
<td>References</td>
<td>388</td>
</tr>
<tr>
<td>6.11</td>
<td>Appendix C. 1H and APT Spectrums for Compound 42</td>
<td>390</td>
</tr>
</tbody>
</table>
List of Tables

Table 1.2.1 Synthesis of Symmetrical Ethers via the BiBr₃-Catalysed Homocoupling Reaction (eq. 3) 3
Table 1.2.2 Synthesis of Unsymmetrical Ethers via the BiBr₃-Catalysed Heterocoupling Reaction (eq. 4) 4
Table 1.2.3 Ether Synthesis Using Carbonyl Compounds and Et₃SiH in the Presence of BiCl₃ (eq. 5) 5
Table 1.2.4 Ether Synthesis Using Carbonyl Compounds and Alcohols Mediated by BiCl₃ and Et₃SiH (eq. 6) 6
Table 1.2.5 Transformation of Silyl Ethers into Dialkyl Ethers (eq. 7) 7
Table 1.2.6 BiBr₃/ClSiH(iPr)₂ Mediated Reductive Etherification of Alkoxysilanes (eq. 8) 9
Table 1.4.1.1 Diastereoselectivity of Cyclisation-Addition Reaction of π-Nucleophiles 23
Table 1.9.1 Screening of Catalysts for the Hydro-Oxycarbonylation (eq. 45) 39
Table 1.9.2 Hydro-Oxycarbonylation of Disubstituted Alkynes (eq. 46) 40
Table 1.9.3 Selected Examples of Bi(OTf)₃ Catalysed Multicatalytic Synthesis of Complex Tetrahydrofurans (eq. 49) 42
Table 2.4.1 Optimisation of the Two-Component Hemiacetal/Oxa-Conjugate Addition Reaction (eq. 6) 54
Table 2.4.2 Aldehyde Scope for the Two-Component Hemiacetal/Oxa-Conjugate Addition Reaction (eq. 7, R¹ = Ph(CH₂)₂) 55
Table 2.5.1 Scope of the Two-Component Hemiacetal/Oxa-Conjugate Addition Reaction for δ-Hydroxy α,β- Unsaturated Ketones (eq. 8) 57
Table 2.6.1 Optimisation of the Two-Component Hemiacetal/Oxa-Conjugate Addition Reaction for the δ-Trialkyilsilyloxy α,β-Unsaturated Aldehydes (R = Ph(CH₂)₂, eq. 9) 58
Table 2.7.1 Scope of the Two-Component Hemiacetal/Oxa-Conjugate Addition Reaction for the δ-Triethylsilyloxy α,β-Unsaturated Aldehydes (eq. 10) 60
Table 2.8.1 Equilibration Studies of the anti-1,3-Dioxane 22 (eq. 12) 63
Table 3.6.1 Haemolytic and Antifungal Activities of Amphidinols and Other Polyene Antibiotics 134
Table 4.3.1 Optimisation of the Allylic Bromide 17 Formation (eq. 1) 181
Table 4.3.2 Optimisation of the α-Hydroxy Epoxide 19 Formation 182
Table 4.6.1 Optimisation of the Hydroxyenal 35 Silylation (eq. 4) 188
Table 4.6.2 Optimisation of the Asymmetric Propargylation (eq. 5) 190
Table 4.7.1 TST-RCM Reaction of 59 (eq. 8) 195
Table 4.7.2 Optimisation of the RCM Reaction of 61 (eq. 10) 197
Table 4.12.1 Optimisation of the TST-RCM Reaction of Silaketal 80 (eq. 14) 205
Table 4.15.1 Optimisation of the Weinreb Coupling with Vinyl Iodide 92 (eq. 16) 212
Table 4.15.2 Optimisation of the TBS Protection of 51 (eq. 20) 216
Table 6.3.1 Optimisation of Acetonide 20 Formation (eq. 2) 334
Table 6.3.2 Chemoselective Deprotection of the PMB ether 20 (eq. 3) 335
List of Figures

Figure 1.2.1	Selected Examples of BiBr$_3$ Mediated Alcohol Protection as the Benzyl-Type Ethers	13
Figure 1.3.1	Selected Examples of Bi(OTf)$_3$ Catalysed O-Glycosylation Products	17
Figure 1.6.1	Selected Examples of Bi(OTf)$_3$ Catalysed IMSC of Homoallylic Alcohols	34
Figure 1.6.2	Selected Examples of the Prins-Ritter Reaction Catalysed by Bi(OTf)$_3$	35
Figure 1.6.3	Selected Examples of the Sakurai-Prins-Ritter Reaction Catalysed by Bi(OTf)$_3$	36
Figure 1.9.1	Selected Examples of Bi(OTf)$_3$ Catalysed Hydro-Oxycarbonylation	40
Figure 2.1.1	Structures of the Selected Polyene Macrolide Antibiotics	49
Figure 2.2.1	Mechanism of the Base-Catalysed Intramolecular Conjugate Addition of the Hemiacetal-Derived Alkoxide Nucleophiles	51
Figure 2.8.1	1D NOE of the Selected Hemiacetal Cyclisation Products	61
Figure 2.8.2	ORTEP Representation of the X-Ray Structure of rac-12p	61
Figure 2.8.3	1D NOE of the Minor Hemiacetal Cyclisation Product rac-13b	62
Figure 2.10.1	Mapping of the syn-1,3-Dioxanes onto the Polyene Macrolide RK-397 Using the Bismuth-Mediated Two-Component Hemiacetal/Oxa-Conjugate Reaction	65
Figure 3.1.1	Structures of Selected Marine Natural Products	125
Figure 3.2.1	Structure of Gambierol and its Structural Elements	126
Figure 3.3.1	Structures of Selected Amphidinolides	127
Figure 3.3.2	Structures of Pectenotoxins	128
Figure 3.3.3	Structures of Marine Cyclic Imine Toxins	129
Figure 3.4.1	Structures of OA and DTX Toxins	130
Figure 3.5.1	Structure and Absolute Configuration of Amphidinol 3	131
Figure 3.5.2	Structures of Amphidinols Isolated from Amphidinium sp.	132
Figure 3.5.3 Structures of Amphidinols Isolated from Amphidinium sp. (Cont.) 133
Figure 3.6.1 Hypothetical Model of the Membrane-Bound Structure of AM3 135
Figure 3.7.1 Structures of Luteophanol A-D 137
Figure 3.7.2 Structures of the Karlotoxin Family Polyols 138
Figure 3.7.3 Main Structural Differences Between AM3 and KmTx 2 139
Figure 3.7.4 Structure of Amdigenol A 140
Figure 3.7.5 Structures of Karatungiols A and B 140
Figure 3.7.6 Structures of Lingshuiols A and B 141
Figure 3.7.7 Structure of Amphezonol A 142
Figure 3.7.8 Structure of Carteraol E 142
Figure 3.8.1 Polyol Fragment in Amphidinol 3 143
Figure 3.14.1 Structures of the Diastereoisomic 1,5-Polyols 164
Figure 4.3.1 Sharpless AD Mnemonic Application to Olefin 17 183
Figure 4.5.1 Structure of Chiral Bis-Ti(IV) Catalyst and Allylation Transition State 185
Figure 4.5.2 Iodonium Intermediate 29 and Cyclisation of Iodohydrine 30 186
Figure 4.6.1 Steric Clash in Hydroxyenal vs Dienol 189
Figure 4.6.2 Structures of Nucleophiles and Chiral Ligands Used for the Asymmetric Propargylation 190
Figure 4.6.3 Transition States for the Propargylation Reaction of 13 191
Figure 4.6.4 Noyori’s Model for the Vinylation Transition State 192
Figure 4.7.1 Natural Products with Polypropionate Units 193
Figure 4.12.1 Structures of Ruthenium Carbenes 82 and 83 206
Figure 4.12.2 Proposed Intramolecular Desilylation of 84 207
Figure 4.12.3 Stereochemical Assignment of 84 207
Figure 4.15.1 Neutral Silylating Reagents 216
Figure 5.1.1 Bis-Tetrahydropyran Fragment in Amphidinol 3 288
Figure 6.3.1 Prediction of Stereochemistry of the Dihydroxylation Reaction of 16 333
Figure 6.3.2 Stereochemical Assignment of Diol 17 333
Figure 6.4.1 Selected Natural Products with the syn-THP Ring Functionality 338

Figure 6.5.1 Prediction of Stereochemistry of the Dihydroxylation Reaction of 31 340

Figure 6.5.2 Stereochemical Assignment of Diol 32 341

Figure 6.7.1 Felkin-Ahn Model for Acetylide Addition to 45 346

Figure 6.7.2 Stereochemical Assignment of Diol 52 348
List of Schemes

Scheme 1.1	Ether Synthesis Using Aliphatic Substitution Reaction	1
Scheme 1.2.1	Application of the Reductive Etherification in the Synthesis of MMP090	8
Scheme 1.2.2	Reductive Etherification in the Preparation of AGP Lipid A Mimetics	10
Scheme 1.2.3	Reductive Etherification in the Preparation of PPAR α/γ Agonist 50	11
Scheme 1.2.4	Postulated Mechanism for the Benzylation of Aliphatic Alcohols	12
Scheme 1.4.1	Synthesis of 2,6-Disubstituted Tetrahydropyrans via Oxocarbenium Intermediate 103	19
Scheme 1.4.1.1	Mechanistic Proposal for the Two-Component Intramolecular Etherification	20
Scheme 1.4.1.2	(−)-Sugiresinol Synthesis via Rhodium(I)-Catalysed Allylic Alkylation and Bismuth(III)-Catalysed Intramolecular Reductive Etherification	22
Scheme 1.4.1.3	Synthesis of the C1-C11 Fragment of Zincophorin	24
Scheme 1.4.1.4	Tandem Etherification-Allylation in the Preparation of trans-Substituted Tetrahydropyrany Ring 128	25
Scheme 1.4.1.5	Preparation of trans-Tetrahydropyran 130 via the Lactol Intermediate 129	25
Scheme 1.4.1.6	Stereoselective Synthesis of (−)-Centrolobine Using the Intramolecular Reductive Etherification	27
Scheme 1.4.1.7	Application of the Intramolecular Reductive Etherification in the Total Synthesis of (−)-Mucocin	27
Scheme 1.5.1	Bismuth(III) Catalysed Two-Component Etherification/Oxa-Conjugate Addition Reaction	29
Scheme 1.6.1	Possible Intermediates in the Silyl-Prins Cyclisation	31
Scheme 1.6.2	Tandem Silyl-Prins/Mukaiyama Aldol Reaction	32
Scheme 1.6.3	Bi(OTf)₃ Mediated Synthesis of Dihydropyrans	33
Scheme 2.2.1 Mechanism of the Base-Catalysed Intramolecular Conjugate Addition of Hemiacetal-Derived Alkoxide Nucleophiles

Scheme 2.3.1 Proposed Catalytic Cycle for the Reaction Between the Homoallylic Alcohol i and the Brønsted Acid Activated Aldehyde ii

Scheme 2.8.1 Synthesis of the Protected anti-1,3-diol 22

Scheme 2.9.1 Deprotection of the 1,3-Ethylidene Acetal

Scheme 2.10.1 Iterative Synthesis of the 1,3,5-... Skipped Polyols

Scheme 2.10.2 Iterative Bismuth-Mediated Two-Component Hemiacetal/Oxa-Conjugate Reaction to the syn-1,3-Dioxanes.

Scheme 3.9.1 Cossy and BouzBouz Approach Towards the C1-C14 Fragment of Amphidinol 3

Scheme 3.10.1 Synthesis of Aldehyde 14 via Double Allylboration

Scheme 3.10.2 Elaboration of Aldehyde 21

Scheme 3.10.3 Completion of the C1-C25 Fragment of Amphidinol 3

Scheme 3.11.1 Synthesis of the Ketone Intermediate 31

Scheme 3.11.2 Completion of the C17-C30 Fragment of AM3

Scheme 3.11.3 Synthesis of Aldehyde 39

Scheme 3.11.4 Synthesis of the Phosphonium Salt 44

Scheme 3.11.5 Elaboration of Ketone 45

Scheme 3.11.6 Completion of the C9-C30 Fragment of Amphidinol 3

Scheme 3.11.7 Synthesis of the C1-C8 Sulfone Fragment 54

Scheme 3.11.8 Completion of the C1-C30 Fragment of Amphidinol 3

Scheme 3.12.1 Synthesis of the C13-C26 Enone 61

Scheme 3.12.2 Synthesis of the C1-C12 Alkene 70

Scheme 3.12.3 Completion of the C1-C26 Fragment of Amphidinol 3

Scheme 3.13.1 Synthesis of the Phosphonium Salt 80

Scheme 3.13.2 Synthesis of Aldehyde 85

xvii
Scheme 3.13.3	Completion of the C18-C30 fragment 89	162
Scheme 3.14.1	Preparation of (R)- and (S)-92	163
Scheme 3.14.2	Synthesis of 96a and its C2 Epimer 96b	164
Scheme 3.14.3	Structural Revision of Amphidinol 3	165
Scheme 3.15.1	Overview of Amphidinol 3 Polyol Fragment Syntheses	166
Scheme 3.15.2	Overview of Amphidinol 3 Polyol Fragment Syntheses (Cont.)	167
Scheme 3.15.3	Overview of Amphidinol 3 Polyol Fragment Syntheses (Cont.)	168
Scheme 3.15.4	Overview of Amphidinol 3 Polyol Fragment Syntheses (Cont.)	169
Scheme 4.2.1	Retrosynthetic Analysis of the C1-C31 Fragment of AM3	177
Scheme 4.2.2	Retrosynthetic Analysis of Fragment 1	178
Scheme 4.2.3	Retrosynthetic Analysis of Fragment 2	179
Scheme 4.3.1	Preparation of the (E)-Allylic Alcohol 7	180
Scheme 4.3.2	Alternative Approach to 7	181
Scheme 4.3.3	Completion of Fragment 3	184
Scheme 4.5.1	Synthesis of the β-Epoxy Alcohol 26	185
Scheme 4.5.2	Completion of Fragment 4	186
Scheme 4.6.1	Synthesis of Fragment 10	187
Scheme 4.6.2	Synthesis of Fragment 2	192
Scheme 4.7.1	Model Hydroboration of syn- and anti-Silaketals	193
Scheme 4.8.1	Revised Retrosynthetic Analysis of the C1-C30(31) Fragment of AM3	198
Scheme 4.8.2	Revised Retrosynthetic Analysis of Fragment 63	199
Scheme 4.9.1	Revised Retrosynthetic Analysis of Fragment 2	200
Scheme 4.10.1	Synthesis of the Boc Carbonate 73	201
Scheme 4.10.2	Synthesis of the β-Hydroxy Epoxide 75	201
Scheme 4.10.3	Synthesis of the Allylic Alcohol 64	202
Scheme 4.12.1 Synthesis of Sulfone 63 208
Scheme 4.13.1 Synthesis of Fragment 67 209
Scheme 4.14.1 Allylboration of 13 210
Scheme 4.14.2 Synthesis of the Vinyl Stannane 68 and Iodide 92 210
Scheme 4.15.3 Tin-Lithium Exchange Mechanism 211
Scheme 4.16.1 Completion of the C1-C31 Fragment of Amphidinol 3 217
Scheme 4.17.1 Overview of the Synthesis of the C1-C31 Fragment of Amphidinol 3 219
Scheme 5.1.1 Strategic Disconnection in the Retrosynthetic Analysis of the bis-THP fragment of AM3 288
Scheme 5.2.1 Rychnovsky’s Retrosynthetic Analysis of the bis-THP Fragment of Amphidinol 3 289
Scheme 5.2.2 Synthesis of the C39-C52 Fragment of Amphidinol 3 290
Scheme 5.2.3 Revised Retrosynthetic Analysis of the bis-THP Fragment of Amphidinol 3 291
Scheme 5.2.4 Revised Synthesis of the Common THP Fragment 292
Scheme 5.2.5 Synthesis of the C31-C42 THP Fragment 292
Scheme 5.2.6 Synthesis of the C43-C52 THP Fragment and Elaboration of the bis-THP Segment 17 293
Scheme 5.2.7 Polyene Linkup with the bis-THP Fragment 294
Scheme 5.3.1 Lewis Acid Mediated Synthesis of syn- and anti-Tetrahydropyrans 295
Scheme 5.3.2 Elaboration of the Highly Substituted anti-Tetrahydropyran 37 296
Scheme 5.4.1 Roush’s Retrosynthetic Analysis of the bis-THP Fragment of AM3 297
Scheme 5.4.2 Synthesis of the Cyclisation Precursor 48 via Double Allylboration 298
Scheme 5.4.3 Synthesis of the C43-C67 Fragment 299
Scheme 5.4.4 Revised Retrosynthetic Analysis 300
Scheme 5.4.5 Deprotection Studies of the Polyene Fragment 42 301
Scheme 5.4.6 Model Deprotection of Cyclopentylidene Ketas 301
Scheme 5.4.7 Synthesis of the Common THP Fragment 59 via Double Allylboration 302

Scheme 5.4.8 Synthesis of the C43-C67 Fragment 72 303

Scheme 5.4.9 Synthesis of the Vinyl Iodide 78 304

Scheme 5.4.10 Synthesis of the C26-C42 Fragment 58 305

Scheme 5.5.1 Paquette’s Retrosynthetic Analysis of the bis-THP Fragment 306

Scheme 5.5.2 Synthesis of the Epoxy Alcohol 89 307

Scheme 5.5.3 Elaboration of the THP and its Union with the Polyolefin 308

Scheme 5.5.4 Synthesis of the Common THP Fragment 83 309

Scheme 5.5.5 Synthesis of the C43-C52 Fragment 309

Scheme 5.5.6 Synthesis of the C31-C42 Fragment 310

Scheme 5.5.7 Elaboration of the bis-THP fragment 80 311

Scheme 5.6.1 Oishi’s Retrosynthetic Analysis of AM3 312

Scheme 5.6.2 Synthesis of the C31-C40/C43-C52 Fragment of AM3 313

Scheme 5.7.1 Crimmins’ Retrosynthetic Analysis of the bis-THP Fragment 314

Scheme 5.7.2 Synthesis of the Common THP Fragment 116 315

Scheme 5.7.3 Synthesis of the C41-C52 Fragment 114 316

Scheme 5.7.4 Synthesis of the C31-C40 Fragment 102 317

Scheme 5.7.5 Synthesis of the bis-THP Fragment 113 318

Scheme 5.8.1 Overview of Amphidinol 3 THP Segment Syntheses 320

Scheme 5.8.2 Overview of Amphidinol 3 THP Segment Syntheses (Cont.) 321

Scheme 5.8.3 Overview of Amphidinol 3 THP Segment Syntheses (Cont.) 322

Scheme 5.8.4 Overview of Amphidinol 3 THP Segment Syntheses (Cont.) 323

Scheme 6.2.1 Retrosynthetic Analysis of the bis-THP fragment of AM3 328

Scheme 6.2.2 Synthetic Hypothesis of the anti-THP 7 Formation 329

Scheme 6.2.3 Conformational Equilibrium During the Dihydroxylation of anti-THP Rings 330
Scheme 6.2.4	Retrosynthetic Analysis of the anti-THP Unit 10	331
Scheme 6.3.1	Synthesis of the Cyclic syn-Silaketel 16	331
Scheme 6.3.2	Synthesis of the Model Common anti-THP Fragment of AM3	337
Scheme 6.4.1	Retrosynthetic Analysis of the syn-THP Ring Formation	338
Scheme 6.5.1	Synthesis of the Cyclic anti-Silaketel 31	339
Scheme 6.5.2	Synthesis of Acetonide 33	339
Scheme 6.5.3	Synthesis of Tosylate 37	342
Scheme 6.5.4	Synthesis of the syn-THP 39	342
Scheme 6.6.1	Retrosynthetic Analysis of the bis-THP Fragment of Amphidinol 3	343
Scheme 6.7.1	Initial Approach to the Allylic Aclohol 40	344
Scheme 6.7.2	Alternative Approach to Alcohol 40	346
Scheme 6.7.3	Formation of the Advanced syn-Silaketel 41	347
Scheme 6.7.4	Formation of Acetonide 53	348
Scheme 6.7.5	Formation of Tosylate 55	349
Scheme 6.7.6	Formation of the Common THP Fragment 42	350
Scheme 6.8.1	Overview of Syntheses of THP Rings Using TST-RCM	351
List of Publications

List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>angstrom</td>
</tr>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>Acac</td>
<td>acetylacetonate</td>
</tr>
<tr>
<td>Alloc</td>
<td>allyloxycarbonyl</td>
</tr>
<tr>
<td>AIBN</td>
<td>azobis(isobutyronitrile)</td>
</tr>
<tr>
<td>'Am</td>
<td>tert-Amyl</td>
</tr>
<tr>
<td>aq.</td>
<td>aqueous</td>
</tr>
<tr>
<td>Ar</td>
<td>aryl</td>
</tr>
<tr>
<td>APT</td>
<td>attached proton test</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Bz</td>
<td>benzoyl</td>
</tr>
<tr>
<td>"Bu</td>
<td>butyl</td>
</tr>
<tr>
<td>'Bu</td>
<td>tert-butyl</td>
</tr>
<tr>
<td>9-BBN</td>
<td>9-borabicyclo[3.3.1]nonane</td>
</tr>
<tr>
<td>BINOL</td>
<td>1,1'-bi-2-naphthol</td>
</tr>
<tr>
<td>BINAP</td>
<td>2,2'-(bis(diphenylphosphino)-1,1'-binaphthyl.</td>
</tr>
<tr>
<td>bmim</td>
<td>1-butyl-3-methylimidazolium</td>
</tr>
<tr>
<td>BOC</td>
<td>tert-butoxycarbonyl</td>
</tr>
<tr>
<td>BOC-ON</td>
<td>2-(tert-butoxycarbonyloxyimino)-2-phenylacetonitrile</td>
</tr>
<tr>
<td>BOM</td>
<td>benzyloxymethyl</td>
</tr>
<tr>
<td>b.r.s.m.</td>
<td>based on recovered starting material</td>
</tr>
<tr>
<td>ºC</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>CAN</td>
<td>ceric ammonium nitrate</td>
</tr>
<tr>
<td>cat.</td>
<td>catalytic</td>
</tr>
<tr>
<td>CBS</td>
<td>Corey-Bakshi-Shibata</td>
</tr>
<tr>
<td>cee</td>
<td>conservation of enantiomeric excess</td>
</tr>
<tr>
<td>CI</td>
<td>chemical ionization</td>
</tr>
<tr>
<td>COSY</td>
<td>1H-1H correlation spectroscopy</td>
</tr>
<tr>
<td>CSA</td>
<td>(\pm)-10-camphorsulphonic acid</td>
</tr>
<tr>
<td>Cp</td>
<td>cyclopentadienyl</td>
</tr>
<tr>
<td>Cy</td>
<td>cyclohexyl</td>
</tr>
<tr>
<td>Chemical Symbol</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DCE</td>
<td>1,2-dichloroethane</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-dichloro-5,6-dicyano-1,4-benzoquinone</td>
</tr>
<tr>
<td>DEAD</td>
<td>diethyl azodicarboxylate</td>
</tr>
<tr>
<td>DET</td>
<td>diethyl tartrate</td>
</tr>
<tr>
<td>DHQD-IND</td>
<td>(9-O-indolylcarbamoyl)dihydroquinidine</td>
</tr>
<tr>
<td>DIAD</td>
<td>diisopropyl azodicarboxylate</td>
</tr>
<tr>
<td>DIBAL-H</td>
<td>diisobutylaluminum hydride</td>
</tr>
<tr>
<td>DIPEA</td>
<td>N,N-diisopropylethylamine</td>
</tr>
<tr>
<td>DIPT</td>
<td>diisopropyl tartrate</td>
</tr>
<tr>
<td>DMP</td>
<td>Dess–Martin periodinane</td>
</tr>
<tr>
<td>2,2-DMP</td>
<td>2,2-dimethoxypropane</td>
</tr>
<tr>
<td>DMS</td>
<td>dimethylsulfide</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-dimethylaminopyridine</td>
</tr>
<tr>
<td>DME</td>
<td>ethylene glycol dimethyl ether</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DTBMP</td>
<td>di-tert-butyl-4-methylpyridine</td>
</tr>
<tr>
<td>dppf</td>
<td>1,1'-bis(diphenylphosphino)ferrocene</td>
</tr>
<tr>
<td>ds</td>
<td>diastereoselectivity</td>
</tr>
<tr>
<td>EC_{50}</td>
<td>half maximal effective concentration</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>ent</td>
<td>enantiomer</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>equiv</td>
<td>equivalent</td>
</tr>
<tr>
<td>EWG</td>
<td>electron-withdrawing group</td>
</tr>
<tr>
<td>Fm</td>
<td>9-fluorenylmethoxy</td>
</tr>
<tr>
<td>FTIR</td>
<td>fourier transform infra-red</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>G-II</td>
<td>Grubbs 2nd generation catalyst</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>HG-II</td>
<td>Hoveyda-Grubbs 2nd generation catalyst</td>
</tr>
<tr>
<td>HMDS</td>
<td>1,1,1,3,3,3-hexamethyldisilazane</td>
</tr>
<tr>
<td>HMPA</td>
<td>hexamethylphosphoric triamide</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HSQC</td>
<td>heteronuclear single quantum coherence</td>
</tr>
<tr>
<td>HMBC</td>
<td>heteronuclear multiple-bond correlation spectroscopy</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectrometry</td>
</tr>
<tr>
<td>HWE</td>
<td>Horner–Wadsworth–Emmons</td>
</tr>
<tr>
<td>IBX</td>
<td>2-iodoxybenzoic acid</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>half maximal inhibitory concentration</td>
</tr>
<tr>
<td>Ipc</td>
<td>isopinocampheyl</td>
</tr>
<tr>
<td>ISMS</td>
<td>intramolecular silyl-modified Sakurai reaction</td>
</tr>
<tr>
<td>IMSC</td>
<td>intramolecular Sakurai cyclisation</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant (NMR)</td>
</tr>
<tr>
<td>KO'Bu</td>
<td>potassium tert-butoxide</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium diisopropylamide</td>
</tr>
<tr>
<td>LiDBB</td>
<td>4,4'-di(tert-butyl)biphenylide</td>
</tr>
<tr>
<td>L-Selectride</td>
<td>lithium tri-sec-butylborohydride</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MEC</td>
<td>minimal effective concentration</td>
</tr>
<tr>
<td>MTPA</td>
<td>α-methoxy-α-(trifluoromethyl)phenylacetyl</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>mmol</td>
<td>millimole</td>
</tr>
<tr>
<td>MOM</td>
<td>methoxymethyl</td>
</tr>
<tr>
<td>MIB</td>
<td>morpholino isoborneol</td>
</tr>
<tr>
<td>mp</td>
<td>melting point</td>
</tr>
<tr>
<td>MS</td>
<td>molecular sieves</td>
</tr>
<tr>
<td>Ms</td>
<td>methylsulfonyl</td>
</tr>
<tr>
<td>MSA</td>
<td>N-methyl-N-trimethylsilylacetamide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>MTBSTFA</td>
<td>N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>NCS</td>
<td>N-chlorosuccinimide</td>
</tr>
<tr>
<td>NBS</td>
<td>N-bromosuccinimide</td>
</tr>
<tr>
<td>NIS</td>
<td>N-iodosuccinimide</td>
</tr>
<tr>
<td>NMO</td>
<td>4-methylmorpholine N-oxide</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>nOe</td>
<td>nuclear Overhauser effect</td>
</tr>
<tr>
<td>NOESY</td>
<td>nuclear Overhauser effect spectroscopy</td>
</tr>
<tr>
<td>NMO</td>
<td>4-methylmorpholine-N-oxide</td>
</tr>
<tr>
<td>Napth</td>
<td>naphthyl</td>
</tr>
<tr>
<td>Nu</td>
<td>nucleophile</td>
</tr>
<tr>
<td>n/a</td>
<td>no activity</td>
</tr>
<tr>
<td>n/r</td>
<td>no reaction</td>
</tr>
<tr>
<td>n/d</td>
<td>not determined</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>Piv</td>
<td>pivoyl</td>
</tr>
<tr>
<td>PPA</td>
<td>polyphosphoric acid</td>
</tr>
<tr>
<td>PPTS</td>
<td>pyridinium p-toluenesulfonic acid</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PMB</td>
<td>p-methoxybenzyl</td>
</tr>
<tr>
<td>PMP</td>
<td>p-methoxyphenyl</td>
</tr>
<tr>
<td>PNB</td>
<td>p-nitrobenzyl</td>
</tr>
<tr>
<td>PT</td>
<td>1-phenyl-$1H$-tetrazole-5-yl</td>
</tr>
<tr>
<td>PTSA</td>
<td>p-toluenesulfonic acid</td>
</tr>
<tr>
<td>PTSH</td>
<td>1-phenyl-$1H$-tetrazole-5-thiol</td>
</tr>
<tr>
<td>Py</td>
<td>pyridine</td>
</tr>
<tr>
<td>Pyrr</td>
<td>pyrrolidine</td>
</tr>
<tr>
<td>rac</td>
<td>racemic</td>
</tr>
<tr>
<td>‘Pr</td>
<td>isopropyl</td>
</tr>
<tr>
<td>RCM</td>
<td>ring-closing metathesis</td>
</tr>
<tr>
<td>Rf</td>
<td>retention factor</td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>SBox</td>
<td>S-benzoxazolyl</td>
</tr>
<tr>
<td>SEM</td>
<td>2-(trimethylsilyl)ethoxymethyl</td>
</tr>
<tr>
<td>STaz</td>
<td>S-thiazolinyl</td>
</tr>
<tr>
<td>TAS-F</td>
<td>(tris(\text{dimethylamino})\text{sulfinium}) difluorotrimethylsilicate</td>
</tr>
<tr>
<td>TBACl</td>
<td>tetrabutylammonium chloride</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetrabutylammonium fluoride</td>
</tr>
<tr>
<td>TBAI</td>
<td>tetrabutylammonium iodide</td>
</tr>
<tr>
<td>TBDMSIM</td>
<td>1-(\text{tert-butyldimethylsilyl})\text{imidazole}</td>
</tr>
<tr>
<td>TBDPS</td>
<td>\text{tert-butylidiphenylsilyl}</td>
</tr>
<tr>
<td>TBS</td>
<td>\text{tert-butyldimethylsilyl}</td>
</tr>
<tr>
<td>TES</td>
<td>triethyldimethylsilyl</td>
</tr>
<tr>
<td>Tf</td>
<td>trifluoromethanesulfonyl</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluorooacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>THP</td>
<td>tetrahydropyran</td>
</tr>
<tr>
<td>TIPS</td>
<td>triisopropylsilyl</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMEDA</td>
<td>(N,N,N',N')-tetramethylethylenediamine</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>TPAP</td>
<td>tetrapropylammonium perruthenate</td>
</tr>
<tr>
<td>(t_R)</td>
<td>retention time</td>
</tr>
<tr>
<td>Tr</td>
<td>triphenylmethyl</td>
</tr>
<tr>
<td>Ts</td>
<td>(p)-toluenesulfonyl</td>
</tr>
<tr>
<td>TST</td>
<td>temporary silicon-tethered</td>
</tr>
<tr>
<td>(\mu L)</td>
<td>microliter</td>
</tr>
</tbody>
</table>
Was mich nicht umbringt, macht mich stärker.

Friedrich Wilhelm Nietzsche
Chapter 1

Bismuth(III)-catalysed C-O bond forming transformations

1.1 Introduction

The formation of the carbon–oxygen bond is one of the most widely used functional group transformations in organic synthesis.\(^1\) The classical Williamson etherification is limited, in a practical sense, to the alkylation of an alkoxy anion with an alkyl halide or sulfonate under basic conditions.\(^2\) Unfortunately, the formation of olefins can often occur via an elimination pathway when secondary electrophiles are employed and become a major side-reaction in the case of tertiary substrates, thus dramatically limiting the scope of the transformation (Scheme 1.1.1).

Scheme 1.1.1: Ether Synthesis Using Aliphatic Substitution Reaction

\[\text{R}^1\text{OH} + \text{R}^2\text{X} \xrightarrow{\text{SN2 or SN1}} \text{R}^1\text{O}\text{R}^2 \]

In order to overcome the abovementioned limitations, new milder routes are being developed for this type of transformation. The \textit{oxa}-Michael addition is the direct and simple method for the synthesis of symmetrical and unsymmetrical ethers. Typically, two modes of the activation are applicable to this reaction, consisting of base activation of the nucleophile and/or Lewis/Brønsted acid-mediated electrophilicity enhancement of the conjugate acceptor (eq. 1).\(^3\)

\[\text{R}^1\text{OH} + \text{EWG} \xrightarrow{\text{catalyst}} \text{R}^1\text{O}\text{EWG} \]

Another attractive alternative for the efficient C-O bond formation is the reductive etherification (eq. 2). Similar to \textit{oxa}-Michael addition, this reaction relies
on a Lewis acid activation of the carbonyl group followed by *inter* molecular hydride transfer.

\[
\begin{align*}
R_1\text{OH} & \quad \text{catalyst, [H]} \quad O \quad R_2R_3 \\
\text{1} & \quad \rightarrow \quad \text{8}
\end{align*}
\]

During the last two decades, bismuth(III) derivatives have emerged as relatively non-toxic and non-carcinogenic, easy to handle and moisture insensitive reagents, with the ability to act as both Lewis and Brønsted acids and successfully catalyse a plethora of useful transformations.\(^4\) This has resulted in their application as ‘green reagents’ in the development of methods for the formation of symmetrical and unsymmetrical ethers under essentially non-basic conditions.

The following chapter will outline recent progress in the area of bismuth(III)-catalysed etherification with a special emphasis of the reaction scope and its application in the target-oriented synthesis.

1.2 Intermolecular Etherification

In 1997, Komatsu *et al.* were the first to show that carbonyl compounds undergo a reductive homo- or heterocoupling with alkoxySilanes in the presence of catalytic amount of bismuth(III) bromide to afford the corresponding symmetrical and unsymmetrical ethers, respectively, and applied this reaction for the preparation of novel macrocyclic ethers.\(^5\) The advantage of the methodology relied on the mild non-basic reaction conditions, which avoided elimination. Generally, the reactions were fast and furnished the homoetherification products in less than 5 minutes when aromatic aldehydes were used as substrates (eq. 3, Table 1.2.1, entry 1). The reaction of aliphatic aldehydes (entry 2) and aliphatic ketones (entry 4 and 5)
required longer reaction times, however the *homo*etherification of phenyl methyl ketone failed, with a trace of product being observed after 20 hours (entry 6).

Table 1.2.1: Synthesis of Symmetrical Ethers via the BiBr₃-Catalysed Homocoupling Reaction (eq. 3)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R¹</th>
<th>R²</th>
<th>Time</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>H</td>
<td><5 min</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>Me(CH₂)₆</td>
<td>H</td>
<td>2 h</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>-(CH₂)₅-</td>
<td>H</td>
<td>2 h</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>PhCH₂CH₂</td>
<td>Et</td>
<td>2 h</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>Ph</td>
<td>Me</td>
<td>20 h</td>
<td>trace</td>
</tr>
</tbody>
</table>

The superiority of the reductive coupling over the conventional etherification becomes more obvious in the case of formation of the unsymmetrical ethers (eq. 4, Table 1.2.2). Benzyl and 2-octyl trimethylsilyl ethers reacted readily with aliphatic and aromatic aldehydes (entries 1-3, 9) and ketones (entries 4, 6 and 10). However, acetophenone and methyl vinyl ketone showed sluggish reactivity (entries 5 and 7). Interestingly, a similar reactivity trend is observed in the *homocoupling* reaction. Thus, these results indicate a unique ability of BiBr₃ to discriminate phenyl ketones from alicyclic and cyclic derivatives, in contrast to other reported Lewis acids such as TMSOTf and trityl perchlorate,⁶ which failed to deliver the requisite chemoselectivity.
Table 1.2.2: Synthesis of Unsymmetrical Ethers via the BiBr₃-Catalysed Heterocoupling Reaction (eq. 4)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>Time</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>H</td>
<td>PhCH₂⁻</td>
<td><5 min</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>Me(CH₂)₆</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>trans-MeCH=CH</td>
<td>"</td>
<td>"</td>
<td>2 h</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>-(CH₂)₅⁻</td>
<td>"</td>
<td>"</td>
<td><5 min</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>Ph</td>
<td>Me</td>
<td>"</td>
<td>20 h</td>
<td>trace</td>
</tr>
<tr>
<td>6</td>
<td>Me(CH₂)₅</td>
<td>"</td>
<td>"</td>
<td>1 h</td>
<td>96</td>
</tr>
<tr>
<td>7</td>
<td>CH₂=CH</td>
<td>"</td>
<td>"</td>
<td>20 h</td>
<td>trace</td>
</tr>
<tr>
<td>8</td>
<td>Ph</td>
<td>H</td>
<td>Ph</td>
<td>1 h</td>
<td>0⁺</td>
</tr>
<tr>
<td>9</td>
<td>Ph</td>
<td>"</td>
<td>2-octyl</td>
<td>"</td>
<td>81</td>
</tr>
<tr>
<td>10</td>
<td>PhCH₂</td>
<td>Et</td>
<td>"</td>
<td>"</td>
<td>88</td>
</tr>
</tbody>
</table>

⁺Dibenzy1 ether was the only product obtained.

Wada and co-workers showed that BiCl₃ is able to catalyse homo- and heterocoupling of carbonyl compounds with non-protected alcohols.⁷ This method is synthetically convenient, as the preparation of silyl ethers is avoided, and makes the overall procedure more atom-economical. Various symmetrical ethers were obtained under mild reaction conditions as shown in eq. 5, Table 1.2.3. Benzaldehyde (entry 1) and aliphatic aldehydes (entries 2, 3) reacted smoothly to afford the corresponding symmetrical ethers in good yields. Notably, ketones generally gave lower yields (entries 5, 6), while the sluggish reactivity of phenyl methyl ketone was attributed to steric factors (entry 7). Remarkably, the reaction of 3-hydroxybenzaldehyde proceeded chemoselectively without the need to mask the phenolic hydroxyl group (entry 4).
Table 1.2.3: Ether Synthesis Using Carbonyl Compounds and Et₃SiH in the Presence of BiCl₃ (eq. 5)

\[
\begin{array}{ccc}
\text{Entry} & \text{R}^1 & \text{R}^2 & \text{Yield (\%)} \\
1 & \text{Ph} & \text{H} & 87 \\
2 & \text{PhCH₂CH₂} & \text{“} & 90 \\
3 & \text{Cy} & \text{“} & 85 \\
4 & \text{m-HOC₆H₄} & \text{“} & 90 \\
5 & \text{PhCH₂CH₂} & \text{CH₃} & 50 \\
6 & \text{CH₃CH₂CH₂CH₂} & \text{“} & 29 \\
7 & \text{Ph} & \text{“} & \text{trace} \\
\end{array}
\]

Table 1.2.4 summarises the carbonyl derivatives scope in the reductive etherification with primary and secondary alcohols (eq. 6). Generally, aldehydes gave higher yields than ketones (entries 1-8, 12 vs. 9-11), while the reactivity of primary and secondary alcohols in terms of yield was similar. Notably, phenols as well as tert-butyl alcohol were shown to be inert under the reaction conditions. The chemoselectivity of the transformation was remarkable, owing to the fact that phenol and carboxyl group containing substrates could be used without protection of their functional groups, which contributed to the overall synthetic efficiency.
Table 1.2.4: Ether Synthesis Using Carbonyl Compounds and Alcohols Mediated by BiCl₃ and Et₃SiH (eq. 6)

![Chemical reaction](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>H</td>
<td>CH₃CH₂</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>“</td>
<td>“</td>
<td>PhCH₂</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>“</td>
<td>“</td>
<td>PhCH₂CH₂(CH₃)CH</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>PhCH₂</td>
<td>“</td>
<td>PhCH₂CH₂</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>CH₃(CH₂)₇</td>
<td>“</td>
<td>PhCH₂CH₂</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>“</td>
<td>“</td>
<td>PhCH₂CH₂(CH₃)CH</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>Cy</td>
<td>“</td>
<td>PhCH₂CH₂</td>
<td>77</td>
</tr>
<tr>
<td>8</td>
<td>“</td>
<td>“</td>
<td>PhCH₂CH₂(CH₃)CH</td>
<td>70</td>
</tr>
<tr>
<td>9</td>
<td>PhCH₂CH₂</td>
<td>CH₃</td>
<td>CH₃CH₂</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>Ph</td>
<td>“</td>
<td>PhCH₂CH</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>-(CH₂)₅-</td>
<td>“</td>
<td>“</td>
<td>38</td>
</tr>
<tr>
<td>12</td>
<td>Ph</td>
<td>H</td>
<td>HOOC(CH₂)₁₁</td>
<td>75</td>
</tr>
</tbody>
</table>

Bajwa and co-workers reinvestigated the BiBr₃/Et₃SiH mediated reductive alkylation of silyl ethers.⁸ They showed that the process was actually catalysed by *in situ* formed triethylsilyl bromide, which was generated through the reduction of BiBr₃ with Et₃SiH. In addition, the scope of the reductive etherification was extended to triisopropylsilyl- and tert-butyldimethylsilyl ethers (eq. 7, Table 1.2.5).
Table 1.2.5: Transformation of Silyl Ethers into Dialkyl Ethers (eq. 7)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Silyl ether</th>
<th>Aldehyde or ketone</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OTBS</td>
<td>MeCHO</td>
<td>18</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>OTES</td>
<td>PhCHO</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>TIPS</td>
<td>MeCHO</td>
<td>23</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>OTBS</td>
<td>PhCHO</td>
<td>26</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>OTBS</td>
<td>PhCHO</td>
<td>29</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>OTBS</td>
<td>PhCHO</td>
<td>31</td>
<td>87</td>
</tr>
<tr>
<td>7</td>
<td>OTBDPS</td>
<td>MeCHO</td>
<td>33</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>OTES</td>
<td>MeCHO</td>
<td>35</td>
<td>n/r</td>
</tr>
</tbody>
</table>

Typically, yields of the reductive etherification were high and the reaction was completed after 15-30 minutes. The transformation proceeded smoothly with both aliphatic and aromatic aldehydes as well as ketones. Bulky silyl ethers such as TIPS and TBDMS (entries 1, 3-6) worked well, while TBDPS ether showed
somewhat lower reactivity (entry 7). Remarkably, the bromide containing substrate was tolerated, demonstrating the superiority of the reductive etherification conditions (entry 5). However, sterically hindered and electronically deactivated silyl ethers were unreactive (entry 8).

The intramolecular bismuth(III) catalysed etherification was successfully applied in the synthesis of the dual matrix metalloprotease/tumor necrosis factor inhibitor MMP090 (Scheme 1.2.1).8a,c

Scheme 1.2.1: Application of the Reductive Etherification in the Synthesis of MMP090

Initial alkylation of 36 using conventional methods (NaH/THF/°PrBr; NaH/THF/allyl bromide; NaH/THF/°PrBr/18-crown-6/ and NaH/DMF/allyl bromide) failed due to the hindered nature of the secondary alcohol as well as presence of the base-sensitive α-aminoester, which was susceptible to epimerisation. Gratifyingly, application of the reductive alkylation afforded the required 39 in 70% yield from the TMS ether 37 or 88% yield from TBS ether 38 on a remarkable 50 kg scale.

The same research group reported etherification of alkoxydialkylsilanes with carbonyl compounds using catalytic BiBr₃ and chlorodiisopropylsilane (eq. 8).9 The
crucial improvement of this method is the application of the alkoxy silanes, containing an internal hydride source, instead of triethylsilane, which is generally used in excess amounts. Interestingly, the addition of the catalytic chlorosilane was shown to be crucial in order to drive the reaction to completion.

Table 1.2.6: BiBr₃/ClSiH(iPr)₂ Mediated Reductive Ethersification of Alkoxy silanes (eq. 8)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkoxy silane</th>
<th>Carbonyl compound</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhCH₂OSiH(iPr)₂</td>
<td>PhCHO</td>
<td>(PhCH₂O)₂</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>“</td>
<td>(CH₃)₃CHO</td>
<td>PhCH₂OCH₂CH(CH₃)₂</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>“</td>
<td>CH₃COCH₃</td>
<td>PhCH₂OCH(CH₃)₂</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>Ph(CH₂)₂OSiH(iPr)₂</td>
<td>CH₃COCH₃</td>
<td>Ph(CH₂)₂OCH(CH₃)₂</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>“</td>
<td>CH₃CH₂CHO</td>
<td>Ph(CH₂)₂O(CH₃)₂CH₃</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>“</td>
<td>(E)-PhCH=CHCHO</td>
<td>(E)-Ph(CH₂)₂OCH₂(CH)₂Ph</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>Br(CH₂)₂OSiH(iPr)₂</td>
<td>PhCHO</td>
<td>Br(CH₂)₂OCH₂Ph</td>
<td>91</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>(Pr)₂HSiO</td>
<td>(CH₃)₃CCHO</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>CH₃CH₂CHO</td>
<td></td>
<td>trace</td>
</tr>
</tbody>
</table>

The results presented in Table 1.2.6 correlate with the previous report (vide supra). Primary and secondary alkoxy silanes reacted with aliphatic and aromatic
Chapter 1

aldehydes and ketones very efficiently and afforded the alkylation products in high yields (entries 1-9), whereas sterically hindered and deactivated silyl ethers were unreactive (entry 10).

Johnson and co-workers applied the intermolecular reductive etherification in the preparation of AGP lipid A mimetics (Scheme 1.2.2).10 The reductive etherification of the enantioenriched 44 with decanal or hexanal in presence of BiBr\textsubscript{3} allowed for the smooth preparation of 45 and 46 in 70-80\% yield on a gram-scale. This was in great contrast with other routes to 3-alkyloxytetradecanoic acids, which consisted of the multi-step sequences with low reported yields.11

Scheme 1.2.2: Reductive Etherification in the Preparation of AGP Lipid A Mimetics

Another important example included the application of the reductive alkylation in the synthesis of a peroxime proliferator activated receptor (PPAR) \(\alpha/\gamma\) agonist 50 (Scheme 1.2.3).12 The reductive etherification of the TBS derivative 48 with acetaldehyde proceeded with 61\% yield and most importantly with complete retention of the configuration on the easily epimerisable \(\alpha\)-hydroxy ester moiety.
Unfortunately, the substantial amount (21%) of the starting material was recovered during the process. The application of the reaction to other silyl ethers was unsuccessful and resulted in 15% and 30% yield for TMS and TES derivatives, respectively. It is noteworthy that the formation of ethyl ether under basic conditions (NaH, NaHMDS, KHMD, K₂CO₃ or NaO'Amyl/EtI) gave various degrees of epimerisation (2-30%) and inseparable side products.

The construction of ethers directly from two alcohols is extremely synthetically attractive. However, this transformation usually requires harsh reaction conditions and strong Lewis or Brønsted acids. Boyer and co-workers, in the course of an investigation into the chlorination of alcohols using BiCl₃, discovered that a Bi(III) halide converts benzylic alcohols to symmetrical ethers with only minor amounts of the corresponding chlorides (eq. 9).¹³

Interestingly, in the presence of BiBr₃, the ethers were obtained quantitatively in 15 minutes at ambient temperature. The reaction was investigated further and a
convenient route for the protection of aliphatic alcohols with various benzylic carbinols was developed (eq. 10, Scheme 1.2.4).14

Scheme 1.2.4: Postulated Mechanism for the Benzylation of Aliphatic Alcohols

![Scheme 1.2.4: Postulated Mechanism for the Benzylation of Aliphatic Alcohols](image)

The results of the study showed that ether synthesis could be achieved using primary, secondary and tertiary alcohols in very high yield and the only by-products observed were symmetrical benzylic ethers. The reactivity of the branched benzylic alcohols was higher than non-branched ones and the full conversion of the latter required extended reaction times, but yields were still high. Hence, BiBr\textsubscript{3} showed the unique chemoselectivity in the etherification reaction based on the electronic properties of the participating alcohol. As a working model, the authors proposed a ferrocene-like sandwich structure 56, with BiBr\textsubscript{3} in a hexacoordinated state. The Lewis acid activation of the hydroxyl group could make it a better leaving group and predispose towards the *intramolecular* benzylic oxygen attack. Although the methodology provides a wide range of sterically hindered ethers in excellent yields (Figure 1.2.1), the transformation proceeds in the environmentally non-friendly CCl\textsubscript{4}, which precludes its application on a large scale.
In 2001, the same group reported the selective bismuth(III)-mediated protection of carboxylic acids, which was based on the Hard and Soft Acids and Bases (HSAB) principle of Pearson (eq. 11 and 12). The stoichiometric reaction of the carboxylic acid 66 with triphenylbismuth 67 afforded the bismuth(III) carboxylate 68.

\[
\begin{align*}
3R^1\text{COOH} + \text{Bi(C}_6\text{H}_5\text{)}_3 &\rightarrow \text{Bi(OCOR}^1\text{)}_3 + 3\text{C}_6\text{H}_6 & (11) \\
3R^2\text{Br} + \text{Bi(OCOR}^1\text{)}_3 &\rightarrow 3R^1\text{COOR}^2 + \text{BiBr}_3 & (12)
\end{align*}
\]

\(R^1 = \text{alkyl, phenyl}\)
\(R^2 = \text{alkyl, benzyl}\)

Subsequent addition of the aliphatic bromide promoted the ligand exchange reaction and afforded the protected carboxylic acid 72. Notably, almost quantitative yields were achieved with tert-butyl and benzyl bromides. In contrast, primary bromides did not participate in the transformation, while secondary counterparts afforded various mixtures of esters and alkene elimination products. It is noteworthy that the scope of the reaction could be extended to tosylic acids.

Figure 1.2.1: Selected Examples of BiBr\textsubscript{3} Mediated Alcohol Protection as the Benzyl-Type Ethers
Mohammadpoor-Baltork *et al.* demonstrated the utility of bismuth(III) chloride in the regio- and stereoselective opening of epoxides with oxygen nucleophiles (eq. 13).\(^{16}\)

\[
\begin{align*}
\text{R}^1\text{O} & + \text{R}^2\text{OH} \\
\text{74} & \xrightarrow{5-25 \text{mol}\% \text{BiCl}_3} \\
\text{75} & \quad \text{75-99\%}
\end{align*}
\]

\(\text{R}^1 = \text{H, alkyl}\) \\
\(\text{R}^2 = 1^\circ, 2^\circ, 3^\circ \text{ alkyl, H, MeCO}\)

With unsymmetrical epoxides, nucleophilic attack occurred at the less-substituted oxirane carbon, while styrene oxide gave the more substituted product. Generally, more hindered nucleophiles required higher catalyst loadings and elevated temperatures, however yields remained exceptionally high. It is noteworthy that the transformation worked very efficiently with other \(O\)-nucleophiles such as acids and water to furnish hydroxy esters and diols respectively (yields up to 98%).

1.3 Etherification via \(O\)-Glycosylation

2,3-Unsaturated glycosides and pseudoglycals are important intermediates in the synthesis of glycopeptides, nucleosides, modified sugars and other biologically active natural products.\(^{17}\) 2-Deoxy and 2,3-dideoxy carbohydrates derived from 2,3-unsaturated-\(O\)-glycosides are crucial building blocks present in a variety of pharmaceutical drugs that include vancomycin, erythromycin and daunomycin.\(^{18}\) Thus, new methods that deliver these synthons are of interest and one of the foremost reactions to access these compounds is the Lewis acid catalysed allylic rearrangement of glycols.

In 2002, Venkateswarlu *et al.* were the first to use bismuth(III) chloride as a Lewis acid for the synthesis of diverse \(O\)- and \(S\)-glucopyranosides via Ferrier rearrangement (eq. 14).\(^{19}\)
Chapter 1

The transformation allowed smooth preparation of structurally diverse glucopyranosides with good anomeric selectivity and almost quantitative yield with no by-products. The broad scope of nucleophiles included primary, secondary alkyl and aryl alcohols as well as N-Boc-protected β-hydroxy α-amino acids.

A few years later, Vankar and co-workers discovered that the same transformation could be catalysed by bismuth(III) triflate. In contrast to BiCl₃ system, the reaction went to completion in minutes, albeit with lower yields. Increased surface area of the catalyst appeared to be beneficial to this reaction. Thus, bismuth(III) triflate supported on the silica gel was shown to improve the α-selectivity of the glycosylation in some cases as well as the yield.

Banik et al. investigated the Ferrier O-glycosylation of 3,4,5-tri-O-acetyl D-glucals catalysed by bismuth(III) nitrate (eq. 15). In contrast to other reports in the field, they found that glycosylation of alcohols proceeded in a stereospecific manner and only the α-anomers of the desired product were produced.

Another important input to the subject field was from the Salunkhe group, who probed various metal nitrates as possible catalysts for the Ferrier O-glycosylation, and found that bismuth(III) nitrate outperformed Fe, Cu, Cr, Ce, Ni and Co nitrates. Additionally, the solvent effect on the reaction was studied. It was showed that hydrophobic ionic liquids, such as [bmim][PF₆], were superior to
conventional solvents in terms of yield and reaction time and allowed the medium to be recycled up to five times without reducing the efficacy.

Ikeda and co-workers investigated \(O \)-glycosylation of sialyl acetates in the presence of various Lewis acids (eq. 16).\(^\text{23} \) In this context, a combination of \(\text{BF}_3 \cdot \text{Et}_2\text{O} \) or PPA with \(\text{Bi(OTf)}_3 \) in dichloromethane was the most efficient promoter for this type of transformation and preferentially delivered the \(\beta \)-anomer of 83. In contrast, when either one of the catalysts was used separately, the reaction resulted in low yields and diminished selectivity.

\[
\begin{align*}
\text{81} & \quad \text{Activator} \quad \text{yields up to 65\%} \\
\text{R} &= \text{Me, Bn} \\
\text{82} & \quad \text{yields up to 85\%} \\
\text{83} & \quad \text{81 to \(\beta \) from 78:22 to pure \(\beta \)}
\end{align*}
\]

In 2008, the same group developed \(\text{Bi(OTf)}_3/\text{Montmorillonite K-10 catalysed} \) Ferrier glycosylation, which produced the 3,4-unsaturated sialic acid derivatives with high \(\beta \)-selectivity. The latter compounds can be used to access new human parainfluenza virus type 1 (hPIV-1) inhibitors (eq. 17).\(^\text{24} \)

\[
\begin{align*}
\text{84} & \quad \text{Bi(OTf)}_3/\text{Montmorillonite K-10} \quad \text{yields up to 95\%} \\
\text{R} &= \text{Me, Et, Pr, \(\text{Pr} \), \(\text{nBu} \) up to 7:93}
\end{align*}
\]

Iadonisi and co-workers discovered that glycosyl trichloro- and (\(N \)-phenyl)trifluoroacetimidates can be effectively activated with catalytic bismuth(III) triflate towards the \(O \)-nucleophiles (eq. 18).\(^\text{25} \) Generally, the reactions proceeded under cryogenic conditions and were complete in less than 3 hours.
Chapter 1

The choice of solvent seemed to be critical for this methodology, in which the best α-selectivity for perbenzylated donors was obtained in solvent mixtures containing toluene, DME and dioxane. While donors possessing a participating group gave the best β-selectivity in mixtures of dichloroethane and dioxane (Figure 1.3.1).

![Figure 1.3.1: Selected Examples of Bi(OTf)$_3$ Catalysed O-Glycosylation Products]

Yamanoi’s group has developed a convenient route for the synthesis of novel non-reducing saccharides with trehalose mimics (eq. 19). The latter sugars display various biological activities such as suppression of osteoporosis progression and inhibition of fat cell enlargement.

In the course of these studies, they compared various Lewis and Brønsted acids that were able to mediate the process, in which Bi(OTf)$_3$ and Tf$_2$NH outperformed most Lewis acids surveyed. Interestingly, the former was more beneficial in terms of yield, while the latter afforded slightly better α-selectivity.
Iaodonisi and co-workers have also reported a bismuth(III) bromide mediated anomeric activation of acetylated glycosyl iodides.27 According to authors, the reaction outcome was highly dependent on the structural modification of the substrate. Hence, the peracetylated glycosyl iodides reacted with allylic alcohol with concomitant deprotection at the O-2 position (eq. 20).

\[
\begin{align*}
\text{AllylOH, cat. BiBr}_3 & \quad \text{DCM, 4Å MS reflux} \\
94 & \xrightarrow{\text{35%, } \alpha/\beta - 1:10} \quad 95 \\
& \quad \text{+ } \quad \text{HOAllyl} \\
\text{4Å MS reflux} & \xrightarrow{\text{57%, } \alpha/\beta - 3:1} \quad 96
\end{align*}
\]

In contrast, 6-deoxy sugars or sugars having benzyol or methoxycarbonyl 2-O-participating groups underwent glycosidation without cleavage (eq. 21).

Demchenko et al. carried out a mechanistic study of the alkylation pathway for the activation of glycosyl thioimidates.28 The authors have pursued a strategy that would allow an orthogonal activation of S-thiazoliny1 (STaz) over S-benzoxazolyl (SBox) anomeric leaving groups. They found that the best promoter for the selective glycosylation was the stoichiometric Bi(OTf)\textsubscript{3}, which allowed for the isolation of disaccharides in good yield and as the β-anomer only (eq. 22).

\[
\begin{align*}
\text{BzO} & \quad \text{OH} \quad \text{BzO} \quad \text{OH} \\
\text{BzO} & \quad \text{BzO} \quad \text{BzO} \quad \text{BzO} \\
\text{SBox} & \quad \text{STaz} \quad \text{STaz}
\end{align*}
\]
1.4 Intramolecular Etherification

Tetrahydropyrans (THPs) are structural motifs found in a variety of biologically active natural products such as polyether antibiotics, marine toxins, and pheromones.29 Hence, the development of new methods for the stereodivergent construction of these systems is of great synthetic importance. Typically, control of the relative stereochemistry can be achieved in many ways, while the most general approach involves a three step procedure, involving: a) partial reduction of the lactone \textit{102}; b) acylation or methylation of the intermediate lactol and c) addition of the nucleophile to the oxocarbenium ion \textit{103}, formed by Lewis acid activation, e.g. BF\textsubscript{3}·Et\textsubscript{2}O (Scheme 1.4.1).30

\textbf{Scheme 1.4.1: Synthesis of 2,6-Disubstituted Tetrahydropyrans via Oxocarbenium Intermediate \textit{103}}

Based on the chemistry involving bismuth(III) mediated reductive etherification, the oxocarbenium ion \textit{103} could be in principle generated under the reaction conditions. Subsequent nucleophile addition could provide the required tetrahydropyran in a straightforward fashion with concomitant formation of the C-O bond.
1.4.1 Tandem Two-Component Intramolecular Etherification

In 2003, Evans and co-workers proposed the mechanistic hypothesis for the two-component intramolecular etherification (Scheme 1.4.1.1).31 They reasoned that since bismuth(III) halides were known to undergo the hydrolysis in wet organic solvent to afford Brønsted acids,32 the latter could promote the formation of intermediate ii and subsequent \textit{in situ} desilylation would afford lactol iii. The acid-catalysed dehydration of iii could then lead to the formation of the oxocarbenium ion iv and facilitate axial nucleophilic attack to furnish the cyclic ether v.

\textbf{Scheme 1.4.1.1:} Mechanistic Proposal for the Two-component Intramolecular Etherification

Initial results showed that the nature of bismuth(III) halide was unimportant for both efficiency and selectivity (Cl ~ Br ~ I). However, while the selectivity was unaffected by the nature of the triorganosilyl ether, the efficiency of the reaction was found to be highly dependant on the rate of protodesilylation (TMS ~ TES > TBS >> TIPS).33 The study demonstrated that δ-triethylsilyloxy substituted aldehydes and ketones 106 served as substrates for the etherification reaction (eq. 23). Remarkably, the two-component coupling reactions with carbon nucleophiles furnished the \textit{trans}-diastereoisomer of the pyran. On the other hand, the reductive coupling with \textit{Et}\textsubscript{3}Si-\textit{H}
afforded the cis-THP diastereoisomer, consistent with the axial addition of the hydride nucleophile.34

$$\text{R}^1 = \text{Et}$$ \hspace{1cm} $$\text{R}^1 = \text{Bn}$$
$$\text{R}^2 = \text{Me} \text{ or } \text{H}$$

The developed methodology was extended to the formation of adjacent \textit{bis}-tertiary ethers with very high stereoselectivity (eq. 24). The stereochemical outcome could be explained by the Woerpel model34 which predicted that the 4-alkoxy substituent would adopt a pseudoaxial orientation in the transition state, thereby favouring the \textit{trans}-addition of the allylsilane.

$$\text{H}$$

The synthetic utility of the transformation was highlighted in the sequential two-component reaction that involved an \textit{intermolecular} addition followed by an \textit{intra}molecular reductive etherification (eq. 25). Reaction of aldehyde 112 with excess of the trimethylsilyl enol ether 113 installed the \textit{trans}-2,6-disubstituted tetrahydropyran, which upon addition of triethylsilane promoted the reductive etherification to afford \textit{bis}-tetrahydropyran 114 in 73\% yield and excellent diastereoselectivity.
The strategy for the preparation of tetrahydropyrans was used in the expedient route to (−)-sugiresinol by Evans and Leahy (Scheme 1.4.1.2).35 Formation of the allylic carbonate from \textit{115}, followed by \textit{in situ} rhodium(I)-catalysed allylic alkylation afforded the β-substituted ketone \textit{116} in 80% yield (2°/1° ≥ 99:1, ≥ 99% cee). Sharpless asymmetric dihydroxylation, followed by a one-pot differential protection, led to the cyclisation precursor \textit{117} in 60-71% yield over two steps as a 4:1 mixture of diastereoisomers. The reductive etherification of \textit{117} using bismuth(III) bromide and triethylsilane, succeeded by \textit{in situ} deprotection of the acetyl group, afforded the (−)-sugiresinol dimethyl ether \textit{118} in 99% yield and ≥19:1 diastereoselectivity.

\textbf{Scheme 1.4.1.2: (−)-Sugiresinol Synthesis via Rhodium(I)-Catalysed Allylic Alkylation and Bismuth(III)-Catalysed Intramolecular Reductive Etherification}

Hinkle \textit{et al.} investigated effect of various π-nucleophiles on the diastereoselectivity of BiBr\textsubscript{3} mediated cyclisation-addition reaction (eq. 26, Table 1.4.1.1).36 They have shown that the diastereocontrol of the reaction decreases with
an increase of the π-character of the nucleophile and proposed that the transformation proceeds under the kinetic control.

Table 1.4.1.1: Diastereoselectivity of Cyclisation-Addition Reaction of π-Nucleophiles

<table>
<thead>
<tr>
<th>Nucleophile</th>
<th>Product, trans/cis π-Nucleophilicity parameter, N</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiMe$_3$</td>
<td>99:1</td>
</tr>
<tr>
<td>Me</td>
<td>32:1</td>
</tr>
<tr>
<td>OMe</td>
<td>5-6:1</td>
</tr>
</tbody>
</table>

Guindon and co-workers successfully applied the tandem two-component etherification in the synthesis of the C1-C11 fragment of zincophorin 124 (Scheme 1.4.1.3).37 The reaction of the advanced aldehyde 121 with enoxysilane 122 in the presence of bismuth(III) bromide afforded 123 as a 1:1 mixture of epimers at C2 with excellent anti/syn selectivity and 79% yield.
Scheme 1.4.1: Synthesis of the C1-C11 Fragment of Zincophorin

In the subsequent evaluation of the bidirectional approach towards the synthesis of zincophorin, Guindon et al. successfully showcased a pivotal BiBr$_3$ catalysed cycloetherification/addition strategy (eq. 27).38 Similarly to their previous report, the reaction of 125 with 122 smoothly afforded the cyclic ether 126 in quantitative yield with excellent stereocontrol ($ds \geq 19:1$). Although the product was epimeric at C2, it was of little consequence since both isomers converge into one intermediate in the successive step.

Wipf and Hopkins took the advantage of the tandem etherification-allylation for the preparation of the functionalised trans-substituted tetrahydropyran ring 128 in the course of total synthesis of (+)-bistramide C (Scheme 1.4.1.4).39 The transformation was accomplished using the catalytic bismuth(III) bromide and allylsilane in 72% yield and with moderate stereocontrol ($ds >5:1$).
Scheme 1.4.1.4: Tandem Etherification-Allylation in the Preparation of trans-Substituted Tetrahydropyran Ring 128

Interestingly, Floreancig et al. reported the formation of tetrahydropyran 130, which is diastereomeric to 128, albeit with higher stereoselectivity and yield (Scheme 1.4.1.5). Hydroformylation of allylic alcohol 131 using [Rh(CO)$_2$acac] to furnish lactol 129 and subsequent allylation in the presence of BiBr$_3$ afforded 130 with \geq19:1 stereocontrol and in quantitative yield.

Scheme 1.4.1.5: Preparation of trans-Tetrahydroprypan 130 via the Lactol Intermediate 129

According to authors, the reaction proceeded through an isolable bridged bicyclic acetal, resulting from the addition of the silyloxy group to the intermediate oxocarbenium ion, followed by an allyl group installation. This procedure permitted
Chapter 1

a direct nucleophilic substitution of lactols with high yield and selectivity without the need to utilise low temperatures.

Evans and co-workers have extended the scope of BiBr₃ catalysed two-component etherification to a series of tert-butyldisilyloxy ketones for the construction of cis-2,6-disubstituted tetrahydropyrans (eq. 28).⁴¹

![Chemical Reaction Diagram]

The intramolecular reductive etherification reaction was shown to be highly tolerant to a wide array of substituents. Useful substrates included the aryl, α-branched alkyl, alkyl halide and those with alkene pendant groups, β-keto esters and hydroxymethyl derivatives. Remarkably, all examples exhibited excellent diastereoselectivities favouring the cis-2,6-disubstituted tetrahydropyrans (ds ≥99:1).

The stereoselective preparation of the cis-2,6-disubstituted tetrahydropyrans provided an expeditious route to the antibiotic (−)-centrolobine A (Scheme 1.4.1.6). Keck allylation of the aldehyde 135 (95% ee), followed by protection of the resulting secondary alcohol afforded triethylsilyl ether 136 in 77% overall yield. Cross-metathesis using Grubb’s 2nd generation catalyst and chemoselective reduction with Wilkinson’s catalyst furnished the aryl ketone 137 in 74% yield for 2 steps. The reaction of δ-triethylsilyloxy aryl ketone 138 with bismuth tribromide and triethylsilane at room temperature, succeeded by in situ removal of the TBS protecting group afforded (−)-centrolobine in 93% yield and excellent diastereoselectivity.
Chapter 1

Scheme 1.4.1.6: Stereoselective Synthesis of (−)-Centrolobine Using the Intramolecular Reductive Etherification

(−)-Mucocin is a potent antitumour agent isolated from leaves of *Rollinia mucosa* that exhibits exquisite selectivity in the inhibition of A-549 (lung cancer) and PACA-2 (pancreatic cancer) solid tumour lines with very high potency. The intramolecular reductive etherification of ketone 138 was used as a key step to construct the functionalised tetrahydropyran fragment of this natural product (Scheme 1.4.1.7).\(^{42}\)

Scheme 1.4.1.7: Application of the Intramolecular Reductive Etherification in the Total Synthesis of (−)-Mucocin
Treatment of the functionalised ketone 138 with tert-butylidemethylsilane in acetonitrile at 0 °C and subsequent protection of free hydroxyl group in one pot afforded tetrahydropyran 139, with the crucial 2,6-cis substitution pattern, in excellent yield and with high selectivity.

1.5 Synthesis of Cyclic Ethers via the Oxa-Conjugate Addition Reaction

Despite substantial progress made in the base-catalysed intramolecular oxa-conjugate addition of alkoxides, the Brønsted acid variant of this transformation remained highly underdeveloped.\(^{43,44}\) In a program directed towards the exploration of the synthetic utility of bismuth(III) salts, Evans and Andrews examined the application of the intramolecular oxa-conjugate addition of tethered trialkylsilyloxy substituted α,β-unsaturated ketones 140 for the stereoselective construction of the cis-2,6-disubstituted tetrahydropyrans 141 (eq. 29).\(^{45}\)

\[
\text{MeCN, RT} \quad 72-99\% \quad \text{cat. Bi(NO}_3)_3
\]

Optimisation studies suggested that bismuth(III) nitrate was the best catalyst for this type of transformation in terms of both yield and selectivity. The developed method was applied to various tethered triethylsilyloxy substituted α,β-unsaturated ketones and showed a remarkable generality in scope. Thus, high diastereoselectivities and yields were observed for substrates with α- and β-branaching, TIPS or Bn protected ethers, carboxylates and masked amines. Furthermore, the synthetic utility of the transformation was highlighted by the application of the reaction conditions to the challenging tertiary triethylsilyl ether 143 (eq. 30). Treatment of the latter with 20 mol% of bismuth(III) nitrate
pentahydrate, furnished the tetrahydropyrans 144/145 in 94% yield, with ≥19:1 diastereoselectivity favouring 144.

This study provided a mild and efficient method for the highly stereoselective construction of the cis-2,6-disubstituted tetrahydropyrans using the secondary and tertiary alcohol nucleophiles. Additionally, it was shown that water, incorporated in the salt as a hydrate, was important in facilitating the reaction and that Brønsted acid rather the bismuth(III) salt was actually responsible for the catalysis.

The bismuth(III)-catalysed oxa-conjugate addition was used by Evans and Andrews as part of a multi-component transformation in the asymmetric synthesis of (+)-leucascandrolide A macrolactone 149 (Scheme 1.5.1).46

Scheme 1.5.1: Bismuth(III) Catalysed Two-Component Etherification/Oxa-Conjugate Addition Reaction
Chapter 1

The non-adjacent bis-THP core 148 was obtained in 78% yield and with excellent diastereocontrol ($ds \geq 19:1$) using a two component etherification/oxa-conjugate addition reaction. The dual Lewis and Brønsted acid catalysis was crucial to effect this type of sequential process.

During the preparation of the ether bridged bis-amino acids, Tabor and co-workers observed the formation of the cyclic 1,3-tetrahydrooxazine 152 (eq. 31).\(^{47}\) The transformation was likely to occur via hydrolysis of the one of nitrogen’s tert-butyl carbamate groups and subsequent intramolecular attack of NHBoc on the oxocarbenium ion leading to the cyclic 1,3-tetrahydrooxazine 152.

1.6 Etherification via a Tandem Processes

In 2006, Hinkle and Lian showed that catalytic BiBr\(_3\) can mediate a tandem addition/silyl-Prins cyclisation reaction for the formation of cis-2,6-disubstituted dihydropyrans.\(^{48}\) The main advantage of the developed methodology was the utilisation of extremely mild conditions offered by bismuth(III) bromide, which do not require the use of strictly anhydrous solvents or low temperatures.

The reaction effectively proceeded with a range of benzyl or alkyl TES protected homoallylic silanols 153 and various aromatic, benzylic and aliphatic aldehydes 154 (eq. 32). Closer examination of the stereoselectivity indicated a strong dependence on the electronic properties of aldehydes employed. Thus, electron-deficient and aliphatic aldehydes afforded the cyclisation products in good-to-excellent yield and selectivity. However, the use of electron rich aromatic
aldehydes led to a decrease in yield as well as selectivity \((ds = 2\text{-}3:1)\). It was showed that \textit{trans}-dihydropyran were actually kinetic products and the preference for them was a result of both steric and electronic factors.

\[
\text{OTES} + \text{R}^1\text{CHO} \xrightarrow{5 \text{ mol\% BiBr}_3} \text{DCM, RT, 12 h, 55-98\%} \rightarrow \text{cis-155} (ds = 2:1 \text{ to } >99:1)
\]

The observed \textit{cis}-stereoselectivity could be rationalised by the formation of (E)-oxocarbenium ion A in which R\text{1} and R\text{2} adopted the pseudoequatorial positions to minimise the diaxial interactions, whilst the TMS moiety is oriented axially and allowed greater stabilisation of the cation that developed \(\beta\) to the silane (Scheme 1.6.1). A [3,3] sigmatropic oxonia-Cope rearrangement of A could then provide the oxocarbenium ion B.

\textbf{Scheme 1.6.1: Possible Intermediates in the Silyl-Prins Cyclisation}

The attack of \(\pi\)-electrons on the oxocarbenium carbon via either A or B and subsequent desilylation would then provide the \textit{cis}-dihydropyran 155. Alternatively, formation of the stereoisomeric (Z)-oxocarbenium ion (A') would afford an alternative pathway and lead to the corresponding \textit{trans}-product 156.

The authors demonstrated that the combination of the silyl-Prins cyclisation and the Mukaiyama aldol reaction could provide an expedient route towards the functionalised \textit{cis}-2,6-disubstituted dihydropyrans as evident from Scheme 1.6.2.
The Mukaiyama aldol reaction between β,γ-unsaturated aldehyde 157 and methyl β,β-dimethylketentrimethylsilyl acetal 158, in the presence of the catalytic amount of BiBr$_3$, furnished the intermediate 159. The addition of phenylacetalddehyde and further 10 mol% of BiBr$_3$ afforded the functionalised dihydropyran 160 in a 64% overall yield as a single diastereoisomer.

This multi-component transformation was investigated further and extended to various silyl enol ethers 161 (eq. 33).49

Generally, the reaction required a slight excess of the nucleophile 161 and proceeded smoothly with a wide array of electronically and sterically diverse aldehydes. In all cases excellent diastereoselectivities (up to 99:1) were observed as well as good yields (44-80%). The ability to use β,β-unsubstituted enol ethers as nucleophiles is remarkable, since the resulting products possess enolisable hydrogens α- to the carbonyl moiety.

In 2011, Lambert, Hinkle and co-workers expanded the scope of the one-pot tandem addition/silyl-Prins reaction by exploiting an in situ bismuth(III) mediated epoxide rearrangement to give aldehyde electrophiles.50 Additionally, they reinvestigated the role of bismuth(III) triflate in the transformation. It was found that
the initially occurring Lewis acid/base interaction between the substrate and Bi(OTf)$_3$ afforded a catalytic quantities of TfOH. The latter Brønsted acid then acted as the active catalyst and promoted rearrangement of epoxide 166 to aldehyde 164 and subsequently mediated the multistep sequence leading to dihydropyran 165 (Scheme 1.6.3).

Scheme 1.6.3: Bi(OTf)$_3$ Mediated Synthesis of Dihydropyrans

Prins cyclisation is a convenient and rapid way to access polysubstituted tetrahydropyrans (eq. 34). Several groups have developed the bismuth(III) triflate catalysed stereoselective Prins cyclisation reaction. The efficiency of the transformation was shown to be solvent dependent. Murty *et al.* demonstrated that the reaction could be carried out at room temperature in an ionic liquid,51 whereas Sreedhar and co-workers used refluxing acetonitrile.52 The latter group has also reported the Prins reaction between styrenes and paraformaldehyde to produce the corresponding 1,3-dioxanes.

The Murty group reported the development of a Prins-type cross-cyclisation reaction of epoxides with homoallylic alcohols mediated by bismuth(III) chloride (eq. 35).53
Chapter 1

The methodology allowed for the synthesis of di- and trisubstituted tetrahydropyrans favouring the all cis-stereoisomer as the major product. The reaction was believed to proceed through an epoxide opening mediated by bismuth(III) chloride, which would generate an electrophile, followed by the addition of alcohol and subsequent Prins cyclisation.

In 2001, the first bismuth(III) triflate catalysed stereoselective intramolecular Sakurai cyclisation (IMSC) of homoallylic alcohols was reported by Marko et al.54 The developed procedure granted a novel route to the previously inaccessible tetrahydropyrans, which would otherwise require utilisation of the functionalised aldehydes, \textit{i.e.} having \(\alpha\)-alkoxy substitution and unreactive in IMSC condensation (eq. 36, Figure 1.6.1). Notably, when the cyclisation was carried out in the presence of \(\text{BF}_3\cdot\text{Et}_2\text{O}\), a significant amount of desilylated starting material was obtained that showcased the unique and mild reaction conditions offered by bismuth(III) salts.

![Reaction Scheme](image)

\textbf{Figure 1.6.1: Selected Examples of Bi(OTf)_3 Catalysed IMSC of Homoallylic Alcohols}
The IMSC reaction was applied in the synthetic studies towards
(−)-zampanolide by Porco Jr. and co-workers.55 They found that the condensation of the highly functionalised aldehyde 179 with 180 in the presence of 1.5 equiv. of Bi(OTf)\(_3\) combined with 2,6-di-tert-butylpyridine afforded the 2,6-disubstituted exomethylene pyran 181 as a single diastereoisomer in 77% yield (eq. 37).

Yadav and co-workers described a multi-component one-pot bismuth(III) triflate catalysed Prins-Ritter reaction of homoallylic alcohols, aldehydes and nitriles (eq. 38).56 The reaction was shown to proceed with aliphatic and aromatic alcohols as well as diverse aldehydes and nitriles (Figure 1.6.2). Remarkably, the transformation can be applied to ketones to afford spiro compounds. The diastereoselectivity of the cyclisation was consistently high and only the cis-diastereoisomer was obtained in each case.

Figure 1.6.2: Selected Examples of the Prins-Ritter Reaction Catalysed by Bi(OTf)\(_3\)
Chapter 1

Sabintha *et al.* reported a multi-component Sakurai-Prins-Ritter reaction mediated by bismuth(III) triflate (eq. 39). Various aromatic and aliphatic aldehydes underwent the condensation with a range of nitriles with high efficiency (Figure 1.6.3).

\[
\begin{align*}
R^1\text{CHO} + \text{SiMe}_3\text{Si} & \rightarrow 10 \text{ mol\% Bi(OTf)}_3 \text{H}_2\text{O} \\
& \rightarrow \text{NHCOR}^2 \\
\text{R}^1, \text{R}^2 = \text{Alkyl, Ar} \\
\text{RT} & \rightarrow 60-98% \\
\text{ds} = 19:1
\end{align*}
\]

\[\text{Figure 1.6.3: Selected Examples of the Sakurai-Prins-Ritter Reaction Catalysed by Bi(OTf)}_3 \]

High yields were generally obtained and the reactivity of aliphatic aldehydes was shown to be higher than aromatic ones. The stereochemistry of tetrahydropyrans was established to be all-\textit{cis} and one diastereoisomer was always obtained.

1.7 Bismuth(III) Mediated Hetero-Diels-Alder Reaction

Dubac and co-workers showed that bismuth(III) triflate was able to activate the carbonyl compounds towards the reaction with dienophiles (eq. 40).

\[
\begin{align*}
\text{R}^1\text{CHO} + \text{CO}_2\text{H} & \rightarrow 5 \text{ mol\% Bi(OTf)}_3 \text{H}_2\text{O} \\
& \rightarrow \text{R}^1\text{R}^2\text{Me} \\
\text{R}^1 = \text{Me, R}^2 = \text{H} \\
\text{R}^1 = \text{H, R}^2 = \text{Me} \\
\text{R}^1 = \text{H, R}^2 = \text{H}
\end{align*}
\]
Yields of this transformation were generally high, however the cis/trans selectivity of the dihydropyran formed was very low. It was shown that the process suffered from the formation of the α-hydroxy-γ-lactone 195, which was often acquired as the sole reaction product.

1.8 Cyclic Ether Synthesis via Condensation Reaction

De and Gibbs reported that bismuth(III) chloride could be an efficient catalyst for the Pechmann condensation reaction of phenols with β-ketoesters for the formation of 4-substituted coumarins (eq. 41).\(^ {59} \)

![Chemical structure](image)

Samant and co-workers found a rate-accelerating effect of ultrasound on the Pechmann condensation of phenols and β-ketoesters mediated by BiCl\(_3\).\(^ {60} \) The synergetic effect of the ultrasound allowed the transformation to be conducted at room temperature in shorter reaction time and higher yields compared to the thermal variant. This group also reported similar reaction catalysed by Bi(NO\(_3\)\(_3\)).\(^ {61} \)

Mohammadpoor-Baltork et al. have described a synthesis of various benzoxazoles and oxazolo[4,5-b]pyridines via the condensation of o-aminophenols and 2-amino-3-hydroxypyrindines with orthoesters in the presence of catalytic Bi(III) salts (eq. 42).\(^ {62} \) The authors showed that the reaction proceeded under mild conditions with good to excellent yields regardless of the source of bismuth(III) used.

![Chemical structure](image)
Chapter 1

Yadav and co-workers developed a recyclable catalytic system for the diastereoselective synthesis of the cis-fused pyrano- and furanobenzopyrans (eq. 43). The methodology allowed for the stereoselective preparation of various chromenes and chromanes, which are found in many naturally occurring bioactive molecules and possess a wide range of biological activities.

While the reaction proceeded in conventional organic solvents, the application of the ionic liquids allowed the catalyst to be reused up to four times with only a slight decrease in the activity.

Li et al. have developed a route towards 1,8-dioxo-octahydroxanthenes. Heterocycles containing the latter framework are widely used in dye and laser technologies. In addition, they show the important biological activities such as antibacterial, antiviral and anti-inflammatory. The aromatic aldehydes underwent a smooth condensation with an excess of 5,5-dimethyl-1,3-cyclohexanedione in the presence of catalytic BiCl₃ to afford the xanthene derivatives in good to excellent yields (eq. 43). Interestingly, in the absence of the catalyst the reaction terminated during the formation of the intermediate.
1.9 Cyclic Ethers Synthesis via Oxa-Addition Reaction to Unactivated π-Systems

Koneyama and co-workers reported that bismuth(III) triflate can catalyse intramolecular hydro-oxycarbonylation reaction of carboxylic acids and alkynes.\(^6\)\(^5\) Initial findings showed that bismuth(III) salts have a unique reactivity profile when compared to other π- and Lewis acids. As seen from the Table 1.9.1, only borderline metal catalysts such as Fe(OTf)\(_3\) or Bi(OTf)\(_3\), which can interact with both heteroatoms and C-C multiple bonds, afforded the endo-lactone 212 as the cyclisation product (entries 6-9). In contrast, late transition metals, e.g. PdCl\(_2\) and PtCl\(_2\), furnished the undesired 5-membered vinylidene-lactone 213 exclusively (entries 2 and 3).

Table 1.9.1: Screening of Catalysts for the Hydro-Oxycarbonylation (eq. 45)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Time (h)</th>
<th>Yield (212/213) (%)</th>
<th>Conv. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sc(OTf)(_3)</td>
<td>24</td>
<td>n.r.</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>PdCl(_2)</td>
<td>22</td>
<td>67 (0/100)</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>PtCl(_2)</td>
<td>9</td>
<td>95 (0/100)</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>Ni(OTf)(_2)</td>
<td>24</td>
<td>10 (0/100)</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Cu(OTf)(_2)</td>
<td>24</td>
<td>9 (0/100)</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Fe(OTf)(_3)</td>
<td>24</td>
<td>45 (100/0)</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>Bi(OTf)(_3)</td>
<td>0.5</td>
<td>83 (100/0)</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>Bi(ClO(_4))(_3)</td>
<td>0.5</td>
<td>79 (100/0)</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>Bi(BF(_4))(_3)</td>
<td>0.5</td>
<td>52 (100/0)</td>
<td>100</td>
</tr>
</tbody>
</table>

Interestingly, substrates containing two terminal alkynyl and carboxylic moieties could undergo cyclisation into the spiro-lactone 214. Whereas in systems
Chapter 1

bearing two \(\pi \)-components, \textit{e.g.} double and triple bond, the reaction proceeded chemoselectively with the alkyne moiety, albeit in moderate yield, to deliver 215 (Figure 1.9.1). Notably, a similar trend was observed with Au(I) catalyst.\(^{66}\)

![Figure 1.9.1: Selected Examples of Bi(OTf)\(_3\) Catalysed Hydro-Oxycarbonylation](image)

The cyclisation of aromatic alkynes was also investigated (eq. 46, Table 1.9.2). In most cases, the formation of the six-membered lactone proceeded predominantly.

\textbf{Table 1.9.2: Hydro-Oxycarbonylation of Disubstituted Alkynes (eq. 46)}

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkynyl carboxylic acid 216</th>
<th>Time (h)</th>
<th>Yield (217+218) (%)</th>
<th>Ratio (217/218)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph Ph</td>
<td>3</td>
<td>95</td>
<td>28/72</td>
</tr>
<tr>
<td>2</td>
<td>4-MeOC(_6)H(_4)</td>
<td>1.5</td>
<td>54</td>
<td>0/100</td>
</tr>
<tr>
<td>3</td>
<td>4-BrC(_6)H(_4)</td>
<td>0.5</td>
<td>83</td>
<td>0/100</td>
</tr>
<tr>
<td>4</td>
<td>Ph Me</td>
<td>0.5</td>
<td>92</td>
<td>12/88</td>
</tr>
<tr>
<td>5</td>
<td>4-MeOC(_6)H(_4)</td>
<td>0.5</td>
<td>100</td>
<td>0/100</td>
</tr>
<tr>
<td>6</td>
<td>4-BrC(_6)H(_4)</td>
<td>1.5</td>
<td>99</td>
<td>24/76</td>
</tr>
</tbody>
</table>

Although the exact role of bismuth was not determined, the authors proposed the dual activation of both carboxylic acid and alkyne by the bismuth(III) catalyst. Thus, the bismuth salts act as both \(\sigma \)- and \(\pi \)- acids, which is consistent with the previous findings in the field.\(^{67}\)
Chapter 1

The same group developed the *intramolecular* hydro-oxycarbonylation reaction further and reported bismuth(III) triflate catalysed carbo-oxycarbonylation of alkynyl esters (eq. 47).68

\[R^1, R^3 = \text{Aryl} \]
\[R^2 = \text{alkyl, aryl, cyclopropyl, alkyne} \]

The authors hypothesised that the dual catalytic nature of bismuth could be used to bring two reaction centres into proximity (*e.g.* 221) and facilitate the transformation. Among various catalysts, bismuth(III) triflate turned out to perform the best in terms of yield and the reaction time. Interestingly, triflic acid afforded only trace amounts of the desired product. This showed that the ability of Bi(OTf)₃ to release the acid upon hydrolysis did not play an important role in the transformation.

Lambert’s group investigated the ability of bismuth(III) salts to mediate the multicatalytic processes.69 In the course of the studies, they developed Bi(OTf)₃-catalysed hydroxylation of unactivated olefins for the synthesis complex tetrahydrofuranyl products with good yield and diastereoselectivity favouring the *anti*-isomer (eq. 48).

\[R^1 = \text{alkyl, allyl, Bn, CO}_2\text{Me, CH}_2\text{CO}_2\text{Et} \]
\[R^2 = \text{H, Me} \]

Subsequently, the synthetic utility of the methodology was expanded by performing the nucleophilic addition/hydroxylation in one pot, both mediated by Bi(OTf)₃ (eq. 49, Table 1.9.3). The developed methodology allowed one-pot
Mukaiyama aldol/hydroxylation and Sakurai addition/hydroxylation reactions to be performed in good yield favouring the formation of anti-tetrahydrofurans, which are structurally relevant to natural products. In contrast to Koneyama’s findings (vide supra), Lambert proposed that since the reactivity of Bi(OTf)$_3$ mirrored that of the triflic acid, the low-level release of the latter could act as an active catalyst in their system. This assumption was proved by showing that triflic acid catalysed hydroxylation with the same efficiency as Bi(OTf)$_3$.

Table 1.9.3: Selected Examples of Bi(OTf)$_3$ Catalysed Multicatalytic Synthesis of Complex Tetrahydrofurans (eq. 49)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Nucleophile</th>
<th>Substrate</th>
<th>Product</th>
<th>Yield (%)</th>
<th>ds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OTMS</td>
<td>226</td>
<td>227</td>
<td>76</td>
<td>2.2:1</td>
</tr>
<tr>
<td>2</td>
<td>TMS</td>
<td>228</td>
<td>229</td>
<td>70</td>
<td>4:1</td>
</tr>
<tr>
<td>3</td>
<td>TMSCN</td>
<td>230</td>
<td>231</td>
<td>75</td>
<td>7.6:1</td>
</tr>
</tbody>
</table>
Chapter 1

1.10 Conclusion

Since Komatsu’s original report that BiBr₃ can be used as a catalyst for reductive etherification a great deal has been learned about the scope and limitation of this methodology. Recent advances in the field have provided the mechanistic insight and suggested new inter-, intra- and multi-component transformations for the formation of important derivatives for the target-oriented synthesis. Furthermore, it was showed that bismuth salts can act as both σ- and π- Lewis acids and play a vital role in the activation of C-C unsaturated bonds towards the heterofunctionalisation. Future work in this area will broaden the use of bismuth(III) salts as environmentally benign reagents and provide new ways for the synthesis of complex targets.
1.11 References

Chapter 1

Chapter 1

Chapter 1

Diastereoselective Synthesis of Protected syn-1,3-Diols via the Intramolecular Conjugate Addition of Hemiacetal Nucleophiles

2.1 Introduction to the Polyene Macrolides

Polyene macrolides are a large group of natural products that have diverse biological activity. Several members of this class (e.g. amphotericin B, nystatin, and pimaricin) are effective as antifungal agents and have broad use in medicine. Most of these compounds share the common structural features such as a conjugated polyene ranging from three to seven double bonds in length, and more importantly, a polyol section made up of a sequence of 1,2-, 1,3- and 1,4-diols, with 1,3-diols being the most prevalent (Figure 2.1.1).

![Figure 2.1.1: Structures of the Selected Polyene Macrolide Antibiotics](image)

2.2 Background of 1,3-Polyol Syntheses

The construction of 1,3-polyols, especially syn-1,3-diols of the polyacetate (rather than the polypropionate type) is a continuing synthetic challenge. A number
of methods have been developed to create this dioxygen relationship and the most important among them are β-hydroxy ketone reduction (eq. 1),6 electrophile-induced intramolecular addition of oxygen nucleophiles to homoallylic alcohols (eq. 2)7 and oxymercuration of homoallylic alcohol-derived hemiacetals (eq. 3).8

![Chemical Structures and Equations]

While most of these transformations deliver the desired products with good yield and stereocontrol, many of them suffer from the need to utilise cryogenic temperatures and/or toxic reagents. Although not lacking from the abovementioned drawbacks, the methodology developed by D. A. Evans and Gauchet-Prunet stands out as one of the most direct and convenient methods developed to date.9 In this context, the base mediated combination of aryl aldehyde with a δ-hydroxy α,β-unsaturated ester or amide delivers efficient 1,3-stereoinduction and provides the syn-1,3 protected diols in good yield (eq. 4).
Chapter 2

The key features of this transformation are depicted in Scheme 2.2.1. The base mediated reaction of alcohol \(\mathbf{i} \) with aldehyde \(\mathbf{ii} \) affords the hemiacetal anion \(\mathbf{iii} \). Subsequent intramolecular Michael addition to the \(\alpha,\beta \)-unsaturated system results in enol \(\mathbf{iv} \), which affords the protected \(\text{syn-}1,3 \)-diol \(\mathbf{v} \) after equilibration.

\[
\begin{align*}
\text{Scheme 2.2.1: } & \text{Mechanism of the Base-Catalysed Intramolecular Conjugate Addition of the Hemiacetal-Derived Alkoxide Nucleophiles} \\
& \text{Unfortunately, the scope of the abovementioned methodology is rather limited. Firstly, only aromatic aldehydes deliver the \(\text{syn-}1,3 \)-diols with acceptable stereocontrol. In contrast, when isobutyraldehyde or acetaldehyde are employed, the \(\text{syn-} \) and the \(\text{anti-} \) diastereoisomers are formed in 1:1 ratio. Secondly, since Cannizarro disproportionation}^{10} \text{ sequesters the aromatic aldehyde, excessive stepwise addition of the latter and the base is needed to drive the reaction to completion. Thirdly, the choice of the electron-withdrawing groups on the alkene moiety is restricted to esters and amides. Consequently, oxidation state adjustments are necessary in order to employ these products in the subsequent steps of the target-oriented synthesis.}^{11,12}
\end{align*}
\]
Thus, the development of the new methodology, which would allow the formation of the protected syn-1,3-diols, having the electron-withdrawing groups in the aldehyde and ketone oxidation state, could make the process more redox efficient13 and find wide synthetic application in the total synthesis.

2.3 Mechanistic Proposal for the Bismuth(III) Mediated Construction of the Protected syn-1,3-Diols

On the basis of our previous studies in the field of bismuth(III) mediated reductive etherification14 and oxa-conjugate addition,15 we envisioned that it would be possible to take advantage of the unique bismuth(III) salts properties for the preparation of the protected 1,3-diols in the form of the cyclic acetals (eq. 5) (vide supra).

\begin{center}
\begin{tikzpicture}
\node (A) at (0,0) {9};
\node (B) at (1,0) {10};
\node (C) at (0.5,0) {R1CHO};
\node (D) at (0.5,0.5) {BiX\textsubscript{3}};
\draw[->] (A) -- (B);
\draw[->] (A) -- (C);
\draw[->] (A) -- (D);
\end{tikzpicture}
\end{center}

The plausible mechanistic details of this proposal are depicted in Scheme 2.3.1. Based on the previous findings by the Evans group14a and others16 it is known that bismuth salts undergo hydrolysis in organic solvents due to the presence of trace amounts of moisture and afford a buffered acidic medium. The resultant Brønsted acid (HX) could activate aldehyde ii and in principle mediate the formation of hemiacetal iii. The latter could undergo an intramolecular conjugate addition and furnish the 1,3-protected diol v via the intermediacy of enol iv. The latter process could be mediated either by bismuth(III) salt, acting as a Lewis acid, or by HX via hydrogen bonding activation of carbonyl, as independently shown by Spencer17 and Evans.15 Moreover, assuming the reversibility of all mechanistic steps, the
thermodynamic reaction control could result in 1,3-stereoinduction and provide the syn relationship between the newly formed stereocentres.

Scheme 2.3.1: Proposed Catalytic Cycle for the Reaction Between the Homoallylic Alcohol i and the Brønsted Acid Activated Aldehyde ii

2.4 Reaction Optimisation for the δ-Hydroxy α,β-Unsaturated Ketones

For our preliminary studies, we elected to use substrates containing electronically different α,β-components. Table 2.4.1 shows the evaluation of various homoallylic alcohols, biased to unsaturated carbonyl derivatives, and the Brønsted acid sources in the two-component hemiacetal/oxa-conjugate addition reaction. Treatment of rac-11a with 5 equiv. of acetaldehyde and the catalytic bismuth(III) salt, which produced weak acid upon hydrolysis, did not provide any of the desired product (entry 1). In contrast, strong Brønsted acids performed with similar efficiency (entries 2-6). Whereas bismuth(III) nitrate pentahydrate as a source, afforded the required product rac-12a in the near quantitative 99% yield and excellent selectivity (ds ≥19:1) (entry 2). Interestingly, the analogous process with nitric acid, acting as the active catalyst, provided the 1,3-dioxane rac-12a in a
significantly lower yield (entry 7). Thus, clearly illustrating the superiority of bismuth salts, which were able to modulate acid concentration \textit{in situ}, over the conventional mineral acids.\cite{14a}

\textbf{Table 2.4.1: Optimisation of the Two-Component Hemiacetal/Oxa-Conjugate Addition Reaction (eq. 6)}

<table>
<thead>
<tr>
<th>Entrya</th>
<th>Homoallylic alcohol</th>
<th>Acid source</th>
<th>Yield (%)b</th>
<th>ds rac-12/13c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\textit{rac}-11, R = Ph(\text{CH}_2)_2</td>
<td>Bi(OAc)_3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>Bi(NO\textsubscript{3})\textsubscript{3}\cdot 5\text{H}_2\text{O}</td>
<td>99</td>
<td>\textbf{19:1}</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>BiCl\textsubscript{3}</td>
<td>98</td>
<td>"</td>
</tr>
<tr>
<td>4d</td>
<td>"</td>
<td>BiCl\textsubscript{3}</td>
<td>92</td>
<td>"</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>BiBr\textsubscript{3}</td>
<td>84</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>Bi(OTf)\textsubscript{3}</td>
<td>94</td>
<td>"</td>
</tr>
<tr>
<td>7e</td>
<td>"</td>
<td>HNO\textsubscript{3}</td>
<td>34</td>
<td>"</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>BiI\textsubscript{3}</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>BiOCl</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>CO\textsubscript{2}Me</td>
<td>Bi(NO\textsubscript{3})\textsubscript{3}\cdot 5\text{H}_2\text{O}</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

aAll reactions were carried out on 0.5 mmol scale in DCM at room temperature using 10 mol\% Bi(III) salt and 5 equiv. of the acetaldehyde for 16 hours. bIsolated yield. cDiastereomeric ratio determined by 500 \textbf{1}H MHz NMR analysis of crude reaction mixtures. d5 mol \% of BiCl\textsubscript{3} has been used. eReaction was conducted with 20 mol \% nitric acid.

The inactivity of bismuth(III) iodide could be explained by the disproportionation reaction of HI formed in the hydrolysis process (entry 8). While the addition of the BiOCl (the actual hydrolysis product of BiCl\textsubscript{3}) afforded no product at all and served as further evidence that the transformation was Brønsted acid, but not Lewis acid catalysed (entry 9). Lastly, in contrast to the base-mediated
process, α,β-unsaturated esters were completely unreactive under our conditions (entry 10). This could be attributed to the lower nucleophilicity of the hemiacetal, which could not undergo intramolecular Michael addition, compared to the hemiacetal alkoxide anion, formed in the base-mediated process.

Further studies examined the scope of aldehydes able to participate in the process (eq. 7, Table 2.4.2). The reaction was shown to be very efficient with various linear and branched aliphatic aldehydes (entries 1-4). Notably, the aromatic counterparts were unreactive, which was associated with their lower electrophilic nature (entries 5, 6).

Table 2.4.2: Aldehyde Scope for the Two-Component Hemiacetal/Oxa-Conjugate Addition Reaction (eq. 7, \(R^1 = \text{Ph(CH}_2)_2 \))

<table>
<thead>
<tr>
<th>Entry<sup>a</sup></th>
<th>Aldehyde, R<sup>2</sup></th>
<th>Yield (%)<sup>b</sup></th>
<th>ds rac-12/13<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>99</td>
<td>≥19:1</td>
</tr>
<tr>
<td>2</td>
<td>(^{1}\text{Pr})</td>
<td>aa</td>
<td>“</td>
</tr>
<tr>
<td>3<sup>d</sup></td>
<td>(^{1}\text{Bu})</td>
<td>ab</td>
<td>“</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>ac</td>
<td>“</td>
</tr>
<tr>
<td>5</td>
<td>Ph</td>
<td>ad</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>(p)-MeOPh</td>
<td>ae</td>
<td>-</td>
</tr>
</tbody>
</table>

^aAll reactions were carried out on 0.5 mmol scale in DCM at room temperature using 10 mol% Bi(NO₃)₃ and 5 equiv. of the aldehyde for 18 hours. ^bIsolated yield. ^cDiastereomeric ratio determined by 500 MHz ¹H NMR analysis of crude reaction mixtures. ^dReaction time was 40 hours.

Based on results obtained, Bi(NO₃)₃ and acetaldehyde were designated as the optimum reagents, since this system afforded the highest yield and selectivity in the shortest period of time, and were used for the further studies.
2.5 Reaction Substrate Scope for the δ-Hydroxy α,β-Unsaturated Ketones

Having established the optimal conditions for the syn-1,3-dioxane formation, the reaction substrate scope was investigated. As outlined in Table 2.5.1, bismuth(III) nitrate efficiently catalysed the reaction of diverse δ-hydroxy α,β-unsaturated ketones with acetaldehyde. The transformation was quite general and excellent results were obtained with both linear and branched substrates (entries 1-9). Aromatic counterparts turned out to be less reactive, although they still delivered high yields and diastereoselectivities (entries 13-16). The reaction of p-methoxybenzyl alcohol \textit{rac-11n} was accompanied by the acid mediated dehydration and formation of the diene as the only side product (entry 14). Interestingly, the reduced diastereoselectivity was observed in the case of alcohols \textit{rac-11o} and \textit{rac-11p}. This could be attributed to the lower nucleophilicity of the reacting alcohol and thus the greater kinetic character of the transformation. Remarkably, the \textit{intra}molecular hemiacetal \textit{oxa}-conjugate addition was also applicable to substrates containing protected heteroatom (entries 10-12), which implied that the methodology could be effective for applications in multistep synthesis, where protecting group strategy is important. It is noteworthy that silyl group migration/cyclisation was a major side reaction in the base catalysed variant of the transformation.20 In our case, we observed only a trace amount (<5%) of silyl migration products from substrates \textit{rac-11k} and \textit{rac-11l} (entries 11 and 12). The reaction conditions were so exceptionally mild that the substrate containing a halogen atom (\textit{rac-11d}) was readily tolerated, what was not achievable in the base-catalysed variant of this transformation due to the competing β-elimination (entry 4). Lastly, the operational simplicity of the methodology did not require the exclusion of air or moisture and could be conducted on a large scale with similar efficiency (entry 10).
Table 2.5.1: Scope of the Two-Component Hemiacetal/Oxa-Conjugate Addition Reaction for δ-Hydroxy α,β-Unsaturated Ketones (eq. 8)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Homoallylic alcohol rac-11</th>
<th>Yield (%)<sup>b</sup></th>
<th>ds rac-11/12<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph(CH₂)₂</td>
<td>a 99</td>
<td>≥19:1</td>
</tr>
<tr>
<td>2</td>
<td>PhCH₂</td>
<td>b 97</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>c 92</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>Br(CH₂)₅</td>
<td>d 99</td>
<td>"</td>
</tr>
<tr>
<td>5</td>
<td>1Pr</td>
<td>e 92</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>Cy</td>
<td>f 98</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>1Bu</td>
<td>g 95</td>
<td>"</td>
</tr>
<tr>
<td>8</td>
<td>(CH₃)₂CHCH₂</td>
<td>h 96</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>(CH₃)₂CH(CH₂)</td>
<td>i 98</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>BnOCH₂</td>
<td>j 96<sup>d</sup></td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>TIPSOCH₂</td>
<td>k 96</td>
<td>"</td>
</tr>
<tr>
<td>12</td>
<td>TBDPSO(CH₂)₂</td>
<td>l 95</td>
<td>"</td>
</tr>
<tr>
<td>13</td>
<td>Ph</td>
<td>m 97</td>
<td>"</td>
</tr>
<tr>
<td>14</td>
<td>p-MeOPh</td>
<td>n 67<sup>e</sup></td>
<td>"</td>
</tr>
<tr>
<td>15</td>
<td>p-NO₂Ph</td>
<td>o 90</td>
<td>12:1</td>
</tr>
<tr>
<td>16</td>
<td>1-Napht</td>
<td>p 99</td>
<td>16:1</td>
</tr>
</tbody>
</table>

^aAll reactions were carried out on 0.5 mmol scale in DCM at room temperature using 10 mol% Bi(NO₃)₃ and 5 equiv. of the aldehyde for 16-160 hours. ^bIsolated yield. ^cDiestereomeric ratio determined by 500 MHz ¹H NMR analysis of crude reaction mixtures. ^d95% on a 50 mmol scale. ^eDiene was a major side product.

2.6 Reaction Optimisation for the δ-Trialkysilyloxy α,β-Unsaturated Aldehydes

Although the ability to form the syn-1,3-dioxanes 12 from the α,β-unsaturated methyl ketones circumvents the necessity to functionalise an ester or amide, the
ability to employ an aldehyde directly would avoid oxidation state adjustments and thereby dramatically improve the synthetic utility of this process.12 Towards this end, efforts to extend the methodology to the aldehyde substrates were carried out.

Table 2.6.1 outlines the reaction optimisation for the formation of 1,3-syn-dioxanes rac-15 from the \(\alpha,\beta \)-unsaturated aldehydes. Initial attempts to apply optimised conditions found for the ketone substrates resulted in the complex mixtures (entry 1).

Table 2.6.1: Optimisation of the Two-Component Hemiacetal/Oxa-Conjugate Addition Reaction for the \(\delta \)-Trialkylsilyloxy \(\alpha,\beta \)-Unsaturated Aldehydes

\((R = \text{Ph(CH}_2)_2, \text{eq. 9}) \)

<table>
<thead>
<tr>
<th>Entrya</th>
<th>P</th>
<th>BiX\textsubscript{3}</th>
<th>Yield (%)b</th>
<th>Time (h)</th>
<th>(ds) rac-15/16c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>BiCl\textsubscript{3}</td>
<td>-d</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>Bi(NO\textsubscript{3})\textsubscript{3}</td>
<td>33</td>
<td>"</td>
<td>17:1</td>
</tr>
<tr>
<td>3</td>
<td>TES</td>
<td>"</td>
<td>68</td>
<td>92</td>
<td>"</td>
</tr>
<tr>
<td>4e</td>
<td>"</td>
<td>"</td>
<td>78</td>
<td>60</td>
<td>(\geq 19:1)</td>
</tr>
<tr>
<td>5f</td>
<td>"</td>
<td>"</td>
<td>83</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

aAll reactions were carried out on 0.5 mmol scale in DCM at room temperature using 10 mol\% Bi(NO\textsubscript{3})\textsubscript{3} and 5 equiv. of the acetaldehyde. bIsolated yield. cDiastereomeric ratio determined by 500 MHz 1H NMR analysis of crude reaction mixtures. dComplex mixture. e10 equiv. of the acetaldehyde. f20 equiv. of the acetaldehyde.

When the bismuth source was changed to a milder Bi(NO\textsubscript{3})\textsubscript{3}, the formation of the 1,3-dioxane system became evident by 1H NMR analysis and the desired product rac-15\textsubscript{a} was acquired in 33\% isolated yield (entry 2). Unfortunately, the reaction was compromised by the competitive self-condensation of the starting material that led to a reduced yield. Interestingly, treatment of the \(\delta \)-triethylsilyloxy \(\alpha,\beta \)-unsaturated aldehyde rac-14\textsubscript{a} with acetaldehyde in the presence of catalytic Bi(III)
nitrate furnished the 1,3-dioxanes *rac-15a/16a* in 68% yield, favouring the *syn*-diastereoisomer *rac-15a* (entry 3). The marked difference in the efficiency was presumably the result of the triorganosilyl ether controlling the concentration of the secondary alcohol through the rate of protodesilylation. Finally, the efficiency and selectivity of this process was further improved by increasing the concentration of acetaldehyde and resulted in 83% isolated yield and ≥19:1 selectivity in favour of *rac-15a* (entry 5). It is noteworthy that when other bismuth sources (e. g. BiCl₃, Bi(OTf)₃, BiBr₃) were evaluated in the reaction of *rac-14a* with acetaldehyde, decomposition of the starting material occurred and only complex mixtures were isolated.

2.7 Reaction Substrate Scope for the δ-Trialkylsilyloxy α,β- Unsaturated Aldehydes

With the optimised conditions in hand, the study probed the effect of various substituents on the efficiency and selectivity of the process (Table 2.7.1). Analogously to ketone examples, the diverse TES-protected aldehyde substrates underwent smooth reaction with acetaldehyde to afford the linear and branched products in good yields and with excellent selectivities (*ds* ≥19:1) (entries 1-7). Notably, common alcohol protecting groups (Bn and TBDPS) were stable as well as bromide-containing substrate (entries 4, 8 and 9). The silyl migration was again not an issue and only trace amount of the migration product was observed in the crude reaction mixtures (<5% by H NMR) (entry 9). Although the transformations were less efficient in terms of yield, due to competitive side reactions, uniformly high diastereoselectivities were observed in all cases.
Table 2.7.1: Scope of the Two-Component Hemiacetal/Oxa-Conjugate Addition Reaction for the δ-Triethylsilyloxy α,β-Unsaturated Aldehydes (eq. 10)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Homoallylic alcohol rac-14</th>
<th>Yield (%) b</th>
<th>ds rac-15/16 c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhCH2CH2</td>
<td>a</td>
<td>83</td>
</tr>
<tr>
<td>2</td>
<td>PhCH2</td>
<td>b</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>c</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>Br(CH2)5</td>
<td>d</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>iPr</td>
<td>e</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>(CH3)2CHCH2</td>
<td>f</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>(CH3)2CH(CH2)2</td>
<td>g</td>
<td>72</td>
</tr>
<tr>
<td>8</td>
<td>BnOCH2</td>
<td>h</td>
<td>72</td>
</tr>
<tr>
<td>9</td>
<td>TBDPSO(CH2)2</td>
<td>i</td>
<td>72</td>
</tr>
<tr>
<td>10</td>
<td>Ph</td>
<td>j</td>
<td>70</td>
</tr>
</tbody>
</table>

a All reactions were carried out on 0.5 mmol scale in DCM at room temperature using 10 mol% Bi(NO3)3 and 20 equiv. of the acetaldehyde for 48-168 hours. b Isolated yield. c Diastereomeric ratio determined by 500 MHz 1H NMR analysis of crude reaction mixtures.

2.8 Confirmation of Stereochemistry

In order to prove the stereochemical outcome of the hemiacetal cyclisation, the 1D NOE analysis of 1,3-dioxanes rac-12a and rac-15a was carried out. As seen from Figure 2.8.1, strong NOE effect between hydrogens H_A, H_B and H_C suggested that the cyclisation product was the all syn-isomer with alkyl substituents residing in the equatorial positions, to effectively minimise the 1,3-diaxial interactions.
Further evidence to support the spatial geometry of reaction product was acquired from the X-ray structure of the compound \textit{rac-12p} (Figure 2.8.2). The results obtained correlated with the assignment made on the basis of 1D NOE difference experiments, showing the all \textit{syn} geometry of hydrogen substituents, and confirmed unambiguously the relative configuration of the products from two-component hemiacetal/\textit{oxa}-conjugate addition reaction.

![Figure 2.8.1: 1D NOE of the Selected Hemiacetal Cyclisation Products](image)

![Figure 2.8.2: ORTEP Representation of the X-Ray Structure of rac-12p](image)

The less diastereoselective hemiacetal cyclisation reaction of \textit{rac-11p} allowed us to isolate and characterise the minor product \textit{rac-13p} (eq. 11).

![Reaction Scheme](image)

Extensive 1D NOE experiments performed on the latter compound showed strong NOE correlations between H\textsubscript{A}-H\textsubscript{C} protons (6.5%) and H\textsubscript{A}-H\textsubscript{5} (5.9%) (Figure 2.8.3). The observed data suggested that the molecule adopted a chair
conformation with two axial hydrogens (A and B), while the H_B residing in the equatorial position.

![Figure 2.8.3: 1D NOE of the Minor Hemiacetal Cyclisation Product rac-13b](image)

Additional studies were carried out to provide more evidence for the stereochemical course of the hemiacetal cyclisation reaction. The protected anti-1,3-diol rac-22 was prepared as outlined in Scheme 2.8.1. Condensation of 3-phenylpropanal with dianion of methyl acetoacetate afforded rac-18 in 53% yield.

Scheme 2.8.1: Synthesis of the Protected anti-1,3-Diol 22

\[
\begin{align*}
17 \quad & \xrightarrow{a} \quad 53\% \quad \text{rac-18} \\
\text{rac-20} \quad & \xrightarrow{b} \quad 63\% \quad \text{rac-19} \\
\text{rac-21} \quad & \xrightarrow{c} \quad 31\% \quad \text{rac-20} \\
\text{rac-22} \quad & \xrightarrow{d} \quad \text{over 2 steps} \quad \text{rac-22}
\end{align*}
\]

Reaction conditions: a) Methyl acetoacetate, LDA, THF, -78 °C, 53%. b) "Bu₄NBH(OAc)₃, MeCN/AcOH (3:1), -40 °C, ds = 7:1, 63%. c) Acetaldehyde, cat. PPTS, PhH, reflux. d) MeNH(OMe)-HCl, PrMgCl, THF, 0 °C. e) MeMgBr, Et₂O, 0 °C, 89% over 2 steps.

The 1,3-hydroxyketone rac-18 reduction using "Bu₄NBH(OAc)₃ proceeded with moderate stereocontrol (ds = 7:1) to furnish rac-19 as a mixture of inseparable
diastereoisomers. Protection of diol \textit{rac-19} as an ethylidene acetal using acetaldehyde gave \textit{rac-20} as a mixture of epimers at C4 (acetal ring numbering). Weinreb amide formation, followed by methyl Grignard addition finally afforded ketone \textit{rac-22} as mixture of diastereoisomers at C3 and C4 with a ratio of 7.1:5.1:1 in favour of \textit{anti-1,3} isomer. The ketone \textit{rac-22} was submitted to the optimised two-component hemiacetal/\textit{oxa}-conjugate addition reaction conditions and the equilibration of diastereoisomers was followed by ^1H NMR. As seen from Table 2.8.1, the relative concentration of the more thermodynamically stable isomer \textit{rac-12a} increased over the time, while the concentration of the less stable isomers \textit{rac-22a} and \textit{rac-22b} decreased. The observed data suggested that the actual cyclisation reaction is reversible and the equilibrium is shifted towards the formation of the thermodynamically more stable product \textit{rac-12a}.

\textbf{Table 2.8.1: Equilibration Studies of the \textit{anti}-1,3-Dioxane 22 (eq. 12)}

<table>
<thead>
<tr>
<th>Time</th>
<th>Reaction composition (%a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\textit{rac-22a}</td>
</tr>
<tr>
<td>Before reaction</td>
<td>54</td>
</tr>
<tr>
<td>After 18 h</td>
<td>52</td>
</tr>
<tr>
<td>After 42 h</td>
<td>45</td>
</tr>
</tbody>
</table>

aDiastereomeric ratio determined by 500 MHz ^1H NMR analysis of crude reaction mixture.
2.9 Deprotection of the 1,3-Ethylidene Acetal

We have shown that δ-trialkylsilyloxy and δ-hydroxy α,β-unsaturated aldehydes and ketones undergo a highly disastereoselective cyclisation with the aliphatic aldehydes to afford the 1,3-syn protected diols in high yield. However, in order for the methodology to be synthetically viable, the 1,3-ethyldiene acetal group should be easily removed after the cyclisation step. Indeed, sodium borohydride reduction of aldehyde rac-15a and subsequent hydrolysis of acetal rac-23 under mild conditions, using catalytic camphorsulfonic acid, gave triol rac-24 in excellent overall yield (Scheme 2.9.1). Thus, highlighting the synthetic utility of the developed methodology.

Scheme 2.9.1: Deprotection of the 1,3-Ethylidene Acetal

![Scheme 2.9.1](image)

Reaction conditions: a) NaBH₄, MeOH, 0 °C, 83%. b) cat. CSA, MeOH/H₂O (10:1), reflux, 95%.

2.10 Synthetic Application of the Developed Methodology. Synthesis of the C18-C28 Fragment of Antibiotic RK-397

We envisioned that our developed methodology could be applied in the iterative process for the synthesis of 1,3,5...-skipped polyol chains (Scheme 2.10.1). Hence, stereoselective allylation of syn-1,3-dioxane, followed by successive hemiacetal cyclisation could deliver syn,syn,syn-stereotetrad 27. Furthermore, by changing the facial selectivity of the allylation reaction, syn,anti,syn-stereotetrad 29 could be obtained. Moreover, the iteration could be further repeated to produce skipped 1,3-polyol chains of the required configuration.
To prove the concept, we elected to prepare the C4-C12 polyol fragment of antibiotic RK-397 (Figure 2.10.1).22-25

Figure 2.10.1: Mapping of the syn-1,3-Dioxanes onto the Polyene Macrolide RK-397 Using the Bismuth-Mediated Two-Component Hemiacetal/Oxa-Conjugate Reaction

The iterative sequence used for fragment synthesis is outlined in the Scheme 2.10.2. The enantioenriched homoallylic alcohol (R)-30 was converted to the δ-triethylsilyloxy α,β-unsaturated aldehyde 14h in 98% overall yield via cross metathesis26 with acrolein mediated by Hoveyda-Grubbs 2nd generation catalyst,27 followed by in situ protection of the secondary alcohol at low temperature to suppress the formation of the extended triethylsilyl enol ether. Treatment of 14h under the optimised reaction conditions for the bismuth-mediated two-component hemiacetal/oxa-conjugate addition, furnished the protected syn-1,3-dioxane 15h in 71% yield with excellent diastereocntrol ($ds \geq 19:1$). Stereoselective allylation of
aldehyde 15h (ds = 98:2 by HPLC), using Muruoka’s protocol, provided the homoallylic alcohol 31 required to demonstrate the iterative process.

Scheme 2.10.2: Iterative Bismuth-Mediated Two-Component Hemiacetal/Oxa-Conjugate Reaction to the syn-1,3-Dioxanes

![Scheme 2.10.2](image)

Cross metathesis with methyl vinyl ketone provided the α,β-unsaturated ketone 32 (E/Z ≥19:1), which was treated under analogous conditions outlined for the δ-hydroxy α,β-unsaturated ketones, to afford the bis-protected syn-1,3-diol 33 in 91% yield and with excellent diastereoencontrol (ds ≥19:1 by 1H-NMR). The advantage of this approach is the operational simplicity coupled with the ability to utilise the α,β-unsaturated aldehydes and ketones, which makes this methodology an extremely attractive approach for preparation of the syn-1,3-dioxanes.11
2.11 Conclusion

In summary, we have developed a highly diastereoselective bismuth mediated two-component hemiacetal/oxa-conjugate addition reaction, which directly provides syn-1,3-dioxanes under extremely mild conditions. This operationally simple protocol provides the electron-withdrawing group in the aldehyde and ketone oxidation state, which alleviated the necessity for redox adjustments. The synthetic utility of this approach was highlighted in a five-step synthesis of the C18-C28 fragment of the polyene macrolide antibiotic RK-397 in 48% overall yield. Finally, we envision that this approach will find favour in a number of synthetic applications that require the aldehyde and ketone oxidation states, especially in target-oriented synthesis.11,12
2.12 Experimental Part. General information.

All reactions were carried out under ambient atmosphere with reagent grade solvents, unless otherwise stated. Anhydrous DCM was obtained by passing degassed solvents through activated alumina columns in a Grubbs solvent purification system (PureSolv MD-6 of Innovative Technology Inc.). 2,6-lutidine was distilled from CaH₂ under nitrogen; MgSO₄ or Na₂SO₄ in their anhydrous form were used as drying agents; all other commercially available reagents (Aldrich, Alfa-Aesar, Acros) were purchased and used as received, unless otherwise noted. All compounds were purified by flash chromatography using silica gel 60 (40–63 μm, FluoroChem) and gave spectroscopic data consistent with being ≥95% the assigned structure. Analytical thin layer chromatography (TLC) was performed on pre-coated 0.25 mm thick silica gel 60-F₂₅₄ plates (Whatman PE SIL G/UV); UV light and by treatment with a spray of Pancaldi reagent [(NH₄)₆MoO₄, Ce(SO₄)₂, H₂SO₄, H₂O] followed by heating. The melting points (uncorrected) were obtained from a Griffin Melting Point Instrument. Optical rotations ([α]D) were measured on a Perkin-Elmer Model 343 plus polarimeter with a sodium lamp (D line, 589 nm) at ambient temperature (indicated in ºC as superscript) using a 1 dm path length quartz cell; solution concentration (c) are given in g/100 mL. HPLC analyses were carried out on an Agilent 1200 series HPLC instrument equipped with a diode-array detector using an achiral column ZORBAX Rx-SIL (0.46 cm Ø × 25 cm) from Daicel Chemical Ind. IR spectra were recorded on a Perkin-Elmer FT-IR Spectrum 100 spectrometer; wavenumbers (v) are given in cm⁻¹; and the abbreviations w (weak, < 20%), m (medium, 20-40%), s (strong, 40-66), vs (very strong, > 66%) and br (broad) are used to describe the relative intensities of the IR absorbance bands. Mass spectra were obtained through the Chemistry Department Mass Spectrometry
Service, University of Liverpool and EPSRC National Mass Spectrometry Service Centre (Swansea, UK). High resolution chemical ionization (CI) and electrospray ionization (ESI) mass spectra were recorded on a *Fisons Trio-1000* or *LTQ Orbitrap*, and *Micromass LTC* mass spectrometers, respectively. 1H-NMR and 13C-NMR spectra were recorded on a *Bruker Avance DRX-500* spectrometer in the solvent indicated (CDCl$_3$ or C$_6$D$_6$) at ambient temperature; chemical shifts (δ) are given in ppm and calibrated using the signal of residual undeuterated solvent as internal reference (CDCl$_3$: $\delta_H = 7.26$ ppm and $\delta_C = 77.00$ ppm; C$_6$D$_6$: $\delta_H = 7.15$ ppm and $\delta_C = 128.62$ ppm). 1H-NMR data are reported as follows: chemical shift (multiplicity, 2$^{\text{nd}}$ order spin system if available, coupling constant, integration). Coupling constants (J) are reported in Hz and apparent splitting patterns are designated using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad), app. (apparent) and combinations of these. The reported chemical shifts for broad singlets, and each part of the 2$^{\text{nd}}$ order spin systems were averaged. 13C-NMR spectra with complete proton decoupling were described with the aid of an APT sequence, separating methylene and quaternary carbons (e, even), from methyl and methine (o, odd).

2.13 Preparation of the δ-Hydroxy α,β-Unsaturated Ketones

General Procedure: The corresponding homoallylic alcohol (5 mmol) was dissolved in anhydrous DCM (12.5 mL) under an atmosphere of argon and treated with methyl vinyl ketone (2.0 mL, 25 mmol) and Hoveyda-Grubbs 2$^{\text{nd}}$ generation catalyst (31.3 mg, 0.05 mmol). The reaction mixture refluxed for *ca.* 2 h (TLC control), then concentrated and purified by flash chromatography to give δ-hydroxy-α,β-unsaturated ketones.
(E)-6-Hydroxy-8-phenyloct-3-en-2-one (rac-11a)

Product was obtained after flash chromatography (silica gel, EtOAc/petroleum ether – 1:2) in 84 % yield.

Colour and state: White waxy solid.

1H NMR (500 MHz, CDCl$_3$) δ 7.31-7.26 (m, 2H), 7.22-7.19 (m, 3H), 6.83 (dt, $J = 15.9, 7.4$ Hz, 1H), 6.14 (d, $J = 16.0$ Hz, 1H), 3.83-3.77 (m, 1H), 2.81 (app. dt, A of ABM$_2$, $J_{AB} = 14.2$ Hz, $J_{AM} = 7.3$ Hz, 1H), 2.70 (app. dt, B of ABM$_2$, $J_{AB} = 13.9$ Hz, $J_{BM} = 8.0$ Hz, 1H), 2.45 (ddddd, A of ABMNX, $J_{AB} = 14.5$ Hz, $J_{AM} = 7.0$ Hz, $J_{AN} = 4.5$ Hz, $J_{AX} = 1.5$ Hz, 1H), 2.38 (app. dt, B of ABM$_2$X, $J_{AB} = 14.5$ Hz, $J_{BM} = 7.6$ Hz, $J_{BX} = 1.5$ Hz, 1H), 2.25 (s, 3H), 1.86-1.76 (m, 2H), 1.69 (d, $J = 4.1$ Hz, 1H).

13C NMR (125 MHz, CDCl$_3$) δ 198.73 (e), 144.46 (o), 141.59 (e), 133.44 (o), 128.52 (o), 128.43 (o), 126.02 (o), 69.85 (o), 40.57 (e), 38.86 (e) 31.97 (e), 27.02 (o).

IR (Neat) 3415 (br), 3026 (w), 2923 (w), 2856 (w), 1666 (s), 1455 (w) 1362 (m), 1256 (s), 978 (s) cm$^{-1}$.

HRMS (Cl, [M+NH$_4^+$]) calcd for C$_{14}$H$_{22}$NO$_2$ 236.1645, found 236.1647.

(E)-6-Hydroxy-7-phenylhept-3-en-2-one (rac-11b)

Product was obtained after flash chromatography (silica gel, EtOAc/hexanes – 1.5:1) in 91% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl$_3$) δ 7.33-7.30 (m, 2H), 7.26-7.19 (m, 3H), 6.86 (dt, $J = 15.2, 7.2$ Hz, 1H), 6.13 (dd, $J = 16.0, 0.5$ Hz, 1H), 4.01-3.96 (m, 1H), 2.82 (dd, A of ABX, $J_{AB} = 13.6$ Hz, $J_{AX} = 5.0$ Hz, 1H), 2.74 (dd, B of ABX, $J_{AB} = 13.6$ Hz, $J_{BX} = 8.1$ Hz, 1H), 2.50-2.45 (m, 1H), 2.39 (app. dt, B of ABM$_2$, $J_{AB} = 14.8$ Hz, $J_{BM} = 7.4$ Hz, 1H), 2.24 (s, 3H), 2.04 (br s, 1H).
\(^{13}\text{C}\) NMR (125 MHz, CDCl\(_3\)) \(\delta\) 198.76 (e), 144.54 (o), 137.72 (e), 133.45 (o), 129.43 (o), 128.73 (o), 126.79 (o), 71.42 (o), 43.85 (e), 39.62 (e), 26.95 (o).

IR (Neat) 3411 (br), 3028 (w), 2920 (w), 1665 (s), 1625 (m), 1496 (w), 1454 (w), 1361 (m), 1256 (s), 976 (s) cm\(^{-1}\).

HRMS (CI, [M+H]\(^+\)) calcd for C\(_{13}\)H\(_{17}\)O\(_2\) 205.1223, found 205.1225.

\((E)-6\)-Hydroxyhept-3-en-2-one \((\text{rac}-11\text{c})\)^{29}

Product was obtained after flash chromatography (silica gel, EtOAc/hexanes – 2:1) in 49% yield.

Colour and state: Colourless volatile oil.

\(^1\text{H}\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 6.83 (dt, \(J = 16.0, 7.3\) Hz, 1H), 6.14 (dt, \(J = 16.0, 1.3\) Hz, 1H), 3.99-3.97 (m, 1H), 2.43-2.35 (m, 2H), 2.26 (s, 3H), 1.71 (br s, 1H), 1.25 (d, \(J = 6.2\) Hz, 3H).

IR (Neat) 3410 (br), 2969 (w), 2930 (w), 1665 (s), 1626 (m), 1362 (m), 980 (s) cm\(^{-1}\).

\((E)-11\)-Bromo-6-hydroxyundec-3-en-2-one \((\text{rac}-11\text{d})\)

Product was obtained after flash chromatography (silica gel, EtOAc/hexanes – 1:1.5) in 95% yield.

Colour and state: Colourless oil.

\(^1\text{H}\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 6.83 (dt, \(J = 15.5, 7.6\) Hz, 1H), 6.13 (dd, \(J = 16.0, 0.8\) Hz, 1H), 3.79-3.75 (m, 1H), 3.40 (td, \(J = 6.7, 0.5\) Hz, 2H), 2.45-2.40 (m, 1H), 2.38-2.29 (m, 1H), 2.25 (d, \(J = 0.7\) Hz, 3H), 1.88-1.83 (m, 3H), 1.51-1.34 (m, 6H).

\(^{13}\text{C}\) NMR (125 MHz, CDCl\(_3\)) \(\delta\) 198.62 (e), 144.39 (o), 133.46 (o), 70.42 (o), 40.48 (e), 37.05 (e), 33.84 (e), 32.62 (e), 28.03 (e), 27.05 (o), 24.78 (e).
Chapter 2

IR (Neat) 3421 (br), 2934 (m), 2859 (w), 1668 (s), 1625 (m), 1361 (m), 1255 (s), 978 (s) cm\(^{-1}\).

HRMS (Cl, [M+NH\(_4\)]\(^+\)) calcd for C\(_{11}\)H\(_{25}\)\(^{79}\)BrNO\(_2\) 280.0912, found 280.0907.

\[
\begin{align*}
\text{(E)-6-Hydroxy-7-methyloct-3-en-2-one (rac-11e)} \\
\text{Product was obtained after flash chromatography (silica gel,} \quad \text{EtOAc/hexanes – 1:2) in 74% yield.}
\end{align*}
\]

Colour and state: Colourless oil.

\[
\begin{align*}
\text{\(^1\)H NMR} \quad (500 \text{ MHz, CDCl}_3) \delta & \quad 6.86 (\text{dt, } J = 15.9, 7.3 \text{ Hz, 1H}), \quad 6.13 (\text{dt, } J = 16.0, 1.3 \\
& \quad \text{Hz, 1H), 3.54-3.48 (m, 1H), 2.41 (ddddd, } J = 14.7, 6.9, 3.7, 1.5 \text{ Hz, 1H), 2.36-2.28 (m,} \\
& \quad \text{1H), 2.24 (s, 3H), 1.91 (br s, 1H), 1.68 (septet-d, } J = 6.8, 5.8 \text{ Hz, 1H), 0.93 (d, } J = \\
& \quad 6.8 \text{ Hz, 3H), 0.92 (d, } J = 6.8 \text{ Hz, 3H).}
\end{align*}
\]

\[
\begin{align*}
\text{\(^{13}\)C NMR} \quad (125 \text{ MHz, CDCl}_3) \delta & \quad 198.71 \text{ (e), 145.45 (o), 133.18 (o), 75.45 (o), 37.37} \\
& \quad \text{(e), 33.59 (o), 26.90 (o), 18.65 (o), 17.34 (o).}
\end{align*}
\]

IR (Neat) 3435 (br), 2960 (w), 2875 (w), 1663 (s), 1625 (m), 1362 (m), 1256 (s), 978 (s) cm\(^{-1}\).

HRMS (Cl, [M+NH\(_4\)]\(^+\)) calcd for C\(_9\)H\(_{20}\)NO\(_2\) 174.1489, found 174.1490.

\[
\begin{align*}
\text{(E)-6-Cyclohexyl-6-hydroxyhex-3-en-2-one (rac-11f)} \\
\text{Product was obtained after flash chromatography (silica gel,} \quad \text{Et}_2\text{O/hexanes – 1:1) in 85% yield as clear oil.}
\end{align*}
\]

Colour and state: Colourless oil.

\[
\begin{align*}
\text{\(^1\)H NMR} \quad (500 \text{ MHz, CDCl}_3) \delta & \quad 6.87 (\text{dt, } J = 15.9, 7.3 \text{ Hz, 1H), 6.15 (dt, } J = 16.0, 1.3 \\
& \quad \text{Hz, 1H), 3.54-3.50 (m, 1H), 2.45 (ddddd, } J = 14.6, 6.9, 3.6, 1.5 \text{ Hz, 1H), 2.38-2.30 (m,} \\
& \quad \text{1H).}
\end{align*}
\]
1H), 2.26 (s, 3H), 1.85-1.74 (m, 3H), 1.69-1.66 (m, 2H), 1.59 (br s, 1H), 1.40-1.32 (m, 1H), 1.29-0.97 (m, 5H).

13C NMR (125 MHz, CDCl$_3$) δ 198.56 (e), 144.31 (o), 133.30 (o), 74.92 (o), 43.49 (o), 37.36 (e), 29.06 (e), 27.90 (e), 26.95 (o), 26.37 (e), 26.15 (e), 26.00 (e).

IR (Neat) 3420 (br), 2923 (s), 2852 (m), 1667 (s), 1625 (m), 1362 (m), 1256 (s), 976 (s).

HRMS (CI, [M+H]$^+$) calcd for C$_{12}$H$_{21}$O$_2$ 197.1536, found 197.1533.

rBu\hspace{1mm}OH\hspace{1mm}COMe
\[\textit{rac-11g}\]

$^{(E)}$-6-Hydroxy-7,7-dimethylcyclo-3-en-2-one (rac-11g)

Product was obtained after flash chromatography (silica gel, Et$_2$O/hexanes – 1:1) in 86% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl$_3$) δ 6.90 (dt, $J = 16.0$, 7.2 Hz, 1H), 6.14 (dt, $J = 16.0$, 1.4 Hz, 1H), 3.38 (ddd, $J = 10.4$, 4.9, 2.2 Hz, 1H), 2.46 (app. ddt, $J = 14.7$, 6.7, 1.8 Hz, 1H), 2.25 (s, 3H), 2.21 (ddd, $J = 14.7$, 10.4, 7.5, 1.3 Hz, 1H), 1.68 (d, $J = 4.9$ Hz, 1H), 0.93 (s, 9H).

13C NMR (125 MHz, CDCl$_3$) δ 198.60 (e), 146.57 (o), 132.99 (o), 78.57 (o), 35.09 (e), 35.04 (e), 26.86 (o), 25.58 (o).

IR (Neat) 3429 (br), 2960 (m), 2875 (m), 1665 (s), 1625 (m), 1041 (m) cm$^{-1}$.

HRMS (CI, [M+H]$^+$) calcd for C$_{10}$H$_{29}$O$_2$ 171.1385, found 171.1387.

$^{(E)}$-6-Hydroxy-8-methylnon-3-en-2-one (rac-11h)

Product was obtained after flash chromatography (silica gel, EtOAc/hexanes – 1:3) in 84% yield.

Colour and state: Colourless oil.
Chapter 2

\[^1H \text{NMR} \ (500 \text{ MHz, CDCl}_3) \delta \ 6.85 \ (dt, J = 15.9, 7.3 \text{ Hz, 1H}), \ 6.14 \ (dt, J = 16.0, 1.3 \text{ Hz, 1H}), \ 3.89-3.83 \ (m, 1H), \ 2.42 \ (ddddd, A \text{ of ABMNX}, J_{AB} = 14.5 \text{ Hz}, J_{AM} = 7.0, J_{AN} = 4.3, J_{AX} = 1.5 \text{ Hz, 1H}), \ 2.32 \ (ddd, B \text{ of ABM}_2 \text{X}, J_{AB} = 14.7 \text{ Hz}, J_{BM} = 7.4, J_{BX} = 1.2 \text{ Hz, 1H}), \ 2.26 \ (s, 3H), \ 1.82-1.73 \ (m, 1H), \ 1.63 \ (d, J = 4.9 \text{ Hz, 1H}), \ 1.44 \ (ddd, A \text{ of ABXY}, J_{AB} = 14.0 \text{ Hz}, J_{AX} = 8.9 \text{ Hz}, J_{AY} = 5.3 \text{ Hz, 1H}), \ 1.26 \ (ddd, B \text{ of ABXY}, J_{AB} = 13.7 \text{ Hz}, J_{BX} = 9.0 \text{ Hz}, J_{BY} = 4.4 \text{ Hz, 1H}), \ 0.93 \ (d, J = 6.7 \text{ Hz, 3H}), \ 0.91 \ (d, J = 6.6 \text{ Hz, 3H}).

\[^{13}C \text{NMR} \ (125 \text{ MHz, CDCl}_3) \delta 199.10 \ (e), \ 145.50 \ (o), \ 133.09 \ (o), \ 68.35 \ (o), \ 46.35 \ (e), \ 40.98 \ (e), \ 26.74 \ (o), \ 24.44 \ (o), \ 23.29 \ (o), \ 21.92 \ (o).

\[\text{IR} \ (\text{Neat}) \ 3422 \ (br), \ 2955 \ (m), \ 2928 \ (w), \ 2870 \ (w), \ 1667 \ (s), \ 1626 \ (m), \ 1364 \ (m), \ 1256 \ (m), \ 974 \ (m) \text{ cm}^{-1}.

\[\text{HRMS} \ (\text{CI, [M+NH}_4^+]^+) \text{ calcd for C}_{10}H_{22}NO_2 188.1645, \text{ found 188.1640}.

\[\text{(E)-6-Hydroxy-9-methyldecan-3-en-2-one (rac-11i)}

Product was obtained after flash chromatography (silica gel, EtOAc/hexanes – 1:1.5) in 70% yield.

\[\text{Colour and state: Colourless oil.}

\[^1H \text{NMR} \ (500 \text{ MHz, CDCl}_3) \delta 6.84 \ (dt, J = 15.9, 7.3 \text{ Hz, 1H}), \ 6.12 \ (dt, J = 16.0, 1.3 \text{ Hz, 1H}), \ 3.77-3.70 \ (m, 1H), \ 2.42 \ (ddddd, A \text{ of ABMNX}, J_{AB} = 14.5 \text{ Hz}, J_{AM} = 7.0 \text{ Hz}, J_{AN} = 4.3 \text{ Hz, J}_{AX} = 1.5 \text{ Hz, 1H}), \ 2.36-2.29 \ (m, 1H), \ 2.24 \ (s, 3H), \ 1.91 \ (br s, 1H), \ 1.57-1.42 \ (m, 3H), \ 1.35-1.27 \ (m, 1H), \ 1.23-1.15 \ (m, 1H), \ 0.88 \ (d, J = 6.6 \text{ Hz, 3H}), \ 0.87 \ (d, J = 6.6 \text{ Hz, 3H}).

\[^{13}C \text{NMR} \ (125 \text{ MHz, CDCl}_3) \delta 198.57 \ (e), \ 144.57 \ (o), \ 133.41 \ (o), \ 70.97 \ (o), \ 40.37 \ (e), \ 35.17 \ (e), \ 34.69 \ (e), \ 28.03 \ (o), \ 26.97 \ (o), \ 22.63 \ (o), \ 22.50 \ (o).
Chapter 2

IR (Neat) 3426 (br), 2954 (m), 2932 (m), 2870 (w), 1669 (s), 1626 (m), 1364 (m),
1255 (s), 977 (s) cm\(^{-1}\).

HRMS (CI, [M+NH\(_4\)]\(^+\)) calcd for C\(_{14}\)H\(_{22}\)NO\(_3\) 252.1600, found 252.1603.

\(\text{(E)-7-(Benzyloxy)-6-hydroxyhept-3-en-2-one (rac-11j)}\)

Product was obtained after flash chromatography (silica gel, EtOAc/hexanes – 1:1) in 86% yield.

\textit{Colour and state:} Colourless oil.

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.36-7.28 (m, 5H), 6.82 (dt, \(J = 16.0, 7.2\) Hz, 1H),
6.11 (dt, \(J = 16.0, 1.4\) Hz, 1H), 4.54 (s, 2H), 3.98-3.92 (m, 1H), 3.49 (dd, A of ABX,
\(J_{AB} = 9.5\) Hz, \(J_{AX} = 3.5\) Hz, 1H), 3.37 (dd, B of ABX, \(J_{AB} = 9.5\) Hz, \(J_{BX} = 7.1\) Hz, 1H),
2.75 (br s, 1H), 2.40 (td, \(J = 6.5, 1.4\) Hz, 2H), 2.22 (s, 3H).

\(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 198.64 (e), 143.97 (o), 137.68 (e), 133.39 (o), 128.54
(o), 127.96 (o), 127.83 (o), 73.74 (e), 73.45 (e), 69.23 (o), 36.48 (e), 26.88 (o).

IR (Neat) 3430 (br), 3031 (w), 2861 (w), 1669 (s), 1626 (s), 1497 (w), 1454 (m),
1361 (s), 1255 (s), 1091 (vs), 979 (s), 739 (s), 699 (s) cm\(^{-1}\).

HRMS (CI, [M+NH\(_4\)]\(^+\)) calcd for C\(_{14}\)H\(_{22}\)NO\(_3\) 252.1600, found 252.1603.

\(\text{(E)-6-Hydroxy-7-((triisopropylsilyl)oxy)hept-3-en-2-one (rac-11k)}\)

Product was obtained after flash chromatography (silica gel, EtOAc/hexanes – 1:3) in 85% yield.

\textit{Colour and state:} Colourless oil.

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 6.86 (dt, \(J = 16.0, 7.2\) Hz, 1H), 6.14 (d, \(J = 16.0\) Hz,
1H), 3.85-3.79 (m, 1H), 3.72 (dd, A of ABX, \(J_{AB} = 9.8\) Hz, \(J_{AX} = 3.8\) Hz, 1H), 3.55
(dd, B of ABX, $J_{AB} = 9.8$ Hz, $J_{BX} = 6.8$ Hz, 1H), 2.62 (d, $J = 4.1$ Hz, 1H), 2.41-2.38 (m, 2H), 2.25 (s, 3H), 1.18-1.04 (m, 21H).

13C NMR (125 MHz, CDCl$_3$) δ 198.44 (e), 144.07 (o), 133.33 (o), 70.73 (o), 66.90 (e), 36.20 (e), 26.85 (o), 17.94 (o), 11.88 (o).

IR (Neat) 3435 (br), 2942 (m), 2866 (m), 1672 (m), 1627 (w), 1463 (w), 1362 (w), 1254 (m), 1123 (m), 882 (m) cm$^{-1}$.

Product was obtained after flash chromatography (silica gel, Et$_2$O/petroleum ether – 1:1.2, 1:1) in 95% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl$_3$) δ 7.68 (d, $J = 7.0$ Hz, 4H), 7.45-7.38 (m, 6H), 6.89 (dt, $J = 15.9$, 7.3 Hz, 1H), 6.13 (d, $J = 16.0$ Hz, 1H), 4.12-4.06 (m, 1H), 3.89 (dt, A of ABM$_2$, $J_{AB} = 10.4$ Hz, $J_{AM} = 5.0$ Hz, 1H), 3.86 (dt, B of ABM$_2$, $J_{AB} = 10.5$ Hz, $J_{BM} = 4.1$ Hz, 1H), 3.70 (s, 1H), 2.47-2.38 (m, 2H), 2.25 (s, 3H), 1.78 (dt, $J = 14.0$, 8.9, 5.0 Hz, 1H), 1.69-1.64 (m, 1H), 1.06 (s, 9H).

13C NMR (125 MHz, CDCl$_3$) δ 198.74 (e), 144.82 (o), 135.56 (o), 135.54 (o), 133.34 (o), 132.81 (e), 132.73 (e), 130.00 (o), 129.98 (o), 127.90 (o), 70.57 (o), 63.26 (e), 40.53 (e), 38.10 (e), 26.85 (o), 19.06 (e).

IR (Neat) 3439 (br), 3071 (w), 3048 (w), 2931 (m), 2857 (m), 1671 (m), 1626 (w), 1589 (w), 1427 (m), 1106 (s), 980 (m), 702 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{24}$H$_{32}$O$_3$NaSi 419.2018, found 419.2029.
Product was obtained after flash chromatography (silica gel, EtOAc/hexanes – 1.5:1) in 79% yield.

Colour and state: Yellow oil.

\[^1\text{H NMR}\] (500 MHz, CDCl\(_3\)) \(\delta 7.38-7.28\) (m, 5H), 6.81 (dt, \(J = 16.0, 7.3\) Hz, 1H), 6.12 (d, \(J = 16.0\) Hz, 1H), 4.85 (ddd, \(J = 7.6, 4.8, 2.8\) Hz, 1H), 2.69 (dt, \(J = 15.1, 7.9\) Hz, 1H), 2.66-2.61 (m, 1H), 2.28 (br s, 1H), 2.23 (s, 3H).

IR (Neat) 3405 (br), 3030 (w), 2919 (w), 1666 (s), 1624 (m), 1494 (w), 1453 (w), 1362 (m), 1257 (m), 1048 (m), 976 (m) cm\(^{-1}\).

\[^{13}\text{C NMR}\] (125 MHz, CDCl\(_3\)) \(\delta 198.55\) (e), 159.36 (e), 143.97 (o), 135.56 (e), 133.50 (o), 126.99 (o), 114.03 (o), 72.87 (o), 55.33 (o), 41.99 (e), 26.91 (o).

IR (Neat) 3413 (br), 2911 (w), 1666 (m), 1611 (m), 1512 (m), 1361 (w), 1245 (s), 1174 (m) cm\(^{-1}\).

HRMS (Cl, [M+NH\(_4^+\)]^+) calcd for C\(_{13}\)H\(_{20}\)O\(_3\)N 238.1438, found 238.1436.
(E)-6-Hydroxy-6-(4-nitrophenyl)hex-3-en-2-one (rac-11o)

Product was obtained after flash chromatography (silica gel, EtOAc/hexanes – 1.2:1) in 95% yield.

Colour and state: Colourless oil.

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 8.23-8.20 (m, 2H), 7.54 (s, J = 8.7 Hz, 2H), 6.79 (dt, J = 15.9, 7.3 Hz, 1H), 6.14 (d, J = 16.0 Hz, 1H), 5.00 (app. t, J = 6.3 Hz, 1H), 2.67-2.64 (m, 2H), 2.56 (br s, 1H), 2.23 (s, 3H).

\(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta 198.27 (e), 150.62 (o), 142.28 (o), 134.00 (o), 126.50 (o), 123.89 (o), 72.11 (o), 42.02 (e), 27.23 (o).

IR (Neat) 3410 (br), 2922 (w), 2866 (m), 1710 (m), 1668 (m), 1626 (m), 1600 (m), 1518 (s), 1345 (s), 1258 (m), 856 (m) cm\(^{-1}\).

HRMS (CI, [NH\(_4\)]\(^+\)) calcd for C\(_{12}\)H\(_{17}\)O\(_4\)N\(_2\) 253.1183, found 253.1183.

(E)-6-Hydroxy-6-(naphthalen-1-yl)hex-3-en-2-one (rac-11p)

Product was obtained after flash chromatography (silica gel, Et\(_2\)O/hexanes – 1:1.5) in 92% yield.

Colour and state: Colourless oil.

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 8.04 (d, J = 8.3 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.68 (d, J = 7.1 Hz, 1H), 7.56-7.48 (m, 3H), 6.92 (dt, J = 16.0, 7.3 Hz, 1H), 6.17 (d, J = 16.0 Hz, 1H), 5.64 (app. dt, J = 7.9, 3.9 Hz, 1H), 2.89-2.77 (m, 2H), 2.23-2.22 (m, 4H).

\(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta 198.60 (e), 144.20 (o), 138.98 (e), 133.84 (e), 133.51 (o), 130.03 (e), 129.13 (o), 128.47 (o), 126.36 (o), 125.77 (o), 125.47 (o), 122.82 (o), 122.65 (o), 69.94 (o), 41.13 (e), 26.88 (o).
Chapter 2

IR (Neat) 3514 (br), 2908 (w), 1655 (s), 1638 (s), 1362 (m), 1257 (s), 973 (s), 782 (s) cm⁻¹.

HRMS (CI, [M+NH₄]⁺) calcd for C₁₆H₂₀O₂N 258.1494 found 258.1497.

2.14 Preparation of the δ-Triethylsilyloxy α,β-Unsaturated Aldehydes

General Procedure: The corresponding homoallylic alcohol (5 mmol) was dissolved in anhydrous DCM (12.5 mL) under an atmosphere of argon and treated with acrolein (25 mmol) and Hoveyda-Grubbs 2nd generation catalyst (47.0 mg, 0.075 mmol). The reaction mixture was refluxed for ca. 4 h (TLC control), then concentrated *in vacuo* and redissolved in anhydrous DCM (12.5 mL) under an atmosphere of argon. The solution was cooled to −78 °C and treated sequentially with 2,6-lutidine (1.45 mL, 12.5 mmol) and TESOTf (2.26 mL, 10 mmol). The reaction mixture was stirred at that temperature until consumption of the starting material (TLC control), before it was quenched with saturated aqueous NaHCO₃, warmed to room temperature and partitioned between water and diethyl ether. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic phases were successively washed with saturated aqueous NH₄Cl, water, brine, dried (MgSO₄), filtered and concentrated *in vacuo* to afford a crude product, which was purified by flash chromatography (silica gel) to give δ-triethylsilyloxy α,β-unsaturated aldehydes.

![Image of chemical structure](image)

(E)-7-Phenyl-5-(triethylsilyloxy)hept-2-enal (rac-14a)

The product was obtained after flash chromatography (silica gel, Et₂O/hexanes – 1:9) in 71% yield.

Colour and state: Colourless oil.

\textit{Chapter 2}

1H NMR (500 MHz, CDCl$_3$) δ 9.52 (d, $J = 7.9$ Hz, 1H), 7.30-7.26 (m, 2H), 7.22-7.16 (m, 3H), 6.90 (dt, $J = 15.2$, 7.6 Hz, 1H), 6.16 (dd, $J = 15.6$, 7.9 Hz, 1H), 3.92 (quintet, $J = 5.7$ Hz, 1H), 2.74-2.50 (m, 4H), 1.86-1.75 (m, 2H), 0.97 (t, $J = 8.0$ Hz, 9H), 0.62 (q, $J = 8.0$ Hz, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 193.89 (o), 154.94 (o), 141.80 (e), 134.93 (o), 128.48 (o), 128.29 (o), 125.96 (o), 70.61 (o), 40.52 (e), 39.14 (e), 31.77 (e), 6.95 (o), 5.04 (e).

IR (Neat) 2953 (w), 2912 (w), 2876 (w), 1692 (s), 1638 (w), 1496 (w), 1456 (w), 1239 (w), 1061 (m), 1004 (m), 976 (m), 725 (vs), 699 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{19}$H$_{30}$O$_2$NaSi 341.1913, found 341.1899.

\begin{center}
\begin{tikzpicture}
\end{tikzpicture}
\end{center}

\textbf{\textit{(E)-6-Phenyl-5-(triethylsilyloxy)hex-2-enal (rac-14b)}}

The product was obtained after flash chromatography (silica gel, Et$_2$O/petroleum ether – 0%, 2%, 4%, 8%) in 86% yield.

\textit{Colour and state}: Colourless oil.

1H NMR (500 MHz, CDCl$_3$) δ 9.51 (d, $J = 8.0$ Hz, 1H), 7.31-7.27 (m, 2H), 7.24-7.19 (m, 1H), 7.17-7.14 (m, 2H), 6.90 (ddd, $J = 15.5$, 7.8, 7.0 Hz, 1H), 6.12 (ddt, $J = 15.7$, 7.9, 1.2 Hz, 1H), 4.07 (quintet, $J = 6.0$ Hz, 1H), 2.82 (dd, A of ABX, $J_{AB} = 13.4$ Hz, $J_{AX} = 6.2$ Hz, 1H), 2.71 (dd, B of ABX, $J_{AB} = 13.4$ Hz, $J_{BX} = 7.0$ Hz, 1H), 2.50-2.40 (m, 2H), 0.92 (t, $J = 8.0$ Hz, 9H), 0.55 (dq, A of ABM$_3$, $J_{AB} = 15.5$ Hz, $J_{AM} = 7.6$ Hz, 3H), 0.51 (dq, B of ABM$_3$, $J_{AB} = 15.2$ Hz, $J_{BM} = 8.2$ Hz, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 193.84 (o), 155.10 (o), 138.11 (e), 135.03 (o), 129.57 (o), 128.42 (o), 126.52 (o), 72.39 (o), 44.17 (e), 39.96 (e), 6.89 (o), 4.84 (e).

IR (Neat) 2953 (m), 2912 (w), 2876 (m), 2810 (w), 1691 (s), 1636 (w), 1496 (w), 1455 (w), 1083 (m), 1005 (m), 977 (m), 740 (vs), 700 (s) cm$^{-1}$.
HRMS (ESI, [M+Na]+) calcd for C\textsubscript{18}H\textsubscript{28}O\textsubscript{2}NaSi 327.1756, found 327.1755.

\[
\text{(E)-5-(Triethylsilyloxy)hex-2-enal (rac-14c)}
\]

The product was obtained after flash chromatography (silica gel, Et\textsubscript{2}O/petroleum ether – 0%, 2%, 4%, 8%) in 85% yield.

Colour and state: Colourless oil.

\(^1\text{H NMR}\) (500 MHz, CDCl\textsubscript{3}) \(\delta\) 9.50 (d, \(J = 7.9\) Hz, 1H), 6.88 (dt, \(J = 15.4, 7.6\) Hz, 1H), 6.13 (dd, \(J = 15.7, 7.9\) Hz, 1H), 4.00 (sextet, \(J = 6.0\) Hz, 1H), 2.45 (m, 2H), 1.18 (d, \(J = 6.1\) Hz, 3H), 0.94 (t, \(J = 8.0\) Hz, 9H), 0.64-0.52 (m, 6H).

\(^{13}\text{C NMR}\) (125 MHz, CDCl\textsubscript{3}) \(\delta\) 193.98 (o), 155.39 (o), 134.72 (o), 67.17 (o), 42.79 (e), 23.86 (o), 6.83 (o), 4.85 (e).

\(\text{IR (Neat)}\) 2955 (m), 2911 (w), 2877 (m), 2805 (w), 1694 (s), 1639 (w), 1126 (m), 1005 (m), 745 (vs) cm-1.

HRMS (ESI, [M+Na]+) calcd for C\textsubscript{12}H\textsubscript{24}O\textsubscript{2}NaSi 251.1443, found 251.1454.

\[
\text{(E)-10-Bromo-5-(triethylsilyloxy)dec-2-enal (rac-14d)}
\]

The product was obtained after flash chromatography (silica gel, Et\textsubscript{2}O/petroleum ether – 0% to 8%) in 89% yield.

Colour and state: Colourless oil.

\(^1\text{H NMR}\) (500 MHz, CDCl\textsubscript{3}) \(\delta\) 9.50 (d, \(J = 7.9\) Hz, 1H), 6.87 (dt, \(J = 15.3, 7.6\) Hz, 1H), 6.12 (dd, \(J = 15.7, 7.9\) Hz, 1H), 3.84 (quintet, \(J = 5.7\) Hz, 1H), 3.38 (t, \(J = 6.8\) Hz, 2H), 2.52-2.41 (m, 2H), 1.84 (quintet, \(J = 7.0\) Hz, 2H), 1.50-1.26 (m, 6H), 0.94 (t, \(J = 8.0\) Hz, 9H), 0.58 (q, \(J = 8.0\) Hz, 6H).

\(^{13}\text{C NMR}\) (125 MHz, CDCl\textsubscript{3}) \(\delta\) 193.84 (o), 155.10 (o), 134.84 (o), 70.82 (o), 40.52 (e), 37.12 (e), 33.74 (e), 32.67 (e), 28.18 (e), 24.51 (e), 6.90 (o), 4.99 (e).
(E)-6-Methyl-5-(triethylsilyloxy)hept-2-enal (rac-14e)

The product was obtained after flash chromatography (silica gel, Et$_2$O/petroleum ether – 1:15) in 79% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl$_3$) δ 9.44 (d, $J = 7.9$ Hz, 1H), 6.83 (dt, $J = 15.3$, 7.4 Hz, 1H), 6.07 (ddt, $J = 15.6$, 7.9, 1.3 Hz, 1H), 3.57 (q, $J = 5.5$ Hz, 1H), 2.44-2.34 (m, 2H), 1.68-1.59 (m, 1H), 0.88 (t, $J = 8.0$ Hz, 9H), 0.82 (d, $J = 6.8$ Hz, 3H), 0.81 (d, $J = 6.8$ Hz, 3H), 0.53 (q, $J = 8.0$ Hz, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 193.62 (o), 155.90 (o), 134.51 (o), 75.84 (o), 37.07 (e), 33.50 (o), 17.94 (o), 17.70 (o), 6.84 (o), 5.01 (e).

IR (Neat) 2957 (m), 2912 (w), 2877 (m), 2805 (w), 2731 (w), 1692 (s), 1638 (w), 1460 (w), 1239 (w), 1061 (s), 724 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{16}$H$_{31}$O$_2$NaSi79Br 385.1174 found 385.1165.

(E)-7-Methyl-5-(triethylsilyloxy)oct-2-enal (rac-14f)

The product was obtained after flash chromatography (silica gel, Et$_2$O/petroleum ether – 1:15, 1:13) in 74% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl$_3$) δ 9.45 (d, $J = 7.9$ Hz, 1H), 6.84 (ddd, $J = 15.7$, 7.7, 7.2 Hz, 1H), 6.07 (ddt, $J = 15.7$, 7.9, 1.2 Hz, 1H), 3.87 (app. dq, $J = 12.5$, 5.7 Hz, 1H), 2.47 (dddd, A of ABMNX, $J_{AB} = 14.5$ Hz, $J_{AM} = 6.8$ Hz, $J_{AN} = 5.3$ Hz, $J_{AX} = 1.5$ Hz, $J_{AX} = 1.5$ Hz, 1H), 2.47 (dddd, A of ABMNX, $J_{AB} = 14.5$ Hz, $J_{AM} = 6.8$ Hz, $J_{AN} = 5.3$ Hz, $J_{AX} = 1.5$ Hz.
Chapter 2

1H), 2.37 (dddd, B of ABMNX, $J_{AB} = 14.5$ Hz, $J_{BM} = 6.6$ Hz, $J_{BN} = 5.4$ Hz, $J_{BX} = 1.2$ Hz, 1H) 1.60 (nonet, $J = 6.7$ Hz, 1H), 1.33 (app. dt, A of ABX, $J_{AB} = 13.7$ Hz, $J_{AX} = 6.9$ Hz, 1H), 1.20 (ddd, B of ABXY, $J_{AB} = 13.5$ Hz, $J_{BX} = 7.2$ Hz, $J_{BY} = 6.2$ Hz, 1H), 0.89 (t, $J = 8.0$ Hz, 9H), 0.83 (d, $J = 6.7$ Hz, 3H), 0.82 (d, $J = 6.7$ Hz, 3H), 0.54 (q, $J = 8.0$ Hz, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 193.69 (o), 155.10 (o), 134.81 (o), 69.13 (o), 46.56 (e), 40.64 (e), 24.39 (o), 22.83 (o), 22.63 (o), 6.81 (o), 4.97 (e).

IR (Neat) 2955 (m), 2913 (m), 2877 (m), 2805 (w), 2729 (w), 1694 (s), 1637 (w), 1238 (w), 1065 (s), 1005 (m), 976 (m), 738 (s), 725 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{15}$H$_{30}$O$_2$NaSi 293.1913, found 293.1913.

(E)-8-Methyl-5-(triethylsilyloxy)non-2-enal (rac-14g)

The product was obtained after flash chromatography (silica gel, Et$_2$O/petroleum ether – 0% to 5%) in 85% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl$_3$) δ 9.48 (d, $J = 8.0$ Hz, 1H), 6.87 (dt, $J = 15.3$, 7.5 Hz, 1H), 6.11 (dd, $J = 15.7$, 8.0 Hz, 1H), 3.79 (quintet, $J = 5.8$ Hz, 1H), 2.52-2.39 (m, 2H), 1.51-1.37 (m, 3H), 1.23-1.08 (m, 2H), 0.92 (t, $J = 8.0$ Hz, 9H), 0.84 (d, $J = 6.6$ Hz, 6H), 0.56 (q, $J = 8.0$ Hz, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 193.88 (o), 155.46 (o), 134.74 (o), 71.29 (o), 40.41 (e), 35.16 (e), 34.40 (e), 28.08 (o), 22.58 (o), 22.52 (o), 6.86 (o), 4.95 (e).

IR (Neat) 2954 (m), 2912 (m), 2876 (m), 2807 (w), 2729 (w), 1695 (s), 1638 (w), 1069 (m), 1005 (m), 977 (m), 725 (vs) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{16}$H$_{32}$O$_2$NaSi 307.2069, found 307.2076.
The product was obtained after flash chromatography (silica gel, Et₂O/petroleum ether – 0% to 8%) in 90% yield.

Colour and state: Yellow oil.

1H NMR (500 MHz, CDCl₃) δ 9.48 (d, $J = 8.0$ Hz, 1H), 7.37-7.28 (m, 5H), 6.87 (dt, $J = 15.3, 7.6$ Hz, 1H), 6.15 (ddt, $J = 15.6, 7.9, 1.2$ Hz, 1H), 4.53 (d, A of AB, $J_{AB} = 12.0$ Hz, 1H), 4.50 (d, B of AB, $J_{AB} = 12.0$ Hz, 1H), 4.02-3.98 (m, 1H), 3.44 (dd, A of ABX, $J_{AB} = 9.4$ Hz, $J_{AX} = 5.0$ Hz, 1H), 3.34 (dd, B of ABX, $J_{AB} = 9.4$ Hz, $J_{BX} = 6.6$ Hz, 1H), 2.62 (dddd, A of ABMXY, $J_{AB} = 14.4$ Hz, $J_{AM} = 6.7$ Hz, $J_{AX} = 5.0$ Hz, $J_{AY} = 1.6$ Hz, 1H), 2.54 (dddd, B of ABMXY, $J_{AB} = 14.3$ Hz, $J_{BM} = 7.7$ Hz, $J_{BX} = 6.5$ Hz, $J_{BY} = 1.1$ Hz, 1H), 0.93 (t, $J = 8.0$ Hz, 9H), 0.65-0.52 (m, 6H).

13C NMR (125 MHz, CDCl₃) δ 193.98 (o), 155.03 (o), 137.94 (e), 134.97 (o), 128.43 (o), 127.79 (o), 127.76 (o), 73.69 (e), 73.43 (e), 69.96 (o), 38.20 (e), 6.83 (o), 4.85 (e).

IR (Neat) 2954 (w), 2906 (w), 2876 (w), 2805 (w), 2729 (w), 1691 (s), 1638 (w), 1497 (w), 1087 (m), 733 (vs), 698 (m) cm⁻¹.

HRMS (ESI, [M+Na⁺]) calcd for C₁₉H₃₀O₃NaSi 357.1862, found 357.1872.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl₃) δ 9.50 (d, $J = 7.9$ Hz, 1H), 7.66-7.63 (m, 4H), 7.45-7.36 (m, 6H), 6.68 (dt, $J = 15.3, 7.6$ Hz, 1H), 6.10 (dd, $J = 15.7, 8.0$ Hz, 1H), 4.12
(quintet, $J = 5.8$ Hz, 1H), 3.74 (ddd, $J = 10.6$, 6.5, 5.7 Hz, 1H), 3.68 (dt, $J = 10.5$, 6.1 Hz, 1H), 2.53 (ddddd, A of ABMNX, $J_{AB} = 14.4$ Hz, $J_{AM} = 6.8$ Hz, $J_{AX} = 5.4$ Hz, $J_{AX} = 1.4$ Hz, 1H), 2.45-2.40 (m, 1H), 1.74 (dq, $J = 13.5$, 6.4 Hz, 1H), 1.64 (dq, $J = 13.6$, 6.2 Hz, 1H), 1.05 (s, 9H), 0.93 (t, $J = 8.0$ Hz, 9H), 0.69 (q, $J = 7.9$ Hz, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 194.04 (o), 155.38 (o), 135.57 (o), 134.89 (o), 133.64 (e), 133.62 (e), 129.76 (o), 129.72 (o), 127.72 (o), 127.70 (o), 68.04 (o), 60.38 (e), 40.57 (e), 39.97 (e), 26.86 (o), 19.17 (e), 6.94 (o), 4.93 (e).

IR (Neat) 2954 (m), 2876 (m), 2805 (w), 2729 (w), 1694 (s), 1638 (w), 1588 (w), 1110 (s), 1087 (vs), 977 (m), 738 (s), 702 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{29}$H$_{44}$O$_3$NaSi$_2$ 519.2727, found 519.2733.

\[\text{(E)-5-Phenyl-5-(triethylsilyloxy)pent-2-enal (rac-1j)} \]

The product was obtained after flash chromatography (silica gel, Et$_2$O/petroleum ether – 0% to 8%) in 86% yield.

Colour and state: Yellow oil.

1H NMR (500 MHz, CDCl$_3$) δ 9.47 (d, $J = 7.9$ Hz, 1H), 7.32-7.30 (m, 4H), 7.27-7.24 (m, 1H), 6.82 (dt, $J = 15.3$, 7.6 Hz, 1H), 6.09 (dd, $J = 15.7$, 8.1 Hz, 1H), 4.84 (dd, $J = 6.9$, 5.0 Hz, 1H), 2.74 (app. dt, A of ABM$_2$, $J_{AB} = 14.5$ Hz, $J_{AM} = 7.2$ Hz, 1H), 2.70-2.65 (m, 1H), 0.87 (t, $J = 8.0$ Hz, 9H), 0.54 (dq, A of ABX$_3$, $J_{AB} = 15.8$ Hz, $J_{AX} = 8.0$ Hz, 3H), 0.51 (dq, B of ABX$_3$, $J_{AB} = 15.8$ Hz, $J_{BX} = 8.0$ Hz, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 193.86 (o), 154.71 (o), 143.99 (e), 134.89 (o), 128.32 (o), 127.56 (o), 125.68 (o), 73.58 (o), 43.98 (e), 6.75 (o), 4.76 (e).

IR (Neat) 2954 (w), 2876 (w), 2805 (w), 2729 (w), 1693 (s), 1638 (w), 1088 (m), 1068 (m), 1004 (m), 742 (m), 700 (m) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{17}$H$_{26}$O$_2$NaSi 313.1600, found 313.1592.
2.15 Reaction of the δ-Hydroxy α,β-Unsaturated Ketones with Aliphatic Aldehydes

General Procedure: The δ-hydroxy α,β-unsaturated ketone (0.5 mmol) was dissolved in reagent grade DCM (5 mL) and stirred at room temperature. The aliphatic aldehyde (2.5 mmol, 5.0 equiv.) was added followed by bismuth(III) nitrate pentahydrate (24.3 mg, 0.05 mmol, 0.1 equiv.) and the reaction mixture stirred until consumption of the starting material (TLC control). The reaction was partitioned between DCM and saturated aqueous NaHCO₃ solution. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo to afford a crude product. Purification by flash chromatography (silica gel, diethyl ether/hexanes) furnished the *syn*-1,3-dioxanes.

![1-(2S*,4S*,6S*)-2-Methyl-6-phenethyl-1,3-dioxan-4-yl]propan-2-one (rac-12a)

Product was obtained after flash chromatography (silica gel, EtOAc/hexanes – 1:2.5) in 99% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl₃) δ 7.30-7.26 (m, 3H), 7.20-7.17 (m, 2H), 4.71 (q, *J* = 5.1 Hz, 1H), 4.07 (dddd, *J* = 11.0, 7.4, 5.5, 2.0 Hz, 1H), 3.60 (dddd, *J* = 10.7, 7.7, 4.8, 2.6 Hz, 1H), 2.78 (dddd, *J* = 14.0, 9.4, 4.9 Hz, 1H), 2.77 (dd, A of ABX, *J*ₘ = 16.3 Hz, *J*ₓ = 7.0 Hz, 1H), 2.67 (dddd, B of ABXY, *J*ₘ = 13.8 Hz, *J*ₓ = 9.3 Hz, *J*₁ = 7.0 Hz, 1H), 2.48 (dd, B of ABX, *J*ₘ = 16.3 Hz, *J*ₓ = 5.6 Hz, 1H), 2.18 (s, 3H), 1.89 (dddd, A of ABMNX, *J*ₘ = 13.8 Hz, *J*ₚ = 9.2 Hz, *J*ₚ = 8.3 Hz, *J*ₓ = 5.5 Hz, 1H), 1.72 (dddd, B of ABMNX, *J*ₘ = 13.9 Hz, *J*ₚ = 9.5 Hz, *J*₁ = 7.0 Hz, *J*₂ = 4.5 Hz,
Chapter 2

1H), 1.58 (app. dt, J = 13.0, 2.4 Hz, 1H), 1.33 (d, J = 5.1 Hz, 3H), 1.27 (app. dt, J = 12.8, 11.3 Hz, 1H).

13C NMR (125 MHz, CDCl$_3$) δ 206.67 (e), 141.82 (e), 128.47 (o), 128.40 (o), 125.86 (o), 98.63 (o), 75.04 (o), 72.23(o), 49.50 (e), 37.37 (e), 36.51 (e), 31.16 (e), 21.14 (o).

IR (Neat) 3027 (w), 2993 (w), 2939 (w), 2864 (w), 1715 (m), 1603 (w), 1496 (w), 1362 (m), 1125 (s), 749 (m), 700 (m) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{16}$H$_{22}$O$_3$Na 285.1467, found 285.1467.

1H NMR (500 MHz, CDCl$_3$) δ 7.30-7.26 (m, 2H), 7.20-7.17 (m, 3H), 4.18 (d, J = 6.0 Hz, 1H), 4.00 (dddd, J = 11.0, 7.7, 5.2, 2.4 Hz, 1H), 3.54 (dddd, J = 11.0, 8.7, 4.0, 2.3 Hz, 1H), 2.81-2.66 (m, 3H), 2.45 (dd, B of ABX, J_{AB} = 15.7 Hz, J_{BX} = 5.2 Hz, 1H), 2.19 (s, 3H), 1.88 (ddt, A of ABM$_2$X, J_{AB} = 13.8 Hz, J_{AM} = 8.8 Hz, J_{AX} = 5.1 Hz, 1H), 1.80 (app. dq, J = 13.3, 6.7 Hz, 1H), 1.71 (ddddd, B of ABMNX, J_{AB} = 13.6 Hz, J_{BM} = 9.3 Hz, J_{BN} = 7.7 Hz, J_{BX} = 4.2 Hz, 1H), 1.54 (app. dt, J = 12.9, 2.4 Hz, 1H), 1.26 (app. dt, J = 12.8, 11.2 Hz, 1H), 0.97 (d, J = 6.8 Hz, 3H), 0.93 (d, J = 6.8 Hz, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 207.19 (e), 141.93 (e), 128.53 (o), 128.37 (o), 125.82 (o), 105.50 (o), 74.72 (o), 72.62 (o), 49.62 (e), 37.41 (e), 36.97 (e), 32.83 (o), 31.23 (o), 31.11 (e), 17.44 (o), 17.40 (o).

Colour and state: Colourless oil.

1-[(2S*,4S*,6S*)-2-Isopropyl-6-phenethyl-1,3-dioxan-4-yl]propan-2-one (rac-12aa)

Product was obtained after flash chromatography (SiO$_2$, DCM) in 98% yield.
IR (Neat) 3027 (w), 2958 (m), 2916 (m), 2871 (m), 1716 (s), 1603 (w), 1495 (w), 1349 (m), 1124 (m), 1028 (m), 749 (w), 701 (m) cm\(^{-1}\).

HRMS (ESI, [M+Na]\(^+\)) calcd for C\(_{18}\)H\(_{26}\)O\(_3\)Na 313.1780, found 313.1778.

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.30-7.26 (m, 2H), 7.20-7.18 (m, 3H), 4.10 (s, 1H), 3.98 (dddd, \(J = 10.8, 8.0, 5.2, 2.6\) Hz, 1H), 3.52 (dddd, \(J = 11.2, 8.8, 3.8, 2.3\) Hz, 1H), 2.78 (dddd, A of ABMX, \(J_{AB} = 13.9\) Hz, \(J_{AM} = 8.8\) Hz, \(J_{AX} = 5.0\) Hz, 1H), 2.74-2.65 (m, 1H), 2.70 (dd, A of ABX, \(J_{AB} = 15.5\) Hz, \(J_{AX} = 7.7\) Hz, 1H), 2.44 (dd, B of ABX, \(J_{AB} = 15.3\) Hz, \(J_{BX} = 4.9\) Hz, 1H), 2.19 (s, 3H), 1.86 (ddt, A of ABM\(_2\)X, \(J_{AB} = 13.8\) Hz, \(J_{AM} = 8.7\) Hz, \(J_{AX} = 5.1\) Hz, 1H), 1.71 (dddd, B of ABMN\(_2\), \(J_{AB} = 13.3\) Hz, \(J_{BM} = 9.1\) Hz, \(J_{BN} = 8.1\) Hz, \(J_{BX} = 4.0\) Hz, 1H), 1.49 (app. dt, \(J = 12.8, 2.4\) Hz, 1H), 1.24 (app. dt, \(J = 12.6, 11.2\) Hz, 1H), 0.93 (s, 9H).

IR (Neat) 3027 (w), 2955 (m), 2867 (m), 1716 (s), 1603 (w), 1496 (w), 1360 (m), 1120 (s), 1004 (m) 748 (m), 700 (s) cm\(^{-1}\).

Product was obtained after flash chromatography (SiO\(_2\), Et\(_2\)O/DCM – 1:40) in 90% yield.

Colour and state: Colourless oil.

1-[(2S\(^*\),4S\(^*\),6S\(^*\))\(-2\)-tert-Butyl-6-phenethyl-1,3-dioxan-4-yl]propan-2-one \(\text{(rac-12ab)}\)^\(^{31}\)

Product was obtained after flash chromatography (SiO\(_2\), Et\(_2\)O/hexanes – 1:2, 1:1) in 98% yield.

Colour and state: Colourless oil.
Chapter 2

1H NMR (500 MHz, CDCl$_3$) δ 7.30-7.26 (m, 2H), 7.21-7.17 (m, 3H), 5.08 (d, $J = 6.4$ Hz, 1H), 4.71 (d, $J = 6.5$ Hz, 1H), 4.05 (dddd, $J = 10.8$, 7.6, 5.2, 2.2 Hz, 1H), 3.58 (dddd, $J = 10.8$, 8.5, 4.4, 2.5 Hz, 1H), 2.81-2.74 (m, 1H), 2.77 (dd, A of ABX, $J_{AB} = 16.3$ Hz, $J_{AX} = 7.4$ Hz, 1H), 2.67 (ddd, B of ABMX, $J_{AB} = 13.8$ Hz, $J_{BM} = 9.4$ Hz, $J_{BX} = 7.1$ Hz, 1H), 2.47 (dd, B of ABX, $J_{AB} = 16.4$ Hz, $J_{BX} = 5.0$ Hz, 1H), 2.18 (s, 3H), 1.92-1.85 (m, 1H), 1.73 (ddd, $J = 13.8$, 9.8, 7.0, 4.2 Hz, 1H), 1.60 (app. dt, $J = 13.0$, 2.2 Hz, 1H), 1.39 (app. dt, $J = 13.0$, 11.2 Hz, 1H).

13C NMR (125 MHz, CDCl$_3$) δ 206.48 (e), 141.72 (e), 128.46 (o), 128.43 (o), 125.92 (o), 93.49 (e), 75.32 (o), 72.43 (o), 49.43 (e), 37.53 (e), 37.34 (e), 31.13 (o), 31.11 (e).

IR (Neat) 3026 (w), 2994 (w), 2916 (w), 2855 (w), 1715 (s), 1603 (w), 1496 (m), 1130 (m), 1024 (s), 749 (w), 701 (m) cm$^{-1}$.

HRMS (CI, [M+H]$^+$) calcd for C$_{15}$H$_{21}$O$_3$ 249.1485, found 249.1489.

\[
\text{1-[(2S*,4S*,6S*)-6-Benzyl-2-methyl-1,3-dioxan-4-yl]propan-2-one (\textit{rac}-12b)}
\]

Product was obtained after flash (silica gel, Et$_2$O/DCM – 1:50) in 97% yield.

\textit{Colour and state:} Colourless oil.

1H NMR (500 MHz, CDCl$_3$) δ 7.30-7.26 (m, 2H), 7.23-7.19 (m, 3H), 4.71 (q, $J = 5.1$ Hz, 1H), 4.04 (ddddd, $J = 11.2$, 7.4, 5.2, 2.3 Hz, 1H), 3.84 (ddddd, $J = 11.0$, 8.8, 6.7, 2.4 Hz, 1H), 2.98 (dd, A of ABX, $J_{AB} = 13.6$ Hz, $J_{AX} = 6.3$ Hz, 1H), 2.75 (dd, A of ABX, $J_{AB} = 16.3$ Hz, $J_{AX} = 7.3$ Hz, 1H), 2.67 (dd, B of ABX, $J_{AB} = 13.6$ Hz, $J_{BX} = 7.0$ Hz, 1H), 2.44 (dd, B of ABX, $J_{AB} = 16.3$ Hz, $J_{BX} = 5.2$ Hz, 1H), 2.16 (s, 3H), 1.52
Chapter 2

(app. dt, \(J = 13.0, 2.4 \text{ Hz}, 1\text{H} \)), 1.32 (d, \(J = 5.1 \text{ Hz}, 3\text{H} \)), 1.26 (app. dt, \(J = 12.9, 11.2 \text{ Hz}, 1\text{H} \)).

\(^{13}\text{C NMR}\) (125 MHz, CDCl\(_3\)) \(\delta \) 206.62 (e), 137.53 (e), 129.48 (o), 128.35 (o), 126.43 (o), 98.64 (o), 76.89 (o), 72.24 (o), 49.47 (e), 42.39 (e), 35.92 (e), 31.15 (o), 21.06 (o).

\(\text{IR (Neat)} \) 3028 (w), 2993 (w), 2915 (w), 2865 (w), 1714 (s), 1604 (w), 1495 (w), 1362 (m), 1343 (m), 1125 (s), 940 (m), 753 (m), 701 (m) cm\(^{-1}\).

\(\text{HRMS (CI, [M+NH}_4]^+\) calcd for C\(_{15}\)H\(_{24}\)NO\(_3\) 266.1756, found 266.1759.

\(\text{1}^-\text{[(2S*,4S*,6S*)-2,6-Dimethyl-1,3-dioxan-4-yl]propan-2-one (rac-12c)} \)

Product obtained after flash chromatography (silica gel, DCM, then Et\(_2\)O/DCM – 1:30) in 92% yield.

\textit{Colour and state}: Yellow oil.

\(^1\text{H NMR}\) (500 MHz, CDCl\(_3\)) \(\delta \) 4.70 (q, \(J = 5.1 \text{ Hz}, 1\text{H} \)), 4.06 (ddddd, \(J = 11.3, 7.4, 5.4, 2.0 \text{ Hz}, 1\text{H} \)), 3.74 (dqd, \(J = 12.5, 6.2, 2.3 \text{ Hz}, 1\text{H} \)), 2.74 (dd, A of ABX, \(J_{AB} = 16.3 \text{ Hz}, J_{AX} = 7.2 \text{ Hz}, 1\text{H} \)), 2.45 (dd, B of ABX, \(J_{AB} = 16.3 \text{ Hz}, J_{BX} = 5.5 \text{ Hz}, 1\text{H} \)), 2.16 (s, 3H), 1.56 (app. dt, \(J = 13.0, 2.3 \text{ Hz}, 1\text{H} \)), 1.28 (d, \(J = 5.1 \text{ Hz}, 3\text{H} \)), 1.20 (app. dt, \(J = 12.7, 11.2 \text{ Hz}, 1\text{H} \)), 1.19 (d, \(J = 6.2 \text{ Hz}, 3\text{H} \)).

\(^{13}\text{C NMR}\) (125 MHz, CDCl\(_3\)) \(\delta \) 206.72 (e), 98.51 (o), 72.22 (o), 72.14 (o), 49.44 (e), 38.15 (e), 31.17 (o), 21.53 (o), 21.09 (o).

\(\text{IR (Neat)} \) 2974 (w), 2938 (w), 2869 (w), 1714 (s), 1416 (w), 1377 (m), 1362 (m), 1167 (m), 1133 (m), 958 (m), 924 (m) cm\(^{-1}\).

\(\text{HRMS (CI, [M+H]^+\) calcd for C}_9\text{H}_{17}\text{O}_3 173.1178, found 173.1178.} \)
Product was obtained after flash chromatography (silica gel, Et₂O/DCM – 1:30) in 99% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl₃) δ 4.68 (q, J = 5.1 Hz, 1H), 4.06 (dddd, J = 11.0, 7.3, 5.5, 2.0 Hz, 1H), 3.60-3.56 (m, 1H), 3.38 (t, J = 6.8 Hz, 2H), 2.74 (dd, A of ABX, Jₐₙ = 16.3 Hz, Jₐₙ = 7.1 Hz, 1H), 2.45 (dd, B of ABX, Jₐₙ = 16.3 Hz, Jₐₙ = 5.5 Hz, 1H), 2.16 (s, 3H), 1.83 (quintet, J = 7.0 Hz, 2H), 1.57-1.50 (m, 1H), 1.55 (app. dt, J = 12.9, 2.4 Hz, 1H), 1.48-1.29 (m, 5H), 1.27 (d, J = 5.1 Hz, 3H), 1.20 (app. dt, J = 12.8, 11.3 Hz, 1H).

13C NMR (125 MHz, CDCl₃) δ 206.77 (e), 98.59 (o), 75.89 (o), 72.23 (o), 49.48 (e), 36.49 (e), 35.63 (e), 33.91 (e), 32.64 (e), 31.20 (o), 28.06 (e), 24.18 (e), 21.08 (o).

IR (Neat) 2993 (w), 2937 (m), 2861 (m), 1715 (s), 1412 (m), 1362 (m), 1128 (vs), 940 (m) cm⁻¹.

Product was obtained after flash chromatography (silica gel, DCM, then Et₂O/DCM – 1:30) in 92% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl₃) δ 4.69 (q, J = 5.1 Hz, 1H), 4.06 (dddd, J = 11.1, 7.3, 5.4, 2.2 Hz, 1H), 3.29 (ddd, J = 11.2, 6.8, 2.3 Hz, 1H), 2.77 (dd, A of ABX, Jₐₙ = 16.2 Hz, Jₐₙ = 7.1 Hz, 1H), 2.48 (dd, B of ABX, Jₐₙ = 16.2 Hz, Jₐₙ = 5.5 Hz, 1H),
Chapter 2

2.18 (s, 3H), 1.68 (octet, \(J = 6.8 \) Hz, 1H), 1.57 (app. dt, \(J = 12.8, 2.4 \) Hz, 1H), 1.30 (d, \(J = 5.1 \) Hz, 3H), 1.21 (app. dt, \(J = 12.7, 11.3 \) Hz, 1H), 0.94 (d, \(J = 6.7 \) Hz, 3H), 0.87 (d, \(J = 6.8 \) Hz, 3H).

\(^{13}\text{C\ NMR}\) (125 MHz, CDCl\(_3\)) \(\delta \) 206.93 (e), 98.65 (o), 81.16 (o), 72.38 (o), 49.69 (e), 33.37 (e), 32.77 (o), 31.23 (o), 21.07 (o), 18.44 (o), 17.80 (o).

\(\text{IR (Neat)}\) 2960 (m), 2874 (m), 1716 (s), 1412 (w), 1362 (m), 1119 (s), 935 (m) cm\(^{-1}\).

\(\text{HRMS (CI, [M+H]\(^{+}\)}\) calcd for C\(_{11}\)H\(_{21}\)O\(_3\) 201.1485, found 201.1486.

\[\text{1-}[(2\text{R}^{*},4\text{S}^{*},6\text{R}^{*})-6-\text{Cyclohexyl}-2\text{-methyl}-1,3\text{-dioxan}-4\text{-yl}]\text{propan-2-one (rac-12f)}\]

Product was obtained after flash chromatography (silica gel, Et\(_2\)O/hexanes – 1:2.5) in 98% yield.

\(\text{Colour and state: Colourless oil.}\)

\(\text{\(\text{\(\ ^{1}\text{H\ NMR}\) (500 MHz, CDCl\(_3\))}\) 4.68 (q, }J = 5.1\text{ Hz, 1H)}, 4.05 \text{ (dddd, }J = 11.1, 7.4, 5.3, 2.2 \text{ Hz, 1H)}, 3.33 \text{ (ddd, }J = 11.1, 7.0, 2.2 \text{ Hz, 1H)}, 2.76 \text{ (dd, A of ABX, }J_{AB} = 16.2 \text{ Hz, }J_{AX} = 7.2 \text{ Hz, 1H)}, 2.47 \text{ (dd, B of ABX, }J_{AB} = 16.1 \text{ Hz, }J_{BX} = 5.6 \text{ Hz, 1H)}, 2.18 \text{ (s, 3H)}, 1.91 \text{ (m, 1H)}, 1.73-1.63 \text{ (m, 4H)}, 1.56 \text{ (app. dt, }J = 12.9, 2.4 \text{ Hz, 1H)}, 1.38 \text{ (ddd, }J = 14.8, 11.3, 7.2, 3.7 \text{ Hz, 1H)}, 1.29 \text{ (d, }J = 5.1 \text{ Hz, 3H)}, 1.26-1.08 \text{ (m, 4H)}, 0.98-0.89 \text{ (m, 2H)}\).

\(\text{\(\text{\(\ ^{13}\text{C\ NMR}\) (125 MHz, CDCl\(_3\))}\) \(\delta \) 206.83 (e), 98.67 (o), 80.50 (o), 72.45 (o), 49.72 (e), 42.54 (o), 33.64 (e), 31.19 (o), 28.89 (e), 28.08 (e), 26.55 (e), 26.07 (e), 25.95 (e), 21.07 (o).

\(\text{\(\text{\(\text{IR (Neat)}\) 2919 (w), 2852 (w), 1709 (m), 1376 (m), 1364 (m), 1155 (m), 1127 (s), 1091 (m), 1068 (m), 938 (m) cm\(^{-1}\).}\)

\(\text{HRMS (CI, [M+NH}_4\text{]\(^{+}\)}\) calcd for C\(_{14}\)H\(_{28}\)O\(_3\)N 258.2064, found 258.2065.}
\[1\text{-}[(2R^{*},4S^{*},6R^{*})\text{-}6\text{-}tert\text{-}Butyl\text{-}2\text{-}methyl\text{-}1,3\text{-}dioxan\text{-}4\text{-}yl}]\text{propan\text{-}2\text{-}one (rac\text{-}12g)}\]

Product was obtained after flash chromatography (silica gel, Et\(_2\)O/DCM – 1:9) in 95% yield.

Colour and state: Colourless oil.

\(^1\text{H} \text{NMR} \ (500 \text{ MHz, CDCl}_3) \ \delta \ 4.68 \ (q, \ J = 5.1 \text{ Hz}, 1\text{H}), \ 4.04 \ (\text{dddd}, \ J = 11.9, 6.5, 4.3, 2.2 \text{ Hz}, 1\text{H}), \ 3.22 \ (\text{dd}, \ J = 11.3, 2.2 \text{ Hz}, 1\text{H}), \ 2.77 \ (\text{dd}, \ A \text{ of ABX}, \ J_{AB} = 16.1 \text{ Hz}, \ J_{AX} = 7.3 \text{ Hz}, 1\text{H}), \ 2.47 \ (\text{dd}, \ B \text{ of ABX}, \ J_{AB} = 16.1 \text{ Hz}, \ J_{BX} = 5.4 \text{ Hz}, 1\text{H}), \ 2.18 \ (s, 3\text{H}), \ 1.49 \ (\text{app. dt}, \ J = 12.7, 2.3 \text{ Hz}, 1\text{H}), \ 1.28 \ (d, \ J = 5.1 \text{ Hz}, 3\text{H}), \ 1.26\text{-}1.21 \ (m, 1\text{H}), \ 0.88 \ (s, 9\text{H}).

\(^{13}\text{C} \text{NMR} \ (125 \text{ MHz, CDCl}_3) \ \delta \ 206.97 \ (e), \ 98.76 \ (o), \ 83.70 \ (o), \ 72.57 \ (o), \ 46.79 \ (e), \ 33.73 \ (e), \ 31.23 \ (o), \ 33.90 \ (e), \ 25.64 \ (o), \ 21.05 \ (o).

\(^\text{IR} \ (\text{Neat}) \ 2957 \ (w), \ 2871 \ (w), \ 1717 \ (m), \ 1362 \ (m), \ 1124 \ (s), \ 989 \ (m) \text{ cm}^{-1}.

\(^\text{HRMS} \ (\text{CI, [M+H]}^+) \ \text{calcd for } C_{12}H_{26}NO_3N_1 \ 232.1907, \ \text{found } 232.1904.

\[1\text{-}[(2S^{*},4S^{*},6S^{*})\text{-}6\text{-}Isobutyl\text{-}2\text{-}methyl\text{-}1,3\text{-}dioxan\text{-}4\text{-}yl}]\text{propan\text{-}2\text{-}one (rac\text{-}12h)}\]

Product was obtained after flash chromatography (silica gel, Et\(_2\)O/DCM – 1:15) in 96% yield.

Colour and state: Colourless oil.

\(^1\text{H} \text{NMR} \ (500 \text{ MHz, CDCl}_3) \ \delta \ 4.69 \ (q, \ J = 5.1 \text{ Hz}, 1\text{H}), \ 4.07 \ (\text{dddd}, \ J = 11.1, 7.3, 5.5, 2.1 \text{ Hz}, 1\text{H}), \ 3.66 \ (\text{dddd}, \ J = 10.8, 8.1, 5.2, 2.5 \text{ Hz}, 1\text{H}), \ 2.75 \ (\text{dd}, \ A \text{ of ABX}, \ J_{AB} = 16.3 \text{ Hz}, \ J_{AX} = 7.1 \text{ Hz}, 1\text{H}), \ 2.46 \ (\text{dd}, \ B \text{ of ABX}, \ J_{AB} = 16.3 \text{ Hz}, \ J_{BX} = 5.5 \text{ Hz}, 1\text{H}), \ 2.17 \ (s, 3\text{H}), \ 1.76 \ (\text{d-octet}, \ J = 7.6, 6.6 \text{ Hz}, 1\text{H}), \ 1.54 \ (\text{app. dt}, \ J = 13.0, 2.4 \text{ Hz}, 1\text{H}), \ 1.28 \ (d, \ J = 6.6 \text{ Hz}, 3\text{H}).
Chapter 2

1.48 (ddd, A of ABMX, $J_{AB} = 14.0$ Hz, $J_{AM} = 8.0$ Hz, $J_{AX} = 6.2$ Hz, 1H), 1.28 (d, $J = 5.1$ Hz, 3H), 1.22-1.15 (m, 2H), 0.88 (d, $J = 6.7$ Hz, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 206.69 (e), 98.56 (o), 74.32 (o), 72.30 (o), 49.56 (e), 44.95 (e), 36.96 (e), 31.12 (o), 23.83 (o), 23.01 (o), 22.42 (o), 21.09 (o).

IR (Neat) 2956 (m), 2870 (m), 1717 (s), 1364 (m), 1143 (s), 1115 (s), 936 (m) cm$^{-1}$.

HRMS (Cl, [M+H]$^+$) calcd for C$_{12}$H$_{23}$O$_3$ 215.1647, found 215.1653.

Product was obtained after flash chromatography (silica gel, Et$_2$O/DCM – 1:50) in 98% yield.

Colour and state: Yellow oil.

1H NMR (500 MHz, CDCl$_3$) δ 4.69 (q, $J = 5.1$ Hz, 1H), 4.06 (dddd, $J = 11.0$, 7.3, 5.5, 2.0 Hz, 1H), 3.55 (dddd, $J = 10.9$, 8.9, 6.5, 2.1 Hz, 1H), 2.75 (dd, A of ABX, $J_{AB} = 16.2$ Hz, $J_{AX} = 7.1$ Hz, 1H), 2.46 (dd, B of ABX, $J_{AB} = 16.2$ Hz, $J_{BX} = 5.5$ Hz, 1H), 2.17 (s, 3H), 1.60-1.52 (m, 1H), 1.57 (app. dt, $J = 13.0$, 2.3 Hz, 1H), 1.51 (nonet, $J = 6.6$ Hz, 1H), 1.40 (ddt, $J = 13.2$, 11.3, 5.6 Hz, 1H), 1.32-1.24 (m, 1H), 1.28 (d, $J = 5.1$ Hz, 3H), 1.19 (app. dt, $J = 12.8$, 11.5 Hz, 1H), 1.17-1.10 (m, 1H), 0.86 (d, $J = 6.6$ Hz, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 206.69 (e), 98.53 (o), 76.44 (o), 72.26 (o), 49.51 (e), 36.50 (e), 33.99 (e), 33.73 (e), 31.13 (o), 27.99 (o), 22.55 (o), 22.48 (o), 21.06 (o).

IR (Neat) 2954 (m), 2869 (m), 1717 (s), 1412 (m), 1365 (m), 1147 (s), 1118 (vs), 940 (m) cm$^{-1}$.

HRMS (Cl, [M+H]$^+$) calcd for C$_{13}$H$_{25}$O$_3$ 229.1804, found 229.1805.
Product was obtained after flash chromatography (silica gel, DCM/hexanes - 1:1, DCM, Et₂O/DCM – 1:20) in 96% yield.

Colour and state: Colourless oil.

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.35-7.26 (m, 5H), 4.75 (q, \(J = 5.1\) Hz, 1H), 4.59 (d, A of AB, \(J_{AB} = 12.2\) Hz, 1H), 4.54 (d, B of AB, \(J_{AB} = 12.2\) Hz, 1H), 4.11 (ddd, \(J = 11.2, 7.3, 5.3, 2.2\) Hz, 1H), 3.90 (dddd, \(J = 11.2, 6.4, 4.4, 2.4\) Hz, 1H), 3.52 (dd, A of ABX, \(J_{AB} = 10.2\) Hz, \(J_{AX} = 6.2\) Hz, 1H), 3.42 (dd, B of ABX, \(J_{AB} = 10.2\) Hz, \(J_{BX} = 4.2\) Hz, 1H), 2.77 (dd, A of ABX, \(J_{AB} = 16.3\) Hz, \(J_{AX} = 7.2\) Hz, 1H), 2.47 (dd, B of ABX, \(J_{AB} = 16.3\) Hz, \(J_{BX} = 5.4\) Hz, 1H), 2.17 (s, 3H), 1.57 (app. dt, \(J = 12.9, 2.5\) Hz, 1H), 1.33 (d, \(J = 5.1\) Hz, 3H), 1.32 (app. dt, \(J = 12.8, 11.4\) Hz, 1H).

\(^1\)^1\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 206.52 (e), 138.03 (e), 128.41 (o), 127.80 (o), 127.70 (o), 98.68 (o), 75.19 (o), 73.45 (e), 72.68 (e), 72.05 (o), 49.46 (e), 32.99 (e), 31.16 (o), 21.05 (o).

IR (Neat) 2993 (w), 2865 (m), 1714 (s), 1497 (w), 1453 (w), 1363 (m), 1135 (s), 1105 (vs), 948 (m), 740 (m) cm\(^{-1}\).

HRMS (ESI, [M+Na]\(^+\)) calcd for C\(_{16}\)H\(_{22}\)O\(_4\)Na 301.1416, found 301.1421.

Product was obtained after flash chromatography (silica gel, DCM/hexanes – 20:1, then Et\(_3\)O/DCM – 1:15) in 96% yield.

Colour and state: Colourless oil.
Chapter 2

1H NMR (500 MHz, CDCl$_3$) δ 4.74 (q, $J = 5.1$ Hz, 1H), 4.12 (dddd, $J = 11.4$, 7.5, 5.0, 2.5 Hz, 1H), 3.80 (dd, A of ABX, $J_{AB} = 9.5$ Hz, $J_{AX} = 5.3$ Hz, 1H), 3.76 (dqd, $J = 11.1$, 5.9, 2.3 Hz, 1H), 3.58 (dd, B of ABX, $J_{AB} = 9.6$ Hz, $J_{BX} = 6.2$ Hz, 1H), 2.78 (dd, A of ABX, $J_{AB} = 16.2$ Hz, $J_{AX} = 7.6$ Hz, 1H), 2.49 (dd, B of ABX, $J_{AB} = 16.2$ Hz, $J_{BX} = 4.9$ Hz, 1H), 2.19 (s, 3H), 1.72 (app. dt, $J = 13.0$, 2.4 Hz, 1H), 1.30-1.23 (m, 1H), 1.29 (d, $J = 5.1$ Hz, 3H), 1.11-1.03 (m, 21H).

13C NMR (125 MHz, CDCl$_3$) δ 206.71 (e), 98.48 (o), 76.62 (o), 72.25 (o), 66.30 (e), 49.61 (e), 33.60 (e), 31.19 (o), 20.99 (o), 17.95 (o), 11.91 (o).

IR (Neat) 2942 (m), 2866 (m), 1718 (m), 1463 (m), 1382 (m), 1365 (m), 1116 (vs), 882 (m), 786 (m) cm$^{-1}$.

HRMS (CI, [M+H]$^+$) calcd for C$_{18}$H$_{37}$O$_4$Si 345.2461, found 345.2449.

Product was obtained after flash chromatography (silica gel, Et$_2$O/hexanes – 1:4) in 95% yield.

Colour and state: Yellow oil.

1H NMR (500 MHz, CDCl$_3$) δ 7.67-7.65 (m, 4H), 7.44-7.37 (m, 6H), 4.69 (q, $J = 5.1$ Hz, 1H), 4.10 (dd, $J = 11.0$, 7.4, 5.2, 2.2 Hz, 1H), 3.90 (dd, $J = 10.7$, 8.0, 5.1, 2.7 Hz, 1H), 3.84 (dd, $J = 10.2$, 8.4, 4.8 Hz, 1H), 3.72 (dt, $J = 10.3$, 5.2 Hz, 1H), 2.76 (dd, A of ABX, $J_{AB} = 16.2$ Hz, $J_{AX} = 7.4$ Hz, 1H), 2.45 (dd, B of ABX, $J_{AB} = 16.2$ Hz, $J_{BX} = 5.2$ Hz, 1H), 2.19 (s, 3H), 1.81-1.68 (m, 2H), 1.55 (dt, A of ABX, $J_{AB} = 12.9$ Hz, $J_{AX} = 2.2$ Hz, 1H), 1.28 (d, $J = 5.1$ Hz, 3H), 1.26-1.21 (m, 1H), 1.05 (s, 9H).
Chapter 2

13C NMR (125 MHz, CDCl$_3$) δ 206.77 (e), 135.58 (o), 133.87 (e), 133.80 (e), 129.63 (o), 127.67 (o), 127.65 (o), 98.60 (o), 72.73 (o), 72.32 (o), 59.50 (e), 49.51 (e), 38.64 (e), 36.64 (e), 31.23 (o), 26.89 (o), 21.08 (o), 19.26 (e).

IR (Neat) 3071 (w), 3049 (w), 2931 (w), 2858 (w), 1717 (m), 1589 (w), 1428 (m), 1105 (s), 959 (m), 701 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{26}$H$_{36}$O$_4$NaSi 463.2281, found 463.2285.

Product was obtained after flash chromatography (silica gel, DCM, Et$_2$O/DCM – 1:50) in 97% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl$_3$) δ 7.37-7.26 (m, 5H), 4.93 (q, $J = 5.1$ Hz, 1H), 4.70 (dd, $J = 11.3$, 2.5 Hz, 1H), 4.27 (dddd, $J = 11.0$, 7.3, 5.5, 1.9 Hz, 1H), 2.83 (dd, A of ABX, $J_{AB} = 16.5$ Hz, $J_{AX} = 7.1$ Hz, 1H), 2.52 (dd, B of ABX, $J_{AB} = 16.5$ Hz, $J_{BX} = 5.5$ Hz, 1H), 2.20 (s, 3H), 1.83 (app. dt, $J = 13.1$, 2.4 Hz, 1H), 1.57 (app. dt, $J = 13.0$, 11.4 Hz, 1H), 1.40 (d, $J = 5.2$ Hz, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 206.54 (e), 141.35 (e), 128.51 (o), 127.82 (o), 125.89 (o), 99.02 (o), 78.17 (o), 72.46 (o), 49.36 (e), 38.53 (e), 31.23 (o), 21.19 (o).

IR (Neat) 2993 (w), 2869 (w), 1714 (s), 1496 (w), 1369 (m), 1119 (vs), 952 (m), 700 (s) cm$^{-1}$.

HRMS (Cl, [M+NH$_4$]$^+$) calcd for C$_{14}$H$_{22}$NO$_3$ 252.1600, found 252.1608.
Chapter 2

1-[(2R*,4S*,6R*)-2-Methyl-6-(4-nitrophenyl)-1,3-dioxan-4-y1]propan-2-one (rac-12o)

Product was obtained after flash chromatography (silica gel, Et₂O/DCM – 1:40) in 90% yield.

Colour and state: White solid; mp 46 °C.

1H NMR (500 MHz, CDCl₃) δ 8.20-8.17 (m, 2H), 7.54-7.50 (m, 2H), 4.93 (q, J = 5.1 Hz, 1H), 4.81 (dd, J = 11.4, 2.5 Hz, 1H), 4.28 (ddt, J = 11.0, 6.4, 2.1 Hz, 1H), 2.83 (dd, A of ABX, JₐB = 16.7 Hz, JₐX = 6.7 Hz, 1H), 2.53 (dd, B of ABX, JₐB = 16.7 Hz, JₐX = 6.7 Hz, 1H), 1.58 (app. dt, J = 13.0, 2.4 Hz, 1H), 1.39 (d, J = 5.1 Hz, 3H).
Chapter 2

\(J_{BX} = 5.9 \text{ Hz, 1H}), \ 2.19 \text{ (s, 3H), 1.90 \text{ (app. dt, } J = 13.1, 2.5 \text{ Hz, 1H), 1.46 \text{ (app. dt, } J = 12.9, 11.4 \text{ Hz, 1H), 1.40 \text{ (d, } J = 5.1 \text{ Hz, 3H).} \)

\(^{13}\text{C NMR} \) (125 MHz, CDCl\(_3\)) \(\delta \) 206.16 (e), 148.67 (e), 147.33 (e), 126.44 (o), 123.72 (o), 99.01 (o), 76.86 (o), 72.21 (o), 49.13 (e), 38.33 (e), 31.14 (o), 21.05 (o).

\(\text{IR (Neat) 2995 (w), 2870 (w), 1713 (m), 1602 (w), 1518 (s), 1411 (w), 1346 (s), 1116 (s), 953 (m), 855 (m), 701 (m) cm}^{-1}. \)

\(\text{HRMS (ESI, } [M+Na]^+ \text{) calcd for C}_{14}\text{H}_{17}\text{NO}_5\text{Na 302.1004, found 302.0994.} \)

![1-NaphtO\(_2\text{COMe} \)](1-[(2R*,4S*,6R*)-2-Methyl-6-(naphthalen-1-yl)-1,3-dioxan-4-yl]propan-2-one (rac-12p)

Product was obtained after flash chromatography (silica gel, Et\(_2\)O/hexanes – 1:2.5) in 99% yield.

\(\text{Colour and state: Colourless oil.} \)

\(^{1}\text{H NMR} \) (500 MHz, CDCl\(_3\)) \(\delta \) 8.07 (d, \(J = 8.4 \text{ Hz, 1H}), 7.87 \text{ (d, } J = 7.9 \text{ Hz, 1H), 7.79 \text{ (d, } J = 8.2 \text{ Hz, 1H), 7.67 \text{ (d, } J = 7.1 \text{ Hz, 1H), 7.54-7.47 \text{ (m, 3H), }}, 5.43 \text{ (dd, } J = 11.3, 2.1 \text{ Hz, 1H), 5.11 \text{ (q, } J = 5.1 \text{ Hz, 1H), 4.42 \text{ (dddd, } J = 11.0, 7.4, 5.3, 2.0 \text{ Hz,} 1\text{H), 2.85 \text{ (dd, A of ABX, } J_{AB} = 16.4 \text{ Hz, } J_{AX} = 7.3 \text{ Hz, 1H), 2.53 \text{ (dd, B of ABX, } J_{AB} = 16.5 \text{ Hz, } J_{BX} = 5.3 \text{ Hz, 1H), 2.21 \text{ (s, 3H), 2.01 \text{ (app. dt, } J = 13.3, 2.3 \text{ Hz, 1H), 1.76 \text{ (app. dt, } J = 13.1, 11.3 \text{ Hz, 1H), 1.48 \text{ (d, } J = 5.1, 3\text{H).} \)} \)

\(^{13}\text{C NMR} \) (125 MHz, CDCl\(_3\)) \(\delta \) 206.49 (e), 136.83 (e), 133.80 (e), 130.10 (e), 128.96 (o), 128.29 (o), 126.14 (o), 125.59 (o), 125.55 (o), 123.47 (o), 123.04 (o), 99.34 (o), 75.59 (o), 72.68 (o), 49.35 (e), 37.78 (e), 31.25 (o), 21.29 (o).

\(\text{IR (Neat) 3051 (w), 2993 (w), 2870 (w), 1713 (m), 1370 (m), 1155 (m), 1119 (s), 947 (m), 777 (s) cm}^{-1}. \)

\(\text{HRMS (ESI, } [M+Na]^+ \text{) calcd for C}_{18}\text{H}_{20}\text{O}_3\text{Na 307.1310, found 307.1302.} \)
2.16 Reaction of the δ-Triethyldimethylsilyloxy α,β-Unsaturated Aldehydes with Acetaldehyde

General Procedure: The δ-triethyldimethylsilyloxy α,β-unsaturated aldehyde (0.5 mmol) was dissolved in reagent grade DCM (5 mL) and stirred at room temperature. Acetaldehyde (0.56 mL, 10 mmol, 20.0 equiv.) was added followed by bismuth(III) nitrate pentahydrate (24.3 mg, 0.05 mmol, 0.1 equiv.) and the reaction mixture stirred until consumption of the starting material (TLC control). The reaction was partitioned between DCM and saturated aqueous NaHCO₃ solution. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo to afford a crude product. Purification by flash chromatography (silica gel, diethyl ether/hexanes) furnished the syn-1,3-dioxanes.

![Chemical Structure](2-(2S*,4S*,6S*)-2-Methyl-6-phenethyl-1,3-dioxan-4-ylacetaldehyde (rac-15a))

Product was obtained after flash chromatography (silica gel, DCM, Et₂O/DCM – 1:30) in 83% yield.

Colour and state: Colourless oil.

¹H NMR (500 MHz, CDCl₃) δ 9.80 (t, J = 1.8 Hz, 1H), 7.30-7.26 (m, 2H), 7.21-7.18 (m, 3H), 4.73 (q, J = 5.1 Hz, 1H), 4.15 (dddd, J = 11.2, 7.4, 5.0, 2.4 Hz, 1H), 3.62 (dddd, J = 10.8, 8.1, 5.1, 2.3 Hz, 1H), 2.78 (ddd, A of ABXY, Jₐₐ = 14.4 Hz, Jₐₓ = 9.4 Hz, Jₓᵧ = 5.2 Hz, 1H), 2.71 (ddd, A of ABXY, Jₐₐ = 16.8 Hz, Jₓᵧ = 7.4 Hz, Jₓᵧ = 2.1 Hz, 1H), 2.71-2.65 (m, 1H), 2.52 (ddd, B of ABXY, Jₐₐ = 16.8 Hz, Jₓᵧ = 5.1 Hz, Jₓᵧ = 1.5 Hz, 1H), 1.91 (dtd, A of ABM₂ₓ, Jₐₐ = 13.9 Hz, Jₐₓ = 8.6 Hz, Jₓᵧ = 5.3 Hz, 1H), 1.74 (ddd, B of ABMNₓ, Jₐₐ = 13.8 Hz, Jₓᵧ = 9.4 Hz, Jₓᵧ = 4.7 Hz, Jₓᵧ = 4.7 Hz, Jₓᵧ = 2.1 Hz, 1H).

100
Chapter 2

2.4 Hz, 1H), 1.58 (app. dt, \(J = 13.0, 2.4 \text{ Hz}, 1H \)), 1.39-1.36 (m, 1H), 1.35 (d, \(J = 5.1 \) Hz, 3H).

\(^{13} \text{C NMR} \) (125 MHz, CDCl\(_3\)) \(\delta \) 200.62 (o), 141.74 (e), 128.47 (o), 128.41 (o), 125.89 (o), 98.76 (o), 75.02 (o), 71.19 (o), 49.44 (e), 37.30 (e), 36.45 (e), 31.12 (e), 21.09 (o).

\(\text{IR (Neat)} \) 3027 (w), 2992 (w), 2940 (w), 2911 (w), 2862 (w), 2730 (w), 1724 (s), 1603 (w), 1496 (w), 1377 (m), 1340 (m), 1128 (s), 963 (m), 701 (s) cm\(^{-1}\).

\(\text{HRMS (Cl, [M+NH}_4^+ \text{]} \) calcd for \(C_{15}H_{24}NO_3 \) 266.1751, found 266.1746.

Product was obtained after flash chromatography (silica gel, DCM, Et\(_2\)O/DCM – 1:30) in 64% yield.

Colour and state: Colourless oil.

\(^{1} \text{H NMR} \) (500 MHz, CDCl\(_3\)) \(\delta \) 9.77 (t, \(J = 1.8 \text{ Hz}, 1H \)), 7.31-7.26 (m, 2H), 7.24-7.20 (m, 3H), 4.74 (q, \(J = 5.1 \text{ Hz}, 1H \)), 4.11 (dddd, \(J = 11.4, 7.4, 4.9, 2.5 \text{ Hz}, 1H \)), 3.85 (dddd, \(J = 10.9, 8.9, 6.9, 2.2 \text{ Hz}, 1H \)), 3.00 (dd, A of ABX, \(J_{AB} = 13.6 \text{ Hz}, J_{AX} = 6.2 \text{ Hz}, 1H \)), 2.69-2.64 (m, 1H), 2.68 (dd, B of ABX, \(J_{AB} = 13.2 \text{ Hz}, J_{BX} = 6.9 \text{ Hz}, 1H \)), 2.48 (ddd, B of ABMX, \(J_{AB} = 16.8 \text{ Hz}, J_{BM} = 4.8 \text{ Hz}, J_{BX} = 1.5 \text{ Hz}, 1H \)), 1.51 (app. dt, \(J = 13.0, 2.4 \text{ Hz}, 1H \)), 1.38-1.31 (m, 1H), 1.33 (d, \(J = 5.1 \text{ Hz}, 3H \)).

\(^{13} \text{C NMR} \) (125 MHz, CDCl\(_3\)) \(\delta \) 200.53 (o), 137.42 (e), 129.47 (o), 128.38 (o), 126.49 (o), 98.76 (o), 76.93 (o), 71.24 (o), 49.37 (e), 42.35 (e), 35.83 (e), 21.02 (o).

\(\text{IR (Neat)} \) 3029 (w), 2993 (w), 2941 (w), 2911 (w), 2864 (w), 2732 (w), 1723 (s), 1603 (w), 1496 (w), 1125 (vs), 947 (m), 701 (s) cm\(^{-1}\).

\(\text{HRMS (ESI, [M+Na]}^+ \text{]} \) calcd for \(C_{14}H_{18}O_3Na \) 257.1154, found 257.1159.
Chapter 2

2-[(2S*,4S*,6S*)-2,6-Dimethyl-1,3-dioxan-4-yl]acetaldehyde

(rac-15c)

Product was obtained after flash chromatography (silica gel, DCM, Et₂O:DCM – 1:50) in 56% yield.

Colour and state: Colourless oil.

¹H NMR (500 MHz, CDCl₃) δ 9.79 (t, J = 1.8 Hz, 1H), 4.74 (q, J = 5.1 Hz, 1H), 4.16 (dddd, J = 11.3, 7.4, 5.0, 2.4 Hz, 1H), 3.77 (dqd, J = 12.5, 6.2, 2.4 Hz, 1H), 2.70 (ddd, A of ABMX, J_{AB} = 16.9 Hz, J_{AM} = 7.4 Hz, J_{AX} = 2.1 Hz, 1H), 2.51 (ddd, B of ABMX, J_{AB} = 16.8 Hz, J_{BM} = 5.1 Hz, J_{BX} = 1.5 Hz, 1H), 1.58 (app. dt, J = 13.0, 2.4 Hz, 1H), 1.31 (d, J = 5.1 Hz, 3H), 1.30 (app. dt, J = 13.0, 11.3 Hz, 1H), 1.22 (d, J = 6.2 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 200.62 (o), 98.63 (o), 72.16 (o), 71.18 (o), 49.38 (e), 38.07 (e), 21.51 (o), 21.06 (o).

IR (Neat) 2911 (w), 2975 (w), 2939 (w), 2868 (w), 2730 (w), 1723 (s), 1378 (m), 1143 (vs), 957 (s), 1099 (vs) cm⁻¹.

HRMS (CI, [M+NH₄]⁺) calcd for C₈H₁₈NO₃ 176.1281, found 176.1281.

Product was obtained after flash chromatography (silica gel, DCM, Et₂O:DCM – 1:100) in 74% yield.

Colour and state: Colourless oil.

¹H NMR (500 MHz, CDCl₃) δ 9.79 (s, 1H), 4.72 (q, J = 5.1 Hz, 1H), 4.15 (dddd, J = 11.2, 7.4, 5.1, 2.2 Hz, 1H), 3.64-3.58 (m, 1H), 3.40 (t, J = 6.8 Hz, 2H), 2.69 (ddd, A of ABMX, J_{AB} = 16.8 Hz, J_{AM} = 7.3 Hz, J_{AX} = 2.0 Hz, 1H), 2.52 (ddd, B of ABMX,
$J_{AB} = 16.9$ Hz, $J_{BM} = 5.0$ Hz, $J_{BX} = 1.1$ Hz, 1H), 1.85 (quintet, $J = 6.9$ Hz, 2H), 1.60-1.54 (m, 1H), 1.57 (app. dt, $J = 13.1$, 2.2 Hz, 1H), 1.47-1.41 (m, 4H), 1.33-1.25 (m, 2H), 1.30 (d, $J = 5.1$ Hz, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 200.66 (o), 98.71 (o), 75.91 (o), 71.21 (o), 49.44 (e), 36.44 (e), 35.59 (e), 33.87 (e), 32.63 (e), 28.04 (e), 24.17 (e), 21.04 (o).

IR (Neat) 2992 (w), 2937 (m), 2860 (m), 1724 (s), 1123 (vs), 947 (m) cm$^{-1}$.

HRMS (ESI, [M+CH$_3$OH+Na]$^+$) calcd for C$_{13}$H$_{25}$O$_4$Na79Br 347.0834 found 347.0840.

2-[(2R^*,4S^*,6R^*)-6-Isopropyl-2-methyl-1,3-dioxan-4-yl]acetaldehyde (rac-15e)

Product was obtained after flash chromatography (silica gel, DCM, Et$_2$O/DCM– 1:50) in 72% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, C$_6$D$_6$) δ 9.52 (t, $J = 1.9$ Hz, 1H), 4.53 (q, $J = 5.1$ Hz, 1H), 3.75 (tt, $J = 7.9$, 5.2 Hz, 1H), 3.05 (dt, $J = 7.9$, 6.1 Hz, 1H), 2.35 (ddd, A of ABMX, $J_{AB} = 16.6$ Hz, $J_{AM} = 7.5$ Hz, $J_{AX} = 2.3$ Hz, 1H), 1.99 (ddd, B of ABMX, $J_{AB} = 16.5$ Hz, $J_{BM} = 4.9$ Hz, $J_{BX} = 1.6$ Hz, 1H), 1.67 (octet, $J = 6.7$ Hz, 1H), 1.39 (d, $J = 5.1$ Hz, 3H), 1.11-1.08 (m, 2H), 1.02 (d, $J = 6.7$ Hz, 3H), 0.87 (d, $J = 6.8$ Hz, 3H).

13C NMR (125 MHz, C$_6$D$_6$) δ 198.96 (o), 98.61 (o), 80.75 (o), 71.21 (o), 49.45 (e), 33.27 (e), 32.82 (o), 21.07 (o), 18.07 (o), 17.79 (o).

IR (Neat) 2960 (m), 2873 (m), 2728 (w), 1725 (s), 1118 (vs), 993 (m) cm$^{-1}$.

HRMS (Cl, [M+H]$^+$) calcd for C$_{10}$H$_{19}$O$_3$ 187.1329, found 187.1329.
Chapter 2

2-[(2S*,4S*,6S*)-6-Isobutyl-2-methyl-1,3-dioxan-4-yl]acetaldehyde (rac-15f)

Product was obtained after flash chromatography (silica gel, DCM, Et₂O/DCM – 1:100) in 75% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl₃) δ 9.78 (t, J = 1.9 Hz, 1H), 4.71 (q, J = 5.1 Hz, 1H), 4.15 (dddd, J = 11.3, 7.4, 4.9, 2.4 Hz, 1H), 3.67 (dddd, J = 10.8, 8.1, 5.4, 2.7 Hz, 1H), 2.67 (ddd, A of ABMX, Jₐₐ = 16.8 Hz, Jₐₘ = 7.4 Hz, Jₐₓ = 2.2 Hz, 1H), 2.51 (ddd, B of ABMX, Jₐₐ = 16.8 Hz, Jₐₘ = 5.1 Hz, Jₐₓ = 1.6 Hz, 1H), 2.51 (ddd, B of ABMX, Jₐₐ = 16.8 Hz, Jₐₘ = 1.6 Hz, 1H), 1.82-1.72 (m, 1H), 1.54 (app. dt, J = 13.0, 2.4 Hz, 1H), 1.50 (ddd, A of ABMX, Jₐₐ = 13.9 Hz, Jₐₘ = 7.9 Hz, Jₐₓ = 6.1 Hz, 1H), 1.29 (d, J = 5.2 Hz, 3H), 1.27 (app. dt, J = 13.0, 11.2 Hz, 1H), 1.20 (ddd, J = 13.6, 8.1, 5.2 Hz, 1H), 0.89 (dd, J = 6.7, 0.9 Hz, 6H).

13C NMR (125 MHz, CDCl₃) δ 200.63 (o), 98.67 (o), 74.34 (o), 71.27 (o), 49.46 (e), 44.90 (e), 36.88 (e), 23.84 (o), 23.00 (o), 22.40 (o), 21.05 (o).

IR (Neat) 2995 (m), 2911 (m), 2869 (m), 2724 (w), 1725 (s), 1377 (m), 1146 (m), 1146 (s), 1118 (m) 958 (m) cm⁻¹.

HRMS (CI, [M+NH₄]⁺) calcd for C₁₁H₂₆NO₃ 218.1751, found 218.1748.

Product was obtained after flash chromatography (silica gel, DCM, Et₂O/DCM – 1:100) in 72% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl₃) δ 9.76 (t, J = 1.7 Hz, 1H), 4.69 (q, J = 5.1 Hz, 1H), 4.12 (dddd, J = 11.5, 7.3, 5.0, 2.4 Hz, 1H), 3.55 (ddd, J = 10.9, 8.5, 6.4, 1.9 Hz,
Chapter 2

1H), 2.66 (ddd, A of ABMX, $J_{AB} = 16.8$ Hz, $J_{AM} = 7.4$ Hz, $J_{AX} = 2.1$ Hz, 1H), 2.49 (ddd, B of ABMX, $J_{AB} = 16.8$ Hz, $J_{BM} = 5.1$ Hz, $J_{BX} = 1.5$ Hz, 1H), 1.58-1.45 (m, 1H), 1.56 (app. dt, A of ABM2, $J_{AB} = 13.0$ Hz, $J_{AM} = 2.2$ Hz, 1H), 1.49 (septet, $J = 6.6$ Hz, 1H), 1.43-1.36 (m, 1H), 1.30-1.22 (m, 2H), 1.28 (d, $J = 5.0$ Hz, 3H), 1.11 (dddd, B of ABMNX, $J_{AB} = 13.1$ Hz, $J_{BM} = 11.8$ Hz, $J_{BN} = 6.6$ Hz, $J_{BX} = 5.2$ Hz, 1H), 0.84 (d, $J = 6.6$ Hz, 6H).

13C NMR (125 MHz, CDCl$_3$) δ 200.61 (o), 98.65 (o), 76.46 (o), 71.24 (o), 49.44 (e), 36.45 (e), 33.98 (e), 33.69 (e), 27.99 (o), 22.54 (o), 22.48 (o), 21.03 (o).

IR (Neat) 2954 (m), 2869 (m), 2728 (w), 1726 (s), 1377 (m), 1147 (s), 1120 (s), 947 (m) cm$^{-1}$.

HRMS (Cl, [M+NH$_4$]$^+$) calcd for C$_{12}$H$_{26}$NO$_3$ 232.1907, found 232.1905.

2-[(2R*,4S*,6R*)-6-(Benzyloxymethyl)-2-methyl-1,3-dioxan-4-yl]acetaldehyde (rac-15h)

Product was obtained after flash chromatography (silica gel, Et$_2$O/hexanes – 1:1) in 72% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl$_3$) δ 9.79 (t, $J = 1.8$ Hz, 1H), 7.36-7.27 (m, 5H), 4.77 (q, $J = 5.1$ Hz, 1H), 4.60 (d, A of AB, $J_{AB} = 12.2$ Hz, 1H), 4.55 (d, B of AB, $J_{AB} = 12.2$ Hz, 1H), 4.19 (dddd, $J = 11.4$, 7.5, 5.0, 2.5 Hz, 1H), 3.92 (ddddd, $J = 11.0$, 6.6, 4.4, 2.2 Hz, 1H), 3.54 (dd, A of ABX, $J_{AB} = 10.2$ Hz, $J_{AX} = 6.2$ Hz, 1H), 3.43 (dd, B of ABX, $J_{AB} = 10.2$ Hz, $J_{BX} = 4.3$ Hz, 1H), 2.71 (dddd, A of ABMX, $J_{AB} = 16.9$ Hz, $J_{AM} = 7.4$ Hz, $J_{AX} = 2.1$ Hz, 1H), 2.53 (dd, B of ABMX, $J_{AB} = 16.9$ Hz, $J_{BM} = 5.0$ Hz, $J_{BX} = 1.5$ Hz, 1H), 1.59 (app. dt, $J = 13.0$, 2.5 Hz, 1H), 1.40 (app. dt, $J = 12.9$, 11.4 Hz, 1H), 1.34 (d, $J = 5.1$ Hz, 3H).
13C NMR (125 MHz, CDCl3) δ 200.45 (o), 137.96 (e), 128.44 (o), 127.83 (o), 127.76 (o), 98.79 (o), 75.19 (o), 73.50 (e), 72.58 (e), 71.03 (o), 49.41 (e), 32.99 (e), 21.02 (o).

IR (Neat) 2862 (m), 2724 (w), 1722 (s), 1691 (w), 1497 (w), 1375 (m), 1139 (s), 1105 (s), 739 (vs), 949 (s), 699 (s) cm⁻¹.

HRMS (ESI, [M+Na⁺]) calcd for C₁₅H₂₀O₄Na 287.1259, found 287.1265.

Product was obtained after flash chromatography (silica gel, DCM, Et₂O/DCM – 1:100) in 70% yield.

Colour and state: Colourless oil.

1H NMR (500 MHz, CDCl₃) δ 9.81 (t, J = 1.7 Hz, 1H), 7.68-7.67 (m, 4H), 7.46-7.38 (m, 6H), 4.72 (q, J = 5.1 Hz, 1H), 4.18 (dddd, J = 11.3, 7.7, 5.0, 2.4 Hz, 1H), 3.93 (dddd, J = 10.8, 7.6, 4.6, 2.3 Hz, 1H), 3.87 (dd, A of ABXY, J₉₁₀ = 10.2 Hz, J₆₇ = 8.5 Hz, J₇₈ = 4.7 Hz, 1H), 3.74 (app. dt, B of ABX₂, J₉₁₀ = 10.4 Hz, J₆₇ = 5.2 Hz, 1H), 2.70 (dd, A of ABMX, J₉₁₀ = 16.8 Hz, J₆₇ = 7.6 Hz, J₆₇ = 2.1 Hz, 1H), 2.51 (dd, B of ABMX, J₉₁₀ = 16.8 Hz, J₆₇ = 4.8 Hz, J₆₇ = 1.4 Hz, 1H), 1.84-1.70 (m, 2H), 1.56 (app. dt, J = 13.0, 2.2 Hz, 1H), 1.33 (app. dt, J = 12.8, 11.4 Hz, 1H), 1.31 (d, J = 5.1 Hz, 3H), 1.07 (s, 9H).

13C NMR (125 MHz, CDCl₃) δ 200.77 (o), 135.60 (o), 133.83 (e), 133.76 (e), 129.70 (o), 129.69 (o), 127.72 (o), 127.70 (o), 98.73 (o), 72.73 (o), 71.27 (o), 59.43 (e), 49.43 (e), 38.59 (e), 36.54 (e), 26.91 (o), 21.08 (o), 19.29 (e).

IR (Neat) 3071 (w), 2931(m), 2857 (m), 2729 (w), 1726 (m), 1692 (w), 1428 (m), 1105 (vs), 960 (m), 702 (s) cm⁻¹.
Chapter 2

HRMS (ESI, [M+Na]+) calcd for C_{25}H_{34}O_4NaSi 449.2124, found 449.2123.

2-[(2R*,4S*,6R*)-6-Isopentyl-2-methyl-1,3-dioxan-4-yl]acetaldehyde (rac-15j)

Product was obtained after flash chromatography (silica gel, DCM, Et_2O/DCM – 1:100) in 70% yield.

Colour and state: Colourless oil.

^1^H NMR (500 MHz, CDCl_3) δ 9.81 (t, J = 1.8 Hz, 1H), 7.38-7.26 (m, 5H), 4.95 (q, J = 5.1 Hz, 1H), 4.71 (dd, J = 11.3, 2.5 Hz, 1H), 4.33 (dddd, J = 11.1, 7.5, 5.1, 2.3 Hz, 1H), 2.75 (ddd, A of ABMX, J_{AB} = 17.0 Hz, J_{AM} = 7.4 Hz, J_{AX} = 2.1 Hz, 1H), 2.56 (ddd, B of ABMX, J_{AB} = 17.0 Hz, J_{BM} = 5.1 Hz, J_{BX} = 1.4 Hz, 1H), 1.83 (app. dt, J = 13.2, 2.5 Hz, 1H), 1.64 (app. dt, J = 13.1, 11.3 Hz, 1H), 1.41 (d, J = 5.1 Hz, 1H).

^1^3^C NMR (125 MHz, CDCl_3) δ 200.33 (o), 141.20 (e), 128.53 (o), 127.89 (o), 125.88 (o), 99.10 (o), 78.13 (o), 71.40 (o), 49.35 (e), 38.41 (e), 21.15 (o).

IR (Neat) 3032 (w), 2993 (w), 2941 (w), 2916 (w), 2862 (w), 2730 (w), 1723 (s), 1689 (w), 1497 (w), 1370 (m), 1123 (vs), 957 (m), 700 (s) cm^{-1}.

HRMS (CI, [M+NH_4]^+) calcd for C_{13}H_{20}NO_3 238.1438, found 238.1437.

2.17 Synthesis of the Protected anti-1,3-Diol 22

Methyl 5-hydroxy-3-oxo-7-phenylheptanoate (rac-18)

Colour and state: Yellow oil.

To a solution of diisopropylamine (1.86 mL, 13.15 mmol) in anhydrous THF (13 mL) at -78 °C under an atmosphere of argon was added "BuLi (5.1 mL, 2.5 M in hexanes, 12.8 mmol) dropwise. The solution was stirred for ca. 15 min at that temperature and treated with methyl acetoacetate (0.67 mL, 6.25 mmol). The
resultant yellow solution was warmed to −10 °C for 30 min, then cooled back to −78 °C, and a solution of phenylacetaldehyde 17 (0.65 mL, 5 mmol) in anhydrous THF (8 mL with washings) was added. The reaction mixture was stirred for ca. 30 min at −78 °C (TLC control), then quenched with AcOH and warmed to room temperature. The reaction was partitioned between saturated aqueous NH₄Cl and EtOAc. Phases were separated and the aqueous layer was washed with EtOAc (2x). The combined organic layers were washed with brine, dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, EtOAc/hexanes – 1:2) afforded the unstable hydroxyl ketone rac-18 (0.66 g, 2.65 mmol, 53% yield) as an yellow oil.

^1H NMR (500 MHz, CDCl₃) δ 7.30-7.18 (m, 5H), 4.10-4.07 (m, 1H), 3.74 (s, 3H), 3.48 (s, 2H), 2.86 (br s, 1H), 2.84-2.66 (m, 4H), 1.87-1.68 (m, 2H).

IR (Neat) 3500 (w), 2955 (w), 1749 (s), 1715 (m), 1650 (m), 1100 (m) cm⁻¹.

![Chemical structure](image)

(3S*,5R*)-methyl 3,5-dihydroxy-7-phenylheptanoate (rac-19)³²

Colour and state: Colourless oil.

A solution of "Bu₄NBH(OAc)₃ (0.883 g, 3.36 mmol) in a mixture of anhydrous MeCN (3.5 mL) and AcOH (3.5 mL) was stirred at room temperature for 30 min under an atmosphere of argon, before it was cooled to −40 °C and treated with a solution of rac-18 (0.2 g, 0.80 mmol) in anhydrous MeCN (7.5 mL with washings). The reaction mixture was stirred at that temperature for ca. 24 h (TLC control). The reaction was quenched with acetone and 1 M aqueous Rochelle salt and warmed to room temperature. The solution was partitioned between saturated aqueous NaHCO₃ and EtOAc. Phases were separated and the aqueous layer was washed with EtOAc
Chapter 2

(2x). The combined organic layers were washed with brine, dried (MgSO₄), filtered and concentrated in vacuo. Purification by flush chromatography (silica gel, EtOAc/hexanes - 1:1.2) afforded diol rac-19 (0.126 g, 0.501 mmol, 63% yield) as a colourless oil.

1H NMR (500 MHz, CDCl₃) δ 7.29-7.18 (m, 5H), 4.40-4.35 (m, 1H), 3.99-3.94 (m, 1H), 3.72 (s, 3H), 2.84-2.78 (m, 2H), 2.71-2.44 (m, 4H), 1.90-1.60 (m, 4H).

IR (Neat) 3603 (w), 3509 (w), 2952 (w), 1730 (s), 1605 (m), 1175 (m) cm⁻¹.

Methyl 2-((4S*,6R*)-2-methyl-6-phenethyl-1,3-dioxan-4-yl)acetate (rac-20)

Colour and state: Colourless oil.

A solution of rac-19 (0.173 g, 0.686 mmol), acetaldehyde (0.194 mL, 3.43 mmol) and PPTS (8.6 mg, 0.034 mmol) in anhydrous benzene (5 mL) was refluxed for ca. 24 h (TLC) under an atmosphere of argon. The reaction mixture was quenched with saturated aqueous NaHCO₃ and diluted with Et₂O. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were dried with (MgSO₄), filtered and concentrated in vacuo. Purification by flush chromatography (silica gel, EtOAc/hexanes – 1:2.5) afforded acetal 20 (0.059 g, 0.212 mmol, 31% yield) as a colourless oil.

The presence of diastereoisomers complicated the NMR analysis. The 1H data of the major diastereoisomer is presented, while all observed 13C peaks are outlined.

1H NMR (500 MHz, CDCl₃) δ 7.31-7.17 (m, 5H), 4.96 (q, J = 5.0 Hz, 1H), 4.57 (q, J = 7.0 Hz, 1H), 3.70-3.68 (m, 4H), 2.91 (dd, A of ABX, Jₐₓ = 14.7 Hz, Jₐₙ = 8.4 Hz, 1H), 2.81-2.64 (m, 1H), 2.62-2.56 (m, 1H), 2.39 (dd, B of ABX, Jₐₐ = 14.7 Hz, Jₐₙ = 8.4 Hz, 1H).
Chapter 2

\[J_{\text{BX}} = 4.6 \text{ Hz, 1H)}, 1.95-1.84 \text{ (m, 1H)}, 1.80-1.67 \text{ (m, 1H)}, 1.47-1.40 \text{ (m, 1H)}, 1.31 \text{ (d, } J = 5.0 \text{ Hz, 1H}).\]

\[^{13}\text{C NMR} (125 \text{ MHz, CDCl}_3) \delta 171.30 \text{ (e), 141.74 \text{ (e), 141.65 \text{ (e), 128.47 \text{ (o), 128.42}} \text{ (o), 128.40 \text{ (o), 125.96 \text{ (o), 125.90 \text{ (o), 125.86 \text{ (o), 98.70 \text{ (o), 92.41 \text{ (o), 91.71 \text{ (o), 98.60 \text{ (o), 75.00 \text{ (o), 72.53 \text{ (o), 71.22 \text{ (o), 60.68 \text{ (o), 68.79 \text{ (o), 68.57 \text{ (o), 51.87 \text{ (o), 51.77 \text{ (o), 41.01 \text{ (e), 40.74 \text{ (e), 37.59 \text{ (e), 37.35 \text{ (e), 36.46 \text{ (e), 36.31 \text{ (e), 33.43 \text{ (e), 33.21 \text{ (e), 32.21 \text{ (e), 32.11 \text{ (e), 31.13 \text{ (e), 21.36 \text{ (o), 21.12 \text{ (o). \text{IR} (Neat) 2992 (w), 2948 (w), 2865 (w), 1736 (s), 1604 (w), 1120 (s) cm}^{-1}. \text{HRMS (ESI, [M+Na]}^+ \text{) calcd for C}_{16}\text{H}_{22}\text{O}_4\text{Na 301.1416, found 301.1404.}}\]

\[
\text{1-((4S^*,6R^*)-2-methyl-6-phenethyl-1,3-dioxan-4-yl)propan-2-one (rac-22)}
\]

Colour and state: Colourless oil.

To a cooled to 0 °C mixture of rac-20 (0.0595 g, 0.214 mmol) and Weinreb’s salt (0.065 g, 0.663 mmol) in anhydrous THF (25 mL) under an atmosphere of argon was added \(^{1}\text{PrMgCl (0.64 mL, 2.0 M in THF, 1.28 mmol) dropwise. The reaction mixture was stirred for ca. 1 h at that temperature (TLC control) and then quenched with saturated aqueous NH}_4\text{Cl. The solution was partitioned between water and Et}_2\text{O. Phases were separated and aqueous layer was washed with Et}_2\text{O (2x). The combined organic layers were dried (MgSO}_4\text{), filtered and concentrated in vacuo to afford 0.0642 g of crude Weinreb amide rac-21 as a colourless oil, which was used in the following step without purification.}

To a cooled to 0 °C solution of crude rac-21 (0.0642 g) in anhydrous Et}_2\text{O (2 mL) under an atmosphere of argon was added methylmagnesium bromide (0.29 mL, 3.0 M in Et}_2\text{O, 0.87 mmol) and the reaction mixture stirred at that temperature for ca. 30
min (TLC control). The reaction was quenched with saturated aqueous NH₄Cl and partitioned between water and DCM. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated *in vacuo*. Purification by flush chromatography (silica gel, Et₂O/DCM – 0:100, 1:15) afforded methyl ketone *rac-22* (0.045 g, 0.173 mmol, 89% overall yield for 2 steps) as a colourless oil.

1H NMR (500 MHz, CDCl₃) δ 7.30-7.17 (m, 5H), 4.92 (q, *J* = 5.0 Hz, 1H), 3.72-3.67 (m, 1H), 3.00 (dd, A of ABX, *J*ₐₐ = 15.7 Hz, *J*ₐₓ = 7.7 Hz, 1H), 2.80-2.62 (m, 2H), 2.44-2.39 (m, 1H), 2.18 (s, 3H), 1.95-1.66 (m, 3H), 1.43-1.37 (m, 1H), 1.29 (d, *J* = 5.0 Hz, 3H).

2.18 Deprotection of the Ethylidine Acetal

2-[(2*S*,4*R*,6*S*)-2-Methyl-6-phenethy-1,3-dioxan-4-yl]ethanol (*rac-23*)

Colour and state: Colourless oil.

The aldehyde *rac-15a* (0.077 g, 0.309 mmol) was dissolved in anhydrous MeOH (1.5 mL) and cooled with stirring to 0 °C under an atmosphere of argon. Sodium borohydride (0.035 g, 0.928 mmol) was added and the reaction mixture was stirred at 0 °C for *ca.* 30 minutes (TLC control). The reaction was then quenched with saturated aqueous NH₄Cl and partitioned between DCM and water. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated *in vacuo* to afford the crude alcohol. Purification by flush chromatography (silica gel, Et₂O/hexanes – 1.5:1, 2:1) to afford the primary alcohol *rac-23* (0.064 g, 0.256 mmol, 83%) as a colourless oil.

Chapter 2

1H NMR (500 MHz, CDCl$_3$) δ 7.30-7.26 (m, 2H), 7.20-7.18 (m, 3H), 4.71 (q, J = 5.1 Hz, 1H), 3.87-3.82 (m, 1H), 3.81-3.76 (m, 2H), 3.59 (dddd, J = 10.8, 8.0, 5.0, 2.7 Hz, 1H), 2.78 (ddd, A of ABXY, $J_{AB} = 14.3$ Hz, $J_{AX} = 9.2$ Hz, $J_{AY} = 5.3$ Hz, 1H), 2.68 (ddd, B of ABXY, $J_{AB} = 13.8$ Hz, $J_{BX} = 9.2$ Hz, $J_{BY} = 7.1$ Hz, 1H), 2.05 (br s, 1H), 1.95-1.87 (m, 1H), 1.84-1.70 (m, 3H), 1.48 (app. dt, J = 13.1, 2.7 Hz, 1H), 1.41 (app. dt, J = 13.0, 11.0 Hz, 1H), 1.36 (d, J = 5.1 Hz, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 141.84 (e), 128.48 (o), 128.39 (o), 125.86 (o), 98.60 (o), 75.98 (o), 75.20 (o), 60.74 (e), 37.83 (e), 37.35 (e), 36.60 (e), 31.15 (e), 21.23 (o).

IR (Neat) 3416 (br), 3027 (w), 2987 (w), 2941 (m), 2864 (m), 1603 (w), 1496 (w), 1129 (s), 700 (m) cm$^{-1}$.

HRMS (Cl, [M+H]$^+$) calcd for C$_{15}$H$_{23}$O$_3$ 251.1642, found 251.1641.

(3R*,5S*)-7-Phenylheptane-1,3,5-triol (rac-24)

Colour and state: Colourless oil.

The acetal rac-23 (0.077 g, 0.309 mmol) was dissolved in a mixture of MeOH and water (1.5 mL, 10:1) under an atmosphere of argon. CSA (5.0 mg, 0.022 mmol) was added and the reaction mixture was refluxed for ca. 100 hours (TLC control). The reaction was quenched with saturated aqueous NaHCO$_3$ and partitioned between DCM and water. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO$_4$), filtered and concentrated in vacuo for afford the crude product. Purification by flush chromatography (silica gel, Et$_2$O/hexanes – 19:1) afforded the triol rac-24 (0.047 g, 0.294 mmol, 95%) as a colourless oil.
1H NMR (500 MHz, C$_6$D$_6$) δ 7.21-7.16 (m, 4H), 7.10-7.07 (m, 1H), 4.46 (br s, 1H), 3.89-3.84 (m, 2H), 3.70-3.68 (m, 2H), 3.61-3.57 (m, 1H), 3.07 (br s, 1H), 2.75 (dd, A of ABXY, $J_{AB} = 14.0$ Hz, $J_{AX} = 9.4$ Hz, $J_{AY} = 4.9$ Hz, 1H), 2.65 (dd, B of ABXY, $J_{AB} = 13.7$ Hz, $J_{BX} = 9.6$ Hz, $J_{BY} = 6.8$ Hz, 1H), 1.72 (dddd, A of ABMNX, $J_{AB} = 13.4$ Hz, $J_{AM} = 9.3$ Hz, $J_{AN} = 8.0$ Hz, $J_{AX} = 5.2$ Hz, 1H), 1.61-1.46 (m, 3H), 1.41-1.35 (m, 1H), 1.16 (app. dt, B of ABM, $J_{AB} = 14.2$ Hz, $J_{BM} = 2.4$ Hz, 1H).

13C NMR (125 MHz, C$_6$D$_6$) δ 143.15 (e), 129.43 (o), 129.31 (o), 126.72 (o), 72.97 (o), 72.38 (o), 61.57 (e), 44.10 (e), 40.79 (e), 39.81 (e), 32.61 (e).

IR (Neat) 3324 (br, s), 3026 (w), 2938 (m), 2861 (m), 1603 (w), 1496 (w), 1454 (m), 1052 (vs), 698 (s) cm$^{-1}$.

HRMS (CI, [M+H]$^+$) calcd for C$_{13}$H$_{21}$O$_3$ 225.1485, found 2525.1486.

2.19 Synthesis of the C18-C28 Fragment of RK-397

(R,E)-6-(Benzyloxy)-5-hydroxyhex-2-enal (14h)

Colour and state: Colourless oil.

Aldehyde (R)-3033 (0.385 g, 2.00 mmol) was dissolved in anhydrous DCM (5 mL) under an atmosphere of argon. Acrolein (0.75 mL, 10.00 mmol) was added followed by Hoveyda-Grubbs 2nd generation catalyst (0.019 g, 0.030 mmol) and the mixture heated at reflux for ca. 4 hours (TLC control). The reaction mixture was then cooled to -78 °C and treated with 2,6-lutidine (0.58 mL, 5.00 mmol) and TESOTf (0.89 mL, 3.90 mmol) and stirred for ca. 10 minutes (TLC control). The reaction was quenched with saturated aqueous NaHCO$_3$ solution, warmed to room temperature and partitioned between water and Et$_2$O. Phases were separated and organic layer was washed with Et$_2$O (2x). The combined organic layers were successively washed with saturated aqueous NH$_4$Cl, water and brine, dried (MgSO$_4$), filtered and
Chapter 2

conzentrated in vacuo to afford a crude brown oil. Purification by flash chromatography (silica gel, 0:100 to 1:12 – Et$_2$O/petroleum ether) afforded the γ-triethylsilyloxy α,β-unsaturated aldehyde 14h (0.65 g, 1.93 mmol, 98%) as a colourless oil.

[α]$_D^{20}$ +7.0 (c 1.0, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$) δ 9.48 (dd, $J = 8.0, 0.4$ Hz, 1H), 7.37-7.28 (m, 5H), 6.87 (dt, $J = 15.3, 7.6$ Hz, 1H), 6.15 (dddd, $J = 15.7, 8.0, 0.8$ Hz, 1H), 4.53 (d, A of AB, $J_{AB} = 12.0$ Hz, 1H), 4.50 (d, B of AB, $J_{AB} = 12.0$ Hz, 1H), 4.01 (pent, $J = 5.6$ Hz, 1H), 3.44 (dd, A of ABX, $J_{AB} = 9.4$ Hz, $J_{AX} = 5.0$ Hz, 1H), 3.34 (dd, B of ABX, $J_{AB} = 9.4$ Hz, $J_{BX} = 6.6$ Hz, 1H), 2.63 (dt, A of ABM$_2$, $J_{AB} = 13.9$ Hz, $J_{AM} = 6.2$ Hz, 1H), 2.54 (ddd, B of ABMX, $J_{AB} = 14.4$ Hz, $J_{BM} = 7.6$ Hz, $J_{BX} = 6.7$ Hz, 1H), 0.93 (t, $J = 8.0$ Hz, 9H), 0.65-0.53 (m, 6H).

IR (Neat) 2954 (w), 2876 (w), 2805 (w), 2729 (w), 1691 (s), 1638 (w), 1087 (m), 977 (m), 733 (s), 698 (m) cm$^{-1}$.

2-[(2R,4S,6R)-6-(Benzylloxymethyl)-2-methyl-1,3-dioxan-4-yl]acetaldehyde (15h)

Prepared according the general procedure for the reaction of the δ-hydroxy α,β-unsaturated aldehydes with acetaldehyde in 71% yield.

Colour and state: Colourless oil.

[α]$_D^{20}$ +10.8 (c 1.3, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$) δ 9.77 (s, 1H), 7.35-7.26 (m, 5H), 4.77 (q, $J = 5.1$ Hz, 1H), 4.59 (d, A of AB, $J_{AB} = 12.2$ Hz, 1H), 4.54 (d, B of AB, $J_{AB} = 12.2$ Hz, 1H), 4.19 (dddd, $J = 11.1, 7.5, 4.8, 3.1$ Hz, 1H), 3.92 (dddd, $J = 11.0, 6.2, 4.3, 2.7$ Hz, 1H), 3.53 (dd, A of ABX, $J_{AB} = 10.2$ Hz, $J_{AX} = 6.2$ Hz, 1H), 3.43 (dd, B of ABX, J_{AB}
= 10.2 Hz, \(J_{BX} = 4.3 \) Hz, 1H), 2.70 (ddd, A of ABMX, \(J_{AB} = 16.9 \) Hz, \(J_{AM} = 7.4 \) Hz, \(J_{AX} = 2.0 \) Hz, 1H), 2.53 (ddd, B of ABMX, \(J_{AB} = 16.9 \) Hz, \(J_{BM} = 5.0 \) Hz, \(J_{BX} = 1.5 \) Hz, 1H), 1.56 (app. dt, \(J = 13.0 \), 2.4 Hz, 1H), 1.39 (q, \(J = 11.4 \) Hz, 1H), 1.34 (d, \(J = 5.1 \) Hz, 3H).

IR (Neat) 2862 (w), 2731 (w), 1722 (m), 1139 (m), 1105 (s), 739 (m), 699 (m) cm⁻¹.

\[
\text{(S)-1-[(2R,4R,6R)-6-(Benzyloxymethyl)-2-methyl-1,3-dioxan-4-yl]pent-4-en-2-ol (31)}
\]

Colour and state: Colourless oil.

Titanium(IV) chloride in DCM (0.16 mL, 0.158 mmol, 1M) was diluted with anhydrous DCM (3.1 mL) and treated with Ti(O’Pr)₄ (0.14 mL, 0.475 mmol) at 0 °C under an atmosphere of argon. The solution stirred for ca. 1 hour at 0 °C, then warmed to room temperature and (R)-1,1’-binaphthyl-2,2'-diol (0.181 g, 0.475 mmol) was added. The reaction mixture was stirred for ca. 2 hours, cooled to 0 °C and then silver(I) oxide (0.073 g, 0.317 mmol) added in the absence of light. The reaction mixture was allowed to warm to room temperature and stirred for ca. 5 hours in dark to furnish the chiral bis-Ti(IV) oxide.²⁸ The catalyst was cooled to −15 °C and sequentially treated with the aldehyde 2r (0.742 g, 3.18 mmol) in anhydrous DCM (3 mL with washings) and allyltributylstannane (1.97 mL, 6.36 mmol). The reaction was allowed to warm to 0 °C and stirred for ca. 48 hours (TLC control). The reaction was quenched with saturated aqueous NaHCO₃ solution and partitioned between water and Et₂O. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo to afford the crude alcohol. Purification by flash
chromatography (silica gel, Et\textsubscript{2}O/hexanes – 1:1.5, 1:1) afforded the homoallylic alcohol \textbf{31} (0.849 g, 2.77 mmol, 87 %) as a colourless oil.

\[\alpha \] \textsubscript{D}20 +25.3 (c 1.0, CHCl\textsubscript{3}).

\textbf{1H NMR} (500 MHz, CDCl\textsubscript{3}) \(\delta \) 7.36-7.26 (m, 5H), 5.87-5.78 (m, 1H), 5.14-5.11 (m, 2H), 4.75 (q, \(J = 5.1 \) Hz, 1H), 4.61 (d, A of AB, \(J_{AB} = 12.2 \) Hz, 1H), 4.54 (d, B of AB, \(J_{AB} = 12.2 \) Hz, 1H), 3.99-3.93 (m, 2H), 3.90 (app. ddt, \(J = 10.1, 6.3, 4.4 \) Hz, 1H), 3.54 (dd, A of ABX, \(J_{AB} = 10.2 \) Hz, \(J_{AX} = 6.3 \) Hz, 1H), 3.43 (dd, B of ABX, \(J_{AB} = 10.2 \) Hz, \(J_{BX} = 4.3 \) Hz, 1H), 2.38 (d, \(J = 4.0 \) Hz, 1H), 2.29-2.18 (m, 2H), 1.68 (ddd, A of ABXY, \(J_{AB} = 14.5 \) Hz, \(J_{AX} = 8.1 \) Hz, \(J_{AY} = 2.8 \) Hz, 1H), 1.61 (ddd, B of ABXY, \(J_{AB} = 14.5 \) Hz, \(J_{BX} = 9.2 \) Hz, \(J_{BY} = 3.5 \) Hz, 1H), 1.48-1.41 (m, 2H), 1.36 (d, \(J = 5.1 \) Hz, 3H).

\textbf{13C NMR} (125 MHz, CDCl\textsubscript{3}) \(\delta \) 138.06 (e), 134.73 (o), 128.41 (o), 127.81 (o), 127.71 (o), 117.99 (e), 98.65 (o), 75.41 (o), 73.48 (e), 73.40 (o), 72.82 (e), 67.03 (o), 42.18 (e), 41.95 (e), 33.20 (e), 21.16 (o).

\textbf{IR} (Neat) 3485 (br, w), 2916 (m), 2861 (m), 1641 (w), 1497 (w), 1140 (s), 1101 (vs), 948 (m), 915 (m), 737 (m), 698 (m) cm-1.

\textbf{HRMS} (ESI, [M+Na]+) calcd for C\textsubscript{18}H\textsubscript{26}O\textsubscript{4}Na 329.1729, found 329.1715.

\begin{center}
\begin{tikzpicture}
 \node at (0,0) {\includegraphics[width=0.5\textwidth]{32.png}};
\end{tikzpicture}
\end{center}

\textbf{(S,E)-7-[(2R,4R,6R)-6-(Benzyloxymethyl)-2-methyl-1,3-dioxan-4-yl]-6-hydroxyhept-3-en-2-one (32)}

\textit{Colour and state}: Yellow oil.

The homoallylic alcohol \textbf{31} (0.441 g, 1.438 mmol) was dissolved in anhydrous DCM (3.7 mL) under an atmosphere of argon. Methyl vinyl ketone (0.58 mL, 7.19 mmol) was added followed by Hoveyda–Grubbs 2nd generation catalyst (9.0 mg, 0.014 mmol) and the resulting mixture heated at reflux for \textit{ca.} 2 hours (TLC control). The
Chapter 2

reaction mixture was concentrated in vacuo and purified by flash chromatography (silica gel, Et₂O/petroleum ether – 1:10, 1:8) to afford the γ-hydroxy α,β-unsaturated ketone 32 (0.435 g, 1.248 mmol, 87%) as yellow oil.

\[\alpha \]_D^{20} +13.3 (c 1.0, CHCl₃).

\(^{1}H\) NMR (500 MHz, CDCl₃) δ 7.29-7.27 (m, 4H), 7.24-7.19 (m, 1H), 6.06 (dt, J = 15.9, 7.2 Hz, 1H), 6.06 (d, J = 16.0 Hz, 1H), 4.67 (q, J = 5.1 Hz, 1H), 4.53 (d, A of AB, J_AB = 12.2 Hz, 1H), 4.48 (d, B of AB, J_AB = 12.2 Hz, 1H), 4.05-3.98 (m, 1H), 3.91-3.81 (m, 1H), 3.85-3.81 (m, 1H), 3.48 (dd, A of ABX, J_AB = 10.2 Hz, J_AX = 6.2 Hz, 1H), 3.37 (dd, A of ABX, J_AB = 10.2 Hz, J_BX = 4.2 Hz, 1H), 2.33 (app. t, J = 6.6 Hz, 2H), 2.18 (s, 3H), 1.63-1.54 (m, 2H), 1.41-1.35 (m, 2H), 1.29 (d, J = 5.1 Hz, 3H).

\(^{13}C\) NMR (125 MHz, CDCl₃) δ 198.79 (e), 144.91 (o), 137.99 (e), 133.27 (o), 128.38 (o), 127.75 (o), 127.68 (o), 98.57 (o), 75.33 (o), 73.39 (e), 73.10 (o), 72.74 (e), 66.60 (o), 42.34 (e), 40.71 (e), 33.06 (e), 26.82 (o), 21.13 (o).

IR (Neat) 3467 (br), 2864 (m), 1671 (s), 1626 (m), 1497 (w), 1363 (m), 1255 (m), 1136 (s), 1100 (vs), 978 (s), 948 (s), 738 (m), 699 (m) cm⁻¹.

1-[(2R,4R,6R)-6-{[(2R,4R,6R)-6-(Benzyloxymethyl)-2-methyl-1,3-dioxan-4-yl]methyl}-2-methyl-1,3-dioxan-4-yl]propan-2-one (33)

Colour and state: Colourless oil.

The γ-hydroxy α,β-unsaturated ketone 32 (0.458 g, 1.314 mmol) was dissolved in reagent grade DCM (13 mL) and treated with acetaldehyde (0.37 mL, 6.57 mmol) and bismuth(III) nitrate pentahydrate (64.0 mg, 0.131 mmol). The reaction mixture
was stirred for ca. 24 hours at ambient temperature (TLC control) and then partitioned between DCM and saturated aqueous NaHCO₃ solution. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo to afford the crude product. Purification by flash chromatography (silica gel, EtOAc/hexanes – 1:2) afforded the bis-acetal 33 (0.469 g, 1.194 mmol, 91%) as a colourless oil.

\[
[a]_D^{20} +22.1 (c 1.0, CHCl₃).
\]

¹H NMR (500 MHz, C₆D₆) δ 7.29-7.27 (m, 2H), 7.19-7.15 (m, 2H), 7.11-7.08 (m, 1H), 4.59 (q, \(J = 5.0 \) Hz, 1H), 4.56 (q, \(J = 5.0 \) Hz, 1H), 4.38 (d, A of AB, \(J_{AB} = 12.1 \) Hz, 1H), 4.35 (d, B of AB, \(J_{AB} = 12.2 \) Hz, 1H), 3.92 (dddd, \(J = 10.5, 7.6, 5.3, 2.3 \) Hz, 1H), 3.87-3.84 (m, 2H), 3.69 (app. dtd, \(J = 10.6, 5.2, 2.8 \) Hz, 1H), 3.48 (dd, A of ABX, \(J_{AB} = 9.9 \) Hz, \(J_{AX} = 5.7 \) Hz, 1H), 3.30 (dd, B of ABX, \(J_{AB} = 10.0 \) Hz, \(J_{BX} = 4.8 \) Hz, 1H), 2.38 (dd, A of ABX, \(J_{AB} = 16.0 \) Hz, \(J_{AX} = 7.3 \) Hz, 1H), 1.96 (dd, B of ABX, \(J_{AB} = 16.0 \) Hz, \(J_{BX} = 5.1 \) Hz, 1H), 1.70 (s, 3H), 1.53 (app. t, \(J = 6.1 \) Hz, 2H), 1.39 (d, \(J = 5.0 \) Hz, 3H), 1.31 (d, \(J = 5.1 \) Hz, 3H), 1.30-1.15 (m, 3H), 1.05 (app. dt, \(J = 12.5, 11.3 \) Hz, 1H).

¹³C NMR (125 MHz, C₆D₆) δ 204.41 (e), 139.12 (e), 128.57 (o), 127.84 (o), 127.72 (o), 98.69 (o), 98.67 (o), 75.65 (o), 73.48 (e), 72.49 (o), 72.08 (o), 72.07 (o), 49.40 (e), 43.34 (e), 37.37 (e), 34.51 (e), 30.58 (o), 21.55 (o), 21.45 (o).

IR (Neat) 2992 (w), 2940 (w), 2913 (w), 2866 (m), 1716 (m), 1497 (w), 1364 (m), 1125 (s), 117 (vs), 1030 (m), 942 (s), 739 (m), 699 (m) cm⁻¹.

HRMS (ESI, [M+Na]⁺) calcd for C₂₂H₃₂O₆Na 415.2097, found 415.2093.
2.20 References

10 Geissman, T. A. *Org. React.* 1944, 2, 94.

Chapter 2

18 Similar trend was observed in the studies of Bi(NO$_3$)$_3$ catalysed glycosylation of alcohols, see: Banik, B. K.; Adler, D.; Nguyen, P.; Srivastava, N. *Heterocycles* **2003**, *61*, 101-104.

21 The oxocarbenium ion intermediate is additionally stabilised by triorganosilyl group. For application of similar approach, see Ref.**14,15** For the stability of trialkysilyl ethers, see: Schelhaas, M.; Waldmann, H. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 2056.

24 For a formal total synthesis of RK-397 using a similar strategy, see ref. 11h.

Chapter 2

2.21 Appendix A. 1H and APT Spectrums for Compound 33
Chapter 3

Dinoflagellate Derived Polyketides and Synthetic Studies of the Polyol Fragment of Amphidinol 3

3.1 Introduction to Marine Dinoflagellates

Marine dinoflagellates are primitive unicellular algae known for being an abundant source of secondary metabolites with diversified structures and significant biological activities (Figure 3.1.1); e.g. brevetoxins (a voltage-sensitive Na\(^+\) channel activators),\(^1\) okadaic acid (protein phosphatase inhibitor),\(^2\) ciguatoxins (Na\(^+\) channel activators)\(^3\) and maitotoxin (Ca\(^{2+}\) influx stimulator).\(^4\)

![Figure 3.1.1: Structures of Selected Marine Natural Products](image)

With more than 4000 species of marine protists reported to date, the biological activities of their secondary metabolites are extremely diverse ranging from anticancer agents to deadly neurotoxins.\(^5\) Although the phytoplankton is harmless, its large collections (algal blooms) can cause adverse effects on the ecosystem, tourism, fishing and shellfish industries due to vast production of these
Chapter 3

metabolites. The cause of algal blooms is attributed to both non- and anthropogenic factors, e.g. a lot of sunshine, a calm sea, temperature raises, increased nitrogen and phosphorus content (run-off from fields), high iron concentration and others.

Generally, four syndromes, neurotoxic shellfish poisoning (NSP), ciguatera fish poisoning (CFP), diarrhetic shellfish poisoning (DSP) and azaspiracid shellfish poisoning (AZP) result from consumption of fish or shellfish contaminated with one or more of the dinoflagellate derived polyketides. Although the latter are mainly found in bacteria, fungi and plants, only around 25 of 4000 dinoflagellate species are known sources of polyketides. Based on their structural features, these products can be organised into three categories: polyether ladders, macrocycles (including macrolides and non-macrolides) and linear polyethers.

3.2 Ladder Polyether Polyketides

The first group of ladder polyethers is regarded to be the most prominent family of polyketides. It includes molecules with multiple five-, six-, seven-, eight-, and nine-membered cyclic ethers fused in a trans-syn-trans arrangement at the top and bottom of the structure (e.g. gambierol, gambieric acids, yessotoxin) (Figure 3.2.1). Customarily, ring systems in these products consist of 4 to 32 fused cycles with ring junctions substituted by either a hydrogen atom or a methyl group.

Figure 3.2.1: Structure of Gambierol and its Structural Elements
Chapter 3

The repeating C-C-O sequence can be traced along the molecule, which suggests the plausible biosynthetic pathway to these polyketides, originating from the epoxide-opening cascades, as independently hypothesised by Nakanishi and Shimizu.\(^9\)

3.3 Macrocyclic Polyketides

Macrocycles are the second largest category of the marine dinoflagellate polyketides. In total, 34 cytotoxic macrolides, designated amphidinolides, have been isolated from seven strains of the laboratoryst cultured \textit{Amphidinium sp.} protists symbiotic with the Okinawan marine flatworms, \textit{Amphiscolops sp.} (Figure 3.3.1).\(^{5a}\) A large collection of amphidinolides A-E, J, K, M-S, V were extracted from the Y-5 strain. Another three amphidinolides: G, H, L were gathered from the Y-25 strain, while Y-26 afforded amphidinolide F in conjunction with B and C.

![Amphidinolide A](image1.png)
![Amphidinolide H](image2.png)
![Amphidinolide N](image3.png)
![Amphidinolide T1](image4.png)

Figure 3.3.1: Structures of Selected Amphidinolides

Amphidinolides T1, T3-T5, U, B, C were isolated from Y-56. The Y-71 strain furnished one new amphidinolide, T2, with the already known T1, B, C, F.
Lastly, extraction from the Y-72 strain afforded G, H; whereas Y-42 gave G2, G3, H2-H5 and W-Y congeners.

The common feature of all amphidinolides is the presence of a 12 to 29-membered macrocyclic lactone ring. Additionally, multiple sites of unsaturation are often present in the molecule (exo-methylene units, 1,2-di- and 1,1,2-trisubstituted alkenes), in affiliation with oxacycles such as epoxides, furans and pyrans. It is noteworthy that more than half of the amphidinolides possess an odd-numbered macrocyclic lactone, which is in great contrast to the macrolide antibiotics isolated from the terrestrial microorganisms, which contain even-numbered rings. To address this issue, biosynthesis of amphidinolides J,10 G and H11 were studied in great detail.

The remarkably strong cytotoxic activity against various tumor cells makes these compounds potential cancer drugs, e.g. the most active amphidinolide, N, displays nano- and picomolar cytotoxicity against L1210 cells (IC_{50} = 0.05 ng/mL) and KB cells (IC_{50} = 0.06 ng/mL).12 The unique structural features, impressive biological properties in conjunction with limited natural occurrence have encouraged the synthetic community to synthesise various members of the family.13

Several related macrolides, the pectenotoxins (PTXs),14 have been isolated from scallops and greenshell mussels and were later found in the dinoflagellate Dinophysis fortii (Figure 3.3.2).

Figure 3.3.2: Structures of Pectenotoxins
These natural products have been associated with DSP poisoning symptoms and have shown potent cytotoxicity against human lung, colon and breast cancer cell lines.

Prorocentrolides,15 pinnatoxins16 and spirolides17 are other remarkable groups of macrocyclic secondary metabolites that have a distinctive cyclic imine moiety in their structures (Figure 3.3.3). The first family of compounds are dinoflagellate-derived and were isolated from \textit{Prorocentrum sp.}, while the last two were extracted from scallops and mussels. The activity evaluation in mouse bioassays described them as fast-acting toxins. Notably, investigation of the reduced amine form of these products suggested that the imine functionality is responsible for the observed toxicities.18

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{structures.png}
\caption{Structures of Marine Cyclic Imine Toxins}
\end{figure}

3.4 Linear Polyethers

The last group of dinoflagellate-derived polyketides are linear polyethers. Structurally, these natural products could be assumed to be open forms of macrocyclic polyketides, formed \textit{via} hydrolysis (\textit{vide supra}). Okadaic acid (OA) is a remarkable example of this type of secondary metabolite, which was isolated from the sponge \textit{Halichondria sp.}, as well as dinoflagellates \textit{Procentrum sp.} and
Chapter 3

Dinophysis sp. (Figure 3.4.1)\(^2,19\) This natural product is known for its unique structural features and biological profile. The biosynthesis of OA proceeds *via* an unusual route involving both carbon backbone formation\(^20\) and cyclisation.\(^21\) In addition, okadaic acid is associated with DSP\(^22\) and expresses highly selective inhibition of protein phosphatases.\(^2c\)

![Figure 3.4.1: Structures of OA and DTX Toxins](image)

A family of related polyethers, dinophysis toxins (DTX-1-5, 5a, acanthafolicin) was isolated from the same dinoflagellate source as OA (Figure 3.4.1).\(^19\) Similarly, these polyketides are inhibitors of protein phosphatases PP-1, PP-2A and potent tumour promoters.\(^23\)

3.5 Background of Amphidinols

Amphidinols (AMs) and their related congeners are polyene-polyhydroxy compounds, belonging to the linear polyether family, which were isolated from *Amphidinium* sp. strains. Their structures are characterised by the skipped polyene chain, two or three densely substituted tetrahydropyrans (THP) and a linear polyhydroxyl moiety (Figure 3.5.2 and Figure 3.5.3).

The first member of the family (AM1) was sequestered from *Amphidinium klebsii*, collected at Ishigaki Island, Japan, by the group of Naoki and Yasumoto in
1991, and the structure was elucidated by the same group. Tachibana and co-workers isolated and subsequently determined the structure of amphidinol 2, which was extracted from *A. klebsii*, gathered at Aburatsubo Bay in Miura Peninsula, Japan in 1995. Amphidinol 3 was the third congener isolated from *A. klebsii* by Murata and co-workers in 1997 (Figure 3.5.1). Notably, it became the first molecule in the family to have its absolute configuration deduced using a combination of *J*-based configurational analysis (JBCA) for acyclic 1,2- and 1,3-dioxygenated systems, the modified Mosher’s method, nOe experiments and chiral HPLC analysis of degradation products. In 2008, Oishi and Murata revised the original structure of AM3 and reassigned the absolute configuration of the C2 stereocentre. Later, the same group reasserted the absolute configuration at C50-C51, which remained ambiguous until that time.

![Amphidinol 3](image)

Figure 3.5.1: Structure and Absolute Configuration of Amphidinol 3

Subsequently, isolation and structural elucidation of other congeners in the family was carried out. AM4-AM8 and AM14, AM15 homologs were gathered from *A. klebsii*; AM9-A13, AM2, AM4 were found in *A. carterae*, collected at Kauaroa, the South Island, New Zealand and AM17 was isolated from *A. carterae*, found at Little San Salvador Island, Bahamas.
Figure 3.5.2: Structures of Amphidinols Isolated from Amphidinium sp.
Chapter 3

Figure 3.5.3: Structures of Amphidinols Isolated from Amphidinium sp. (Cont.)

3.6 Biological Activity of Amphidinols

The family of amphidinols largely exhibits strong antifungal, cytotoxic, haemolytic and diatom activities. Their potent membrane permeabilising action is associated with unique structural features and is very specific for having a non-detergent mechanism.\(^{34}\) In studies conducted by Murata and co-workers, antifungal and haemolytic activities of amphidinol homologs were compared with those of known polyene antibiotics, amphotericin B (AmB) and filipin III (Table 3.6.1).\(^{34a,b}\) The latter compounds were chosen since both of them have a structure reminiscent to the AMs, which is comprised of isolated polyolefinic and polyhydroxyl chains.
Table 3.6.1: Haemolytic and Antifungal Activities of Amphidinols and Other Polyene Antibiotics

<table>
<thead>
<tr>
<th>Compound</th>
<th>Antifungal activity (MEC in µg/disk)<sup>a</sup></th>
<th>Haemolysis (EC<sub>50</sub> in µM)<sup>b</sup></th>
<th>Cytotoxicity (µg/mL)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>AM1</td>
<td>6</td>
<td>0.05</td>
<td>-</td>
</tr>
<tr>
<td>AM2</td>
<td>6-44.3</td>
<td>1.2-1.7</td>
<td>14.8</td>
</tr>
<tr>
<td>AM3</td>
<td>4-9</td>
<td>0.009-0.4</td>
<td>-</td>
</tr>
<tr>
<td>AM4</td>
<td>6-58.2</td>
<td>0.21</td>
<td>25.3</td>
</tr>
<tr>
<td>AM6</td>
<td>6</td>
<td>0.19-2.9</td>
<td>-</td>
</tr>
<tr>
<td>AM5</td>
<td>6</td>
<td>0.23</td>
<td>-</td>
</tr>
<tr>
<td>AM6</td>
<td>6</td>
<td>0.58</td>
<td>-</td>
</tr>
<tr>
<td>AM7</td>
<td>10</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>dsAM7<sup>d</sup></td>
<td>8</td>
<td>1.2</td>
<td>-</td>
</tr>
<tr>
<td>AM9</td>
<td>32.9</td>
<td>0.18</td>
<td>36.5</td>
</tr>
<tr>
<td>AM10</td>
<td>154.0</td>
<td>6.53</td>
<td>35.2</td>
</tr>
<tr>
<td>AM11</td>
<td>256.6</td>
<td>28.9</td>
<td>23.0</td>
</tr>
<tr>
<td>AM12</td>
<td>>100</td>
<td>2.99</td>
<td>26.8</td>
</tr>
<tr>
<td>AM13</td>
<td>132.0</td>
<td>2.02</td>
<td>32.5</td>
</tr>
<tr>
<td>AM14</td>
<td>>60</td>
<td>>50</td>
<td>-</td>
</tr>
<tr>
<td>AM15</td>
<td>60</td>
<td>>50</td>
<td>-</td>
</tr>
<tr>
<td>AM17</td>
<td>n/a<sup>e</sup></td>
<td>4.9</td>
<td>-</td>
</tr>
<tr>
<td>AmB</td>
<td>6.3</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>Filipin III</td>
<td>1.4</td>
<td>2.0</td>
<td>-</td>
</tr>
</tbody>
</table>

^a Minimal effective concentration in µg/disk against the fungi Aspergillus niger.
^b EC₅₀ in µM against human erythrocyte cells.
^c Cytotoxicity in µg/mL against mouse lymphoid D₁ cells.
^d Desulfated amphidinol 7.
^e No detectable activity.

The structural alterations within the amphidinol family have a characteristic impact on their biological profile. Amphidinols do vary in size and the main divergence occurs on the termini of the polyolefin moiety and in the linear polyol fragment (Figure 3.5.2 and Figure 3.5.3). The structure-activity relationship analysis showed that the hydrophobicity of the polyene chain of AMs has a strong effect on...
Chapter 3

the membrane disruption. For example, AM14 and AM15 homologs possessing the hydrophilic dihydroxyl group on the polyene show greatly reduced biological activities in comparison with non-hydroxylated analogs.31 The presence of the sulfate group on the linear polyol impairs the antifungal and haemolytic activity (AM2 \textit{vs.} AM11 and AM7 \textit{vs.} dsAM7), albeit does not have much influence on the size of the pores/lesions formed.31,32b Lastly, the length of the polyol chain has a moderate effect on the activity, in which amphidinols with the shorter side chains generally exhibit weaker bioactivity (AM3 \textit{vs.} AM7).30b

The studies conducted by the Murata group showed that AM3 forms ion-permeable toroidal pores/lesions, with a diameter of 2.0-2.9 nm, by binding to the phospholipid membrane with the polyene part of the molecule (C52-C67), while the hydrophilic region (C20-C51) adopts a hairpin-shaped conformation stabilised by hydrogen bonding (Figure 3.6.1).34b,34f,h This explains the haemolytic activity of amphidinols, as pore formation in erythrocytes leads to their invagination and eventually to the release of haemoglobin. In contrast to AmB lesions (0.8 nm), the size of pores made by AM3 is larger and the mechanism of action is attributed to be either damage or channel-type, depending on the agent concentration.34a

\textbf{Figure 3.6.1: Hypothetical Model of the Membrane-Bound Structure of AM3}
Subsequently, Murata and Aimoto et al. reported that membrane proteins (e.g. glycophorin A (GpA) in erythrocytes) could greatly enhance AM3-induced membrane permeability. Another important finding was that cholesterol and ergosterol significantly increase the affinity of AM3 to the phospholipid membranes (up to 5300 times) presumably by making a stronger complex. These findings account for the absence of anti-bacterial activity of AM3, which is due the unavailability of sterols in bacterial membranes.

3.7 Other Amphidinol Homologues

Marine microorganisms produce various bioactive secondary metabolites that have close similarities to amphidinols. The remarkable feature of the majority of these compounds is their worldwide distribution, which is in a great contrast to AMs that are mainly found in waters of Japan and Australia.

In 1997, Kobayashi and co-workers investigated secondary metabolites isolated from the another strain of Amphidinium sp. (Y-52), found inside cells of the marine acoel flatworm *Pseudaphanostoma luteoloris*, gathered in Okinawa. Subsequently, they reported a series of linear carbon-chain polyols, luteophanols A-D (Figure 3.7.1). Although these compounds have substantial structural similarities with the amphidinols, the former have a hydrophilic diene chain at C54-C60, while the latter contain a hydrophobic triene. As a result, luteophanols exhibit no antifungal activity, however they have weak antimicrobial action against Gram-positive bacteria (MIC values: *Staphylococcus aureus*, 33 µg/mL; *Sarcina lutea* 33 µg/mL; *Bacillus subtilis*, 66 µg/mL).
Karlotoxins (KmTx) are amphidinol-like compounds, which have haemolytic, antifungal and ichthyotoxic activities and were isolated from dinoflagellate *Karlodinium veneficum* (Figure 3.7.2).\(^{36}\) This alga, initially named as *Gymnodinium*, was first gathered in Walvis Bay, Namibia\(^ {37}\) and the English Channel,\(^ {38}\) in 1950, and has been associated with fish kills worldwide.\(^ {39}\) Subsequently, toxins related to this dinoflagellate were detected in the clonal isolates collected from waters of Maryland, North and South Carolina, Georgia, Florida, Mississippi, New Zealand and Norway amongst others.\(^ {40}\)
Figure 3.7.2: Structures of the Karlotoxin Family Polyols

In total, three families of karlotoxins, corresponding to KmTx 1,41 KmTx 242 and KmTx 343 groups, were isolated and structurally elucidated. In 2010, Hamann and co-workers reported the structural assignment and absolute configuration of KmTx 2.44 The main difference between groups of KmTx toxins is the length of the lipophilic side chain, which attributes to alterations in the UV absorbance maxima, potency and geographic distribution.39a These structural variations were shown to have a pronounced impact on the haemolytic activity.43,45 Karlotoxins with a longer olefinic side chain exhibit increased potency compared to shorter analogs (KmTx 1, EC$_{50}$ = 63 nM, is ca. three times more active than KmTx 3, EC$_{50}$ = 200 nM). Interestingly, introduction of chlorine has little or no effect on the
haemotoxicity. Similarly to amphidinols, sulfonation of the C1 alcohol leads to a decrease of in activity and might provide an effective avenue for reducing the toxicity of KmTx.

When structural characteristics of KmTx 2 and AM3 are compared, several important findings arise. While both molecules share the absolute configuration in the 1,5- \textit{syn} polyol region (C2, C6, C10) and the relative at C14, the absolute configuration of the \textit{bis}-THP segment is opposite (Figure 3.7.3). Moreover, KmTx 2 features an additional hydroxyl group on one of the THP rings. These modifications in the core of KmTx 2 are remarkable and suggest that karlotoxins are an independent family within amphidinol-like compounds. This could be a subject for further bioactivity studies and provide a better understanding of structure-activity relationships within the linear polyketide family of natural products.

![Figure 3.7.3: Main Structural Differences Between AM3 and KmTx 2](image)

Inuzuka, Uemura and co-workers isolated the linear polyol polyketide, amdigenol A, from \textit{Amphidinium sp.} adhered to the surface of marine red alga \textit{Digenea simplex}.46 This ‘super-carbon-chain compound’ is the longest polyketide isolated from \textit{Amphidinium sp.} to date. It has a remarkable 98-carbon atom skeleton,
Chapter 3

36 secondary hydroxyl groups and three densely substituted THP rings (Figure 3.7.4). The biological evaluation showed weak cytotoxicity against the 3T3-L1 mudine adipocyte (IC$_{50}$ = 59 µg/mL), but none against HeLa cells. Other biological tests are currently in progress.

Figure 3.7.4: Structure of Amdigenol A

Uemura et al. reported the isolation and structural characterisation of novel antimicrobial polyols, karatungiols, from *Amphidinium* sp., which is symbiotic with an unknown flatworm, collected at Karatung Island, Indonesia. These linear polyketides are amphidinol analogs having a unique ketone moiety within the polyol segment of the molecule and terminally saturated alkyl chains, as in karlotoxins (Figure 3.7.5). Karatungiol A has potent antifungal activity against NBRC4407 *A. niger* (12 µg/disc) and antiprotozoal activity against *Trichomonas foetus* (1 µg/mL).

Figure 3.7.5: Structures of Karatungiols A and B
Lingshuiols A and B are other examples of linear polyhydroxyl compounds isolated from the cultured Chinese marine dinoflagellate *Amphidinium sp.*, found in Lingshui Bay, Hainan Province (Figure 3.7.6).\(^{48}\) Remarkably, both natural products share the identical hydrophobic polyene system corresponding to amphidinol 2. However, lingshuiol A possesses the same partial C1-C51 structure as luteophanol B, while lingshuiol B has the common C1-C41 part of luteophanol A. Interestingly, the presence of composite structures of luteophanols and amphidinols has little effect on the lingshuiols’ biological activity, which has been pronounced as a weak antitumor agent against A-549 and HL-60 cell lines.

![Structures of Lingshuiols A and B](image)

Figure 3.7.6: Structures of Lingshuiols A and B

In 2006, Kobayashi and co-workers isolated an unusual polyhydroxyl metabolite from *Amphidinium sp.* symbiotic with Okinawan marine acoel flatworm *Amphiscolops* sp.\(^{49}\) The structure of ampezonol A possesses unique structural elements including a tetrahydrofuran ring in the polyol segment of the molecule, two distantly separated trisubstituted THP rings and an *exo*-methylene group (Figure 3.7.7). These structural features are not common to other metabolites found in *Amphidinium sp.* and are probably responsible for the moderate inhibitory activity of DNA polymerase (IC\(_{50}\) = 15 \(\mu\)M) by this compound.
Lu, Huang and others reported the isolation of a potent polyhydroxyl ichthyotoxin from dinoflagellate *Amphidinium carterae*, collected from wash-off epiphytes of the seaweed found on the southern coast of Taiwan.\(^5\) Carteraol E belongs to the linear polyol polyketide family and has strong similarities to amphidinol 3 in the *bis*-THP and polyene segments (Figure 3.7.8). However, it has a distinctive polyhydroxyl fragment with an uncommon *syn*-THP ring and ketone functionality. Interestingly, carteraol E is the first amphidinol-like derivative that displays potent ichthyotoxic activity (LD\(_{50} = 0.28\) µM). While this metabolite has strong antifungal action against *A. niger* (15 µg/disk), it shows no cytotoxicity against CCRF-CEM and DLD-1 cancer cells and no antimicrobial activity against the Gram-positive bacterium *Staphylococcus aureus*. This is in a great contrast to the structurally similar lingshuiol and luteophanol A, which are cytotoxic and antimicrobial agents, respectively.
Overall, the isolation, biological and structural evaluation of amphidinol-like compounds has provided a powerful insight into the structure-activity relationships of these molecules. This could lead to the development of new types of antibiotic, antifungal and anti-cancer drugs as well as delivering a better understanding of the roles of these polyketides in nature.

3.8 Introduction to the Polyol Fragment of Amphidinol 3

The polyol fragment of amphidinol 3 is a linear C1-C30(31) chain comprised of 10 secondary stereocentres, which includes three repeating 1,5-syn diol units, two (E)-configured double bonds and a highly functionalised polycacetate/polypropionate-type domain, contoured by a trisubstitued (E)-olefin (Figure 3.8.1).

![Amphidinol 3](image)

Figure 3.8.1: Polyol Fragment in Amphidinol 3

The following sections will overview the synthetic progress made towards the polyol segment of AM3 with particular emphasis on the convergence of each approach and methodologies employed.

3.9 Cossy’s Synthesis of the C1-C14 Fragment of Amphidinol 3

In 2001, BouzBouz and Cossy were first to publish synthetic efforts towards the synthesis of AM3.\(^{51}\) They developed a highly diastereoselective route towards
the C1-C14 polyol fragment based on an iterative chemoselective cross-metathesis/enantioselective allylation sequence (Scheme 3.9.1).

Scheme 3.9.1: Cossy and BouzBouz Approach Towards the C1-C14 Fragment of Amphidinol 3

The synthesis commenced by cross-metathesis of the enantiomerically pure homoallylic alcohol \(^1\) with acrolein, mediated by Hoveyda-Grubbs 2\(^\text{nd}\) generation catalyst \(^9\), \(^52\) to furnish \(\alpha,\beta\)-unsaturated aldehyde \(^2\) with excellent selectivity \((E/Z >50:1)\). Enantioselective allyltitanation of \(^2\) using the Hafner and Duthaler complex \((S,S)-10\) \(^54\) installed the requisite 1,5-\textit{anti} diol \(^3\) in good yield and exceptional diastereoecontrol \((ds = 95:5)\). At this point protection of \(^3\) was compulsory to implement the subsequent chemoselective cross-metathesis and avoid
participation of the internal alkene in the catalytic cycle. Thus, formation of diacetate 4 and cross-metathesis of the latter with acrolein using catalytic 9 afforded the α,β-unsaturated aldehyde 5 ($E/Z > 50:1$). The observed chemoselectivity was rationalised as a consequence of the deactivation of the allylic acetate double bond due to the electron-withdrawing effect of the acetate group or formation of a non-reactive 6-membered ruthenium chelate.

The succeeding enantioselective allylation of aldehyde 5 with (S,S)-10 gave homoallylic alcohol 6 ($ds = 95:5$) with the strategic formation of the 1,5-<i>syn</i> dioxygen functionality. Finally, acetate formation and cross-metathesis with ethyl acrylate installed the last portion of the fragment and furnished α,β-unsaturated ester 8 in acceptable yield and with excellent control of the double bond geometry ($E/Z > 50:1$).

In summary, synthesis of the C1-C14 fragment of AM3 was achieved by Cossy and BouzBouz in 7 longest linear steps and 17.5% overall yield. The developed route offered an appealing alternative to a Wittig-Horner reaction/allylation sequence due the to reduced number of protection/deprotection steps and allowed the use of base-sensitive substrates. The highlights include implementation of highly chemoselective cross-metathesis approach in conjunction with asymmetric allyltitanation.

3.10 Roush’s Synthesis of the C1-C25 Fragment of Amphidinol 3

In 2005, Roush and Flamme reported an account towards the synthesis of the C1-C25 polyol fragment of AM3.55 The remarkable feature of their approach is the application of their earlier developed double allylboration reaction56 for the
installation of the 1,5-syn and 1,5-anti diol units, which proceeded in a highly enantio- and diastereoselective fashion.

The synthesis commenced with a double allylboration reaction of aldehydes 15 and 16 using the in situ generated borane 11\(^{56}\) (obtained by reaction of \(^4\)Ipc\(_2\)BH and 2-allenyl-(1,3,2)-dioxaborinane) (Scheme 3.10.1). Thus, the (E)-1,5-anti diol 12 was obtained in good yield and with excellent enantioselectivity (94\% ee by Mosher esters analysis).\(^{57}\) Subsequent protection of diol 12 as a bis-TBS ether, PMB ether cleavage and Parikh-Doering oxidation\(^{58}\) of the resulting primary alcohol afforded aldehyde 13 in 73\% overall yield. Enol ether generation from the latter was achieved under mild conditions using \(N\)-methyl-\(N\)-(TMS)acetamide and catalytic DBU.\(^{59}\) Successive Saegusa–Ito oxidation\(^{60}\) furnished the desired (E)-\(\alpha,\beta\)-unsaturated aldehyde 14 in excellent overall yield (90\%).

Scheme 3.10.1: Synthesis of Aldehyde 14 via Double Allylboration

Reactions conditions:
a) i. PMBO(CH\(_2\))\(_2\)CHO (15), Et\(_2\)O, \(-78\) \(^\circ\)C to RT.
ii. TBSOCH\(_2\)CHO (16), Et\(_2\)O, \(-78\) \(^\circ\)C.
iii. NaOH/H\(_2\)O\(_2\), 0 \(^\circ\)C, 94\% ee, 73\%.
b) TBSCI, imid, cat. DMAP, DMF/DCM (1:1), 0 \(^\circ\)C.
c) DDQ, DCM/pH 7 buffer (13:1), 0 \(^\circ\)C.
d) SO\(_2\)Py, DIPEA, DMSO, DCM, 0 \(^\circ\)C, 73\% over 3 steps.
e) MSA, DBU, DMF, \((E/Z = 4:1), 40\) \(^\circ\)C.
f) Pd(OAc)\(_2\), MeCN/DMF (4:1), RT, 90\% over 2 steps.

The synthesis of the advanced aldehyde 21 is depicted in Scheme 3.10.2. Hydroboration/oxidation of the known TBS protected homoallylic alcohol 17\(^{61}\) with 9-BBN followed by Parikh-Doering\(^{58}\) oxidation of resultant primary alcohol gave an intermediate aldehyde. Gilbert-Seyferth homologation\(^{62}\) of the latter aldehyde,
followed by hydrozirconation/bromination63 delivered vinyl bromide 18 in 75\% yield over four steps. The \(\text{B-alkyl Suzuki coupling} \)64 of the alkylboronate generated from alkene 22 and 9-BBN afforded (\(E \))-olefin 19 (\(ds = 15:1 \)), along with inseparable 1,1-disubstituted double bond addition product with good selectivity. Sharpless asymmetric dihydroxylation65 with AD-mix-\(\alpha \) (\(ds = 15:1 \)) and subsequent diol protection as a cyclic carbonate allowed easy separation of isomers. Finally, mild acetate group deprotection using a mixture of guanidine and guanidinium nitrate in methanol,66 followed by Dess-Martin oxidation67 furnished aldehyde 21.

To complete the synthesis of the fragment authors exploited an interrupted double allylboration sequence (Scheme 3.10.3). Reaction of the \textit{in situ} generated boronate 2356 (\textit{vide supra}) with the advanced aldehyde 14, followed by methanol quench and TBS protection of the resultant alcohol afforded the labile allylboronate intermediate 24 in 53\% yield and with good stereocontrol (\(ds = 10:1 \)). It is
Chapter 3

noteworthy that the interruption of the allylboration was required in order to chemically distinguish the 1,5-diol that was generated in the double allylation sequence. Boronate 24 was then reacted with the second advanced aldehyde, 21, which resulted in the (Z)-homoallylic alcohol 25. By taking advantage of free homoallylic alcohol in 25, a hydroxyl-directed hydrogenation was employed to reduce the C8-C9 (Z)-alkene. After extensive optimisation it was found that Noyori’s catalyst, (S)-Ru(BINAP)(OAc), facilitated the selective olefin hydrogenation and furnished the C1-C25 fragment of AM3 in 88% yield.

Scheme 3.10.3: Completion of the C1-C25 Fragment of Amphidinol 3

Reaction conditions: a) 14, DCM, −78 °C, then MeOH, RT, ds = 10:1, 63%. b) TBSOTf, 2,6-lutidine, DCM, −78 °C to −10 °C, 85%. c) 21, DCM, −78 °C to RT, then MeOH, RT, 55%. d) H2 (1500 psi), cat. (S)-Ru(BINAP)(OAc), DCM/MeOH (2:1), RT, 88%.

In conclusion, Roush and Flamme developed an asymmetric synthesis of the C1-C25 polyol fragment of AM3 in 11 linear steps and 19% overall yield. The salient feature of the synthesis includes the application of double allylboration methodology to stereoselectively access 1,5-syn/anti diols in conjunction with the
strategic coupling of fragments. Notably, the ability to perform the interrupted double allylboration reaction allowed chemical differentiation of the alcohols formed. The latter feature was used to execute a chemoselective hydroxyl-directed olefin reduction.

3.11 Paquette’s Synthesis of the C1-C30 Fragment of Amphidinol 3

In 2005, Paquette and Chang reported a route to the C1-C30 fragment of amphidinol 3. In their approach, the Kocienski-modified Julia olefination was used as a key coupling reaction for the elaboration of the polyol skeleton.

The synthesis was initiated with the homologation of alcohol 27 (Scheme 3.11.1). BOM protection of the secondary alcohol, followed by ozonolysis and Julia-Kocienski olefination with potassium salt of sulfone 32, afforded olefin 28 as single geometrical isomer ($E/Z \geq 19:1$). Chemoselective primary TBS ether deprotection, succeeded by Sharpless asymmetric dihydroxylation furnished triol 29 with moderate selectivity ($ds = 4:1$), favouring the required diastereoisomer.

Scheme 3.11.1: Synthesis of the Ketone Intermediate 31

Reaction conditions: a) BOMCl, DIMEA, cat. TBAI, RT, 98%. b) O₃, DCM, −78 °C to RT, 96%. c) PMBO(CH₂)₅SO₂PT (32), KHMDS, THF, −78 °C to RT, $E/Z \geq 19:1$, 91%. d) CSA, MeOH/H₂O (1:1), 0 °C, 95%. e) AD-mix-α, tBuOH/H₂O (1:1), 0 °C, $ds = 4:1$, 95%. f) 2,2-DMP, cat. PPTS, RT, 85%. g) DMP, Py, DCM, 0 °C to RT, 91%. i) 4-Bromo-2-methyl-1-butene (33), Mg, −78 °C to −40 °C, THF, 90%. j) DMP, Py, DCM, 0 °C to RT, 90%.
The order of steps in the latter sequence proved to be crucial for the efficient separation of dihydroxylation stereoisomers. The advanced aldehyde 30 was obtained through acetonide formation and primary alcohol oxidation using Dess-Martin periodinane67 buffered with pyridine (71% yield). Subsequent installation of the 2-methyl-1-butene fragment was not trivial since the lithium-based reagent, generated from 4-bromo-2-methyl-1-butene 33, induced β-elimination in aldehyde 30. However, addition of a Grignard reagent, derived from 33, proceeded readily and afforded 31 after oxidation of the intermediate alcohol (89% over 2 steps).

The base sensitivity persisted in 31, thus TBAF buffered with acetic acid was required to efficiently remove the secondary TBDPS ether (Scheme 3.11.2).72 The resultant β-hydroxy ketone 34 was submitted to diastereoselective 1,3-\textit{syn} reduction with diethylmethoxyborane,73 followed by the acetonide formation to furnish 35 in 90% overall yield.

Scheme 3.11.2: Completion of the C17-C30 Fragment of AM3

![Scheme 3.11.2](image_url)

Reaction conditions: a) TBAF, AcOH/H\textsubscript{2}O (2:1), 50 °C, 95%. b) Et\textsubscript{2}BOMe, NaBH\textsubscript{4}, THF/MeOH (3:1), -78 °C to RT, 94%. c) 2,2-DMP, cat. PPTS, RT, 96%. d) DDQ, DCM/H\textsubscript{2}O (5:1), 0 °C, 86%. e) cat. OsO\textsubscript{4}, NaI\textsubscript{2}O\textsubscript{4}, THF/aq. KH\textsubscript{2}PO\textsubscript{4}, K\textsubscript{2}HPO\textsubscript{4} buff. (1:1), RT, 78%.
The synthesis of the C17-C30 fragment 36 was secured by primary PMB ether deprotection using DDQ and Johnson-Lemieux oxidative cleavage of the exo-olefin.74

The differentially protected intermediate 39 derived from D-malic acid was used as a common fragment for the construction of compounds 44 and 54 (Scheme 3.11.3). Carefully controlled primary TBS ether removal was achieved with CSA in a mixture of DCM and MeOH at $-10 \, ^\circ\text{C}$ in order to avoid the competitive lactonisation. Successive oxidation with buffered Dess-Martin periodinane67 furnished aldehyde 39.

Scheme 3.11.3: Synthesis of Aldehyde 39

```
Reaction conditions: a) CSA, MeOH/DCM (1:1), $-10 \, ^\circ\text{C}$, 86%. b) DMP, Py, DCM, 0 °C to RT, 82%.
```

Elaboration to phosphonium salt 44 commenced with a two-step reduction of ester 37 to the corresponding alcohol 40 (Scheme 3.11.4). Lactone formation appeared to be the main competitive reaction, thus the temperature control proved to be critical for obtaining 40 in high yield. The latter was converted to sulfone 41, ready for Julia-Kocienski olefination,71 via Mitsunobu reaction with PTSH,75 followed by oxidation with H$_2$O$_2$.76 Condensation of sulfone 41 with aldehyde 39 proceeded with moderate stereocontrol ($E/Z = 4:1$), which was of no consequence since the resulting olefin 42 was catalytically hydrogenated and the ester reduced to alcohol 43 in 81% overall yield. Finally, conversion to phosphonium iodide 44 was achieved in excellent yield via the intermediacy of the primary iodide.
The Wittig reagent 44 was used in the elaboration to the C9-C30 fragment of AM3 (Scheme 3.11.5). Oxidation of the primary alcohol 36 to the corresponding aldehyde, followed by Wittig olefination with the phosphonium salt 44 afforded the (Z)-olefin (\(^1\)H NMR), which was successively hydrogenated using Pd/C to afford the polyhydroxy segment 45 in high overall yield.

Scheme 3.11.4: Synthesis of the Phosphonium Salt 44

![Diagram of Scheme 3.11.4]

Reaction conditions: a) DIBAL-H, DCM, −78 °C. b) NaBH₄, THF/MeOH (2:1), 0 °C, 92% over 2 steps. c) PTSH, DIAD, PPh₃, THF, 0 °C. d) Mo₇O₂₄(NH₄)₆, H₂O₂, EtOH, 0 °C to RT, 76% over 2 steps. e) 37, KHMDS, THF, −78 °C to RT, E/Z = 4:1, 72%. f) H₂, cat. 10% Pd/C, RT, EtOAc, 91%. g) DIBAL-H, DCM, −78 °C. h) NaBH₄, THF/MeOH (2:1), 0 °C, 89% over 2 steps. i) I₂, PPh₃, imid, THF, 0 °C, quant. j) PPh₃, DIPEA, MeCN, 85 °C, 93%.

Further reduction of ketone 45 with NaBH₄ in MeOH/THF mixture and Mitsunobu reaction\(^{75}\) of the resulting alcohol with PTSH gave sulfide 47 as a mixture of separable diastereoisomers (\(ds = 5:1\)) (Scheme 3.11.6). Although, each of them could be ultimately converted into the same alkene product, chromatographic
separation was undertaken and individual isomers were independently examined in the subsequent reactions. Chemoselective deprotection of the primary TBS ether in the presence of TBDPS was achieved using NBS in aqueous DMSO, and was followed by oxidation to furnish aldehyde 48 ready for olefination.

Scheme 3.11.6: Completion of the C9-C30 Fragment of Amphidinol 3

Further efforts were directed towards the synthesis of sulfone 54 and its strategic coupling with the advanced aldehyde 48 (Scheme 3.11.7). The synthesis of the C1-C8 sulfone 54 proceeded from the known alcohol 49, which could be obtained from dimethyl (S)-malate in two steps. Mitsunobu reaction of 49 with PTSH, followed by molybdate-catalysed oxidation resulted in sulfone 50. Julia-Kocienski coupling of the latter with the common intermediate 39 gave a 3:1 mixture of E/Z isomers of 51, which gratifyingly could be enriched to 12:1 via
radical-induced isomerisation using AIBN and thiophenol in excellent overall yield. Although the separation of isomers was inconceivable at this stage, the sulfone 54 was isolated after chromatography as a single geometrical isomer. Towards this end, the ester functionality in 51 was reduced to alcohol 52 and this was converted into sulfone 53 using standard Mitsunobu/oxidation route (vide supra). Finally, acetonide group replacement with two TBDPS groups afforded 54 ready for the final Julia-Kocienski coupling.

Scheme 3.11.7: Synthesis of the C1-C8 Sulfone Fragment 54

Reaction conditions: a) PTSH, DIAD, PPh₃, 0 °C to RT, THF, 86%. b) Mo₇O₂₄(NH₄)₆·H₂O₂, EtOH, RT, 84%. c) 39, KHMDS, THF, −78 °C to RT, E/Z = 3:1, 90%. d) PhSH, AIBN, benzene, reflux, E/Z = 12:1, quant. e) Dibal-H, −78 °C, DCM. f) NaBH₄, THF/MeOH (2:1), 0 °C, 92% over 2 steps. g) PTSH, DIAD, PPh₃, THF, 0 °C to RT, 96%. h) Mo₇O₂₄(NH₄)₆·H₂O₂, EtOH, 0 °C to RT, 88%. i) CuCl₂·2H₂O, MeOH, reflux. j) TBDPSCl, DMAP, imid, DMF, 50 °C, 89% over 2 steps.

The formation of the C8-C9 olefin in fragment 55 was then secured via the reaction of potassium salt of 54 with aldehyde 48 at −78 °C in THF (Scheme 3.11.8). The coupling provided the strategic union of the two polyol fragments in excellent yield and with good stereocontrol (E/Z = 8.6:1). Subsequent sulfide oxidation with ammonium molybdate hydrogen peroxide complex furnished the fully protected C1-C30 fragment of amphidinol 3.
Chapter 3

Scheme 3.11.8: Completion of the C1-C30 Fragment of Amphidinol 3

\[
\begin{array}{c}
\text{TBDPS} & 1 & \text{OTBDPS} & 8 & \text{OTBDPS} & 9 & \text{OTBDPS} & 30 \\
\text{E/Z} & = & 8.6:1
\end{array}
\]

Reaction conditions: a) 48, KHMDS, THF, \(-78^\circ\text{C}\) to RT, \(E/Z = 8.6:1\), 81%. b) Mo\(_7\)O\(_{24}\)(NH\(_4\))\(_6\), H\(_2\)O\(_2\), EtOH/acetone (1:1), RT, 95%.

In summary, Paquette and Chang developed a highly convergent route to the C1-C30 fragment of amphidinol 3, which was achieved in 24 longest linear steps and 13.5% overall yield. The key features include the application of consecutive Julia-Kocienski olefinations as the crucial olefin formation reaction and the utilisation of antipodal malic acids for the synthesis of the polyol building blocks.

3.12 Rychnovsky’s Synthesis of the C1-C26 Fragment of Amphidinol 3

In 2007, Rychnovsky et al. reported the synthesis of the C1-C26 fragment of amphidinol 3.\(^{80}\) The synthesis of the C13-C26 fragment is depicted in Scheme 3.12.1. The known (S)-glyceraldehyde acetonide 56 underwent \textit{syn}-crotylation using Roush’s protocol,\(^{81}\) followed by benzyl protection of the resulting secondary alcohol, which proceeded in moderate overall yield. Subsequent hydroboration/oxidation, sulfide formation and oxidation of the latter with H\(_2\)O\(_2\)\(^{76}\) furnished the Julia-Kocienski coupling partner 58 in 80% overall yield. Coupling of 58 with the known aldehyde 63 proceeded with good yield and afforded 59 as a single \((E)\)-isomer. Sharpless asymmetric dihydroxylation\(^{65}\) of the newly formed olefin gave diol with excellent diastereocntrol (\(ds \geq 19:1\)).
Scheme 3.12.1: Synthesis of the C13-C26 Enone 61

Bis-silylation of the secondary diols with TBS chloride, chemoselective deprotection of the primary TBS ether and IBX mediated oxidation\(^8\) of the resultant primary alcohol afforded aldehyde 60 in excellent 83% yield over 4 steps. The formation of enone 61 was accomplished by vinylmagnesium bromide addition to aldehyde 60 and oxidation of the resulting allylic alcohol.

The next challenge was the coupling of two polyol segments 61 and 70. Initially, the authors envisaged addition of an organozinc reagent,\(^8\) derived from 70, to aldehyde 60. However, formation of the organozincate proved to be elusive and they turned their attention to the coupling using cross-metathesis reaction.\(^8\) Towards this end, the alkene coupling partner 70 was prepared using the modified Cossy’s metathesis route\(^5\) (vide supra) (Scheme 3.12.2). The main difference from the original route is the elaboration of the final fragment 69 as an all-silyl ether, which is consistent with the overall plan of final global deprotection by desilylation.
Chapter 3

The synthesis of 70 begun from the known allylic alcohol 64,\(^8^5\) which could be accessed from \((R)\)-glycidol in 2 steps. Cross-metathesis with acrolein mediated by Hoveyda-Grubbs 2\(^{\text{nd}}\) generation catalyst\(^5^3\) gave enal 65. Hafner-Duthaler allyltitanation\(^5^4\) of the latter followed by protection of the resulting diol as diacetate produced 67 in excellent overall yield. A second cross-metathesis with acrolein and allylation gave 69, which was submitted to reductive deacetylation using DIBAL-H. Finally, TBS protection of the triol afforded the alkene fragment 70 ready for the crucial coupling of the two polyol fragments.

Scheme 3.12.2: Synthesis of the C1-C12 Alkene 70

![Scheme 3.12.2: Synthesis of the C1-C12 Alkene 70](image)

Reaction conditions: a) Acrolein, cat. 9, RT, DCM, 82%
 b) (S,S)-10, Et\(_2\)O, −78 °C, 92%.
 c) Ac\(_2\)O, Py, RT, 93%.
 d) Acrolein, cat. 9, RT, DCM, 62%.
 e) (S,S)-10, Et\(_2\)O, −78 °C, 96%.
 f) DIBAL-H, DCM, −78 °C, 98%.
 g) TBSOTf, 2,6-lutidine, DCM, 0 °C, 91%.

The highly effective union of fragments 70 and 61 was achieved via cross-metathesis using an equimolar ratio of both reactants mediated by Hoveyda-Grubbs 2\(^{\text{nd}}\) generation catalyst\(^5^3\) in 69% yield (Scheme 3.12.3). CBS reduction\(^8^6\) was applied for the stereoselective enone 71 reduction \((ds = 17:1)\). Then, in accordance to Roush’s precedent,\(^5^5\) the chemoselective hydroxyl-directed C12-C13 alkene.
reduction was carried out using Noyori’s catalyst. The resulting alcohol was then protected to deliver 72 in excellent 89% overall yield.

The next synthetic operations were directed towards the synthesis of the phenyl sulfide 75, which could be used in a β-alkoxy alkyllithium coupling reaction. For this purpose 1,2-acetonide deprotection, proceeding through the enol ether formation, and hydrolysis was carried out.

Scheme 3.12.3: Completion of the C1-C26 Fragment of Amphidinol 3

\[\text{70} + \text{61} \xrightarrow{\text{a}} \text{71} \]
\[\text{71} \xrightarrow{\text{b, c, d}} \text{72} \ (\text{ds} = 17:1) \]
\[\text{72} \xrightarrow{\text{e, f, g}} \text{73} \]
\[\text{73} \xrightarrow{\text{h, i}} \text{74} \]
\[\text{74} \xrightarrow{\text{j, k}} \text{75} \]

Reaction conditions: a) cat. HG-II, DCM, RT, 69%. b) (S)-CBS, DCM, −78 °C, ds = 17:1, 92%. c) H₂ (1,500 psi), (S)-Ru(BINAP)(OAc)₂, DCM/MeOH (2:1), 97%. d) TBSOTf, 2,6-lutidine, DCM, 0 °C, 100%. e) i. TMSOTf, DIPEA, 0 °C to RT. ii. aq. NaHSO₄, RT. f) Citric acid, MeOH/DCM (3:1), RT, 87% over 2 steps. g) LiDBB, THF, −78 °C, 84%. h) MsCl, collidine, DCM, 0 °C to 7 °C, 86%. i) K₂CO₃, MeOH/DCM (3:1), RT, 94%. j) SEMCl, DIPEA, DCM, 0 °C to 40 °C, 15 h, 93%. k) PhSH, NaH, THF, 0 °C to 50 °C, 84%.
Subsequent single-electron reductive removal of the secondary benzyl group gave triol 73 in 73% yield over 3 steps. Formation of hydroxy epoxide 74 was achieved via the intermediacy of the primary mesylate and subsequent K$_2$CO$_3$ mediated intramolecular cyclisation. Finally, SEM protection of 74, followed by sodium thiophenolate addition to the epoxide furnished the phenylsulfide 75 and constituted the C1-C26 fragment of AM3.

The route described by Rychnovsky and co-workers allowed for convergent and efficient preparation of the C1-C26 segment of amphidinol 3 with a longest linear sequence of 23 steps and in 5.5% overall yield. The key features of the synthesis are the stereoselective metathesis coupling of two major olefinic fragments to access the polyol subunit and hydroxyl-directed allylic alkene reduction using Noyori’s catalyst. Other highlights include the construction of the 1,5-syn/anti polyol fragments employing methodology developed by Cossy and the synthesis of the second alkene fragment using Roush crotylboration and Julia-Kocienski olefination.

3.13 Cossy’s and Marko’s Synthesis of the C18-C30 Fragment of Amphidinol 3

In 2009, Cossy, Marko and co-workers published their route to the C18-C30 fragment of amphidinol 3, which possesses 6 of the 25 stereogenic centres present in the molecule. The realisation of their approach is depicted in Scheme 3.13.1. The PMB ether 77 was prepared from γ,δ-unsaturated ketone 76 using NaBH$_4$ reduction and protection of the secondary alcohol with PMB-imidate under mildly acidic conditions. The resultant racemic unsaturated ether was submitted to the oxidative cleavage of the olefin, followed by asymmetric allylation using complex (S,S)-10 and TBS protection to give 78 in 50% yield over 4 steps.
Scheme 3.13.1: Synthesis of the Phosphonium Salt 80

Reaction conditions:
- a, b: NaBH₄, MeOH, Et₂O, RT.
- c, d, e, f: PMBOC(CCl₃)NH, CSA, C₆H₁₂/DCM, 85% over 2 steps.
- g, h, i: cat. OsO₄, NMO, tBuOH/H₂O, RT.
- j, k: NaIO₄, THF/H₂O, 98% over 3 steps.
- l: I₂, PPh₃, imid, RT.
- m: PPh₃, MeCN, reflux, 78% over 2 steps.

The newly formed alkene was then efficiently transformed to the primary alcohol 79 in excellent yield. Conversion of alcohol to phosphonium salt 80 via the alkyl iodide proceeded smoothly and afforded the C25-C30 fragment as the Wittig reagent.

The route to the second Wittig coupling partner 85 is shown in Scheme 3.13.2. Diastereoselective allylation of the Oppolzer’s chiral sultam, followed by the reductive cleavage of the chiral auxiliary with lithium pyrrolidinoborohydride and formation of the primary TBS ether afforded 82 in 74% overall yield. Conversion of the latter to the aldehyde using Hon’s ozonolysis conditions, succeeded by condensation with the potassium salt of 86 under Julia-Kocienski conditions, furnished alkene 83 with excellent control over the geometry of double bond (E/Z >95:5).
Chapter 3

Scheme 3.13.2: Synthesis of Aldehyde 85

![Scheme 3.13.2: Synthesis of Aldehyde 85]

Reaction conditions: a) Allyl bromide, LiHMDS, THF/HMPA, −78 °C. b) LiPyrrBH$_3$, THF, 0 °C. c) TBSCI, imid, DMAP, DMF/THF, RT, 74% over 3 steps. d) O$_3$, DCM, −78 °C, then Et$_3$N. e) BnO(CH$_2$)$_3$SO$_2$PT (86), KHMDS, THF, −78 °C, E/Z >95:5, 55% over 2 steps. f) AD-mix-α, BuOH/H$_2$O, $ds = 4:1$, 0 °C. g) TBSOTf, 2,6-lutidine, DCM, −78 °C to RT, 69% over 2 steps. h) NH$_4$F, MeOH, 60 °C. i) DMP, 79% over 2 steps.

Stereoselective installation of the diol at C20 and C21 was achieved using Sharpless asymmetric dihydroxylation ($ds = 4:1$),65 in which the major isomer was isolated and protected as tris-TBS ether 84 in 69% yield. Chemoselective deprotection of the primary TBS ether 85 using NH$_4$F and oxidation using Dess-Martin periodinane67 furnished the aldehyde 85 in 79% overall yield (2 steps).

With two coupling partners in hand, the Wittig olefination was carried out to give (Z)-alkene 87 as the major product (Z/E >95:5) in moderate yield (Scheme 3.13.3). Asymmetric dihydroxylation65 of the latter afforded two separable diastereomeric diols with rather low selectivity ($ds = 4:1$). Subsequent acetonide formation and chemoselective hydrogenolysis of the primary benzyl ether using Raney nickel W-4 furnished the C18-C30 fragment 89 of AM3.
Scheme 3.13.3: Completion of the C18-C30 fragment 89

Reaction conditions: a) KHMDS, toluene, −78 °C, Z/E >95:5, 48%. b) AD-mix-β, tBuOH/H2O, 0 °C, ds = 4:1, 78%. c) 2,2-DMP, cat. CSA, 89%. d) H2, Raney Ni W-4, EtOH, RT, 70%.

Overall, Cossy, Marko and co-workers developed a convergent route to the C18-C30 polyol block of amphidinol 3 in 15 longest linear steps with 7.6% overall yield. The highlights of the synthesis include diastereoselective alkylation of the chiral sultam, two Sharpless asymmetric dihydroxylations and allyltitanation as key steps for installation of six stereogenic centres.

3.14 Oishi’s and Murata’s Synthesis of the C1-C14 Fragment of Amphidinol 3 and its Structural Revision

In 2008, Oishi, Murata and co-workers published a combinatorial synthesis of the 1,5-polyol system of amphidinol 3 and its diastereoisomers, which indicated that in the initial structural elucidation of amphidinol 3 the absolute configuration of the C2 stereocentre was misassigned. The synthesis of the polyol segments was designed in such a way that either diastereomer, epimeric at the C2 and C6 positions, could be prepared.
The racemic alcohol (±)-90 was submitted to the lipase AK catalytic kinetic resolution (Scheme 3.14.1). This permitted preparation of the enantioenriched acetate (R)-91 in 42% yield, which after protecting group interconversion gave silyl ether (R)-92. While the enantiopurity of (S)-90 was not satisfactory, it was improved to >99% ee by retreatment with lipase AK. Subsequent protection of the latter as a TBS ether afforded (S)-92 in good yield.

The polyol segment 96 was elaborated using a cross-metathesis approach (Scheme 3.14.2). Treatment of (R)-92 and (R)-93 with catalytic Grubbs 2nd generation carbene 98 afforded coupling product 94 in 70% yield and high selectivity (E/Z ≥10:1). Palladium catalysed reductive removal of the iodide, cross metathesis with (S)-97 or (R)-97 and consecutive protecting group removal with HF·Py gave diastereoisomers (2S,6R,10R)-96a and (2R,6R,10R)-96b. The preparation of two other diastereomers, (2S,6S,10R)-96c and (2R,6S,10R)-96d, was also achieved in a similar manner (not shown).
Scheme 3.14.2: Synthesis of 96a and its C2 Epimer 96b

![Scheme 3.14.2: Synthesis of 96a and its C2 Epimer 96b]

Reaction conditions:

- **a)** cat. 98, reflux, E/Z ≥10:1, 70%.
- **b)** nBu₃SnH, Pd(PPh₃)₄, benzene, 0 °C to RT, 93%.
- **c)** TBSOTf, 2,6-lutidine, DCM, 0 °C to RT, 93%.
- **d)** cat. 98, (S)-97 or (R)-97, DCM, reflux, E/Z ≥10:1.
- **e)** HF·Py, THF, 0 °C to 50 °C, 61% for 96a, 61% for 96b.

With the four diastereomeric C1-C14 segments (Figure 3.14.1) available, their NMR data was compared to that of the natural amphidinol 3. It was found that the ¹H spectra as well as coupling patterns were indistinguishable, presumably due to remote (1,5-) stereogenic centres. While alterations in ¹³C shifts were minute, the deviations at C4 of the 2,6-syn isomers (96b and 96c) were lower than those of the 2,6-anti isomers (96a and 96d).

Figure 3.14.1: Structures of the Diastereoisemic 1,5-Polyols
Based on the fact that absolute configurations at C6 and C10 in the natural product were unambiguously assigned using the modified Mosher’s method, while that on C2 was deduced by chemical degradation and chiral HPLC analysis, the stereochemistry at C2 became disputable.

In order to solve the problem the authors applied a single-step degradation procedure to amphidinol 3 involving cross-metathesis with ethylene gas (Scheme 3.15.3). With these conditions in hand the degradation product 99 was obtained and analysed by GC-MS using a similar approach to that used in the structural elucidation of maiotoxin. Based on comparison of the retention times of the authentic samples, the absolute configuration at C2 in the amphidinol 3 was reassigned to be (R).

Scheme 3.14.3: Structural Revision of Amphidinol 3

Revised structure of AM3

Although the reason of the original misassignment remains unclear, the authors assume that the minute sample size and its contamination with other degradation products led to the erroneous interpretation of the HPLC data.
Chapter 3

3.15 Polyol Syntheses Overview

Scheme 3.15.1: Overview of Amphidinol 3 Polyol Fragment Syntheses

Cossy’s synthesis:

Roush’s synthesis:

11 longest linear steps, 19% overall yield
Scheme 3.15.2: Overview of Amphidinol 3 Polyol Fragment Syntheses (Cont.)

Paquettes's synthesis:

- **OTBDPS**
- **OTBS**
- **OBOM**
- **SPT**

TBSO

- **37**
- **10 steps**
- **38%**

TBDPSO

- **44**
- **6 steps**
- **63%**

TBSO

- **48**

TBDPSO

- **49**
- **10 steps**
- **45%**

SO₂PT

- **54**
- **2 steps**
- **77%**

TBDPSO

- **55**

- **24 longest linear steps, 13.5% overall yield**
Scheme 3.15.3: Overview of Amphidinol 3 Polyol Fragment Syntheses (Cont.)

Rychnovsky's synthesis:

\[
\text{TBDPSO} \xrightarrow{\text{6 steps}} \text{OH} \quad 30\% \\
\]

9 steps

\[
\text{TBDPSO} \xrightarrow{\text{4 steps}} \text{OTBS} \xrightarrow{\text{12 steps}} \text{OTBS} \quad 62\% \\
\]

12 steps

\[
\text{TBDPSO} \xrightarrow{\text{7 steps}} \text{OTBS} \xrightarrow{\text{23 steps}} \text{OTBS} \quad 46\% \\
\]

23 longest linear steps, 5.5% overall yield

Marko's synthesis:

\[
\text{OPMB} \xrightarrow{\text{4 steps}} \text{OTBS} \xrightarrow{\text{9 steps}} \text{OTBS} \quad 32\% \\
\]

9 steps

\[
\text{OPMB} \xrightarrow{\text{11 steps}} \text{OTBS} \xrightarrow{\text{15 steps}} \text{OTBS} \quad 22\% \\
\]

15 longest linear steps, 7.6% overall yield
Scheme 3.15.4: Overview of Amphidinol 3 Polyol Fragment Syntheses (Cont.)

Murata's synthesis:

\[
\begin{align*}
R-92 & \quad \text{3 steps} \quad 39\% \\
\text{OTBS} & \quad (R)-92 \quad \text{OH} \\
\text{TBDPSO} & \quad (R)-97 \quad \text{OH} \\
\text{TBDPSO} & \quad \text{OH} \quad \text{OTBS} \quad \text{OTBS} \quad \text{OPiv} \\
96b & \quad \text{4 steps} \quad 47\%
\end{align*}
\]

7 longest linear steps, 18% overall yield

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\text{OH} & \quad \text{OH} \\
\text{OH} & \quad \text{OH}
\end{align*}
\]
3.16 References

4 a) Shimizu, Y. Chem. Rev. 1993, 93, 1685-1698;
Chapter 3

2011, 9, 1437.

37 Braarud, T. *Galathea Report* 1957, 1, 137.

Chapter 4

Synthesis of the Polyol Fragment of Amphidinol 3

4.1 Introduction

In the course of our studies towards the synthesis of the polyol fragment of amphidinol 3, two approaches were investigated. Both strategies retain the same main disconnections but they differ in the synthetic elaboration of the structural units. The second entry into the polyol overcame the reproducibility issues encountered en route and successfully delivered the advanced C1-C31 fragment of amphidinol 3.

4.2 Retrosynthetic Analysis of the Polyol Fragment of Amphidinol 3

The retrosynthetic analysis of the polyol segment of amphidinol 3 is presented in Scheme 4.2.1. We envisaged a highly convergent route to the C1-C31 unit able to deliver a substantial amount of material for the future studies directed towards the union with the C32-C52 fragment and elaboration of the natural product.

Scheme 4.2.1: Retrosynthetic Analysis of the C1-C31 Fragment of AM3
Chapter 4

The strategic disconnection via chelate controlled addition at the C31-C32 bond would lead to the C1-C31 fragment and separate it from the bis-THP segment. Dissection at the C15-C16 afforded two fragments 1 and 2 for which we planned to use lithiated sulfone addition to an epoxide. The latter strategy has been extensively utilised in the synthesis of the complex natural products and is regarded as a halide-free method of epoxide opening.¹

For the preparation of the cyclic silaketal 1 we envisaged a pivotal disconnection at the C23-C24, which could be constructed using the temporary silicon-tethered ring-closing metathesis (TST-RCM)/hydroboration methodology developed by Alen Cusak in the course of his doctoral studies in the Evans group (Scheme 4.2.2).² The latter dissection would unravel C1-C15 and C16-C31 fragments of similar complexity, each of which contains two stereogenic centres.

Scheme 4.2.2: Retrosynthetic Analysis of Fragment 1
Chapter 4

The formation of the homoallylic alcohol 3 could be achieved using alkenyl Grignard addition to epoxide 5. The incorporation of C20-C21 stereocentres would be effected by Sharpless asymmetric dihydroxylation of the known alkene 7, which could be accessed via cross-metathesis reaction.

In a forward manner, 4 was expected to be available through the epoxide opening of 6 with a sulfonium ylide. The introduction of the C24-C25 epoxide 6 in conjunction with the C25 stereocentre would rely on a substrate controlled 1,3-stereoinduction, while the enantioenriched alcohol 8 could be secured through the asymmetric allylation.

As outlined in Scheme 4.2.3 the major disconnection at C9-C10 could be accessed via the stereoselective addition of the vinyl organometallic 9 to the epoxy aldehyde 10.

Scheme 4.2.3: Retrosynthetic Analysis of Fragment 2
The formation of alkyne 11 was envisaged through the implementation of the challenging asymmetric propargylation of the α,β-unsaturated aldehyde 13, which in turn could be assembled using a cross-metathesis reaction. The synthesis of fragment 10 would rely on an epoxidation/kinetic resolution and oxidation sequence from alcohol 12.

4.3 Synthesis of Fragment 3

The construction of the C16-C23 fragment 3 commenced from the commercially available alcohol 12 (Scheme 4.3.1). Primary PMB ether 14 formation under basic conditions was followed by cross-metathesis with excess methyl acrylate, mediated by Hoveyda-Grubbs 2nd generation catalyst, to give the α,β-unsaturated ester intermediate 15. The successive in situ 1,2-selective reduction using DIBAL-H at $-78 \, ^\circ C$ afforded the known (E)-allylic alcohol 7 in excellent overall yield (95% over 2 steps).

Scheme 4.3.1: Preparation of the (E)-Allylic Alcohol 7

![Scheme 4.3.1](image)

It is noteworthy that an alternative route, which featured cross-metathesis with acrolein and 1,2-Luche reduction was not viable due to the poor reactivity in
the olefination step, which afforded only 75% conversion after 20 hours with 5 mol% ruthenium carbene loading (Scheme 4.3.2).

Scheme 4.3.2: Alternative Approach to 7

b) NaBH₄, CeCl₃, MeOH.

The conversion of alcohol 7 to the allylic bromide 17 also proved challenging and required some optimisation (eq. 1, Table 4.3.1). When Appel conditions were applied to alcohol 7 the reaction resulted in an incomplete conversion and formation of side products (entries 1 and 2). Attempts to exploit a one-pot mesylation/Finkelstein substitution sequence⁸ resulted an incomplete conversion in the first step and long reaction times even using a large excess of reagents (entry 3).

Table 4.3.1: Optimisation of the Allylic Bromide 17 Formation (eq. 1)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Yield (%)ᵃ</th>
<th>Notesᵇ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NBS, PPh₃, −20 °C or 0 °C</td>
<td>48</td>
<td>Incomplete conversion, side products</td>
</tr>
<tr>
<td>2</td>
<td>CBr₄, PPh₃, 0 °C</td>
<td>50</td>
<td>“</td>
</tr>
<tr>
<td>3</td>
<td>MsCl, Et₃N, then LiBr</td>
<td>-</td>
<td>“</td>
</tr>
<tr>
<td>4</td>
<td>PBr₃, Py, 0 °C</td>
<td>69</td>
<td>Clean crude NMR, low yield</td>
</tr>
<tr>
<td>5</td>
<td>Br₂, PPh₃, imid, 2-methyl-2-butene, 0 °C</td>
<td>quant.</td>
<td>Reverse addition</td>
</tr>
</tbody>
</table>

ᵃIsolated yield. ᵇConversion determined by 500 MHz ¹H NMR analysis of crude reaction mixtures.
Interestingly, halogenation using phosphorus(III) bromide in DCM resulted in full and clean conversion of the alcohol to the desired 17, but in modest yield (entry 4). Gratifyingly, quantitative formation to the allylic bromide was achieved using a mixture of PPh$_3$/imid/Br$_2$ with the reverse addition of the alcohol to a mixture of the preformed phosphonium salt (entry 5).

With the desired bromide in hand, we turned our attention to the installation of the crucial 1,2-syn diol moiety at C20-C21. Asymmetric syn-dihydroxylation of the allylic bromide 17 using AD-mix-α, following the Sharpless protocol,9 afforded the required 19 in 85% yield (Table 4.3.2, entry 1). The transformation proceeds via formation of the halohydrin intermediate 18, which undergoes the intramolecular 3-exo-tet cyclisation under the basic reaction conditions to result the α-hydroxy epoxide 19.

Table 4.3.2: Optimisation of the α-Hydroxy Epoxide 19 Formation

![Chemical Structure](image)

Reaction conditions: a) AD-mix-α, tBuOH/H$_2$O (1:1), 0 °C.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Scale</th>
<th>19/18b</th>
<th>Time, h</th>
<th>Yield (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.063 g</td>
<td>1:0</td>
<td>39</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>1.25 g</td>
<td>1:2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>“</td>
<td>1:1</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>“</td>
<td>1.6:1</td>
<td>39</td>
<td>47</td>
</tr>
<tr>
<td>5d</td>
<td>“</td>
<td>1:0</td>
<td>21</td>
<td>75</td>
</tr>
</tbody>
</table>

aAll reactions were carried out using 0.5 mol% of AD-mix-α. bRatios of products was determined by 500 MHz 1H NMR analysis of crude reaction mixtures. cIsolated yield. dUpon completion of dihydroxylation reaction was quenched with aq. K$_2$CO$_3$ and stirred for 8 h.
Unfortunately, the elaboration of this transformation on a larger scale resulted in an inseparable mixture of the desired product 19 and intermediate 18 (entry 2). Based on the observation that longer reaction times produce higher ratios of epoxide (entries 2-4), we in principle could achieve the full conversion of 18 by increasing the transformation time. However, we pursued a different approach. Thus, upon full conversion of 17, the reaction was quenched with an aqueous solution of K₂CO₃. This led to smooth cyclisation of the intermediate 18 to epoxide 19 in good overall yield (entry 5). It is notable that no undesired Payne rearrangement product was observed en route to 19.

The stereochemical course of the process was rationalised by assuming that the chiral osmium electrophile was approaching from the bottom face of 17 as suggested by the Sharpless mnemonic (Figure 4.3.1).⁹

![Figure 4.3.1: Sharpless AD Mnemonic Application to Olefin 17](image)

The successive installation of the secondary TBS ether was achieved using TBSCl and imidazole mixture in DMF (80% yield) (Scheme 4.3.3). In contrast, silylation using TBSOTf/2,6-lutidine afforded considerably lower yield (16%) due to the instability of the epoxide moiety under the reaction conditions, even at cryogenic temperatures (−78 °C). Finally, regioselective epoxide opening using isopropenylmagnesium cuprate afforded the C16-C23 fragment of AM3 in quantitative yield.
Scheme 4.3.3: Completion of Fragment 3

Reaction conditions: a) TBSCl, imid, DMF, 0 °C to RT, 80%. b) Isopropenylmagnesium bromide, cat. Li$_4$[CuCl$_4$], Et$_2$O, −78 °C to RT, 99%.

4.4 Stereochemistry Proof of Fragment 3

The modified Mosher ester method10 was used to determine the absolute stereochemistry of C20 and C21 stereocentres in fragment 3. Ester derivatives were prepared as shown in eq. 2 and the stereochemistry at C21 was unambiguously established as (S). Since Sharpless asymmetric dihydroxylation is stereospecific and advances in the suprafacial fashion, the absolute configuration at C20 was assigned as (S). Integration of the residual diastereoisomer peaks in the Mosher esters 20 and 21 suggested that asymmetric dihydroxylation of 17 had proceeded with 92% enantiomeric excess.

Reaction conditions: a) (R)-MTPA-Cl, cat. DMAP, Py, DCM, RT, 89%. b) (S)-MTPA-Cl, cat. DMAP, Py, DCM, RT, 90%.

4.5 Synthesis of Fragment 4

The synthesis of the C24-C31 fragment 4 began with Swern oxidation11 of the commercially available alcohol 22 (Scheme 4.5.1). By taking advantage of the asymmetric allylation protocol developed by Maruoka et al.12 the aldehyde 2313 was converted to the homoallylic alcohol 8 using the catalytic chiral bis-titanium(IV)
oxide (R,R)-27 and allyltributylstannane with excellent enantiocontrol (92-96% ee by chiral HPLC analysis of the benzoate derivative).

Scheme 4.5.1: Synthesis of the β-Epoxy Alcohol 26

![Scheme 4.5.1](image)

Reaction conditions:

- a) (COCl)₂, DMSO, DCM, −78 °C, then Et₃N, −78 °C to RT.
- b) (R,R)-27, allylSnBu₃, DCM, 0 °C, 93% over 2 steps, 92-96% ee.
- c) LiHMDS, BocON, THF, 0 °C, 95%.
- d) IBr, PhMe, −85 °C, ds ≥ 19:1.
- e) K₂CO₃, MeOH, RT, 86% over 2 steps.

As outlined in Figure 4.5.1 the complex 28 formation between 23 and the chiral titanium(IV) Lewis acid 27 hinders the Si-face of the aldehyde and effects the addition of the stannane nucleophile from the top face via the open transition state.¹²

![Figure 4.5.1](image)

Figure 4.5.1: Structure of Chiral Bis-Ti(IV) Catalyst and Allylation Transition State

The formation of the Boc carbonate 24 was then achieved using BocON and LiHMDS as a base in 92% yield. Interestingly, when the protection was carried out using Boc₂O the reaction failed to go to completion and resulted in the recovery of starting material. To effect the strategic substrate controlled 1,3-syn stereoinduction and install the C25 stereocentre we applied the methodology developed by Barlett¹⁴
Towards this end, treatment of 24 with iodine bromide at −85 °C, proceeding through the iodonium intermediate 29, furnished the unstable cyclic 1,3-syn-iodocarbonate 25 with excellent stereocontrol (ds ≥ 19:1). Subsequent hydrolysis using methanolic K₂CO₃ afforded the β-hydroxy epoxide 26 via a 3-exo-tet cyclisation of the intermediate 30 in 86% yield over two steps (Figure 4.5.2). Unfortunately, the basic medium effected the cleavage of the alkyne protective TMS group, which could no be avoided at this stage.

![Iodonium Intermediate 29 and Cyclisation of Iodohydrine 30](image)

Figure 4.5.2: Iodonium Intermediate 29 and Cyclisation of Iodohydrine 30

The completion of fragment 4 is presented in Scheme 4.5.2. Protection of the secondary alcohol in 27 as TBS ether and re-introduction of the TMS unit on the alkyne furnished 6 in good overall yield (71% over 2 steps). Addition of the sulfonium ylid, generated in situ from Me₃SOTf and n-BuLi, to epoxide 6 afforded the allylic alcohol 4, completing the synthesis of the C24-C31 fragment of amphidinol 3.

Scheme 4.5.2: Completion of Fragment 4

![Scheme 4.5.2: Completion of Fragment 4](image)

Reaction conditions: a) TBSCI, imid, DMF, 0 °C to RT, 79%. b) TMSCl, LiHMDS, THF, 0 °C, 90%. c) Me₃SOTf, n-BuLi, THF, −10 °C to 0 °C, 92%.
4.6 Synthesis of Fragment 2

The synthesis of the C1-C15 fragment commenced with the formation of aldehyde 10, as illustrated in Scheme 4.6.1. Epoxidation of the commercially available alcohol 12 with K₂CO₃ buffered mCPBA, followed by Jacobsen’s hydrolytic kinetic resolution¹⁶ led to the enantiopure epoxide 32 (enantioselectivity was determined by chiral HPLC analysis of the benzyl ester). The absolute configuration of epoxide 32 was assigned as (S) based on the general model of Jacobsen’s HKR, implying that (S,S)-Co-Salen-OAc catalyst 33 hydrolyses the (R) enantiomer of the racemate mixture preferentially. The succeeding oxidation of 32 to the C10-C15 aldehyde 10 was secured under Ley’s conditions in 78% yield.

Scheme 4.6.1: Synthesis of Fragment 10

Scheme 4.6.1: Synthesis of Fragment 10

The construction of the C1-C9 unit of amphidinol 3 was initiated with the highly selective (E/Z ≥19:1) cross metathesis⁴ of the known homoallylic alcohol 34¹⁷ with acrolein mediated by Hoveyda-Grubbs 2nd generation catalyst (eq. 3).⁵

Chapter 4

The protection of the hydroxyenal system in 35 was then investigated (eq. 4, Table 4.6.1). Based on the overall protecting group strategy, we envisaged masking the majority of the secondary alcohols in the molecule as TBS ethers. Unfortunately, all efforts to install the latter functionality in 35 with high yield failed. We screened a range of the silyl electrophile sources and bases, but in all instances the incomplete conversion was observed in conjunction with the inseparable by-products (entries 1-6). Careful analysis of the reaction mixtures suggested that the main side product of the TBS protection was the persilylated enol ether 37. Furthermore, the reduced yield of 36 was attributed to the Mukaiyama aldol reaction, which could in principle take part between 37 and the starting material 35 or enal 36.

Table 4.6.1: Optimisation of the Hydroxyenal 35 Silylation (eq. 4)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Yield (%), (conv., %)(^a, b)</th>
<th>Notes(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TBSOTf, Et(_3)N, DCM, (-78 \degree)C</td>
<td>75(88)</td>
<td>Trace of 37</td>
</tr>
<tr>
<td>2</td>
<td>TBSOTf, 2,6-lutidine, DCM, (-78 \degree)C</td>
<td>-(79)</td>
<td><2% of 37</td>
</tr>
<tr>
<td>3</td>
<td>TBSOTf, pyridine, DCM, (-78 \degree)C</td>
<td>-(85)</td>
<td>36/37 – 10:1</td>
</tr>
<tr>
<td>4</td>
<td>TBSCI, imid, DMF, 0 \degree)C</td>
<td>decomp.</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>TBSCI, DIPEA, DMF, 0 \degree)C</td>
<td>“</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>TBSCI, DMAP, DCM, 0 \degree)C</td>
<td>“</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>TESOTf, Et(_3)N, DCM, (-78 \degree)C</td>
<td>99</td>
<td>13/41 – 1:0</td>
</tr>
</tbody>
</table>

\(^a\)Isolated yield. \(^b\)Conversion and products ratio determined by 500 MHz \(^1\)H NMR analysis of crude reaction mixtures.

The observed experimental data suggested that the main reason of the low efficiency of TBS protection was the limited steric accessibility of alcohol vs. enol functionality (Figure 4.6.1). The issue was successfully circumvented by using less
sterically demanding TESOTf, which delivered 13 in essentially quantitative yield without the concomitant formation of the persilylated product 38 (entry 7). Although, the introduction of the relatively labile secondary TES ether was potentially problematic, we expected that the steric bulk of the neighbouring TIPS moiety could account for the greater stability of the latter throughout the synthesis.

![Figure 4.6.1: Steric Clash in Hydroxyenal vs Dienenol](image)

With a reliable route to access the protected enal 13, we set out to stereoselectively introduce the homopropargyl functionality and complete the C1-C9 fragment of AM3. Much to our surprise, the asymmetric propargylation of the α,β-unsaturated aldehyde 13 proved to be extremely problematic. As outlined in Table 4.5.2, propargylation of 36 under Barbier conditions afforded 40 with nearly 1:1 ratio of diastereoisomers (entry 1). Unfortunately, application of Maruoka’s chiral bis-Ti(IV) catalyst with allenyl stannane 47 led to complete recovery of the starting material, presumably due to low electrophilicity of the aldehyde, deactivated by conjugation (entry 2). Similarly, a Ti(IV)-based system developed by Yu was unreactive (entry 3). Next, we turned our attention to the base-activated chirally modified Lewis acid, SiCl₄, introduced by Denmark. Initial experiments gave us some hope by affording the 23% of the desired propargylation product 40 and the intact starting material (entry 4). However, attempts to improve the reactivity by the increased loading of the phosphoramidate ligand 43 and tin nucleophile 47 were futile (entry 5).
Table 4.6.2: Optimisation of the Asymmetric Propargylation (eq. 5)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Conditions</th>
<th>ds<sup>a</sup></th>
<th>Yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>Zn, propargyl bromide, THF/aq. NH<sub>4</sub>Cl</td>
<td>55:45</td>
<td>79 (94 b.r.s.m.)</td>
</tr>
<tr>
<td>2</td>
<td>“</td>
<td>Ti(O<sup>i</sup>Pr)<sub>4</sub>, TiCl<sub>4</sub>, Ag<sub>2</sub>O, (R)-BINOL, 47</td>
<td>n/r</td>
<td>n/r</td>
</tr>
<tr>
<td>3</td>
<td>“</td>
<td>Ti(O<sup>i</sup>Pr)<sub>4</sub>, (R)-BINOL, B(OMe)<sub>3</sub>, 4Å MS, 47</td>
<td>“</td>
<td>“</td>
</tr>
<tr>
<td>4</td>
<td>“</td>
<td>SiCl<sub>4</sub>, 5 mol% (R)-43, 1.1 equiv of 47</td>
<td>n/d</td>
<td>23 (90 b.r.s.m.)</td>
</tr>
<tr>
<td>5</td>
<td>“</td>
<td>SiCl<sub>4</sub>, 10 mol% (R)-43, 2 equiv of 47</td>
<td>n/d</td>
<td>30 (87 b.r.s.m.)</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>1.2 equiv of 44, 1.2 equiv of 45</td>
<td>>99:1</td>
<td>65</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>BBr<sub>3</sub>, 1.05 equiv of 42, 1.1 equiv of 46</td>
<td>>99:1</td>
<td>75</td>
</tr>
</tbody>
</table>

^aDiastereomeric ratio determined by chiral HPLC of the benzoate derivative. ^bIsolated yield.

Further examination of the major asymmetric propargylation methodologies revealed that the stereoselective formation of 41 could only be achieved by the application of the stoichiometric chiral boronates, introduced by Corey²¹ and Soderquist²² (entries 6 and 7).

Figure 4.6.2: Structure of Nucleophiles and Chiral Ligands Used for the Asymmetric Propargylation
Gratifyingly, these reactions furnished 41 with 75% and 65% yield respectively and excellent facial selectivity (ds ≥99:1). Both reactions were assumed to proceed through cyclic boat-type transition states 48 and 49, which resulted in the intramolecular delivery of the allenyl nucleophile from the less sterically congested Re-face of the aldehyde and formation of the (S)-configured secondary homoallylic alcohol 41 (Figure 4.6.3).

Figure 4.6.3: Transition States for the Propargylation Reaction of 13

Ultimately, the synthesis of the C1-C9 fragment was completed by the TBS protection of the newly generated secondary alcohol at C6 in excellent yield (eq. 6).

Reaction conditions: a) TBSOTf, Et3N, DCM, −78 °C, 90%.

With a reliable route to 11 available, we pursued its strategic coupling with the C10-C15 unit 10 and access the C1-C15 segment of amphidinol 3. We planned to achieve this union by performing the asymmetric vinylation using the organozinc chemistry developed by the Wipf and Walsh research groups.23 Thus, generation of the chiral vinyl zincate 50 was carried out by a chemoselective hydrozirconation of alkyne 11 with Schwartz’s reagent, followed by transmetalation with dimethylzinc and addition of the chiral (−)-MIB ligand (Scheme 4.6.2). Treatment of the latter with aldehyde 10 afforded the allylic alcohol 51 in 43% unoptimised yield and with good diastereocontrol (ds = 9:1). Finally, TBS protection of the secondary alcohol
Chapter 4

Using TBSOTf and 2,6-lutidine mixture at −78 °C delivered the C1-C15 fragment 2 in excellent yield.

Scheme 4.6.2: Synthesis of Fragment 2

![Scheme 4.6.2](image)

Reaction conditions:

a) i. Cp₂Zr(H)Cl, DCM, 0 °C. ii. Me₂Zn, (−)-MIB, DCM, −78 °C to RT. iii. 10, DCM, −10 °C, 43%, ds = 9:1.

b) TBSOTf, 2,6-lutidine, DCM, −78 °C, 96%.

The stereochemical outcome of the vinylation step could be explained using the Noyori model 52 (Figure 4.6.4).²⁴ Formation of the rigid bicyclic bimetallic transition state via coordination of the carbonyl to the more Lewis-acidic Zn atom allowed for the activation of the former towards the vinyl transfer to the Si-face of the aldehyde and furnished the allylic alcohol 51 with (R)-configuration.

Figure 4.6.4: Noyori’s Model for the Vinylation Transition State

4.7 Synthesis of Fragment 1

During the course of doctoral studies in the Evans laboratory, Alen Cusak demonstrated that eight-membered cyclic syn- and anti-silaketals undergo a highly stereoselective hydroboration reaction to deliver propionate motif containing units.
The facial selectivity of the borane addition was shown to be dictated by the absolute configuration of the allylic ether and proceeded from the less sterically hindered face of the silyl ketal. The stereochemical outcome of the transformation was unambiguously proved by the combination of the modified Mosher esters and X-ray analysis. Furthermore, the fluoride based deprotection of the hydroboration products could unravel diastereomeric propionate units, which are found within the structural frameworks of many biologically important natural products, e.g. spirastrellolide A and F methyl esters, fumonisin B1 and baconipyrone C (Figure 4.7.1).25

Scheme 4.7.1: Model Hydroboration of syn- and anti-Silaketals

Reaction conditions: a) BH$_3$·DMS, THF, RT, then NaOH/H$_2$O$_2$, 0 °C to RT, 86% and 90%, $ds \geq 19:1$.
b) TBAF, THF.

Figure 4.7.1: Natural Products with Polypropionate Units
We envisaged that this methodology could provide us with a convenient avenue to access the C16-C31 segment of AM3 with the concomitant installation of the crucial C23-C24 stereocentres. The synthesis of fragment 1 began with the formation of the advanced mixed silaketal 59, which was achieved in 84% yield from alcohols 3 and 4 with the implementation of iPr₂SiCl₂ as a temporary silicon tether (TST) (eq. 7).

Reaction conditions: a) 3, iPr₂SiCl₂, imid, 0 ºC to RT, then 4, imid, DCM, 0 ºC to RT.

With gram quantities of 59 in hand we moved to the investigation of RCM reaction (eq. 8, Table 4.7.1). Our initial efforts were based on conditions used by Dr. Cusak for synthesis of the cyclic silaketals 53 and 56. Unfortunately, no conversion to the desired product was observed using Grubbs 2nd generation catalyst with loadings up to 30 mol% (entry 1). The complete substrate recovery was observed when the reaction was run at a higher temperature in benzene (entry 2). Following the report of Grela et al. that fluorinated solvents increase the catalyst’s turnover in metathesis reactions, we switched to perfluorotoluene, but formation of 60 was not observed (entry 3). Finally, application of other ruthenium carbenes proved to be ineffective as well (entries 4 and 5).
Table 4.7.1: TST-RCM Reaction of 59 (eq. 8)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Conditions</th>
<th>Conc. (mM)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30 mol% G-II</td>
<td>40 °C, DCM</td>
<td>9.5</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>“</td>
<td>80 °C, PhH</td>
<td>“</td>
<td>72</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>“</td>
<td>80 °C, C₆F₆CF₃</td>
<td>“</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>30 mol% G-I</td>
<td>40 °C, DCM</td>
<td>“</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>30 mol% HG-II</td>
<td>“,”“</td>
<td>“</td>
<td>“</td>
<td>-</td>
</tr>
</tbody>
</table>

Although it is known that the metathesis reaction is tolerant to the presence of the electron rich triple bond,²⁷ it was likely that in our case the alkyne was inhibiting the catalytic system. According to the literature, a cobalt carbonyl complex could be an effective and easily removable group for the protection of alkynes interfering with metathesis process.²⁸ To test the feasibility of the approach, the alkyne-cobalt complex 61 was formed under standard conditions (eq. 9).
Subsequent attempts to optimise TST-RCM reaction on the substrate 61 bearing a masked alkyne are illustrated in Table 4.7.2. Initial investigation of various ruthenium carbene catalysts led to the recovery of the starting material, along with the cobalt complex decomposition to afford alkyne 59 (entries 1-4). Interestingly, while 30 mol% of Grubbs 2nd generation catalyst resulted in no reaction, stoichiometric quantities of the latter resulted in 54% conversion to the desired alkene 62, along with 11% of dimer and substantial decomposition to 59. The reactivity was slightly improved at higher temperatures and prolonged reaction times. This led to a better product distribution, but the complete cobalt complex decomposition was detected (entry 6).
Table 4.7.2: Optimisation of the RCM Reaction of 61 (eq. 10)

<table>
<thead>
<tr>
<th>Entry<sup>d</sup></th>
<th>Catalyst</th>
<th>Conditions</th>
<th>Time (h)</th>
<th>Yield (%)<sup>b,c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30 mol% G-I</td>
<td>40 °C, DCM</td>
<td>48</td>
<td>z<sup>d</sup></td>
</tr>
<tr>
<td>2</td>
<td>30 mol% HG-II</td>
<td>¬,¬</td>
<td>“”</td>
<td>z<sup>d</sup></td>
</tr>
<tr>
<td>3</td>
<td>1 eq. HG-II</td>
<td>¬,¬</td>
<td>24</td>
<td>z<sup>d</sup></td>
</tr>
<tr>
<td>4</td>
<td>30 mol% G-II</td>
<td>¬,¬</td>
<td>“”</td>
<td>z<sup>d</sup></td>
</tr>
<tr>
<td>5</td>
<td>1 eq. G-II</td>
<td>¬,¬</td>
<td>17</td>
<td>54% conv., 42% of 62, 11% of dimers, 61/59-1.6:1 Full 61 decomp., 89% of 62, 11% dimers</td>
</tr>
<tr>
<td>6</td>
<td>30 mol% G-II</td>
<td>100 °C, PhMe</td>
<td>48</td>
<td>50% conv., 89% of 62, 11% dimers</td>
</tr>
</tbody>
</table>

^aAll reactions were carried out at 9.5 mM concentration. ^bIsolated yield. ^cDiastereomeric ratio and conversion determined by 500 MHz ¹H NMR analysis of crude reaction mixtures. ^dRecovered starting material, some complex decomp.

Based on the observed results it was inferred that TST-RCM reaction is viable at elevated temperatures and high Grubbs 2nd generation catalyst loading. However, the cobalt-alkyne complex 61 was not stable at these conditions and was decomposing to the alkyne, which in turn shuts down the catalytic cycle by irreversibly binding to the ruthenium carbene. Therefore, from a strategic standpoint, synthesis of a metathesis precursor without the interfering alkyne moiety could improve the catalyst turnover and provide the desired TST-RCM product.
4.8 Revised Approach to the C16-C30 Fragment of Amphidinol 3

Difficulties encountered during the strategic TST-RCM reaction led us to reinvestigation of the strategic plan towards the polyol segment of AM3 (Scheme 4.8.1). We envisaged a new disconnection at C30-C31, which could be obtained via Julia-type olefination. This approach would add a high degree of flexibility to the route, since the benzyl ether in fragment 63 could act as both olefination precursor (in the form of sulfone or ketone) or as a masked alkyne, available via deprotection, oxidation and Seyferth–Gilbert homologation.29 Thus, leaving the opportunity to exploit a chelation-controlled C31-C32 bond formation.

Scheme 4.8.1: Revised Retrosynthetic Analysis of the C1-C30(31) Fragment of AM3

By analogy to the previous analysis, the main disconnection at C15-C16 should provide epoxide 2 and sulfone 63. The synthetic strategy towards the C16-C30 fragment should not change and in a retrosynthetic manner 63 could be unravelled to alcohols 3 and 64 (Scheme 4.8.2). The latter would come from the sulfonium ylid addition to epoxide 65. Whereas, IBr mediated 1,3-syn stereoisoduction and asymmetric allylation would give 65 and 66 respectively.
4.9 Revised Approach to the C1-C15 Fragment of Amphidinol 3

Although the developed route to the C1-C15 fragment of amphidinol 3 delivered acceptable quantities of material for epoxide opening studies, we experienced certain difficulties during the scale-up procedure. Mainly, problems arose in the asymmetric propargylation step, which produced inconsistently low yields (30-50%) of 41 due to the deprotection of silyl ethers by the residual HBr (generated during the chiral boronate formation). Additionally, we did not see any means to improve the moderate selectivity of the vinylation step. Therefore, we pursued an alternative and more selective route to this fragment, capable to deliver larger quantities of the material. The revised strategy is depicted in Scheme 4.9.1.
Chapter 4

We decided to maintain the high convergence of the route by keeping the pivotal disconnection at the same place. The asymmetric allylboration reaction developed by Roush\(^{30}\) was chosen to substitute for the C6-C7 bond forming propargylation step. In a forward manner, the C10-C15 fragment of AM3 was anticipated to come from the commercially available acid 69. Subsequently, Weinreb amide coupling should be the ultimate bond forming reaction between the C1-C9 and C10-C16 units. Whereas, CBS reduction was planned to secure the installation of the C10 stereocentre and furnish 2 after TBS protection.

Scheme 4.9.1: Revised Retrosynthetic Analysis of Fragment 2

4.10 Revised synthesis of the C24-C30 Fragment of Amphidinol 3

The improved synthesis of the C24-C30 fragment delineated from the commercially available alcohol 70 (Scheme 4.10.1). Protection of the later as a
benzyl ether followed by ozonolysis furnished aldehyde 72 in 89% yield ready for the installation of the first stereocentre. By taking advantage of Maruoka’s asymmetric allylation protocol,\(^\text{12}\) aldehyde 72 was converted to the known homoallylic alcohol 66\(^\text{31}\) using catalytic chiral bis-titanium(IV) oxide (\(R,R\))-27 and allylSnBu\(_3\) with excellent enantiocontrol (92-94% ee by chiral HPLC analysis).

Scheme 4.10.1: Synthesis of the Boc Carbonate 73

The formation of the Boc carbonate 73 was then achieved using BocON and LiHMDS as a base in 95% yield. The strategic substrate-directed 1,3-\(\text{syn}\) stereoinduction in carbonate 73 was achieved using IBr at low temperature to furnish 74 and install the C25 stereocentre with good diastereocontrol (\(ds = 15:1\)) (Scheme 4.10.2). Subsequent hydrolysis of 74 using methanolic K\(_2\)CO\(_3\) afforded the \(\beta\)-hydroxy epoxide 75 in 81% yield over two steps.

Scheme 4.10.2: Synthesis of the \(\beta\)-Hydroxy Epoxide 75

Reaction conditions: a) IBr, PhMe, \(-85^\circ\text{C}, ds = 15:1\). b) K\(_2\)CO\(_3\), MeOH, RT, 81% over 2 steps.
It is noteworthy that the hydrolysis reaction time of the cyclic iodocarbonate 74 was very scale dependent. Thus, strict TLC control was imperative in order to obtain reproducibly high yields and avoid further methoxide addition to epoxide 75.

The elaboration of alcohol 75 to 64 required TBS protection under TBSCI/TMEDA conditions, followed by epoxide opening in 65 using sulfonium ylid generated *in situ* from Me₃SOTf and "BuLi and afforded the C24-C30 fragment in 89% yield over 2 steps (Scheme 4.10.3).

Scheme 4.10.3: Synthesis of the Allylic Alcohol 64

Reaction conditions: a) TBSCI, TMEDA, DMF, RT, 97%. b) Me₃SOTf, "BuLi, THF, −10 °C to 0 °C, 92%.

4.11 Stereochemistry Proof of Fragments 66 and 64

The absolute configuration of the C27 stereocentre introduced by asymmetric allylation was confirmed by comparing the sign of the optical rotation of 66 with the known literature value for this compound, which suggested that *(S)*-homoallylic alcohol was formed. To gain further evidence, the modified Mosher esters analysis was carried out. The formation of MTPA esters from alcohol 66 and application of the Kakisawa conformational model¹⁰ unambiguously proved the *(S)*-configuration at C27 (eq. 11).

Reaction conditions: a) *(R)*-MTPA-Cl, *cat.* DMAP, Py, DCM, RT, 91%. b) *(S)*-MTPA-Cl, *cat.* DMAP, Py, DCM, RT, 92%.
Similarly, the modified Mosher esters method was used to assign the (S) configuration of the C25 stereocentre (eq. 12). The latter was in accordance with the 1,3-syn stereoinduction expected during the cyclic iodocarbonate formation step.

\[
\begin{align*}
\text{R} = (S)-\text{MTPA}, & \quad 78 \\
\text{or} & \quad (R)-\text{MTPA}, & \quad 79
\end{align*}
\]

Reaction conditions: a) (R)-MTPA-Cl, \textit{cat.} DMAP, Py, DCM, RT, 91%. b) (S)-MTPA-Cl, \textit{cat.} DMAP, Py, DCM, RT, 92%.

4.12 Synthesis of Fragment 63

With substantial quantities of both metathesis precursors in hand, we moved towards the synthesis of the C15-C30 fragment. By employing the similar TST strategy described in Chapter 4.7, smooth formation of the mixed silaketel 80 was achieved in excellent yield by sequential reaction of alcohols 3 and 64 with \(\text{t-Pr}_2\text{SiCl}_2\) used as a temporary tether surrogate (eq. 13).

\[
\begin{align*}
\text{PMBO} & \quad \text{OH} & \quad 3 \\
\text{OTBS} & \quad + & \quad \text{TBSO} & \quad \text{OH} & \quad 64
\end{align*}
\]

\[
\begin{align*}
\text{PMBO} & \quad \text{OH} & \quad \text{Si}^{\text{t-Pr}} & \quad \text{OTBS} & \quad \text{OBn} & \quad 80
\end{align*}
\]

Reaction conditions: a) 3, \(\text{t-Pr}_2\text{SiCl}_2\), imid, DCM, 0 °C to RT, then 64, imid, DCM, 84%.

We then turned our attention to RCM reaction of 80. The formation of cyclooctanoids from acyclic precursors is regarded to be the one of most challenging reactions due to the developing ring strain and restricted bond rotations in the precyclisation conformer.\(^{32}\) Additionally, the formation of trisubstituted olefins in the ring-closing act represents a significant challenge due to steric and
conformational effects within the molecule.33 Subsequently, high catalyst loadings (up to 50 mol%), long reaction times and high temperatures are generally needed to pursue the product formation. Several strategies were developed to overcome the sluggishness of the process. These include, the introduction of a conformational constraint that favours the cyclisation32a and the development of sterically less hindered Grubbs carbenes, by reducing the steric bulk of N-heterocyclic carbene ligands.34

In studies carried out by Dr. Alen Cusak, no systematic research was carried out towards the optimisation of the RCM reaction for the formation of 53 and 56 based on the catalyst design, because of the scarce availability of ruthenium carbenes at that time. We anticipated that variations in catalyst (Figure 4.12.1), temperature and solvent could provide improvements in the efficiency of the transformation (Table 4.12.1). Initial reaction using standard conditions comprising of 30 mol% of G-II catalyst in refluxing DCM resulted in 96% conversion with 3% of dimeric materials (entry 1). Interestingly, application of the Fürstner’s catalyst 7435 and the ruthenium carbene developed by Nolan et al. 7536 proved to be less efficient (entry 2 and 3). When the transformation was carried at higher temperature in DCE, the moderate conversion was observed with more dimers being formed (entry 4). In an attempt to increase an effective catalyst concentration, the syringe pump addition of the carbene was attempted. However, this resulted in lower conversion and formation of more dimeric materials (entry 5 and 7). Interestingly, the stepwise addition of the catalyst led to a sharp decrease in reactivity of the system (entry 6).
Table 4.12.1: Optimisation of the TST-RCM Reaction of Silaketal 80 (eq. 14)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Conditions (temp. °C, solvent)</th>
<th>Conc. (mM)</th>
<th>Time (h)</th>
<th>Conversion<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30 mol% G-II</td>
<td>40, DCM</td>
<td>10</td>
<td>72</td>
<td>96%, 3% of dimers</td>
</tr>
<tr>
<td>2</td>
<td>30 mol% of 74</td>
<td>40, DCM</td>
<td>10</td>
<td>“</td>
<td>12%, no dimers</td>
</tr>
<tr>
<td>3</td>
<td>30 mol% of 75</td>
<td>40, DCM</td>
<td>10</td>
<td>“</td>
<td>67%, no dimers</td>
</tr>
<tr>
<td>4</td>
<td>30 mol% G-II</td>
<td>80, DCE</td>
<td>10</td>
<td>“</td>
<td>65%, 11% of dimers</td>
</tr>
<tr>
<td>5</td>
<td>30 mol% of G-II<sup>b</sup></td>
<td>80, PhMe</td>
<td>5</td>
<td>“</td>
<td>90%, 8.7% of dimers</td>
</tr>
<tr>
<td>6</td>
<td>30 mol% of G-II<sup>c</sup></td>
<td>80, PhMe</td>
<td>5</td>
<td>“</td>
<td>14%, no dimers</td>
</tr>
<tr>
<td>7</td>
<td>30 mol% of G-II<sup>b</sup></td>
<td>40, DCM</td>
<td>10</td>
<td>“</td>
<td>43%, <5% of dimers</td>
</tr>
<tr>
<td>8</td>
<td>30 mol% G-II<sup>d</sup></td>
<td>40, DCM</td>
<td>10</td>
<td>“</td>
<td>15%, no dimers</td>
</tr>
<tr>
<td>9</td>
<td>30 mol% of G-II<sup>f</sup></td>
<td>40, DCM</td>
<td>10</td>
<td>“</td>
<td>99%, <5% of dimers</td>
</tr>
</tbody>
</table>

^aDiastereomeric ratio and conversion determined by 500 MHz ¹H NMR analysis of crude reaction mixtures. ^bSyringe pump addition of the catalyst over 12 hours. ^cStepwise addition of the catalyst, 2x15 mol% in 24 hour interval. ^d1 equiv. of p-benzoquinone used as an additive.

As shown by Grubbs ³⁷ addition of benzophenone to the reaction can increase the half-life of the metathesis catalyst. Unfortunately, in our case this strategy led to the shut down of the transformation (entry 8). Ultimately, the best yield (97%) of the ring-closing product was obtained by running the reaction in DCM and employing a stepwise addition of Grubbs 2nd generation catalyst over 72 h (entry 9).
With TST-RCM product in hand we carried out a hydroboration reaction to install the distinctive C23-C24 propionate stereocentres. Gratifyingly, application of the optimised hydroboration conditions (5 equiv. of BH$_3$·THF at room temperature) resulted in formation of the desired 84 after silyl protection, in overall 72% yield (2 steps) with excellent diastereoselectivity ($ds \geq 19:1$) (eq. 15).

Unfortunately, hydroboration/oxidation conditions were not fully compatible with the substrate and one of the TBS ethers was cleaved during the reaction (based on 1H NMR analysis of the crude reaction product), resulting in complex mixtures, thus preventing isolation of pure intermediate alcohol. Although the exact position of TBS cleavage was not clear, it seems reasonable that deprotection at C27 could arise from the intramolecular hydride transfer proceeding via a cyclic 6-membered transition state 85 (Figure 4.12.2). 38 Nevertheless, the two-step procedure for the synthesis of 84 proved to be an extremely convenient and reliable procedure even on a high scale.
The relative stereochemistry of the hydroboration product 84 was assigned using a series of 2D NOESY, HSQC, HMBC, COSY experiments in conjunction with coupling constant analysis (Figure 4.12.3). The observed spectroscopic data strongly suggested that syn-silaketel 84 adopted a boat-chair conformation.

This spatial arrangement was supported by typical 1,2-diequatorial (gauche) coupling constant between H5 and H4 ($^3J_{H4,H5} = 3.1$ Hz) and nOe signals observed between H2-H1-iPr-H6-OTBS-H4 residing on the same face of the molecule, in addition to the crucial enhancement between the pseudoequatorial protons H4 and H5. Furthermore, 1,2-diaxial coupling constants were observed, including $J_{H1,H3}$ (9.8 Hz) and $J_{H5,H6}$ (5.4 Hz). Although, the latter is smaller than common $^3J_{anti}$ coupling, this could be explained as a result of steric repulsion between R1 and OTBS group leading to a narrowing of the dihedral angle between H5 and H6.

Figure 4.12.2: Proposed Intramolecular Desilylation of 84

Figure 4.12.3: Stereochemical Assignment of 84
Chapter 4

The proposed relative configuration of the hydroboration product was in full agreement with the model studies, which suggested the addition of the borane electrophile from the less sterically hindered face of the silyl ketal.² Notably, the conformational analysis of 84 using Spartan '08, calculated at a semi-empirical level of theory using an AM1 basis set, indicated a boat-chair as the lowest energy conformer, thus additionally supporting our elucidation.

The culmination of synthesis of the C16-C30 sulfone is outlined in Scheme 4.12.1. Chemoselective deprotection of the primary PMB ether using DDQ in buffered DCM afforded alcohol 86 in excellent yield. Conversion of 86 to sulfone 63 was achieved using Mitsunobu conditions,³⁹ employing PhSSPh and PBu₃, followed by a one-pot oxidation of the intermediate sulfide with hydrogen peroxide and ammonium molybdate complex.⁴⁰

Scheme 4.12.1: Synthesis of Sulfone 63

![Scheme 4.12.1: Synthesis of Sulfone 63](image)

Reaction conditions: a) DDQ, DCM/pH 7 buffer (20:1), 0 °C to RT, 98%. b) PhSSPh, PBu₃, THF, then H₂O₂, cat. (NH₄)₆Mo₇O₂₄·4H₂O, 0 °C to RT, 77%.

4.13 Revised Synthesis of the C10-C15 Fragment

The revised synthesis of the C10-C15 fragment 67 began with construction of Weinreb amide using CDI coupling (Scheme 4.13.1). Activation of the
commercially available acid 70 via formation of imidazolide intermediate, followed by addition of N-benzyl-N-methoxyamine afforded 87 in excellent yield. Successive epoxidation was accomplished under biphasic conditions using in situ generated DMDO in 84% yield, whereas conventional epoxidation with mCPBA was not compatible with the amide and led to the decomposition. Finally, installation of the crucial C14 stereocentre in 67 was achieved using Jacobsen’s hydrolytic kinetic resolution of the terminal epoxide in acceptable yield. The absolute configuration of epoxide 67 was assigned as (S) using the model for HKR discussed in Chapter 4.6.

Scheme 4.13.1: Synthesis of Fragment 67

![Scheme 4.13.1](image)

Reaction conditions: a) CDI, BnNH(OMe), DCM, 0 °C to RT, 92%. b) Acetone, Oxone®, NaHCO₃, EtOAc/H₂O (1:1), 98%. c) cat. (S,S)-OAc-33, H₂O, THF, 0 °C to RT, 60% (based on 50% conv.), >99% ee.

4.14 Revised Synthesis of the C1-C9 Fragment

For the preparation of the C1-C9 fragment we planned to implement the allylboration methodology developed by the Roush group. Generation of the chiral bimetallic derivative 88 by hydroboration of allenyl stannane 47 with (1pc)₂BH at −78 °C, followed by the thermodynamic 1,3-boratropic rearrangement at −20 °C gave the allyltin reagent 89 (Scheme 4.14.1). Addition of the α,β-unsaturated aldehyde 13 to 89 at −78 °C in Et₂O led to the homoallylic alcohol 91 with excellent stereocontrol (ds ≥19:1) after oxidative work-up. The stereochemical course of the process could be rationalised by invoking the chair-like cyclic transition state 90, which effects the formation of C6-(R) and is consistent with the general sense of asymmetric induction by the -B(1pc)₂ unit in allylation and crotylation reactions.
Scheme 4.14.1: Allylboration of 13

\[\text{TIPSO-OTES} \text{CH} \text{SnBu}_3 \rightarrow a \rightarrow \text{TIPSO-OTES} \text{OH} \text{SnBu}_3 \rightarrow 89 \]

Reaction conditions: a) \((\text{lpc})_2\text{BH}, \text{Et}_2\text{O}, -78 \, ^\circ\text{C} \text{ to } -20 \, ^\circ\text{C}\), then 13, \text{Et}_2\text{O}, -78 \, ^\circ\text{C}, 84\%, \, ds \geq 19:1.

With successful implementation of the Roush allylboration the resulting secondary alcohol 91 was protected as TBS ether 68 (Scheme 4.14.2). Tin-iodine exchange in the latter afforded the vinyl iodide 92 as a Weinreb coupling precursor alternative to 68 (99% yield).

Scheme 4.14.2: Synthesis of the Vinyl Stannane 68 and Iodide 62

\[\text{TIPSO-OTES} \text{OH} \text{SnBu}_3 \rightarrow a \rightarrow \text{TIPSO-OTES} \text{SnBu}_3 \rightarrow 89 \rightarrow 68 \]

Reaction conditions: a) 47, \((\text{lpc})_2\text{BH}, \text{Et}_2\text{O}, -78 \, ^\circ\text{C} \text{ to } -20 \, ^\circ\text{C}\), then 13, \text{Et}_2\text{O}, -78 \, ^\circ\text{C}, 89\%, \, ds \geq 19:1. \, b) \text{TBSOTf, Et}_3\text{N, DCM, 0} \, ^\circ\text{C}, 95\%. \, c) \text{I}_2, \text{Et}_2\text{O, 0} \, ^\circ\text{C}, 99\%.

4.15 Revised Synthesis of the C1-C15 Fragment

Initial attempts to achieve the C9-C10 bond formation by reaction of Weinreb amide 67 with the vinyl lithium reagent derived from stannane 68 were
unsuccessful (eq. 16). We screened an array of bases including \(^{1}BuLi, ^{t}BuLi, MeLi\) at different temperatures (0 °C to –78 °C) and solvents (THF, Et\(_2\)O), but none of the required product was obtained and only starting materials were recovered. Control experiments involving addition of base, followed by CD\(_3\)OD showed no deuterium incorporation in the quenched nucleophile.

\[\text{Conditions} \quad \text{TIPSO} \overset{\text{OTES}}{\longrightarrow} \overset{\text{OTBS}}{\longrightarrow} \overset{\text{SnBu}_3}{\longrightarrow} \overset{68}{\rightarrow} \text{Conditions} \quad \overset{\text{TIPSO}}{\overset{\text{OTES}}{\longrightarrow}} \overset{\text{OTBS}}{\longrightarrow} \overset{\longrightarrow}{\longrightarrow} \overset{93}{\rightarrow} \]

Reaction conditions: RLi, Et\(_2\)O or THF, –78 °C to 0 °C

According to the literature, tin-lithium exchange is regarded as a reversible process and proceeds through the intermediacy of the pentacoordinated ‘ate’ complex, e.g. 94 (Scheme 4.15.3).\(^{43}\) The position of the equilibrium is determined by the stability of the organolithium 95 and it is shifted towards products that deliver the best stabilisation of an anionic charge. However, in certain cases the ‘ate’ complex 94 is more stable than possible organolithium products and the exchange reaction does not occur. This could explain our inability to access the vinyl lithium 95 following the attempted transmetalation.

Scheme 4.15.3: Tin-Lithium Exchange Mechanism

\[\text{Conditions} \quad \overset{\text{TIPSO}}{\overset{\text{OTES}}{\longrightarrow}} \overset{\text{OTBS}}{\longrightarrow} \overset{\longrightarrow}{\longrightarrow} \overset{94}{\rightarrow} \text{Conditions} \quad \overset{\text{TIPSO}}{\overset{\text{OTES}}{\longrightarrow}} \overset{\text{OTBS}}{\longrightarrow} \overset{\longrightarrow}{\longrightarrow} \overset{95}{\rightarrow} \]

\[R = \text{TIPSO} \overset{\text{OTES}}{\longrightarrow} \overset{\text{OTBS}}{\longrightarrow} \overset{\text{Bu-SnBu}_3}{\longrightarrow} \overset{95}{\rightarrow} \text{Conditions} \quad \overset{\text{TIPSO}}{\overset{\text{OTES}}{\longrightarrow}} \overset{\text{OTBS}}{\longrightarrow} \overset{\longrightarrow}{\longrightarrow} \overset{94}{\rightarrow} \text{Conditions} \quad \overset{\text{TIPSO}}{\overset{\text{OTES}}{\longrightarrow}} \overset{\text{OTBS}}{\longrightarrow} \overset{\longrightarrow}{\longrightarrow} \overset{95}{\rightarrow} \]
In a search of possible coupling precursors we elected to exploit the halogen-lithium exchange as an appealing alternative to produce vinyl lithium species. The detailed results concerning Weinreb coupling of the vinyl lithium nucleophile derived from iodide 96 are presented in Table 4.15.1.

Table 4.15.1: Optimisation of the Weinreb Coupling with Vinyl Iodide 92 (eq. 17)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Yield (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>tBuLi (2 equiv.), Et₂O, −78 °C</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>nBuLi (1 equiv.), Et₂O, −78 °C</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>tBuLi (2 equiv.), Et₂O/hexanes (5:1), −78 °C</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>tPrMgCl·LiCl, THF, −40 °C to 0 °C</td>
<td>n/r</td>
</tr>
<tr>
<td>5</td>
<td>tPrMgCl·LiCl, 15-Crown-5, THF, −10 °C</td>
<td>64</td>
</tr>
</tbody>
</table>

aIsolated yield.

Initial attempts to achieve the pivotal coupling proceeded with moderate success. By conducting the exchange reaction with tBuLi in Et₂O at −78 °C, followed by addition of 67, the incomplete conversion of the amide was observed even when excess of nucleophile was employed (up to 3 equiv.). Changing the base to less active nBuLi did not make much difference in terms of yield (entry 2). Further efforts to alleviate the reactivity of the system using hexane as co-solvent failed to improve the conversion of 92 into ketone 93 (entry 3).

To get some insight into the process, we performed the deuteration studies on iodide 92. The 1H NMR analysis of the crude CD₃OD quenched product showed
substantial amounts of the protonated nucleophile, which presumably arrived from a competitive reaction of the vinyl lithium intermediate with 'BuI produced during the exchange. It is noteworthy that no Wurtz coupling products were observed. In an effort to optimise the reaction, the reversed addition of iodide 92 to a solution of 'BuLi in Et₂O/hexanes was employed, which is known to reduce the undesired reaction with 'BuI. Unfortunately, this attempt did not improve the formation of the desired product.

In search for an alternative preparation of vinyl metals, we turned our attention to the chemoselective 'PrMgCl·LiCl mediated iodine-magnesium exchange reaction of non-activated vinyl iodides developed by the Knochel’s group. We planned to take an advantage of the inherent inactivity of secondary Grignard reagents (i.e. 'PrMgCl) toward the Weinreb amides and achieve formation of vinyl magnesium adduct of 92, which should then selectively add to 67. Surprisingly, application of the reported Mg-I exchange conditions to iodide 92 led to absolutely no conversion and unchanged starting materials were recovered (entry 4). The exact reason for this was unclear, although model iodide halogen-magnesium exchange was shown to proceed, although with lower efficiency than was reported in the seminal publication.

In successive publications, Knochel and co-workers extended the exchange methodology to aromatic bromides and showed that a combination of 'PrMgCl·LiCl with chelating additives such as 15-crown-5 or 1,4-dioxane could improve the conversion of halogen-magnesium exchange by enforcement of an ‘anionic Schlenk equilibrium’. These advanced conditions were successfully applied by the Castle group for the union of a cyclic vinyl iodide and a Weinreb amide during the total
synthesis of (−)-acutumine. Intrigued by these reports, we aimed to exploit new conditions for synthesis of 93.

Initial results revealed good conversion of iodide 92, but the yield of the desired coupling product was still low due to the incomplete consumption of amide 67. After some experimentation, we discovered that by employing two equivalents of vinyl iodide, full conversion of 67 was observed and the enone 93 was obtained in an improved 64% yield (entry 5). It should be noted, that no vinyl addition to epoxide was observed in any of experiments. Whereas, the moderate yield of 93 could be partially explained by the epoxide opening with chloride anion proceeding as a major side reaction.

With a reliable route to the α,β-unsaturated ketone 93 available, we set out to introduce the C10 centre stereoselectively using CBS reduction (eq. 18). Gratifyingly, treatment 93 with a stoichiometric amount of chiral Me-(S)-CBS reagent and excess BH$_3$·DMS at −40 °C afforded the required allylic alcohol 51 in excellent yield and with high stereocontrol ($ds \geq 19:1$).

The selective formation of the (R)-configured allylic alcohol 51 could be explained by the formation of the cyclic boat-like transition state 94, where the coordination of the Me-(S)-CBS-borane complex to the ketone at the sterically more
accessible lone pair results in the exclusive delivery of the hydride from the Si-face of the carbonyl group.

For the last step in the synthesis of the C1-C15 fragment, we planned to implement the earlier described protection of alcohol 51 using TBSOTf/Et$_3$N (Chapter 4.6). While this reaction was successfully carried out on a small scale, we found that the yield can dramatically decrease upon the scale up and had a strong dependence on the freshness of TBSOTf reagent used. Evaluation of side products suggested the decomposition of the epoxide moiety with the incorporation of one TBS ether moiety. We believed that reagent’s residual triflic acid in the form of lutidinium salt or even TBSOTf itself can act as Lewis acid and induce Meinwald epoxide rearrangement and/or intramolecular 6-exo-tet cyclisation what undermines the effectiveness of the process and considerably reduces the yield (eq. 19).

We screened a range of TBS protection conditions and were astonished to find that most silylation methods were absolutely incompatible with the 6-hydroxy epoxide system (eq. 20, Table 4.15.2). As mentioned above, TBSOTf addition at −78 °C afforded 2 with yields ranging between 35-97%, depending on the batch of the silylating reagent used (entry 1), whereas standard conditions, using TBSCl/imid in DMF led to decomposition only (entry 2).
Table 4.15.2: Optimisation of the TBS Protection of 51 (eq. 20)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Yield (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TBSOTf, 2,6-lutidine, DCM, −78 °C</td>
<td>35-97</td>
</tr>
<tr>
<td>2</td>
<td>TBSCI, imid, DMF, 0 °C</td>
<td>Decomp.</td>
</tr>
<tr>
<td>3</td>
<td>TBSCI, TMEDA, DCM, 0 °C</td>
<td>“</td>
</tr>
<tr>
<td>4</td>
<td>TBSCI, Li₂S, DMF, 0 °C</td>
<td>“</td>
</tr>
<tr>
<td>5</td>
<td>TBDMSIM, DMAP, MeCN, RT</td>
<td>50 (95 b.r.s.m)</td>
</tr>
<tr>
<td>6</td>
<td>MTBSTFA, DMAP, MeCN, RT</td>
<td>Quant.</td>
</tr>
</tbody>
</table>

^aIsolated yield.

Application of the procedure, which was found effective for the protection of hydroxyepoxide 75, gave an unacceptable outcome as well (entry 3). We tried silylation using mildly acidic TBSCI/Li₂S system, however no product was obtained (entry 4). We reasoned that protection under neutral conditions that avoid formation of Lewis acids could obviate the activation and decomposition of the epoxide in 51. Gratifyingly, reaction with neutral TBDMSIM reagent (Figure 4.15.1) at elevated temperature afforded the desired 2 in 50% yield (95% b.r.s.m.) with imidazole as the only side product (entry 5). Ultimately, substitution of TBS donor with the more reactive MTBSTFA led to quantitative formation of 2 in just 3 h at room temperature (entry 6). Having developed a sequence to access two major fragments we could move to the pivotal coupling and to forge the key C15-C16 bond.

![Neutral Silylating Reagents](image)

Figure 4.15.1: Neutral Silylating Reagents
4.16 Completion of the C1-C31 fragment of Amphidinol 3

Following our initial plan, epoxide opening was achieved by the lithiation of two equivalents of sulfone 63 with "BuLi, followed by addition of 2 and BF₃·Et₂O at −78 °C to furnish the desired β-hydroxysulfone product (Scheme 4.16.1). Due to the similar R_f values of the addition product and sulfone 63, the crude reaction mixture was used directly in the following silylation with TBSOTf and afforded the C15-C16 coupling product 97 as a mixture of inconsequential diastereoisomers at C16 in excellent overall yield (90%). At this stage, the dramatic difference in polarity of 97 and 63 accounted for the efficient recovery of the unreacted 63 (87% of sulfone recovered).

Scheme 4.16.1: Completion of the C1-C31 Fragment of Amphidinol 3

Reaction conditions: a) 63, "BuLi, THF, −78 °C, then 2, BF₃·Et₂O. b) TBSOTf, Et₃N, DCM, 0 °C, 90% over 2 steps. c) LiDBB, THF, −78 °C, 64%. d) NMO, TPAP, DCM, 0 °C, e) Me(CO)C(N₂)P(O)(OMe)₂, K₂CO₃, THF/MeOH (1:1), 0 °C to RT, 89% over 2 steps.
Next, we planned to employ single-electron reduction using lithium naphthalenide or di-tert-butylbiphenylide complex for the concomitant removal of the sulfone and cleavage of the primary benzyl ether moieties. Gratifyingly, addition of the freshly made LiDBB reagent (6 equiv.) to sulfone \(97\) at \(-78\) °C in THF afforded the desired alcohol \(98\) in 64% yield. Oxidation of the latter using Ley’s conditions (TPAP, NMO) and Seyferth–Gilbert homologation\(^{29}\) of the intermediate aldehyde with Bestmann-Ohira reagent furnished alkyne \(2\), which constitutes the C1-C31 fragment of amphidinol 3 (89% yield over 2 steps).

4.17 Conclusion

In the course of the synthetic studies a highly convergent enantioselective synthesis of the C1-C31 fragment of amphidinol 3 was developed (Scheme 4.17.1). Our route featured a rapid and easily scalable preparation of four structural units of similar complexity in 3 to 5 longest linear steps starting from known materials. Subsequent coupling of these fragments allowed for the expeditious increase in complexity and afforded two major C1-C15 and C16-C30 segments of AM3. It is worth mentioning, that application of the recently developed TST-RCM-based hydroboration reaction permitted the highly stereoselective installation of the pivotal C23-C24 propionate unit solely based on the substrate control. The smooth coupling of two fragments was then achieved by regioselective addition of a sulfonyl anion to the epoxide and was followed by the reductive removal of the sulfone moiety and the C30 masking group in one-pot. Ensuing oxidation/homologation furnished the C1-C31 alkyne and completed the synthesis of the polyol fragment of amphidinol 3 in 16 steps (longest linear sequence) with 15.9% overall yield corresponding to an average yield of 89.1% per step. Finally, we envisage that the latter alkyne could be easily
elaborated in future studies towards the crucial coupling with the C32-C52 bis-THP segment of the natural product.

Scheme 4.17.1: Overview of the Synthesis of the C1-C31 Fragment of Amphidinol 3
Chapter 4

4.18 Experimental Part. General Information

All reactions were carried out under Argon atmosphere, unless otherwise stated. Anhydrous DCM, hexane, Et₂O were obtained by passing degassed solvents through activated alumina columns in a Grubbs solvent purification system *(PureSolv MD-6 of Innovative Technology Inc.)*. Anhydrous THF was obtained by distillation from benzophenone ketyl. Anhydrous MeOH, DMF and MeCN were purchased from *Aldrich*. 2,6-Lutidine, Et₃N, BF₃·Et₂O were distilled from CaH₂ under nitrogen and stored under 4Å MS. Anhydrous K₂CO₃ dried at 100 °C for 16 hours *in vacuo*. For other general information, see Chapter 2.

\[
\text{HO} \quad \text{12} \quad \text{NaH, BnBr} \quad \text{DMF} \quad 0 \, ^{\circ}\text{C} \text{ to RT} \quad \text{PMBO} \quad \text{14}
\]

1-((Hex-5-en-1-yloxy)methyl)-4-methoxybenzene (14)³

To a cooled to 0 °C suspension of sodium hydride (3.60 g, 60% in mineral oil, 90 mmol) in DMF (120 mL) was added 5-hexen-1-ol (12) (6.01 g, 60 mmol), followed by 4-methoxybenzylchloride (11.4 mL, 84 mmol). The solution warmed to room temperature and stirred for ca. 18 h (TLC control). The reaction mixture was cooled to 0 °C, quenched with saturated aqueous NH₄Cl and partitioned between Et₂O and water. Layers were separated and the aqueous phase was washed with Et₂O (2x). The combined organic layers were washed with 1 N aqueous HCl, saturated aqueous NaHCO₃, brine, dried (MgSO₄), filtered and concentrated *in vacuo*. Purification by flash chromatography (silica gel, Et₂O/hexanes – 1:22, 1:20) afforded the *p*-methoxybenzyl ether 14 (13.2 g, 59.9 mmol, 100% yield) as a colourless oil.

\[R_f = 0.7 \ (\text{Et}_2\text{O/hexanes} - 1:1)\]
Chapter 4

1H NMR (500 MHz, CDCl$_3$) δ 7.27-7.25 (m, 2H), 6.89-6.87 (m, 2H), 5.80 (ddt, J = 17.0, 10.3, 6.7 Hz, 1H), 5.00 (dd, J = 17.2, 1.4 Hz, 1H), 4.94 (dq, J = 10.1, 0.9 Hz, 1H), 4.43 (s, 2H), 3.80 (s, 3H), 3.44 (t, J = 6.6 Hz, 2H), 2.06 (q, J = 7.2 Hz, 2H), 1.62 (app. dt, A of A$_2$BX$_2$, $J_{AB} = 14.6$ Hz, $J_{AX} = 7.1$ Hz, 2H), 1.46 (app. dt, B of ABX$_2$, $J_{AB} = 15.1$ Hz, $J_{BX} = 7.6$ Hz, 1H), 1.45 (app. dt, B of ABX$_2$, $J_{AB} = 15.1$ Hz, $J_{BX} = 7.6$ Hz, 1H).

IR (Neat) 2931 (w), 2854 (w), 1640 (w), 1612 (w), 1512 (s), 1099 (m) cm$^{-1}$.

![Reaction Scheme](image)

(E)-7-((4-Methoxybenzyl)oxy)hept-2-en-1-ol (7)

To a solution of 14 (13.22 g, 60 mmol) and methyl acrylate (27.0 mL, 300 mmol) in DCM (150 mL) was added Hoveyda-Grubbs 2nd generation catalyst (0.327 g, 0.522 mmol). The reaction mixture was refluxed for ca. 2 h (TLC control), before it was concentrated in vacuo and the crude ester intermediate was dissolved in DCM (150 mL). The solution was cooled to -78 °C and treated with DIBAL-H (198 mL, 1 M in hexanes, 198 mmol). The reaction mixture was stirred for ca. 15 min (TLC control), then quenched with MeOH (5 mL) and diluted with EtOAc and saturated aqueous Rochelle salt. The vigorously stirred mixture was left to warm up to room temperature overnight. After ca. 15 h phases were separated and the aqueous layer was washed with EtOAc (4x). The combined organic phases were washed with brine. The aqueous phases were back extracted with EtOAc. The combined organic layers were dried (MgSO$_4$), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et$_2$O/petroleum ether – 1:1, 1.25:1) afforded the allylic alcohol 7 (14.35 g, 57.20 mmol, 95% yield) as a colourless oil.
R_f = 0.16 (Et_2O/hexanes – 1:1)

^1^H NMR (500 MHz, CDCl_3) δ 7.27-7.24 (m, 2H), 6.89-6.86 (m, 2H), 5.71-5.60 (m, 2H), 4.43 (s, 2H), 4.08 (d, J = 5.1 Hz, 2H), 3.80 (s, 3H), 3.44 (t, J = 6.5 Hz, 2H), 2.06 (q, J = 6.9 Hz, 2H), 1.61 (app. dt, J = 14.6, 6.7 Hz, 2H), 1.57 (br s, 1H), 1.46 (app. dt, J = 14.7, 7.3 Hz, 2H).

IR (Neat) 3388 (br), 2933 (m), 2857 (m), 1670 (w), 1612 (m), 1512 (s), 1089 (m) cm^-1.

(E)-1-(((7-Bromohept-5-en-1-yl)oxy)methyl)-4-methoxybenzene (17)

To a cooled to 0 °C solution of imidazole (15.0 g, 221 mmol) and triphenylphosphine (38.3 g, 146 mmol) in DCM (210 mL) was carefully added bromine (7.4 mL, 143 mmol) dropwise. The resultant yellow slurry was stirred for ca. 15 min and then a solution of 7 (14.35 g, 57.3 mmol) and 2-methylbut-2-ene (20 mL, 57.3 mmol) in DCM (50 mL) was added dropwise. After ca. 15 min (TLC control) the reaction was quenched by addition of MeOH (1 mL), diluted with petroleum ether and filtered through a large pad of silica gel (washed with Et_2O/petroleum ether – 1:5). Concentration in vacuo afforded the crude allylic bromide 17, which was used in the following step without purification.

An analytical sample was obtained by purification using flash chromatography (silica gel, Et_2O/hexanes – 1:15) as a colourless oil.

R_f = 0.65 (Et_2O/hexanes – 1:1).

^1^H NMR (500 MHz, CDCl_3) δ 7.27-7.25 (m, 2H), 6.90-6.87 (m, 2H), 5.76 (dt, J = 15.0, 6.6 Hz, 1H), 5.68 (dt, J = 15.0, 7.5 Hz, 1H), 4.43 (s, 2H), 3.95 (d, J = 7.3 Hz,
Chapter 4

2H), 3.80 (s, 3H), 3.43 (t, \(J = 6.5 \) Hz, 2H), 2.07 (q, \(J = 7.1 \) Hz, 2H), 1.60 (app. dt, A of \(\text{A}_2\text{BX}_2 \), \(J_{AB} = 14.5 \) Hz, \(J_{AX} = 7.1 \) Hz, 2H), 1.46 (app. dt, B of \(\text{AB}_2\text{X}_2 \), \(J_{AB} = 15.0 \) Hz, \(J_{BX} = 7.5 \) Hz, 2H).

\(^{13}C \) NMR (125 MHz, CDCl\(_3\)) \(\delta \) 159.16 (e), 136.46 (o), 130.69 (e), 129.39 (o), 126.62 (o), 113.82 (o), 72.66 (e), 69.87 (e), 55.39 (o), 33.82 (e), 31.97 (e), 29.31 (e), 25.54 (e).

IR (Neat) 2999 (w), 2933 (m), 2855 (m), 1660 (w), 1612 (m), 1586 (w), 1512 (s), 1098 (s), 757 (w) cm\(^{-1}\).

HRMS (ESI, [M+Na\(^+\)]\(^{+}\)) calcd for \(C_{15}H_{21}O_2Na^{79}Br \) 335.0623, found 335.0611, calcd for \(C_{15}H_{21}O_2Na^{81}Br \) 337.0602, found 337.0618.

\((S)-5-(4\text{-Methoxybenzyl})\text{oxy})-1\text{-}((S)\text{-oxiran-2-yl)pentan-1-ol (19)}\)

To a cooled to 0 °C solution of crude 17 (~57.3 mmol) in a 1:1 mixture of \(^t\)BuOH and water (560 mL) was added a mixture of potassium osmate(IV) dihydrate (0.211 g, 0.573 mmol), methanesulfonamide (5.45 g, 57.3 mmol), \(K_2CO_3 \) (23.76 g, 172 mmol), \(K_3[Fe(CN)]_6 \) (56.6 g, 172 mmol), (DHQ)\(_2\)PHAL (0.893 g, 1.146 mmol) and the reaction mixture was stirred at that temp for \(ca. \) 6 h (TLC control). Upon the consumption of the starting material, 39.6 g of \(K_2CO_3 \) and 100 mL of water were added and the reaction mixture was warmed to room temperature. The bromohydrine cyclisation progress was periodically checked by \(^1H\) NMR of the reaction aliquots. After \(ca. \) 16 h the reaction mixture was quenched with 10 g of Na\(_2\)SO\(_3\) and stirred for \(ca. \) 1 h. The resulted green solution was partitioned between water and EtOAc. Phases were separated and the aqueous layer was washed with
Chapter 4

EtOAc (3x). The combined organic layers were washed with 2 N aqueous NaOH, brine, dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/petroleum ether − 2.5:1) afforded the hydroxy epoxide 19 (11.5 g, 43.2 mmol, 75% yield) as a colourless oil.

\[\text{Rf} = 0.07 \ (\text{Et}_2\text{O/hexanes} - 1:1). \]

\[[\alpha]_{D}^{20} +2.6 \ (c \ 1.0, \text{CHCl}_3). \]

\[^1\text{H NMR} \ (500 \text{ MHz}, \text{CDCl}_3) \delta \ 7.26-7.24 \ (m, \ 2H), \ 6.88-6.85 \ (m, \ 2H), \ 4.42 \ (s, \ 2H), \ 3.79 \ (s, \ 3H), \ 3.45 \ (t, J = 6.4 \text{ Hz}, \ 2H), \ 3.41 \ (\text{app. dt}, J = 12.2, 6.1 \text{ Hz}, \ 1H), \ 2.96 \ (\text{ddd}, J = 5.0, 4.0, 3.1 \text{ Hz}, \ 1H), \ 2.80 \ (\text{dd}, \ A \text{ of AMX}, J_{AM} = 4.8 \text{ Hz}, J_{AX} = 4.7 \text{ Hz}, \ 1H), \ 2.69 \ (\text{dd}, \ M \text{ of AMX}, J_{AM} = 4.9 \text{ Hz}, J_{MX} = 2.8 \text{ Hz}, \ 1H), \ 2.04 \ (\text{br s}, \ 1H), \ 1.70-1.42 \ (m, \ 6H). \]

\[^{13}\text{C NMR} \ (125 \text{ MHz}, \text{CDCl}_3) \delta \ 159.14 \ (e), \ 130.63 \ (e), \ 129.27 \ (o), \ 113.77 \ (o), \ 72.59 \ (e), \ 71.60 \ (o), \ 69.80 \ (e), \ 55.35 \ (o), \ 55.28 \ (o), \ 45.16 \ (e), \ 34.14 \ (e), \ 29.65 \ (e), \ 22.09 \ (e). \]

\[^{1}\text{H NMR} \ (500 \text{ MHz}, \text{CDCl}_3) \delta \ 7.26-7.24 \ (m, \ 2H), \ 6.88-6.85 \ (m, \ 2H), \ 4.42 \ (s, \ 2H), \ 3.79 \ (s, \ 3H), \ 3.45 \ (t, J = 6.4 \text{ Hz}, \ 2H), \ 3.41 \ (\text{app. dt}, J = 12.2, 6.1 \text{ Hz}, \ 1H), \ 2.96 \ (\text{ddd}, J = 5.0, 4.0, 3.1 \text{ Hz}, \ 1H), \ 2.80 \ (\text{dd}, \ A \text{ of AMX}, J_{AM} = 4.8 \text{ Hz}, J_{AX} = 4.7 \text{ Hz}, \ 1H), \ 2.69 \ (\text{dd}, \ M \text{ of AMX}, J_{AM} = 4.9 \text{ Hz}, J_{MX} = 2.8 \text{ Hz}, \ 1H), \ 2.04 \ (\text{br s}, \ 1H), \ 1.70-1.42 \ (m, \ 6H). \]

\[^{13}\text{C NMR} \ (125 \text{ MHz}, \text{CDCl}_3) \delta \ 159.14 \ (e), \ 130.63 \ (e), \ 129.27 \ (o), \ 113.77 \ (o), \ 72.59 \ (e), \ 71.60 \ (o), \ 69.80 \ (e), \ 55.35 \ (o), \ 55.28 \ (o), \ 45.16 \ (e), \ 34.14 \ (e), \ 29.65 \ (e), \ 22.09 \ (e). \]

\[\text{IR} \ (\text{Neat}) \ 3434 \ (w), \ 2936 \ (w), \ 2860 \ (w), \ 1612 \ (m), \ 1612 \ (w), \ 1512 \ (s), \ 1092 \ (s) \text{ cm}^{-1}. \]

\[\text{HRMS} \ (\text{ESI}, [\text{M+Na}]^+) \text{ calcd for } C_{15}H_{22}O_4Na \ 289.1416, \text{ found } 289.1403. \]

\[\text{tert-Butyl}((S)-5-((4\text{-methoxybenzyl})\text{oxy})-1-((S)\text{-oxiran-2-yl)pentyl} \text{oxy})\text{dimethylsilane (5)} \]

A solution of 19 (2.8 g, 10.51 mmol) in DMF (30 mL) was treated with imidazole (2.15 g, 31.5 mmol) and TBSCI (3.17 g, 21.03 mmol) at 0 °C. The reaction mixture was warmed to room temperature and stirred for ca. 16 h (TLC control), then quenched with saturated aqueous NH₄Cl and partitioned between water and Et₂O.
Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were washed with water, brine, dried (MgSO₄), filtered and concentrated *in vacuo*. Purification by flash chromatography (silica gel, Et₂O/petroleum ether – 1:7, 1:6) afforded the TBS ether 5 (3.22 g, 8.46 mmol, 80% yield) as a colourless oil.

R_f = 0.6 (Et₂O/hexanes – 1:1).

[\alpha]__D²⁰ = −4.2 (c 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃) δ 7.26-7.24 (m, 2H), 6.89-6.86 (m, 2H), 4.43 (s, 2H), 3.80 (s, 3H), 3.44 (t, J = 6.5 Hz, 2H), 3.25 (app. td, J = 7.0, 4.8 Hz, 1H), 2.91 (ddd, J = 6.7, 4.0, 2.8 Hz, 1H), 2.77 (t, A of AX₂, J_{AX} = 4.5 Hz, 1H), 2.53 (dd, M of AMX, J_{AM} = 4.9 Hz, J_{MX} = 2.7 Hz, 1H), 1.65-1.35 (m, 6H), 0.91 (s, 9H), 0.11 (s, 3H), 0.06 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 159.13 (e), 130.70 (e), 129.23 (o), 113.76 (o), 74.58 (o), 72.58 (e), 69.87 (e), 55.95 (o), 55.27 (o), 44.91 (e), 34.57 (e), 29.80 (e), 25.90 (o), 22.07 (e), 18.20 (e), −4.34 (o), −4.97 (o).

IR (Neat) 2929 (w), 2856 (w), 1613 (w), 1513 (m), 1098 (s) cm^{−1}.

HRMS (ESI, [M+Na]⁺) calcd for C₂₁H₃₆O₄NaSi 403.2281, found 403.2296.

(4S,5S)-5-((tert-Butyldimethylsilyl)oxy)-9-((4-methoxybenzyl)oxy)-2-methylnon-1-en-4-ol (3)

Isopropenylmagnesium bromide (109 mL, 0.5 M in THF, 54.5 mmol) was diluted with Et₂O (120 mL) and the solution was cooled to −78 °C. Dilithium tetrachlorocuprate(II) (18.1 mL, 0.1 M in THF, 1.81 mmol) was added dropwise and
Chapter 4

The resultant orange suspension was stirred at that temperature for ca. 10 min, followed by the addition of 5 (6.893 g, 18.11 mmol) in Et₂O (25 mL, with washings). The reaction mixture was left to slowly warm up to room temperature and stirred for ca. 14 h (TLC control), then quenched with a 4:1 mixture of saturated aqueous NH₄Cl and aqueous NH₄OH. The resultant mixture was partitioned between water and Et₂O. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were washed with water, brine, dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/petroleum ether – 1:4) afforded the homoallylic alcohol 3 (7.6 g, 17.98 mmol, 99% yield) as a colourless oil. The enantiomeric purity of 3 was determined by the formation of Mosher esters 20 and 21 and was shown to be 92% ee.

Rᵥ = 0.58 (Et₂O/hexanes – 1:1).

[α]D²⁰ = −1.0 (c 0.5, CHCl₃).

¹H NMR (500 MHz, CDCl₃) δ 7.27-7.25 (m, 2H), 6.88-6.86 (m, 2H), 4.84 (s, 1H), 4.77 (s, 1H), 4.43 (s, 2H), 3.80 (s, 3H), 3.66 (app. dt, A of ABX₂, JₐB = 8.3 Hz, JₐB = 4.1 Hz, 1H), 3.59 (app. dt, B of ABX₂, JₐB = 5.5 Hz, JₐBX = 3.4 Hz, 1H), 3.45 (app. dt, A of ABX₂, JₐB = 9.7 Hz, JₐAX = 6.6 Hz, 1H), 3.43 (app. dt, B of ABX₂, JₐB = 9.7 Hz, JₐBX = 6.6 Hz, 1H), 2.18 (dd, A of ABX, JₐB = 14.3 Hz, JₐAX = 5.1 Hz, 1H), 2.16 (s, 1H), 2.14 (dd, B of ABX, JₐB = 14.0 Hz, JₐBX = 8.6 Hz, 1H), 1.76 (s, 3H), 1.69-1.58 (m, 3H), 1.46-1.36 (m, 3H), 0.91 (s, 9H), 0.08 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 159.12 (e), 142.99 (e), 130.70 (e), 129.23 (o), 113.75 (o), 112.70 (e), 74.46 (o), 72.56 (e), 70.38 (o), 69.92 (e), 55.26 (o), 42.09 (e), 33.21 (e), 29.98 (e), 25.93 (o), 22.52 (o), 22.03 (e), 18.13 (e), −4.09 (o), −4.50 (o).

IR (Neat) 3472 (br), 2930 (m), 2856 (m), 1647 (w), 1613 (w), 1512 (m), 1096 (m) cm⁻¹.
HRMS (ESI, [M+Na]+) calcd for C_{24}H_{42}O_{4}NaSi 445.2750, found 445.2759.

5-(Trimethylsilyl)pent-4-ynal (23)

To a solution of oxalyl dichloride (2.68 mL, 31.2 mmol) in DCM (40 mL) at −78 °C was added DMSO (4.43 mL, 62.3 mmol) dropwise. After ca. 15 min a solution of 5-(trimethylsilyl)pent-4-yn-1-ol (22) (2.26 mL, 12.47 mmol) in DCM (30 mL with washings) was added and the mixture was stirred for ca. 20 min at −78 °C and ca. 50 min at −40 °C. The reaction was cooled back to −78 °C, treated with Et₃N (17.4 mL, 125 mmol) and then let to warm to room temperature. The mixture was quenched with saturated aqueous NH₄Cl and partitioned between water and Et₂O. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were dried (MgSO₄), filtered and carefully concentrated at 250 Torr to afford crude volatile aldehyde 23 (1.77 g, 11.50 mmol, 92% yield), which was used in the following step without purification.

An analytical sample was obtained by purification using flash chromatography (silica gel, Et₂O/hexanes – 1:20, 1:15, 1:12) as a colourless oil.

R_f = 0.48 (Et₂O/hexanes – 1:2.5).

¹H NMR (500 MHz, CDCl₃) δ 9.78 (s, 1H), 2.66 (t, A of A₂X₂, J_{AX} = 7.2 Hz, 2H), 2.53 (t, X of A₂X₂, J_{AX} = 7.2 Hz, 2H), 0.13 (s, 9H).

IR (Neat) 2931 (w), 2859 (w), 2722(w), 1721 (s) cm⁻¹.
Chapter 4

Preparation of a 0.1 M stock solution of chiral bis-Ti(IV) oxide (R,R)-27 in DCM

Following a procedure of Maruoka et al., a solution of titanium(IV) chloride (3.00 mL, 1 M in DCM 3.00 mmol) was diluted with DCM (60 mL) and treated with neat Ti(OiPr)4 (2.66 mL, 9.00 mmol) at 0 °C. The resultant solution was warmed to room temperature and stirred for ca. 1 h. Solid (R)-1,1'-binaphthyl-2,2'-diol (3.44 g, 12.00 mmol) was added under nitrogen funnel and the reaction mixture was left to stir for another 2 h. The reaction was cooled to 0 °C and treated with silver(I) oxide (1.39 g, 6.00 mmol) under nitrogen funnel with exclusion of direct light. The whole mixture was allowed to warm to room temperature and stirred for ca. 5 h to furnish a ~0.1 M solution of chiral bis-Ti(IV) oxide (R,R)-27 in DCM.

(S)-8-(Trimethylsilyl)oct-1-en-7-yn-4-ol (8)

To a cooled to −15 °C stock solution of (R,R)-27 (12.5 mL, 0.1 M in DCM, 1.25 mmol) was added 23 (1.92 g, 12.47 mmol) in DCM (4.5 mL with washings) and allyltIBUTYlstannane (5.80 mL, 18.71 mmol). The reaction mixture was warmed to 0 °C and stirred for ca. 24 h (TLC control), before it was quenched with saturated aqueous NaHCO3 and partitioned between water and Et2O. Phases were separated and the aqueous layer was washed with Et2O (2x). The combined organic layers were dried (MgSO4), filtered and concentrated in vacuo. Purification by flash
chromatography (silica gel, Et₂O/petroleum ether – 1:5, 1:4) afforded the homoallylic alcohol 8 (2.29 g, 11.64 mmol, 93% yield over 2 steps) as a colourless oil.

Enantiomeric excess of 8 was determined by chiral HPLC analysis of Bz ester and was shown to be 92-96% ee. Chiral AD-H column, IPA/Hex – 0.4:99.6, 0.3 mL/min, 25 °C, 210 nm, tᵣ(minor) = 16.3 min, tᵣ(major) = 17.5 min.

Rᵢ = 0.42 (Et₂O/hexanes – 1:2.5).

[α]D₂⁰ −15.1 (c 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃) δ 5.83 (dddd, J = 16.2, 12.3, 9.7, 7.7, 6.7 Hz, 1H), 5.16-5.12 (m, 2H), 3.79 (octet, J = 4.1 Hz, 1H), 2.38 (t, J = 7.1 Hz, 2H), 2.31 (app. dddt, A of ABXYZ₂, J_AB = 13.9 Hz, J_AX = 6.4 Hz, J_AY = 4.9 Hz, J_AZ = 1.4 Hz, 1H), 2.20 (app. ddt, B of ABXY₂, J_AB = 14.1 Hz, J_BX = 7.6 Hz, J_BY = 1.0 Hz, 1H), 1.94 (d, J = 4.0 Hz, 1H), 1.71 (app. dtd, A of ABX₂Y, J_AB = 14.1 Hz, J_AX = 7.1 Hz, J_AY = 3.8 Hz, 1H), 1.65 (app. dtd, B of ABX₂Y, J_AB = 15.4 Hz, J_BX = 8.7 Hz, J_BY = 1.7 Hz, 1H), 0.14 (app. td, J = 3.5, 0.4 Hz, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 134.64 (o), 118.36 (e), 107.04 (e), 85.42 (e), 70.11 (o), 41.91 (e), 35.31 (e), 16.68 (e), 0.23 (o).

IR (Neat) 3348 (br), 3078 (w), 2958 (w), 2174 (w), 1642 (w), 1249 (m), 1062 (w) cm⁻¹.

HRMS (Cl, [M+NH₄]⁺) calcd for C₁₁H₂₄NOSi 214.1627, found 214.1630.
(S)-tert-Butyl (8-(trimethylsilyloct-1-en-7-yn-4-yl) carbonate (24)

To a cooled to 0 °C solution of 8 (2.20 g, 11.21 mmol) in THF (30 mL) was added LiHMDS (14.6 mL, 1 M in THF, 14.6 mmol) dropwise. The reaction mixture stirred for ca. 10 min and treated with a solution of BocON (3.87 g, 15.70 mmol) in THF (4.5 mL with washings). After ca. 15 min (TLC control) the reaction mixture was quenched with saturated aqueous NH₄Cl and partitioned between water and DCM. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/petroleum ether – 2%) afforded carbonate 24 (3.17 g, 10.70 mmol, 95% yield) as a colourless oil.

Rf = 0.81 (Et₂O/hexanes – 1:1).

[α]D²⁰ –33.4 (c 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃) δ 5.77 (ddt, J = 17.1, 10.1, 7.1 Hz, 1H), 5.11 (dd, J = 18.5, 1.4 Hz, 1H), 5.08 (dd, J = 11.2, 0.9 Hz, 1H), 4.76 (quintet, J = 6.3 Hz, 1H), 2.37 (t, J = 6.7 Hz, 2H), 2.31 (app. dt, A of ABX₂, JAB = 17.1 Hz, JAX = 7.4 Hz, 1H), 2.29 (app. ddt, B of ABXY₂, JAB = 17.2 Hz, JBX = 7.7 Hz, 1H), 1.81 (q, J = 7.1 Hz, 2H), 1.47 (s, 9H), 0.14 (s, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 153.26 (e), 133.30 (o), 118.26 (e), 106.18 (e), 85.18 (e), 82.04 (e), 75.43 (e), 38.63 (e), 32.64 (e), 27.92 (o), 16.29 (e), 0.22 (o).

IR (Neat) 2961 (w), 2177 (w), 1738 (s), 1643 (w), 1275 (s), 1249 (s), 1162 (s) cm⁻¹.

(S)-1-((S)-Oxiran-2-yl)hex-5-yn-2-ol (25)

Following the procedure of Smith, to a solution of 24 (0.822 g, 2.77 mmol) in toluene (10 mL) at −85 °C (Et₂O and dry ice bath) was added iodine bromide (5.54 mL, 1M in DCM, 5.54 mmol) dropwise under exclusion of direct light. The reaction mixture was stirred for ca. 1 h at that temperature, before it was quenched with 1:1 mixture of 5% aqueous NaHCO₃ and 20% aqueous Na₂S₂O₃ solution. The mixture was warmed to room temperature and partitioned between water and DCM. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (Na₂SO₄), filtered and concentrated in vacuo to afford the unstable cyclic iodocarbonate 25, which was used in the following step without purification.

To a solution of crude 25 (~2.77 mmol) in MeOH (20 mL) was added K₂CO₃ (1.34 g, 9.70 mmol) and the reaction mixture was stirred for ca. 5 h at room temperature (TLC control), before it quenched with saturated aqueous NH₄Cl and partitioned between water and DCM. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/petroleum ether – 1.5:1) afforded the hydroxy epoxide 26 (0.334 g, 2.38 mmol, 86% yield) as a colourless oil.

R⁰ = 0.35 (EtOAc/hexanes – 1:1).

[α]D²⁰ = −30.1 (c 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃) δ 4.76 (octet, J = 4.0 Hz, 1H), 3.11 (sextet, J = 3.8 Hz, 1H), 2.79 (app. t, A of AX₂, JₐX = 4.4 Hz, 1H), 2.51 (dd, M of AMX, JₐM = 4.9 Hz,
$J_{MX} = 2.8 \text{ Hz, 1H}$, $2.37 \ (d, J = 3.8 \text{ Hz, 1H})$, $2.35 \ (ddd, J = 10.4, 6.7, 3.1 \text{ Hz, 1H})$, $1.91 \ (t, J = 2.7 \text{ Hz, 1H})$, $1.89 \ ($app. dt, A of ABX$_2$, $J_{AB} = 14.4 \text{ Hz, } J_{AX} = 3.9 \text{ Hz, 1H}$), 1.77-$1.69 \ (m, 2H)$, $1.52 \ ($app. dt, B of ABX$_2$, $J_{AB} = 15.4 \text{ Hz, } J_{BX} = 8.0 \text{ Hz, 1H}$).

1H NMR (500 MHz, CDCl$_3$) δ 4.02 (quintet, $J = 5.7 \text{ Hz, 1H}$), 3.04 (app. tdd, $J = 6.7, 4.4, 2.6 \text{ Hz, 1H}$), 2.76 (dd, A of AMX, $J_{AM} = 4.7 \text{ Hz, } J_{AX} = 4.4 \text{ Hz, 1H}$), 2.45 (dd, M of AMX, $J_{AM} = 5.0 \text{ Hz, } J_{MX} = 2.7 \text{ Hz, 1H}$), 2.26 (dd, A of ABX, $J_{AB} = 7.2 \text{ Hz, 1H}$).

$^1^3$C NMR (125 MHz, CDCl$_3$) δ 84.01 (e), 69.25 (o), 69.00 (e), 50.50 (o), 46.67 (e), 39.73 (e), 35.70 (e), 14.89 (e).

IR (Neat) 3402 (br), 3288 (m), 2922 (m), 2115 (w), 1080 (m) cm$^{-1}$.

HRMS (Cl, [M+NH$_4^+$]) calcd for C$_8$H$_{16}$O$_2$N 158.1176, found 158.1171.

tert-Butyldimethyl(((S)-1-((S)-oxiran-2-yl)hex-5-yn-2-yl)oxy)silane (31)

To a solution of 26 (0.461 g, 3.29 mmol) and imidazole (0.672 g, 9.87 mmol) in DMF (10 mL) at 0 °C was added TBSCl (1.239 g, 8.22 mmol). The reaction mixture was warmed to room temperature and stirred for ca. 20 h (TLC control), before it was quenched with saturated aqueous NH$_4$Cl and partitioned between water and Et$_2$O. Phases were separated and the aqueous layer was washed with Et$_2$O (2x). The combined organic layers were washed with water, brine, dried (MgSO$_4$), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et$_2$O/hexanes – 2%, 4%, 6%) afforded the TBS ester 31 (0.66 g, 2.59 mmol, 79% yield) as a colourless oil.

$R_f = 0.7$ (EtOAc/hexanes – 1:1).

$[\alpha]_D^{20} = -38.1$ (c 1.0, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$) δ 4.02 (quintet, $J = 5.7 \text{ Hz, 1H}$), 3.04 (app. tdd, $J = 6.7, 4.4, 2.6 \text{ Hz, 1H}$), 2.76 (dd, A of AMX, $J_{AM} = 4.7 \text{ Hz, } J_{AX} = 4.4 \text{ Hz, 1H}$), 2.45 (dd, M of AMX, $J_{AM} = 5.0 \text{ Hz, } J_{MX} = 2.7 \text{ Hz, 1H}$), 2.26 (dd, A of ABX, $J_{AB} = 7.2 \text{ Hz, 1H}$).
Chapter 4

$J_{AX} = 2.6 \text{ Hz, 1H}$, 2.25 (dd, B of ABX, $J_{AB} = 7.2 \text{ Hz, } J_{BX} = 2.6 \text{ Hz, 1H}$), 1.94 (dd, $J = 3.0$, 2.3 Hz, 1H), 1.76 (q, $J = 6.9 \text{ Hz, 2H}$), 1.75-1.70 (m, 1H), 1.64 (ddd, B of ABXY, $J_{AB} = 14.1 \text{ Hz, } J_{BX} = 6.7 \text{ Hz, } J_{BX} = 4.7 \text{ Hz, 1H}$), 0.88 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H).

^{13}C NMR (125 MHz, CDCl$_3$) δ 84.28 (e), 68.84 (o), 68.72 (e), 49.16 (o), 46.83 (e), 40.13 (e), 35.61 (e), 25.92 (o), 18.11 (e), 14.82 (e), -4.41 (o), -4.56 (o).

IR (Neat) 3313 (m), 2929 (m), 1255 (m), 1085 (m) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{14}$H$_{26}$O$_2$NaSi 277.1600, found 277.1590.

tert-Butyldimethyl(((S)-1-((S)-oxiran-2-yl)hex-5-yn-2-yl)oxy)silane (6)

To a cooled to 0 °C solution of 31 (0.959 g, 3.77 mmol) in THF (8 mL) was added LiHMDS (4.52 mL, 1 M in THF, 4.52 mmol). After ca. 30 min TMSCl (0.67 mL, 5.28 mmol) was added and the reaction mixture was stirred for ca. 1 h at that temperature (TLC control), before it was quenched with saturated aqueous NH$_4$Cl and partitioned between water and Et$_2$O. Phases were separated and the aqueous layer was washed with Et$_2$O (2x). The combined organic layers were washed with water, brine, dried (MgSO$_4$), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et$_2$O/hexanes – 2%, 4%) gave the TMS protected alkyne 6 (1.111 g, 3.40 mmol, 90% yield) as a colourless oil.

$R_f = 0.58$ (Et$_2$O/hexanes – 1:5).

$[\alpha]_D^{20} = -29.8$ (c 1.0, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$) δ 4.02 (quintet, $J = 5.7 \text{ Hz, 1H}$), 3.05 (app. tdd, $J = 6.6$, 4.4, 2.5 Hz, 1H), 2.75 (app. t, A of AX$_2$, $J_{AX} = 4.5 \text{ Hz, 1H}$), 2.45 (dd, M of AMX, J_{AM}...
= 5.1 Hz, $J_{MX} = 2.7$ Hz, 1H), 2.30 (t, $J = 7.1$ Hz, 2H), 1.80-1.69 (m, 3H), 1.67-1.62 (m, 1H), 0.89 (s, 9H), 0.14 (s, 9H), 0.09 (s, 3H), 0.06 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 107.10 (e), 85.06 (e), 68.95 (o), 49.23 (o), 46.80 (e), 40.11 (e), 35.63 (e), 25.96 (o), 18.15 (e), 16.36 (e), 0.26 (o), $-$ 4.42 (o), $-$ 4.52 (o).

IR (Neat) 2955 (w), 2929 (w), 2174 (w), 1250 (m), 1083 (m) cm$^{-1}$.

HRMS (ESI, [M+Na$^+$]+) calcd for C$_{17}$H$_{34}$O$_2$NaSi 349.1995, found 349.1979.

(3S,5S)-5-((tert-Butyldimethylsilyl)oxy)-9-(trimethylsilyl)non-1-en-8-yn-3-ol (4)

To a cooled at $-10 \, ^\circ$C solution of Me$_3$SOTf (1.081 g, 4.78 mmol) in THF (3 mL) slowly added nBuLi (1.89 mL, 2.5 M in hexanes, 4.73 mmol) and the reaction mixture was stirred for ca. 30 min. A solution of 6 (0.156 g, 0.478 mmol) in THF (2.5 mL with washings) was added and the reaction allowed to warm up to 0 $^\circ$C. After ca. 3 h at that temperature (TLC control) the reaction was quenched with saturated aqueous NH$_4$Cl and partitioned between water and DCM. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO$_4$), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et$_2$O/petroleum ether – 4%, 6%, 8%) afforded the allylic alcohol 4 (0.150 g, 0.440 mmol, 92% yield) as a colourless oil.

R$_f$ = 0.42 (Et$_2$O/hexanes – 1:3).

$[\alpha]_{D}^{20} +10.5$ (c 1.0, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$) δ 5.86 (ddd, $J = 16.9$, 10.7, 5.9 Hz, 1H), 5.27 (d, $J = 17.2$ Hz, 1H), 5.09 (d, $J = 10.4$ Hz, 1H), 4.29-4.26 (m, 1H), 4.06 (app. ddt, $J = 11.4$, 7.5, 5.5 Hz, 1H), 2.79 (br s, 1H), 2.30 (app. dt, A of ABX$_2$, $J_{AB} = 17.1$ Hz,
Chapter 4

\[J_{AX} = 6.9 \text{ Hz, 1H}, \ 2.23 \text{ (app. dt, B of ABX}_2, \ J_{AB} = 17.1 \text{ Hz, } J_{BX} = 7.6 \text{ Hz, 1H}, \]

1.78-1.67 (m, 3H), 1.63 (app. dt, B of ABX\(_2\), \(J_{AB} = 14.2 \text{ Hz, } J_{BX} = 8.4 \text{ Hz, 1H}, \)

0.90 (s, 9H), 0.14 (s, 9H), 0.12 (s, 6H).

\[^{13}\text{C NMR (125 MHz, CDCl}_3\) \delta 140.9 (o), 114.4 (e), 106.84 (e), 85.13 (e), 71.56 (o), 70.93 (o), 43.02 (e), 36.33 (e), 25.97 (o), 18.06 (e), 15.81 (e), 0.23 (o), −4.01 (o), −4.47 (o). \]

\[\text{IR (Neat) 3424 (br), 2956 (w), 2930 (w), 2175 (w), 1644 (w), 1249 (m), 1080 (m) cm}^{-1}. \]

\[\text{HRMS (ESI, [M+Na]}^+\text{) calcd for C}_{18}\text{H}_{36}\text{O}_2\text{NaSi}_2 \text{ 363.2152, found 363.2143.} \]

4-(Oxiran-2-yl)butan-1-ol (100)

Hex-5-en-1-ol 12 (5.111 g, 51.0 mmol) was dissolved in DCM (100 mL) and treated with 3-chlorobenzoperoxoic acid (12.58 g, 70%, 56.1 mmol), followed by K\(_2\)CO\(_3\) (0.564 g, 4.08 mmol) at 0 °C. After \(ca. \ 15 \text{ min} \) the reaction mixture was warmed to room temperature and stirred for \(ca. \ 12 \text{ h} \) (TLC control). The reaction was cooled to 0 °C, quenched with 1 M aq. NaOH and diluted with EtOAc. Phases were separated and the aqueous layer was washed with EtOAc (4x). The combined organic layers were dried (MgSO\(_4\)), filtered and concentrated \(in \ vacuo \). Purification by flash chromatography (silica gel, Et\(_2\)O/petroleum ether – 10:1) afforded the epoxy alcohol 100 (4.48 g, 38.5 mmol, 76% yield) as clear oil.

\[R_f = 0.14 \text{ (EtOAc/hexanes – 1:1).} \]
Chapter 4

\[^{1}\text{H} \text{NMR} \ (500 \text{ MHz, CDCl}_3) \ \delta \ 3.65 \ (t, \ J = 6.4 \text{ Hz, 2H}), \ 2.94-2.91 \ (m, \ 1\text{H}), \ 2.76 \ (t, \ A \text{ of } AX_2, \ J_{AX} = 4.5 \text{ Hz, 1H}), \ 2.48 \ (dd, \ A \text{ of } AMX, \ J_{AM} = 4.9 \text{ Hz, } J_{MX} = 2.8 \text{ Hz, 1H}), \ 2.13 \ (\text{br s, } 1\text{H}), \ 1.67-1.48 \ (m, \ 6\text{H}).\]

IR (Neat) 3386 (br), 2934 (m), 2861 (m), 1047 (s) cm\(^{-1}\).

Preparation of Jacobsen’s catalyst (S,S)-OAc-33

A solution of (S,S)-33 (0.566 g, 0.937 mmol) in toluene (12 mL) was treated with acetic acid (0.54 mL, 9.37 mmol). The resultant deep brown mixture was stirred for ca. 30 min, then concentrated and dried \textit{in vacuo} to afford (S,S)-OAc-33 (0.621 g, 0.937 mmol, 100% yield) as brown solid.

\[(S)-4-(\text{Oxiran-2-yl})\text{butan-1-ol} \ (32)\]

Following the procedure of Jacobsen \textit{et al.},\(^{16}\) a (S,S)-OAc-33 catalyst (0.127 g, 0.192 mmol) was suspended in a solution of 100 (4.463 g, 38.4 mmol) in THF (0.5 mL) and treated with water (0.381 mL, 21.13 mmol) at 0 °C. The reaction mixture was warmed to room temperature and stirred for \textit{ca.} 20 h (TLC control). The reaction was directly purified using flash chromatography (silica gel, Et\(_2\)O/petroleum ether – 6:1, 8:1, 10:1) to afford the epoxy alcohol 32 (1.30 g, 11.19 mmol, 58% yield, based on 50% conversion) as a brown oil.
Chapter 4

The enantiomeric excess of 32 was determined by chiral HPLC analysis of Bn ether and was shown to be >99% ee. Chiral AS-H column, IPA/Hex – 5.0:95.0, 1 mL/min, 25 °C, 210 nm, \(t_r \)(minor) = 11.7 min, \(t_r \)(major) = 10.5 min.

\[\text{Rf} = 0.14 \ (\text{EtOAc/hexanes} = 1:1). \]

\[[\alpha]_D^{20} = -6.9 \ (c \ 0.5, \text{CHCl}_3). \]

\(^1\text{H NMR}\) (500 MHz, CDCl\(_3\)) \(\delta \) 3.58 (t, \(J = 6.3 \) Hz, 2H), 2.91-2.87 (m, 1H), 2.72 (appt, A of AX\(_2\), \(J_{AX} = 4.5 \) Hz, 1H), 2.50 (br s, 1H), 2.45 (dd, A of AMX, \(J_{AM} = 4.9 \) Hz, \(J_{MX} = 2.8 \) Hz, 1H), 1.61-1.44 (m, 6H).

\text{IR (Neat)} 3380 (br), 2934 (m), 2861 (m), 1046 (s) cm\(^{-1}\).

(S)-4-(Oxiran-2-yl)butanal (10)

To a cooled to 0 °C mixture of 32 (0.507 g, 4.37 mmol) and 4Å molecular sieves (1.5 g) in DCM (15 mL) was added NMO (1.02 g, 8.73 mmol), followed by TPAP (0.077 g, 0.218 mmol). After ca. 2 h (TLC control) the reaction mixture was passed through a pad of silica gel (washed with Et\(_2\)O/pentane – 5:1). The solution was concentrated at 25 °C (430 Torr) to afford the highly volatile aldehyde (0.389 g, 3.14 mmol, 78% yield) 10, which was used in the following step without purification.

(R,E)-5-((Triethylsilyl)oxy)-6-((triisopropylsilyl)oxy)hex-2-enal (35)

A mixture of (R)-1-(triisopropylsilyloxy)-pent-4-en-2-ol (34)\(^{17}\) (2.582 g, 9.99 mmol) and acrolein (3.7 mL, 49.9 mmol) was dissolved in DCM (25 mL) and treated with
Chapter 4

Hoveyda-Grubbs 2nd generation catalyst (0.063 g, 0.100 mmol). The reaction mixture was refluxed for ca. 2 h (TLC control), then concentrated in vacuo and purified by flash chromatography (silica gel, Et₂O/petroleum ether – 1:3, 1:2) to furnish the δ-hydroxy α,β-unsaturated aldehyde 35 (2.684 g, 9.37 mmol, 94% yield) as a brown oil.

R_f = 0.21 (Et₂O/hexanes – 1:1).

[α]_D^20 +9.4 (c 1.0, CHCl₃).

1H NMR (500 MHz, CDCl₃) δ 9.54 (d, J = 7.9 Hz, 1H), 6.95 (dt, J = 15.6, 7.2 Hz, 1H), 6.20 (ddt, J = 15.7, 7.9, 1.4 Hz, 1H), 3.87 (app. qd, J = 6.2, 3.8 Hz, 1H), 3.76 (dd, A of ABX, J_AB = 9.8 Hz, J_AX = 3.7 Hz, 1H), 3.57 (dd, B of ABX, J_AB = 9.8 Hz, J_BX = 6.8 Hz, 1H), 2.61 (br s, 1H), 2.52 (ddd, J = 7.2, 6.2, 1.2 Hz, 2H), 1.16-1.09 (m, 3H), 1.07-1.05 (m, 18H).

13C NMR (125 MHz, CDCl₃) δ 194.03 (o), 154.54 (o), 134.88 (o), 70.65 (o), 66.97 (e), 36.54 (e), 18.07 (o), 11.98 (o).

IR (Neat) 3436 (br), 2943 (m), 2866 (m), 2724 (w), 1686 (s), 1636 (w), 1117 (s) cm⁻¹.

To a cooled to −78 °C solution of 35 (4.644 g, 16.21 mmol) in DCM (50 mL) was added triethylamine (7.2 mL, 51.9 mmol) and TESOTf (9.16 mL, 40.53 mmol). After ca. 10 min (TLC control) the reaction mixture was quenched with saturated aqueous NaHCO₃, warmed to room temperature and partitioned between water and Et₂O. Phases were separated and the aqueous layer was washed with Et₂O (2x). The
combined organic layers were washed with water, brine, dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (Et₂O/hexanes – 2%, 5%) afforded the TES ether 13 (6.44 g, 16.07 mmol, 99% yield) as a colourless oil.

Rf = 0.86 (Et₂O/hexanes – 1:1).

[α]D₂₀ +7.7 (c 1.0, CHCl₃).

1H NMR (500 MHz, CDCl₃) δ 9.52 (d, J = 8.0 Hz, 1H), 6.95 (ddd, J = 15.4, 8.0, 7.2 Hz, 1H), 6.18 (ddt, J = 15.5, 7.9, 1.2 Hz, 1H), 3.82 (app. ddt, J = 8.2, 6.0, 4.7 Hz, 1H), 3.69 (dd, A of ABX, JAB = 9.6 Hz, JAX = 4.8 Hz, 1H), 3.48 (dd, B of ABX, JAB = 9.6 Hz, JBX = 8.2 Hz, 1H), 2.69 (ddddd, A of ABXYZ, JAB = 14.4 Hz, JAX = 6.5 Hz, JAY = 4.7 Hz, JAZ = 1.6 Hz, 1H), 2.53 (ddddd, B of ABXYZ, JAB = 14.4 Hz, JBX = 7.8 Hz, JBY = 6.5 Hz, JAZ = 1.1 Hz, 1H), 1.12-1.04 (m, 21H), 0.95 (t, J = 8.0 Hz, 9H), 0.60 (q, J = 7.8 Hz, 6H).

13C NMR (125 MHz, CDCl₃) δ 194.18 (o), 155.85 (o), 135.06 (o), 71.89 (o), 67.03 (e), 38.15 (e), 18.10 (o), 11.99 (o), 6.96 (o), 4.97 (e).

IR (Neat) 2944 (m), 2867 (m), 2805 (w), 2729 (w), 1694 (s), 1639 (w), 1119 (s) cm⁻¹.

HRMS (ESI, [M+Na]⁺) calcd for C₂₁H₄₄O₃NaSi₂ 423.2727, found 423.2707.

(4R,8R,E)-8-((Triethylsilyl)oxy)-9-((triisopropylsilyl)oxy)non-5-en-1-yn-4-ol (41)

The procedure requires usage of Schlenk techniques and performed under an atmosphere of argon at all operational steps!

Following a procedure of Corey et al.,²¹ to a suspension of (R,R)-42 (3.09 g, 5.94 mmol) in DCM (32 mL) at 0 °C was added BBr₃ (5.49 mL, 1 M in DCM,
5.49 mmol) dropwise. The reaction mixture stirred for ca. 15 and then brought to room temperature. After ca. 40 min the RM was concentrated under reduced pressure using a dry ice trap. The resultant yellow solid was dissolved in DCM (32 mL), cooled to 0 °C and treated with a solution of propargyl stannane 46 (1.984 g, 5.10 mmol) in DCM (6 mL). The reaction mixture was stirred for ca. 3.5 h at 0 °C and ca. 30 min at room temperature, before it was cooled to −78 °C and treated with a cooled to −78 °C solution of 13 (0.808 g, 3 mmol) in DCM (6 mL) using a double-ended cannula. The reaction mixture was left to slowly warm up to room temperature and stirred for ca. 16 h (TLC control), before it was quenched with pH 7 buffer and diluted with DCM. Phases were separated and the aqueous layer was washed with DCM (2x). Combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo to furnish crude solid product, which was treated with 25% EtOAc/hexanes solution, cooled to 0 °C and filtered to recover the precipitated ligand. The mother liquor was concentrated in vacuo and purified by flush chromatography (DCM/Hex – 10:1, Et₂O/DCM – 1:25 to recover ligand) to afford the homopropargylic alcohol 41 (0.698 g, 2.255 mmol, 75% yield) as slightly yellow oil.

The procedure requires usage of Schlenk techniques and performed under an atmosphere of argon at all operational steps!

Following the procedure of Soderquist et al.,²² to a suspension of 1(R)-44 (0.243 g, 0.655 mmol) in Et₂O (3.1 mL) was added freshly prepared allenylmagnesium bromide (45) (0.80 mL, 0.653 mmol). The reaction warmed to room temperature
Chapter 4

and stirred for ca. 1 h, before the solvent was removed using a dry ice trap. The residue was triturated with hexanes (5 mL) and solution carefully transferred from precipitates to another flask using syringe (5x) and concentrated in vacuo. The residue was dissolved in Et₂O (3.1 mL), cooled to −78 °C and treated with 37 (0.218 g, 0.544 mmol) in Et₂O (2 mL with washings). After ca. 3 h (TLC control), the reaction mixture warmed to room temperature and concentrated in vacuo. Pseudoephedrine (0.108 g, 0.655 mmol) in MeCN (3.1 mL) was added and the solution was refluxed for ca. 4 h, before it was concentrated and purified by flush chromatography (Et₂O/hexanes – 1:6) to furnish the homopropargylic alcohol 41 (0.155 g, 0.352 mmol, 65% yield) as a colourless oil.

R_f = 0.19 (Et₂O/Hexanes – 1:5).

[α]$_D^{20}$ +13.5 (c 0.5, CHCl₃).

1H NMR (500 MHz, CDCl₃) δ 5.80 (dt, $J = 15.1$, 7.4 Hz, 1H), 5.61 (dd, $J = 15.5$, 6.6 Hz, 1H), 4.25 (q, $J = 6.0$ Hz, 1H), 3.72 (app. dtd, $J = 11.4$, 6.1, 1.2 Hz, 1H), 3.61 (dd, A of ABX, $J_{AB} = 9.6$ Hz, $J_{AX} = 5.0$ Hz, 1H), 3.49 (dd, B of ABX, $J_{AB} = 9.6$ Hz, $J_{BX} = 7.2$ Hz, 1H), 2.43 (ddd, A of AMXY, $J_{AM} = 16.6$ Hz, $J_{AX} = 5.3$ Hz, $J_{AY} = 2.6$ Hz, 1H), 2.43-2.37 (m, 3H), 2.20 (app. dt, B of ABX, $J_{AB} = 13.8$ Hz, $J_{BX} = 2.6$ Hz, 1H), 2.04 (t, $J = 2.6$ Hz, 1H), 1.96 (br s, 1H), 1.10-1.03 (m, 21H), 0.95 (t, $J = 8.0$ Hz, 9H), 0.59 (q, $J = 8.0$ Hz, 6H).

13C NMR (125 MHz, CDCl₃) δ 133.04 (o), 129.47 (o), 80.61 (e), 72.73 (o), 70.77 (o), 70.67 (e), 66.98 (e), 37.29 (e), 27.56 (e), 18.00 (o), 11.93 (o), 6.88 (o), 4.94 (e).

IR (Neat) 3410 (w), 3314 (w), 2943 (m), 2867 (m), 1462 (m), 1109 (m) cm⁻¹.

(5R,9R,E)-12,12-Diisopropyl-2,2,3,3,13-pentamethyl-5-(prop-2-yn-1-yl)-9-
((triethylsilyl)oxy)-4,11-dioxa-3,12-disilatetradec-6-ene (11)

To a cooled to –78 °C solution of 41 (0.619 g, 1.403 mmol) and 2,6-lutidine (0.26 mL, 2.245 mmol) in DCM (5 mL) was added TBSOTf (0.42 mL, 1.824 mmol). After ca. 5 min (TLC control) the reaction mixture was quenched with saturated aqueous NaHCO₃, warmed to room temperature and partitioned between water and Et₂O. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were washed with water, brine, dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/hexanes – 1:80) gave the TBS ether 11 (0.70 g, 1.26 mmol, 90% yield) as a colourless oil.

Rf = 0.81 (Et₂O/Hexanes – 1:5).

[α]D²⁰ +4.3 (c 0.5, CHCl₃).

¹H NMR (500 MHz, CDCl₃) δ 5.70 (dt, J = 14.9, 7.3 Hz, 1H), 5.56 (dd, J = 15.4, 6.1 Hz, 1H), 4.23 (q, J = 6.2 Hz, 1H), 3.73 (quintet, J = 5.6 Hz, 1H), 3.60 (dd, A of ABX, JAB = 9.7 Hz, JAX = 5.3 Hz, 1H), 3.52 (dd, B of ABX, JAB = 9.7 Hz, JBX = 6.6 Hz, 1H), 2.38 (ddd, A of ABXY, JAB = 16.5 Hz, JAX = 6.3 Hz, JAY = 2.6 Hz, 1H), 2.37-2.34 (m, 1H), 2.31 (ddd, B of ABXY, JAB = 16.5 Hz, JBX = 6.6 Hz, JBY = 2.6 Hz, 1H), 2.20 (app. dt, B of ABX₂, JAB = 13.6 Hz, JBX = 6.7 Hz, 1H), 1.95 (t, J = 2.5 Hz, 1H), 1.10-1.03 (m, 21H), 0.95 (t, J = 8.0 Hz, 9H), 0.89 (s, 9H), 0.60 (q, J = 7.9 Hz, 6H), 0.08 (s, 3H), 0.05 (s, 3H).
13C NMR (125 MHz, CDCl3) δ 133.26 (o), 127.43 (o), 81.83 (e), 72.99 (o), 72.15 (o), 69.85 (e), 67.04 (e), 37.22 (e), 26.00 (o), 18.37 (e), 18.16 (o), 12.10 (o), 7.04 (o), 5.12 (e), –4.29 (o), –4.63 (o).

IR (Neat) 3316 (w), 2951 (m), 2867 (m), 1462 (w), 1100 (s) cm⁻¹.

(4R,5E,8R,9E,12R)-8-((tert-Butyldimethylsilyl)oxy)-1-((S)-oxiran-2-yl)-12-((triethylsilyl)oxy)-13-((triisopropylsilyl)oxy)trideca-5,9-dien-4-ol (51)

To a suspension of Schwartz reagent (0.057 g, 0.220 mmol) in DCM (1.6 mL) at 0 °C was added neat 11 (0.111 g, 0.2 mmol) using a microliter syringe. The reaction mixture was warmed to room temperature and stirred for ca. 30 min until precipitates dissolved. The resultant slightly yellow solution was cooled to −78 °C and Me2Zn (0.183 mL, 1.2 M in toluene, 0.220 mmol) was added, followed by (−)-MIB (4.8 mg, 0.020 mmol) as a solution in DCM (0.5 mL with washings). After ca. 30 min the reaction mixture was warmed to room temperature and stirred for ca. 10 min, then cooled to −10 °C and treated with a solution of 10 (0.0457 g, 0.4 mmol) in a 10:1 mixture of hexanes/DCM (0.2 mL with washings). After 13 h (TLC control) the reaction was quenched with saturated aqueous NH4Cl and partitioned between DCM and water. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO4), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et2O/hexanes – 1:3, 1:2, 1:1) afforded the allylic alcohol 51 (0.058 g, 0.086 mmol, 43% yield) as clear oil.

For characterization, see p. 272.
To a cooled to −78 °C solution of 51 and 2,6-lutidine (6.6 µl, 0.057 mmol) in DCM (1.3 mL) was added TBSOTf (6.6 µl, 0.029 mmol). After ca. 15 min (TLC control) the reaction mixture was quenched with saturated aqueous NaHCO₃, warmed to room temperature and partitioned between water and Et₂O. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were washed with water, brine, dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (SiO₂, Et₂O/hexanes – 1:30) afforded the TBS ether 2 (0.0105 g, 0.013 mmol, 93% yield) as a colourless oil.

For characterization, see p. 273.

The procedure requires usage of Schlenk techniques and performed under an atmosphere of argon at all operational steps! The 50 mL round bottom Schlenk flask was charged with dry imidazole (0.340 g, 5.00 mmol) and DCM (15 mL). The solution was cooled to 0 °C and iPr₂SiCl₂ (0.81 mL, 4.50 mmol) was added dropwise. After ca. 10 min a solution of 3 (0.423 g, 1 mmol) in DCM (3 mL) was
added using a syringe pump over ca. 3 h and the reaction left to warm to room temperature. After ca. 16 h the reaction mixture was concentrated under reduced pressure using a dry ice trap. The residue was triturated with hexane (10 mL) and the solution was carefully decanted from precipitates using a syringe into a separate 100 mL Kugelrohr flask (3x). The hexane washings were concentrated under reduced pressure using a dry ice trap and the residue was heated at 75 °C in vacuo (1 Torr) for ca. 3 h to remove the excess of \(\text{tPr}_2\text{SiCl}_2 \). The crude monochloroalkoxysilane was cooled to 0 °C and imidazole (0.340 g, 5.00 mmol) in DCM (2 mL with washings) was added, followed by 4 (0.286 g, 0.840 mmol) in DCM (3 mL with washings) and the reaction was warmed to room temperature. After ca. 15 h (TLC control) the reaction mixture was quenched with saturated aqueous NH\(_4\)Cl and partitioned between Et\(_2\)O and water. Phases were separated and the aqueous layer was washed with Et\(_2\)O (2x). The combined organic layers were washed with water (2x), brine, dried (MgSO\(_4\)), filtered and concentrated. Purification by flash chromatography (silica gel, Et\(_2\)O/hexanes – 1:22, 1:20) afforded the mixed silaketal 59 (0.615 g, 0.702 mmol, 84% yield) as a colourless oil.

\[\text{R}_f = 0.74 \text{ (EtOAc/hexanes – 1:2).} \]

\[[\alpha]_{D}^{20} = -8.2 \text{ (c 1.0, CHCl}_3\text{).} \]

\(^1\text{H NMR} \) (500 MHz, CDCl\(_3\)) \(\delta \) 7.27-7.25 (m, 2H), 6.87-6.86 (m, 2H), 5.82 (ddd, \(J = 17.2, 10.4, 6.8 \text{ Hz, } 1\text{H})\), 5.19 (d, \(J = 17.2 \text{ Hz, } 1\text{H})\), 5.08 (d, \(J = 10.4 \text{ Hz, } 1\text{H})\), 4.76 (s, 2H), 4.45-4.40 (m, 3H), 3.97 (ddd, \(J = 9.2, 3.8, 2.4 \text{ Hz, } 1\text{H})\), 3.86-3.82 (m, 1H), 3.79 (s, 3H), 3.44 (t, \(J = 6.5 \text{ Hz, } 2\text{H})\), 2.37 (d, A of AB, \(J_{AB} = 13.3 \text{ Hz, } 1\text{H})\), 2.28 (ddd, A of ABXY, \(J_{AB} = 17.0 \text{ Hz, } J_{AX} = 7.9 \text{ Hz, } J_{AY} = 6.6 \text{ Hz, } 1\text{H})\), 2.27-2.18 (m, 1H), 2.02 (dd, B of ABX, \(J_{AB} = 13.6 \text{ Hz, } J_{BX} = 9.4 \text{ Hz, } 1\text{H})\), 1.80 (ddd, A of ABXY, \(J_{AB} = 13.3 \text{ Hz, } J_{AX} = 7.8 \text{ Hz, } J_{AY} = 5.3 \text{ Hz, } 1\text{H})\), 1.77-1.50 (m, 8H), 1.75 (s, 3H), 1.32-1.21 (m,
Chapter 4

2H), 1.06-1.00 (m, 12H), 0.95-0.91 (m, 2H), 0.89 (s, 9H), 0.88 (s, 9H), 0.14 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H).

\[^{13}C \text{ NMR} \ (125 \text{ MHz, CDCl}_3) \delta 159.18 \text{ (e), 143.55 \ (e), 141.13 \ (o), 130.97 \ (e), 129.28 \ (o), 114.87 \ (e), 113.84 \ (o), 112.96 \ (e), 107.19 \ (e), 84.70 \ (e), 75.05 \ (o), 73.52 \ (o), 72.62 \ (e), 71.22 \ (o), 70.32 \ (o), 68.12 \ (o), 55.35 \ (o), 45.41 \ (e), 39.27 \ (e), 36.59 \ (e), 30.23 \ (e), 29.95 \ (e), 26.02 \ (o), 23.54 \ (e), 23.12 \ (o), 18.13 \ (e), 17.79 \ (o), 17.76 \ (o), 17.70 \ (o), 17.69 \ (o), 15.82 \ (e), 13.29 \ (o), 13.08 \ (o), 0.26 \ (o), \ -3.76 \ (o), \ -4.03 \ (o), \ -4.15 \ (o), \ -4.33 \ (o). \]

IR (Neat) 2929 (m), 2958 (m), 2174 (w), 1646 (w), 1614 (w), 1513 (w), 1098 (s) cm\(^{-1}\).

HRMS (ESI, [M+Na]\(^+\)) calcd for C\(_{48}H_{90}O_6\)NaSi\(_4\) 897.5712, found 897.5717.

Dicobalt hexacarbonyl complex of (55,65,105,125)-8,8-diisopropyl-5-(4-((4-methoxybenzyl)oxy)butyl)-2,2,3,14,14,15,15-octamethyl-6-(2-methylallyl)-12-(5-(trimethylsilyl)pent-4-yn-1-yl)-10-vinyl-4,7,9,13-tetraoxa-3,8,14-trisilahexadecane (61)

To a solution of 59 (1.186 g, 1.354 mmol) in DCM (15 mL) was added a solid cobalt carbonyl complex (0.648 g, 1.896 mmol). After 1 h (TLC control) the reaction mixture was concentrated and purified by flash chromatography (silica gel, Et\(_2\)O/hexanes – 1:20) to afford the dicobalt adduct 61 (1.56 g, 1.336 mmol, 99% yield) as brown oil.

R\(_f\) = 0.40 (Et\(_2\)O/hexanes – 1:10).
Chapter 4

$[\alpha]^2_D - 2.2$ (c 1.0, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$) δ 7.28-7.25 (m, 2H), 6.89-6.86 (m, 2H), 5.83 (ddd, $J = 17.5, 10.3, 7.1$ Hz, 1H), 5.20 (d, $J = 17.2$ Hz, 1H), 5.12 (dd, $J = 10.4, 0.7$ Hz, 1H), 4.76 (s, 2H), 4.45 (d, A of AB, $J_{AB} = 11.6$ Hz, 1H), 4.43 (d, B of AB, $J_{AB} = 11.6$ Hz, 1H), 4.43-4.39 (m, 1H), 3.99 (ddd, $J = 9.4, 4.1, 2.3$ Hz, 1H), 3.84 (sextet, $J = 4.6$ Hz, 1H), 3.80 (s, 3H), 3.74 (ddd, $J = 9.3, 4.0, 2.1$ Hz, 1H), 3.45 (app. td, $J = 6.6, 1.1$ Hz, 2H), 2.97 (app. dt, A of ABX$_2$, $J_{AB} = 13.3$ Hz, $J_{AX} = 5.4$ Hz, 1H), 2.92 (app. dt, B of ABX$_2$, $J_{AB} = 13.4$ Hz, $J_{BX} = 5.4$ Hz, 1H), 2.37 (d, A of AB, $J_{AB} = 12.5$ Hz, 1H), 2.02 (dd, B of ABX, $J_{AB} = 13.6$ Hz, $J_{BX} = 9.5$ Hz, 1H), 1.96 (dd, A of ABXY, $J_{AB} = 13.4$ Hz, $J_{AX} = 8.6$ Hz, $J_{AY} = 4.8$ Hz, 1H), 1.88 (app. dt, B of ABX$_2$, $J_{AB} = 11.6$ Hz, $J_{BX} = 5.8$ Hz, 1H), 1.79-1.72 (m, 1H), 1.75 (s, 3H), 1.70-1.51 (m, 5H), 1.32-1.19 (m, 2H), 1.04 (d, $J = 7.1$ Hz, 3H), 1.03 (d, $J = 7.1$ Hz, 3H), 1.02 (d, $J = 7.2$ Hz, 3H), 1.01 (d, $J = 7.2$ Hz, 3H), 0.98-0.92 (m, 2H), 0.90 (s, 9H), 0.89 (s, 9H), 0.30 (s, 9H), 0.08 (s, 3H), 0.07 (s, 6H), 0.05 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 200.61 (e), 159.21 (e), 143.66 (e), 141.19 (o), 131.01 (e), 129.30 (o), 115.32 (e), 113.86 (o), 112.88 (e), 112.74 (e), 79.21 (e), 75.07 (o), 73.58 (o), 72.63 (e), 71.59 (o), 70.36 (e), 68.58 (o), 55.39 (o), 45.90 (e), 40.68 (e), 39.19 (e), 30.22 (e), 30.17 (e), 29.89 (e), 25.99 (o), 25.96 (o), 23.55 (e), 23.10 (o), 18.13 (e), 17.79 (o), 17.69 (o), 17.62 (o), 17.58 (o), 13.26 (o), 13.11 (o), 0.81 (o), −3.75 (o), −4.05 (o), −4.11(o), −4.38 (o).

IR (Neat) 2950 (w), 2926 (w), 2859 (w), 2076 (m), 2010 (m), 2044 (m), 1614 (w), 1687 (w), 1097 (m) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{54}$H$_{90}$O$_{12}$NaSi$_4$Co$_2$ 1183.4059, found 1183.4071.
((Pent-4-en-1-yloxy)methyl)benzene (71)\(^4\)

To a cooled to 0 °C suspension of sodium hydride (3.12 g, 60% in mineral oil, 78 mmol) in DMF (120 mL) was added 4-penten-1-ol (70) (5.17 g, 60 mmol), followed by benzylbromide (9.33 mL, 78 mmol). The solution warmed to room temperature and stirred for ca. 16 h (TLC control). The reaction was cooled to 0 °C and quenched with saturated aqueous NH\(_4\)Cl. The solution was partitioned between Et\(_2\)O and water. Layers were separated and the aqueous phase was washed with Et\(_2\)O (2x). The combined organic phases were washed with water, brine, dried with MgSO\(_4\), filtered and concentrated \textit{in vacuo} to afford the crude alcohol 71, which was used in the following step without purification.

An analytical sample was obtained by purification using flash chromatography (silica gel, Et\(_2\)O/petroleum ether – 1:50) as a colourless oil.

\(\text{R}_f = 0.73\) (Et\(_2\)O/hexanes – 1:1).

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 7.42\)–7.37 (m, 4H), 7.35–7.30 (m, 1H), 5.88 (ddt, \(J = 17.0, 10.3, 6.7\) Hz, 1H), 5.08 (dq, \(J = 17.1, 1.6\) Hz, 1H), 5.02 (dd, \(J = 10.2, 1.4\) Hz, 1H), 4.55 (s, 2H), 3.54 (t, \(J = 6.5\) Hz, 2H), 2.20 (q, \(J = 7.2\) Hz, 2H), 1.77 (app. dt, \(J = 14.3, 7.0\) Hz, 2H).

IR (Neat) 3066(w), 2936 (w), 2853 (w), 1640 (w), 1101 (s) cm\(^{-1}\).

4-(Benzyloxy)butanal (72)\(^5\)

Crude alkene 71 (10.58 g, 60 mmol) was dissolved in DCM (300 mL) and cooled to –78 °C. \(O_3\) was bubbled through the reaction mixture for ca. 45 min, until it became
slightly blue (TLC control). Then the solution was flushed with air, argon and treated with solid PPh$_3$ (31.5 g, 120 mmol). The reaction was warmed to room temperature and stirred for ca. 16 h, before it was dried (MgSO$_4$), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et$_2$O/petroleum ether – 1:7, 1:3) furnished aldehyde 72 (9.51 g, 53.4 mmol, 89% yield over 2 steps) as a colourless oil.

R$_f$ = 0.4 (Et$_2$O/hexanes – 1:3).

1H NMR (500 MHz, CDCl$_3$) δ 9.79 (s, 1H), 7.36–7.26 (m, 5H), 4.49 (s, 2H), 3.51 (t, J = 6.1 Hz, 2H), 2.56 (app. td, J = 7.1, 1.2 Hz, 2H), 1.96 (quintet, J = 6.6 Hz, 2H).

IR (Neat) 3031 (w), 2931 (w), 2858 (m), 2724 (w), 1721 (s), 1093 (s) cm$^{-1}$.

(S)-7-(Benzyloxy)hept-1-en-4-ol (66)31

To a cooled to −15 °C stock solution of (R,R)-27 (53 mL, 0.1 M in DCM, 5.3 mmol) was added 14 (9.51 g, 53.4 mmol) in DCM (10 mL with washings) and allyltributylstannane (24.2 mL, 78 mmol). The reaction mixture was warmed to 0 °C and stirred for ca. 24 h (TLC control), before it was quenched with saturated aqueous NaHCO$_3$ and partitioned between water and Et$_2$O. Phases were separated and the aqueous layer was washed with Et$_2$O (2x). The combined organic layers were dried (MgSO$_4$), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et$_2$O/petroleum ether – 1:4, 1:3, 1:3) afforded the homoallylic alcohol 66 (9.41 g, 42.7 mmol, 85% yield) as a colourless oil. Enantiomeric excess of 66 was determined by chiral HPLC analysis and was shown to be 92-95% ee. Chiral AS-H
column, IPA/Hex – 3.0:97.0, 0.5 mL/min, 25 °C, 210 nm, t_r(minor) = 23.5 min, t_r(major) = 38.3 min.

[α]_D^{20} = 6.4 (c 1.0, CHCl_3), Lit. [α]_D^{20} = 8.8 (c 1.16, MeOH).

R_f = 0.12 (Et_2O/hexanes – 1:3).

^1H NMR (500 MHz, CDCl_3) δ 7.38-7.33 (m, 4H), 7.32-7.26 (m, 1H), 5.84 (ddt, J = 17.0, 10.2, 7.0 Hz, 1H), 5.14-5.10 (m, 2H), 4.52 (s, 2H), 3.66 (septet, J = 4.1 Hz, 1H), 3.51 (t, J = 6.1 Hz, 2H), 2.56 (br s, 1H), 2.28 (ddd, A of ABXY, J_{AB} = 13.6 Hz, J_{AX} = 6.7 Hz, J_{AY} = 5.5 Hz, 1H), 2.19 (app. dt, B of ABX_2, J_{AB} = 14.3 Hz, J_{BX} = 7.2 Hz, 1H), 1.81-1.69 (m, 2H), 1.68-1.61 (m, 1H), 1.50 (ddd, B of ABXY, J_{AB} = 14.4 Hz, J_{BX} = 8.0 Hz, J_{BY} = 5.8 Hz, 1H).

IR (Neat) 3423 (br), 2955 (m), 2922 (m), 1640 (w), 1622 (w), 1073 (s) cm⁻¹.

(S)-7-(Benzyloxy)hept-1-en-4-yl tert-butyl carbonate (73)

To a cooled to 0 °C solution of 66 (9.41 g, 42.7 mmol) in THF (140 mL) was added LiHMDS (107 mL, 1 M in THF, 107 mmol) dropwise. The reaction mixture stirred for ca. 10 min and treated with a solution of BocON (26.35 g, 107 mmol) in THF (50 mL with washings). After ca. 15 min (TLC control) the reaction mixture was quenched with saturated aqueous NH_4Cl and partitioned between water and Et_2O. Phases were separated and the aqueous layer was washed with Et_2O (3x). The combined organic layers were dried (MgSO_4), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et_2O/petroleum ether – 1:20, 1:11, 1:10) afforded carbonate 73 (13.0 g, 40.6 mmol, 95% yield) as a colourless oil.

R_f = 0.42 (Et_2O/hexanes – 1:3).
[\alpha]_D^{20} -15.6 (c 1.0, CHCl₃).

1H NMR (500 MHz, CDCl₃) δ 7.36-7.32 (m, 4H), 7.29-7.26 (m, 1H), 5.78 (ddt, $J =$ 17.1, 10.1, 7.1 Hz, 1H), 5.11 (dd, $J =$ 17.3, 1.7 Hz, 1H), 5.08 (dd, $J =$ 11.6, 1.2 Hz, 1H), 4.72 (app. tt, $J =$ 7.3, 5.5 Hz, 1H), 4.50 (s, 2H), 3.50-3.44 (m, 2H), 2.36 (t, $J =$ 6.7 Hz, 2H), 1.74-1.62 (m, 4H), 1.48 (s, 9H).

13C NMR (125 MHz, CDCl₃) δ 153.40 (e), 138.52 (e), 133.51 (o), 128.38 (o), 127.62 (o), 127.55 (o), 117.90 (e), 81.71 (e), 76.28 (o), 72.87 (e), 69.89 (e), 38.84 (e), 30.39 (e), 27.83 (o), 25.66 (e).

IR (Neat) 2980 (w), 2856 (w), 1732 (s), 1643 (w), 1093 (s) cm⁻¹.

HRMS (ESI, [M+Na]+) calcd for C₁₉H₂₈O₄Na 343.1885, found 343.1886.

(S)-5-(Benzyloxy)-1-((S)-oxiran-2-yl)pentan-2-ol (75)

Following the procedure of Smith et al.,¹⁵ to a solution of 73 (2.985 g, 9.32 mmol) in toluene (28 mL) at −85 °C (Et₂O and dry ice bath) was added iodine bromide (5.54 mL, 1 M in DCM, 5.54 mmol) under exclusion of direct light. The reaction mixture was stirred for ca. 15 min at that temperature (TLC control), before it was quenched with 1:1 mixture of 5% aqueous NaHCO₃ and 20% aqueous Na₂S₂O₃ solution. The mixture was warmed to room temperature and partitioned between water and DCM. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (Na₂SO₄), filtered and concentrated in vacuo to afford the unstable cyclic iodocarbonate 74, which was used in the following step without purification.
To a solution of crude 74 (~9.32 mmol) in MeOH (28 mL) was added K$_2$CO$_3$ (3.86 g, 28.0 mmol) and the reaction mixture was stirred for ca. 4.5 h at room temperature (TLC control), before it quenched with saturated aqueous NH$_4$Cl and partitioned between water and DCM. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO$_4$), filtered and concentrated *in vacuo*. Purification by flash chromatography (silica gel, Et$_2$O/hexanes – 1:5) afforded the hydroxy epoxide 75 (1.779 g, 7.53 mmol, 81% yield) as a colourless oil.

$R_f = 0.2$ (EtOAc/hexanes – 1:1).

$[\alpha]_{D}^{20} = -9.5$ (c 1.0, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$) δ 7.36-7.32 (m, 3H), 7.30-7.26 (m, 2H), 4.51 (s, 2H), 3.90-3.82 (m, 1H), 3.53 (app. dt, A of ABX$_2$, $J_{AB} = 9.5$ Hz, $J_{AX} = 5.9$ Hz, 1H), 3.51 (app. dt, B of ABX$_2$, $J_{AB} = 9.9$ Hz, $J_{BX} = 6.0$ Hz, 1H), 3.08 (app. dt, $J = 7.0$, 4.2, 2.8 Hz, 1H), 3.00 (br s, 1H), 2.77 (app. t, A of AX$_2$, $J_{AX} = 4.5$ Hz, 1H), 2.49 (dd, M of AMX, $J_{AM} = 5.0$ Hz, $J_{MX} = 2.8$ Hz, 1H), 1.79-1.72 (m, 3H), 1.71-1.64 (m, 1H), 1.62-1.52 (m, 1H).

13C NMR (125 MHz, CDCl$_3$) δ 138.10 (e), 128.46 (o), 127.76 (o), 127.72 (o), 73.09 (e), 70.43 (e), 69.93 (o), 50.47 (o), 46.72 (e), 39.83 (e), 34.79 (e), 26.16 (e).

IR (Neat) 3426 (br), 2921 (w), 2856 (w), 1093 (s) cm$^{-1}$.

HRMS (CI, [M+H]$^+$) calcd for C$_{14}$H$_{21}$O$_3$ 237.1485, found 237.1488.
Chapter 4

(((S)-5-(Benzyloxy)-1-((S)-oxiran-2-yl)pentan-2-yl)oxy)(tert-butyl)dimethylsilane (65)

To a solution of 75 (1.779 g, 7.53 mmol) in DMF (26 mL) at room temperature was added TMEDA (2.80 mL, 18.82 mmol) followed by TBSCl (2.269 g, 15.06 mmol). The reaction mixture was stirred for ca. 16 h (TLC control), before it was quenched with saturated aqueous NH₄Cl and partitioned between water and Et₂O. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were washed with water, brine, dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/petroleum ether − 1:13, 1:10) afforded TBS ether 65 (2.555 g, 7.29 mmol, 97% yield) as a colourless oil.

\[[\alpha]_D^{20} = -14.5 \ (c \ 1.0, \ CHCl_3) \]

¹H NMR (500 MHz, CDCl₃) \(\delta \) 7.37-7.32 (m, 4H), 7.31-7.26 (m, 1H), 4.51 (s, 2H), 3.91 (quintet, \(J = 5.5 \) Hz, 1H), 3.49 (t, \(J = 6.0 \) Hz, 2H), 3.04 (app. ddt, \(J = 6.8, 4.1, 2.7 \) Hz, 1H), 2.75 (app. t, A of AX₂, \(J_{AX} = 4.5 \) Hz, 1H), 2.45 (dd, M of AMX, \(J_{AM} = 5.1 \) Hz, \(J_{MX} = 2.7 \) Hz, 1H), 1.76-1.59 (m, 6H), 0.91 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) \(\delta \) 138.63 (e), 128.37 (o), 127.64 (o), 127.52 (o), 72.87 (e), 70.42 (e), 70.17 (o), 49.42 (o), 46.81 (e), 40.19 (e), 33.72 (e), 25.88 (o), 25.80 (e), 18.06 (e), −4.49 (o), −4.52 (o).

IR (Neat) 2923 (w), 2857 (w), 1095 (s) cm⁻¹.

HRMS (ESI, [M+Na]⁺) calcd for C₂₀H₃₄O₃NaSi 373.2175, found 373.2162.
(3S,5S)-8-(Benzyloxy)-5-((tert-butyldimethylsilyl)oxy)oct-1-en-3-ol (64)

To a cooled at −10 °C solution of Me₃SOTf (8.24 g, 36.4 mmol) in THF (30 mL) slowly added nBuLi (14.3 mL, 2.5 M in hexanes, 35.7 mmol) and the reaction mixture was stirred for ca. 30 min. A solution of 65 (2.555 g, 7.29 mmol) in THF (5 mL with washings) was added and the reaction allowed to warm up to 0 °C. After ca. 16 h at that temperature (TLC control) the reaction was quenched with saturated aqueous NH₄Cl and partitioned between water and DCM. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/petroleum ether – 1:5, 1:4, 1:3) afforded the allylic alcohol 64 (2.45 g, 6.72 mmol, 92% yield) as a colourless oil.

R_f = 0.21 (Et₂O/hexanes – 1:3).

[^2D] +20.8 (c 1.0, CHCl₃).

^1H NMR (500 MHz, CDCl₃) δ 7.36-7.31 (m, 4H), 7.30-7.26 (m, 1H), 5.85 (ddd, J = 16.9, 10.7, 6.0 Hz, 1H), 5.26 (dt, J = 17.2, 1.3 Hz, 1H), 5.09 (dt, J = 10.5, 1.2 Hz, 1H), 4.50 (s, 2H), 4.27 (q, J = 6.0 Hz, 1H), 3.98 (quintet, J = 5.8 Hz, 1H), 3.47 (app. dt, A of ABX₂, J_AB = 9.1 Hz, J_AX = 5.8 Hz, 1H), 3.46 (app. dt, B of ABX₂, J_AB = 9.2 Hz, J_BX = 6.0 Hz, 1H), 3.15 (br s, 1H), 1.69-1.58 (m, 4H), 1.66 (t, J = 5.4 Hz, 2H), 0.91 (s, 9H), 0.11 (s, 3H), 0.10 (s, 3H).

^13C NMR (125 MHz, CDCl₃) δ 140.82 (o), 138.52 (e), 128.39 (o), 127.62 (o), 127.57 (o), 114.17 (e), 72.86 (e), 72.32 (o), 71.87 (o), 70.36 (e), 43.00 (e), 34.40 (e), 25.88 (o), 24.91 (e), 17.97 (e), −3.97 (o), −4.64 (o).

IR (Neat) 3432 (br), 2947 (m), 2856 (m), 1644 (w), 1060 (m) cm⁻¹.
HRMS (ESI, [M+Na]+) calcd for C_{21}H_{36}O_{3}NaSi 387.2331, found 387.2323.

\[\text{(5S,6S,10S,12S)-12-(3-(Benzyloxy)propyl)-8,8-diisopropyl-5-(4-((4-methoxybenzyl)oxy)butyl)-2,2,3,14,14,15,15-octamethyl-6-(2-methylallyl)-10-vinyl-4,7,9,13-tetraoxa-3,8,14-trisilahexadecane (80)} \]

The procedure requires usage of Schlenk techniques and performed under an atmosphere of argon at all operational steps! The 50 mL round bottom Schlenk flask was charged with imidazole (0.340 g, 5.00 mmol) and dissolved in DCM (15 mL). The solution was cooled to 0 °C and \(\text{^3Pr}_2\text{SiCl}_2 \) (0.81 mL, 4.50 mmol) was added dropwise. After ca. 10 min a solution of 3 (0.423 g, 1 mmol) in DCM (3 mL) was added using a syringe pump over ca. 3 h and the reaction left to warm to room temperature. After ca. 16 h the reaction mixture was concentrated under reduced pressure using a dry ice trap. The residue was triturated with hexane (10 mL) and the solution was carefully decanted from precipitates using a syringe into a separate 100 mL Kugelrohr flask (3x). The hexane washings were concentrated under reduced pressure using a dry ice trap and the residue was heated at 75 °C in vacuo (1 Torr) for ca. 3 h to remove the excess of \(\text{^3Pr}_2\text{SiCl}_2 \). The crude monochlorosilane was cooled to 0 °C and imidazole (0.340 g, 5.00 mmol) in DCM (2 mL with washings) was added, followed by alcohol 64 (0.286 g, 0.840 mmol) in DCM (3 mL with washings) and the reaction was warmed to room temperature. After 15 h (TLC control) the reaction mixture was quenched with saturated aqueous NH\(_4\)Cl and
partitioned between Et₂O and water. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were washed with water (2x), brine, dried (MgSO₄), filtered and concentrated. Purification by flash chromatography (silica gel, Et₂O/petroleum ether – 1:22, 1:20) afforded the mixed silaketal 80 (0.6342 g, 0.705 mmol, 84% yield) as colourless oil.

Rᵢ = 0.53 (Et₂O/hexanes – 1:3).

[α]ᵢD²⁰ = −4.9 (c 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃) δ 7.38-7.36 (m, 5H), 7.34-7.30 (m, 2H), 6.92-6.91 (m, 2H), 5.86 (ddd, J = 17.2, 10.3, 7.0 Hz, 1H), 5.24 (d, J = 17.2 Hz, 1H), 5.14 (d, J = 10.2 Hz, 1H), 4.83 (s, 2H), 4.54 (s, 2H), 4.50 (d, A of AB, J_AB = 11.4 Hz, 1H), 4.50-4.46 (m, 1H), 4.47 (d, B of AB, J_AB = 11.5 Hz, 1H), 4.05 (ddd, J = 7.0, 3.8, 2.2 Hz, 1H), 3.82 (s, 3H), 3.82-3.77 (m, 2H), 3.51 (app. t, J = 6.3 Hz, 4H), 2.44 (d, A of AB, J_AB = 13.2 Hz, 1H), 2.09 (dd, B of ABX, J_AB = 13.6 Hz, J_BX = 9.5 Hz, 1H), 1.93 (ddd, A of ABXY, J_AB = 13.4 Hz, J_AX = 8.6 Hz, J_AY = 4.8 Hz, 1H), 1.81 (s, 3H), 1.75-1.55 (m, 9H), 1.38-1.26 (m, 2H), 1.11-0.98 (m, 14H), 0.96 (s, 9H), 0.95 (s, 9H), 0.14 (s, 3H), 0.12 (s, 3H), 0.11 (s, 3H), 0.10 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 159.11 (e), 143.48 (e), 141.25 (o), 138.68 (e), 130.88 (e), 129.20 (o), 128.38 (o), 127.60 (o), 127.53 (o), 114.83 (e), 113.74 (o), 112.92 (e), 74.94 (o), 73.46 (o), 72.85 (e), 72.55 (e), 71.43 (o), 70.59 (e), 70.23 (e), 68.96 (o), 55.20 (o), 45.63 (e), 39.16 (e), 34.42 (e), 30.16 (e), 29.80 (e), 25.99 (o), 24.97 (e), 23.49 (e), 23.06 (o), 18.09 (e), 18.07 (e), 17.74 (o), 17.69 (o), 17.62 (o), 17.58 (o), 13.22 (o), 12.97 (o), −3.80 (o), −3.90 (o), −4.28 (o), −4.38 (o).

IR (Neat) 2947 (m), 2929 (m), 2857 (m), 1646 (w), 1614 (w), 1513 (w), 1098 (s) cm⁻¹.

(4S,8S,Z)-8-((S)-5-(Benzyloxy)-2-((tert-butyldimethylsilyl)oxy)pentyl)-4-((S)-1-((tert-butyldimethylsilyl)oxy)-5-((4-methoxybenzyl)oxy)pentyl)-2,2-diisopropyl-6-methyl-5,8-dihydro-4H-1,3,2-dioxasilocine (81)

To a solution of 80 (1.0 g, 1.11 mmol) in DCM (102 mL) was added Grubbs 2nd generation catalyst (0.142 g, 0.167 mmol) in DCM (4 mL) and the reaction mixture was refluxed for ca. 24 hours. After that time a second portion of Grubbs 2nd generation catalyst (0.142 g, 0.167 mmol) in DCM (4 mL) was added and the mixture was refluxed for ca. 48 hours (TLC control), before it was cooled to room temperature and treated with DMSO (2.37 mL, 33.4 mmol). After ca. 16 hours the reaction was concentrated in vacuo and passed through a pad of silica gel (washed with Et₂O/petroleum ether 1:5). The solution was concentrated in vacuo and the crude product was purified by flash chromatography (silica gel, Et₂O/hexanes – 1:20) to afford the cyclic silaketal 81 (0.94 g, 1.08 mmol, 97% yield) as a colourless oil.

R_f = 0.74 (Et₂O/hexanes – 1:2).

[α]_D^{20} +1.4 (c 0.5, CHCl₃).

^1H NMR (500 MHz, CDCl₃) δ 7.34-7.31 (m, 4H), 7.29-7.25 (m, 3H), 6.89-6.85 (m, 2H), 5.56 (dd, J = 5.9, 1.1 Hz, 1H), 4.50 (s, 2H), 4.45 (d, A of AB, J_AB = 11.7 Hz, 1H), 4.42 (d, B of AB, J_AB = 11.7 Hz, 1H), 4.40 (quintet, J = 4.9 Hz, 1H), 3.94 (septet, J = 3.9 Hz, 1H), 3.90 (dd, J = 9.7, 3.7, 1.4 Hz, 1H), 3.80 (s, 3H), 3.62 (quintet, J = 3.9 Hz, 1H), 3.51-3.42 (m, 4H), 2.80 (dd, A of ABX, J_AB = 13.5 Hz, J_AX = 9.8 Hz, 1H), 1.99 (d, A of AB, J_AB = 12.8 Hz, 1H), 1.86 (dd, B of ABXY, J_AB = 13.7 Hz, J_BX = 9.5 Hz, J_BY = 4.4 Hz, 1H), 1.76-1.68 (m, 2H), 1.72 (s, 3H), 1.67-1.55
(m, 5H), 1.54-1.41 (m, 2H), 1.35-1.25 (m, 2H), 1.07-1.00 (m, 1H), 0.99 (s, 3H), 0.98 (s, 3H), 0.98 (s, 3H), 0.97 (s, 3H), 0.94-0.84 (m, 1H), 0.89 (s, 9H), 0.88 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H), 0.05 (s, 3H), 0.05 (s, 3H).

13C NMR (125 MHz, CDCl₃) δ 159.07 (e), 138.71 (e), 136.31 (e), 131.00 (o), 130.80 (e), 129.21 (o), 128.32 (o), 127.57 (o), 127.44 (o), 113.73 (o), 75.61 (o), 75.44 (o), 72.76 (e), 72.57 (e), 70.76 (e), 70.19 (e), 69.52 (o), 68.64 (o), 55.28 (o), 45.69 (e), 35.12 (e), 32.61 (e), 30.90 (e), 30.03 (e), 25.97 (o), 25.93 (o), 25.56 (e), 25.53 (o), 23.00 (e), 18.11 (e), 18.05 (e), 17.82 (o), 17.79 (o), 17.63 (o), 17.60 (o), 13.45 (o), 13.07 (o), –4.22 (o), –4.31 (o), –4.49 (o), –4.52 (o).

IR (Neat) 2929 (m), 2857 (m), 1729 (w), 1613 (w), 1513 (w), 1097 (s) cm⁻¹.

HRMS (ESI, [M+Na]⁺) calcd for C₄₉H₈₆O₈NaSi₈ 893.5579, found 893.5598.

(4S,5R,6S,8S)-4-((S)-5-(Benzyloxy)-2-((tert-butyldimethylsilyl)oxy)pentyl)-5- ((tert-butyldimethylsilyl)oxy)-8-((S)-1-((tert-butyldimethylsilyl)oxy)-5-((4-methoxybenzyl)oxy)pentyl)-2,2-diisopropyl-6-methyl-1,3,2-dioxasilocane (84)

To a solution of 81 (0.516 g, 0.592 mmol) in THF (3 mL) was added borane-tetrahydrofuran complex (3.0 mL, 1.0 M in THF, 3 mmol) and the reaction mixture was stirred for ca. 2 h (TLC control), before it was cooled to 0 °C and quenched with 0.1 mL of MeOH, followed by a careful dropwise addition of the premixed cold solution of sodium hydroxide (4.9 mL, 14.80 mmol) and hydrogen peroxide (1.51 mL, 14.80 mmol). The resulting mixture was vigorously stirred at room temperature for ca. 16 h and then partitioned between water and DCM. Phases were
separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo to afford crude alcohol, which was used in the next step without purification.

A solution of crude alcohol intermediate (~0.592 mmol) in DCM (2 mL) was treated sequentially with 2,6-lutidine (0.69 mL, 5.92 mmol) and TBSOTf (0.82 mL, 3.55 mmol) at 0 °C. After 40 min (TLC control) the reaction was quenched with saturated aqueous NaHCO₃ and partitioned between water and Et₂O. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were washed with water, brine, dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/hexanes – 1:20) afforded the TBS ether 84 (0.425 g, 0.424 mmol, 72% yield over 2 steps) as a colourless oil.

\[\alpha \]D\,^2_0 \approx -5.5 (c 1.0, CHCl₃).

\(^1\)H NMR (500 MHz, C₆D₆) \(\delta
\begin{align*}
&7.33-7.31 \text{ (m, 2H)},
&7.27-7.26 \text{ (m, 2H)},
&7.21-7.18 \text{ (m, 2H)},
&7.11-7.09 \text{ (m, 1H)},
&6.84-6.81 \text{ (m, 2H)},
&4.38 \text{ (d, A of AB, } J_{AB} = 11.9 \text{ Hz, 1H)},
&4.33 \text{ (d, B of AB, } J_{AB} = 10.9 \text{ Hz, 1H)},
&4.35 \text{ (s, 2H)},
&4.21 \text{ (dd, A of ABX, } J_{AB} = 5.4 \text{ Hz, } J_{AX} = 3.1 \text{ Hz, 1H)},
&4.17 \text{ (dd, } J = 9.8, 3.8 \text{ Hz, 1H)},
&4.08 \text{ (app. dt, B of ABX2, } J_{AB} = 6.4 \text{ Hz, } J_{BX} = 5.3 \text{ Hz, 1H)},
&3.74 \text{ (app. dt, } J = 8.1, 4.0 \text{ Hz, 1H)},
&3.44-3.35 \text{ (m, 4H)},
&3.30 \text{ (s, 3H)},
&2.19-2.08 \text{ (m, 2H)},
&2.11 \text{ (app. dt, A of ABX2, } J_{AB} = 14.3 \text{ Hz, } J_{BX} = 7.2 \text{ Hz, 1H)},
&1.97 \text{ (ddd, B of ABXY, } J_{AB} = 14.1 \text{ Hz, } J_{BX} = 7.2 \text{ Hz, } J_{BY} = 5.0 \text{ Hz, 1H)},
&1.93-1.84 \text{ (m, 4H)},
&1.77-1.63 \text{ (m, 4H)},
&1.57 \text{ (app. dt, B of ABX2, } J_{AB} = 14.5 \text{ Hz, } J_{BX} = 9.9 \text{ Hz, 1H)},
&1.59-1.43 \text{ (m, 2H)},
&1.24 \text{ (d, } J = 6.1 \text{ Hz, 3H)},
&1.23 \text{ (d, } J = 7.3 \text{ Hz, 3H)},
&1.22 \text{ (s, 3H)},
&1.21 \text{ (s, 3H)},
&1.20-1.14 \text{ (m, 1H)},
&1.13-1.08 \text{ (m, 1H)},
&1.11 \text{ (d, } J = 6.6 \text{ Hz, 3H)},
&1.05 \text{ (s, 9H)},
&1.04 \text{ (s, 9H)},
&1.00 \text{ (s, 9H)},
&0.25 \text{ (s, 3H)},
&0.23 \text{ (s, 3H)},
&0.22 \text{ (s, 3H)},
&0.19 \text{ (s, 3H)},
&0.10 \text{ (s, 3H)},
&0.10 \text{ (s, 3H)}.
\end{align*}
\(^{13} \text{C NMR} \) (125 MHz, C\(_{6}\)D\(_{6}\)) \(\delta \) 159.64 (e), 139.53 (e), 131.56 (e), 129.27 (o), 128.51 (o), 127.67 (o), 127.55 (o), 114.05 (o), 77.94 (o), 76.21 (o), 75.49 (o), 72.96 (e), 72.78 (e), 71.92 (o), 70.78 (e), 70.18 (e), 70.10 (o), 54.79 (o), 43.71 (e), 37.07 (e), 34.80 (o), 33.90 (e), 30.63 (e), 26.35 (o), 26.32 (o), 26.22 (o), 25.43 (e), 23.50 (e), 18.45 (e), 18.44 (e), 18.41 (e), 18.12 (o), 18.07 (o), 17.79 (o), 17.71 (o), 16.43 (o), 14.10 (o), 13.78 (o), –3.53 (o), –3.64 (o), –3.68 (o), –4.05 (o), –4.22 (o).

\(\text{IR (Neat)} \) 2951 (m), 2928 (m), 2856 (m), 1613 (w), 1587 (w), 1513 (w), 1463 (m), 1248 (s), 1100 (s), 1075 (s) cm\(^{-1}\).

\(\text{HRMS (ESI, [M+Na]}^+) \) calcd for C\(_{53}\)H\(_{102}\)O\(_7\)NaSi\(_8\) 1025.6550, found 1025.6556.

(455,5R,65,8S)-4-((S)-5-(Benzyloxy)-2-((tert-butyldimethylsilyloxy)pentyl)-5-((tert-butyldimethylsilyloxy)-8-((S)-1-((tert-butyldimethylsilyloxy)-5-(phenylsulfonyl)pentyl)-2,2-diisopropyl-6-methyl-1,3,2-dioxasilocane (85)

To a solution of 84 (0.453 g, 0.451 mmol) in a 20:1 mixture DCM (2 mL) and phosphate 7.0 buffer (0.1 mL) at 0 °C was added DDQ (0.164 g, 0.721 mmol) and the reaction stirred at that temp for ca. 2 h, before it was quenched with saturated aqueous NaHCO\(_3\) and partitioned between water and DCM. Phases were separated and aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO\(_4\)), filtered and concentrated \textit{in vacuo}. Purification by flash chromatography (SiO\(_2\), Et\(_2\)O/PhMe – 1:50, 1:40, 1:30) furnished alcohol 86 (0.389 g, 0.440 mmol, 98% yield) as a colourless oil.

\(R_f = 0.14 \) (Et\(_2\)O/hexanes – 1:5).
$[\alpha]_D^{20} -4.6$ (c 0.5, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$) δ 7.53-7.51 (m, 2H), 7.42-7.39 (m, 2H), 7.32-7.29 (m, 1H), 4.56 (s, 2H), 4.45 (app. qd, $J = 6.4, 3.3$ Hz, 1H), 4.41 (d, A of ABX, $J_{AB} = 5.4$ Hz, $J_{AX} = 3.2$ Hz, 1H), 4.36 (dd, $J = 9.8, 3.8$ Hz, 1H), 4.29 (app. dt, $J = 6.4, 5.3$ Hz, 1H), 3.92 (app. dt, $J = 8.1, 4.0$ Hz, 1H), 3.62-3.59 (m, 4H), 2.39-2.27 (m, 2H), 2.30 (dd, A of ABX, $J_{AB} = 15.6$ Hz, $J_{AX} = 6.7$ Hz, 1H), 2.17 (ddd, A of ABXY, $J_{AB} = 14.0$ Hz, $J_{AX} = 7.1$ Hz, $J_{AY} = 5.0$ Hz, 1H), 2.13-2.03 (m, 4H), 1.89-1.83 (m, 1H), 1.79-1.61 (m, 5H), 1.76 (app. dt, B of ABX, $J_{AB} = 14.8$ Hz, $J_{BX} = 10.0$ Hz, 1H), 1.59-1.52 (m, 1H), 1.44 (d, $J = 7.2$ Hz, 3H), 1.43 (d, $J = 7.4$ Hz, 3H), 1.42 (s, 3H), 1.41 (d, $J = 5.4$ Hz, 3H), 1.40-1.33 (m, 1H), 1.31-1.28 (d, $J = 6.5$ Hz, 3H), 1.26 (s, 9H), 1.24 (s, 9H), 1.20 (s, 9H), 0.45 (s, 3H), 0.43 (s, 3H), 0.42 (s, 3H), 0.40 (s, 3H), 0.31 (s, 3H), 0.30 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 140.07 (e), 129.09 (o), 128.25 (o), 128.14 (o), 78.54 (o), 76.73 (o), 76.02 (o), 73.52 (e), 72.45 (o), 71.34 (e), 70.66 (o), 63.19 (e), 44.30 (e), 37.61 (e), 35.37 (o), 34.48 (e), 33.99 (e), 31.86 (e), 26.89 (o), 26.86 (o), 26.74 (o), 26.01 (e), 23.47 (e), 19.00 (e), 18.99 (e), 18.96 (e), 18.67 (o), 18.62 (o), 18.33 (o), 18.26 (o), 16.98 (o), 14.67 (o), 14.34 (o), −2.99 (o), −3.08 (o), −3.13 (o), −3.51 (o), −3.69 (o).

IR (Neat) 3337 (br), 2947 (m), 2929 (m), 2857 (m), 1463 (w), 1251 (m), 1099 (m), 1067 (m) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{47}$H$_{94}$O$_7$NaSi$_4$ 905.5974, found 905.5984.
(4S,5R,6S,8S)-4-((S)-5-(Benzyloxy)-2-((tert-butyldimethylsilyl)oxy)pentyl)-5-((tert-butyldimethylsilyl)oxy)-8-((S)-1-((tert-butyldimethylsilyl)oxy)-5-(phenylsulfonyl)pentyl)-2,2-diisopropyl-6-methyl-1,3,2-dioxasilocane (63)

To a solution of 86 (0.341 g, 0.386 mmol) and PhSSPh (0.337 g, 1.543 mmol) in THF (2 mL) was added tributylphosphine (0.39 mL, 1.543 mmol) and the reaction mixture was stirred for ca. 1 h (TLC control). The reaction was then cooled to 0 °C and treated sequentially with 30% aqueous hydrogen peroxide (0.94 mL, 9.26 mmol) and ammonium molybdate tetrahydrate (0.119 g, 0.096 mmol). The reaction mixture was warmed to room temperature and stirred for ca. 16 h (TLC control), before it was quenched with aqueous NaHCO₃ and partitioned between water and DCM. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/PhMe – 1:80, 1:60) furnished 63 (0.298 g, 0.296 mmol, 77% yield) as a colourless oil.

R_f = 0.14 (Et₂O/hexanes – 1:5).

[α]²⁰_D = –3.6 (c 0.5, CHCl₃).

¹H NMR (500 MHz, C₆D₆) δ 7.79-7.75 (m, 2H), 7.30-7.28 (m, 2H), 7.20-7.17 (m, 2H), 7.11-7.08 (m, 1H), 7.01-6.93 (m, 3H), 4.35 (d, A of AB, <i>J</i>_{AB} = 12.4 Hz, 1H), 4.33 (d, B of AB, <i>J</i>_{AB} = 12.5 Hz, 1H), 4.20 (app. qd, J =6.3, 3.4 Hz, 1H), 4.13 (d, A of ABX, <i>J</i>_{AB} = 5.5 Hz, <i>J</i>_{AX} = 3.2 Hz, 1H), 4.06-4.01 (m, 2H), 3.57 (app. dt, <i>J</i> = 7.2, 4.7 Hz, 1H), 3.38 (t, <i>J</i> = 6.1 Hz, 2H), 2.76 (app. dt, A of ABX₂, <i>J</i>_{AB} = 14.5 Hz, <i>J</i>_{AX} = 7.8 Hz, 1H), 2.73 (app. dt, B of ABX₂, <i>J</i>_{AB} = 14.7 Hz, <i>J</i>_{BX} = 7.8 Hz, 1H), 2.14-2.09
(m, 1H), 2.07 (app. dt, A of ABX, $J_{AB} = 13.9$ Hz, $J_{AX} = 6.9$ Hz, 1H), 1.99 (app. dt, B of ABX, $J_{AB} = 14.9$ Hz, $J_{BX} = 7.0$ Hz, 1H), 1.91 (ddd, B of ABXY, $J_{AB} = 14.0$ Hz, $J_{BX} = 7.0$ Hz, $J_{BY} = 5.1$ Hz, 1H), 1.88-1.78 (m, 3H), 1.68-1.59 (m, 4H), 1.42 (app. dt, $J = 14.9$, 10.0 Hz, 1H), 1.37-1.23 (m, 3H), 1.16 (d, $J = 7.1$ Hz, 3H), 1.15 (d, $J = 7.2$ Hz, 3H), 1.14 (d, $J = 7.4$ Hz, 3H), 1.13 (d, $J = 7.5$ Hz, 3H), 1.10-1.04 (m, 2H), 1.05 (d, $J = 6.6$ Hz, 3H), 1.02 (s, 9H), 1.00 (s, 9H), 0.94 (s, 9H), 0.21 (s, 3H), 0.19 (s, 3H), 0.19 (s, 3H), 0.16 (s, 3H), 0.04 (s, 3H), 0.01 (s, 3H).

13C NMR (125 MHz, C$_6$D$_6$) δ 141.20 (e), 140.08 (e), 133.64 (o), 129.69 (o), 129.08 (o), 128.90 (o), 128.23 (o), 128.13 (o), 78.53 (o), 76.23 (o), 75.85 (o), 73.51 (e), 72.35 (e), 71.32 (e), 70.63 (o), 56.92 (e), 44.30 (e), 37.38 (e), 35.27 (o), 34.48 (e), 31.25 (e), 26.88 (o), 26.87 (o), 26.70 (o), 25.96 (e), 25.91 (e), 23.89 (e), 18.99 (e), 18.89 (e), 18.64 (o), 18.59 (o), 18.31 (o), 18.22 (o), 16.96 (o), 14.59 (o), 14.24 (o), –3.01 (o), –3.07 (o), –3.13 (o), –3.50 (o), –3.71 (o), –3.74 (o).

IR (Neat) 2951 (m), 2929 (m), 2857 (m), 1463 (w), 1251 (m), 1149 (m), 1087 (s), 834 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{53}$H$_{98}$O$_8$NaSi$_4$S 1029.5957, found 1029.5956.

N-Benzyl-N-methoxyhex-5-enamide (87)

To a solution of CDI (2.48 g, 15.27 mmol) in DCM (40 mL) at 0 °C was added hex-5-enoic acid (1.45 g, 12.73 mmol). The reaction warmed to room temperature and stirred for ca. 2.5 h (TLC control). N-benzyl-O-methylhydroxylamine (8.32 g, 15.27 mmol) in DCM (5 mL with washings) was added and the reaction mixture was stirred for ca. 16 h (TLC control), before it was quenched with saturated aqueous

263
NH₄Cl and partitioned between water and Et₂O. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated. Purification by flash chromatography (silica gel, Et₂O/hexanes – 1:1) afforded amide 87 (2.75 g, 11.77 mmol, 92% yield) as a colourless oil.

Rᶠ = 0.19 (Et₂O/hexanes – 1:1).

¹H NMR (500 MHz, CDCl₃) δ 7.29-7.23 (m, 5H), 5.75 (ddt, J = 17.0, 10.3, 6.7 Hz, 1H), 4.98 (dq, J = 17.1, 1.7 Hz, 1H), 4.93 (ddt, J = 10.2, 2.1, 1.1 Hz, 1H), 4.73 (s, 2H), 3.56 (s, 3H), 2.43 (t, J = 7.5 Hz, 2H), 2.07 (app. ddt, J = 14.4, 7.1, 1.2 Hz, 2H), 1.72 (quintet, J = 7.5 Hz, 2H),

¹³C NMR (125 MHz, CDCl₃) δ 138.15 (o), 136.68 (e), 128.57 (o), 128.38 (o), 127.64 (o), 115.18 (e), 49.03 (e), 62.15 (o), 33.33 (e), 31.42 (e), 23.68 (e).

IR (Neat) 3066 (w), 3033 (w), 2937 (w), 2937 (w), 1659 (vs), 1605 (w), 1440 (m), 1401 (s) cm⁻¹.

HRMS (CI, [M+NH₄⁺]) calcd for C₁₄H₂₀O₂N 234.1489, found 234.1487.

N-Benzyl-N-methoxy-4-(oxiran-2-yl)butanamide (100)

To a solution of 87 (2.75 g, 11.77 mmol) in a mixture of EtOAc (59 mL), water (59 mL) and acetone (17 mL, 235 mmol) was added NaHCO₃ (9.88 g, 118 mmol). The resulting suspension was vigorously stirred while an aqueous solution (200 mL) of Oxone® (28.9 g, 47.1 mmol) was added dropwise over ca. 3 h (TLC control). After that time an additional NaHCO₃ (4.94 g, 59 mmol) and acetone (8.5 mL, 117.5 mmol) were added, followed by a portionwise solid Oxone® (7.0 g, 11.39 mmol).
After ca. 1 h (TLC control) the reaction mixture was partitioned between water and EtOAc. Phases were separated and the aqueous layer was washed with EtOAc (3x). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/hexanes – 2:1, 3:1) afforded epoxide **101** (2.87 g, 11.50 mmol, 98% yield) as a colourless oil.

Rf = 0.35 (EtOAc/hexanes – 1:1).

¹H NMR (500 MHz, CDCl₃) δ 7.30-7.21 (m, 5H), 4.73 (s, 2H), 3.57 (s, 3H), 2.87 (app. ddt, J = 6.4, 4.2, 2.6 Hz, 1H), 2.68 (app. t, A of AM₂, Jₐₘ = 4.5 Hz, 1H), 2.51 (app. dt, A of ABX₂, Jₐₖ = 16.8 Hz, Jₐₓ = 7.4 Hz, 1H), 2.47 (app. dt, B of ABX₂, Jₐₖ = 16.8 Hz, Jₖₓ = 7.4 Hz, 1H), 2.41 (dd, M of AMX, Jₐₔ = 5.0 Hz, Jₖₓ = 2.7 Hz, 1H), 1.81 (app. d of quintets, A of ABX₄, Jₐₖ = 16.1 Hz, Jₐₓ = 7.6 Hz, 1H), 1.77 (app. d of quintets, B of ABX₄, Jₐₖ = 16.3 Hz, Jₖₓ = 7.5 Hz, 1H), 1.60 (dddd, A of ABXYZ, Jₐₖ = 13.8 Hz, Jₖₓ = 8.6 Hz, Jₐₚ = 6.6 Hz, Jₖₚ = 5.0 Hz, 1H), 1.50 (app. td, B of A₂BX, Jₐₖ = 14.3 Hz, Jₖₓ = 7.2 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 174.18 (e), 136.63 (e), 128.59 (o), 128.41 (o), 127.68 (o), 62.17 (o), 52.06 (o), 49.13 (e), 46.88 (e), 32.03 (e), 31.70 (e), 21.09 (e).

IR (Neat) 3484 (br), 2938 (w), 1655 (vs), 1605 (w), 1445 (m), 1404 (s) cm⁻¹.

HRMS (Cl, [M+H]⁺) calcd for C₁₄H₂₀O₃N 250.1438, found 250.1437.

\[\text{(S)-N-Benzyl-N-methoxy-4-(oxiran-2-yl)butanamide (67)} \]

A solution of **101** (2.87 g, 11.50 mmol), (S,S)-Co-OAc-**33** (0.076 g, 0.115 mmol) and water (0.114 mL, 6.32 mmol) in THF (1 mL) was stirred for ca. 36 h (TLC control). The reaction mixture was directly purified by flash chromatography (silica gel,
DCM/hexanes – 1:1, Et₂O/hexanes – 2:1, 3:1) to afford (S)-epoxide 67 (0.86 g, 3.46 mmol, 60% yield) as a brown oil.

Enantiomeric excess of 67 was determined by chiral HPLC analysis of was shown to be >99% ee. Chiral AS-H column, IPA/Hex – 3.0:97.0, 1.5 mL/min, 25 °C, 210 nm, t_r(minor) = 27.5 min, t_r (major) = 36.0 min.

R_f = 0.35 (EtOAc/hexanes – 1:1).

[α]_D^20 = -4.0 (c 1.0, CHCl₃).

^1H NMR (500 MHz, CDCl₃) δ 7.29-7.21 (m, 5H), 4.73 (s, 2H), 3.57 (s, 3H), 2.87 (app. dt, J = 6.4, 4.3, 2.5 Hz, 1H), 2.68 (app. t, A of AM₂, J_AM = 4.5 Hz, 1H), 2.51 (app. dt, A of ABX₂, J_AB = 16.9 Hz, J_AX = 7.4 Hz, 1H), 2.47 (app. dt, B of ABX₂, J_AB = 17.0 Hz, J_BX = 7.3 Hz, 1H), 2.41 (dd, M of AMX, J_AM = 5.0 Hz, J_MX = 2.7 Hz, 1H), 1.80 (app. d of quintets, J = 16.1, 7.6 Hz, 1H), 1.77 (app. d of quintets, J = 16.3, 7.5 Hz, 1H), 1.60 (ddddd, A of ABXYZ, J_AB = 13.8 Hz, J_AX = 8.6 Hz, J_AY = 6.6 Hz, J_AZ = 5.0 Hz, 1H), 1.50 (app. td, B of A₂BX, J_AB = 14.3 Hz, J_BX = 7.0 Hz, 1H).

^13C NMR (125 MHz, CDCl₃) δ 174.18 (e), 136.63 (e), 128.59 (o), 128.41 (o), 127.68 (o), 62.17 (o), 52.06 (o), 49.13 (e), 46.88 (e), 32.03 (e), 31.70 (e), 21.09 (e).

IR (Neat) 3033 (w), 2938 (w), 1655 (vs), 1605 (w), 1445 (m), 1404 (s) cm⁻¹.

HRMS (CI, [M+NH₄]⁺) calcd for C₁₄H₂₀O₃N 250.1438, found 250.1436.

(1E,4R,5E,8R)-1-(Tributylstannyl)-8-((triethylsilyl)oxy)-9-((triisopropylsilyl)oxy)nona-1,5-dien-4-ol (91)

A finely crushed (lIPC)₂BH (3.32 g, 11.58 mmol) was charged into a round bottom flask in a glove box. The flask was capped with a rubber septum and removed from
the glove box. Et$_2$O (45 mL) was added to the flask and the suspension was cooled to $-40 \, ^\circ\text{C}$. Allenylstannane 47 (5.5 mL, 90% w/w, 16.6 mmol) was added. This mixture was stirred for ca. 2 h at $-40 \, ^\circ\text{C}$ and slowly warmed to $-20 \, ^\circ\text{C}$ for ca. 3 h, during which time most of the borane dissolved. The reaction mixture was cooled to $-78 \, ^\circ\text{C}$ and a solution of 13 (2.02 g, 5.04 mmol) in Et$_2$O (2 mL with washings) was added. The mixture was stirred for 16 h at that temperature (TLC control), before it was quenched with MeOH (0.25 mL) and the reaction was allowed to warm to 0 $^\circ\text{C}$. A saturated aqueous NaHCO$_3$ (8.5 mL) was added, followed by slow addition of 30% H$_2$O$_2$ (16 mL). The reaction was stirred vigorously for ca. 16 h at that temperature, then diluted with brine and Et$_2$O. Phases were separated and the aqueous layer was washed with Et$_2$O (3x). The combined organic layers were dried (Na$_2$SO$_4$), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, neutralised with 1% Et$_3$N in hexane, Et$_2$O/hexanes – 1:25, 1:20) afforded the vinyl stannane 91 (3.27 g, 4.47 mmol, 89% yield) as a colourless oil.

$R_f = 0.12$ (Et$_2$O/hexanes – 20:1).

$[\alpha]_{D}^{20} +1.3$ (c 1.0, CH$_2$Cl$_2$).

1H NMR (500 MHz, C$_6$D$_6$) δ 6.24-6.09 (m, 2H), 5.89 (dt, $J = 15.0, 7.4$ Hz, 1H), 5.68 (dd, $J = 15.4, 6.1$ Hz, 1H), 4.15 (quintet, $J = 5.5$ Hz, 1H), 3.88 (quintet, $J = 5.7$ Hz, 1H), 3.79 (dd, A of ABX, $J_{AB} = 9.6$ Hz, $J_{AX} = 5.0$ Hz, 1H), 3.67 (dd, B of ABX, $J_{AB} = 9.6$ Hz, $J_{BX} = 6.8$ Hz, 1H), 2.56 (app. dt, A of ABX$_2$, $J_{AB} = 13.1$ Hz, $J_{AX} = 6.4$ Hz, 1H), 2.50-2.42 (m, 2H), 2.38 (app. dt, B of ABX$_2$, $J_{AB} = 13.9$ Hz, $J_{BX} = 7.0$ Hz, 1H), 1.63-1.51 (m, 6H), 1.38 (sextet, $J = 7.4$ Hz, 6H), 1.36 (s, 1H), 1.15-1.06 (m, 21H), 1.04 (t, $J = 8.0$ Hz, 9H), 0.98-0.90 (m, 6H), 0.95 (t, $J = 7.4$ Hz, 9H), 0.66 (q, $J = 7.9$ Hz, 6H).
Chapter 4

\[^{13}\text{C} \text{NMR} \ (125 \text{ MHz}, \text{C}_6\text{D}_6) \ \delta \ 146.48 \ (o), \ 136.40 \ (o), \ 132.36 \ (o), \ 127.81 \ (o), \ 74.03 \ (o), \ 72.39 \ (o), \ 68.17 \ (e), \ 47.49 \ (e), \ 38.47 \ (e), \ 30.18 \ (e), \ 28.29 \ (e), \ 18.87 \ (o), \ 12.92 \ (o), \ 10.34 \ (e), \ 7.81 \ (o), \ 6.03 \ (e). \]

\[\ \text{IR} \ (\text{Neat}) \ 3433 \ (\text{br}), \ 2955 \ (\text{m}), \ 2923 \ (\text{m}), \ 1599 \ (\text{w}), \ 1463 \ (\text{m}), \ 1103 \ (\text{m}), \ 995 \ (\text{m}) \ \text{cm}^{-1}. \]

\[\ \text{HRMS} \ (\text{ESI, [M+Na]}^+) \ \text{calcd for} \ C_{36}H_{76}O_3Si_3^{120}Sn \ 755.4253, \ \text{found} \ 755.4260. \]

(55R,9R,E)-12,12-Diisopropyl-2,2,3,3,13-pentamethyl-5-((E)-3-(tributylstannyl)allyl)-9-((triethylsilyl)oxy)-4,11-dioxa-3,12-disilatetradec-6-ene (68)

A solution of 91 (3.57 g, 4.88 mmol) in DCM (20 mL) treated with triethylamine (2.72 mL, 19.50 mmol) and TBSOTf (1.68 mL, 7.31 mmol) at 0 °C. The reaction mixture stirred for ca. 30 min (TLC control), then quenched with saturated aqueous NaHCO₃ and partitioned between water and Et₂O. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were washed with water, brine, dried (Na₂SO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel deactivated with 1% Et₃N, Et₂O/hexanes – 0:100, 1:50) afforded the TBS ether 68 (3.92 g, 4.63 mmol, 95% yield) as a colourless oil.

\[R_f = 0.44 \ (\text{Et}_2\text{O/hexanes} – 1:50). \]

\[[\alpha]_{D}^{20} +3.5 \ (c \ 1.0, \ \text{CH}_2\text{Cl}_2). \]

\[^1\text{H} \text{NMR} \ (500 \text{ MHz}, \text{CDCl}_3) \ \delta \ 6.32 \ (\text{dddt}, \ J_{(\text{Sn, H})} = 32.9 \text{ Hz}, \ J_{(H, H)} = 18.9, 6.3, 1.1 \text{ Hz}, \ 1H), \ 6.18 \ (\text{dddt}, \ J_{(\text{Sn, H})} = 39.7 \text{ Hz}, \ J_{(H, H)} = 19.0, 1.0 \text{ Hz}, \ 1H), \ 5.90 \ (\text{dt}, \ J = 15.0, \]
Chapter 4

7.4 Hz, 1H), 5.72 (dd, J = 15.4, 6.2 Hz, 1H), 4.28 (q, J = 6.0 Hz, 1H), 3.90 (quintet, J = 5.5 Hz, 1H), 3.78 (dd, A of ABX, J_{AB} = 9.6 Hz, J_{AX} = 5.1 Hz, 1H), 3.69 (dd, B of ABX, J_{AB} = 9.6 Hz, J_{BX} = 6.8 Hz, 1H), 2.59-2.46 (m, 3H), 2.40 (app. dt, B of ABX, J_{AB} = 13.5 Hz, J_{BX} = 7.0 Hz, 1H), 1.71-1.55 (m, 6H), 1.41 (quintet, J = 7.4 Hz, 6H), 1.17-1.09 (m, 21H), 1.06-1.03 (m, 9H), 1.05 (s, 9H), 1.02-0.99 (m, 6H), 0.96 (t, J = 7.4 Hz, 9H), 0.67 (q, J = 8.0 Hz, 6H), 0.15 (s, 6H).

^{13}C\text{ NMR} (125 MHz, CDCl_3) \delta 146.27 (o), 136.15 (o), 130.15 (o), 125.89 (o), 73.65 (o), 73.11 (o), 67.09 (e), 47.69 (e), 37.43 (e), 29.41 (e), 27.56 (e), 26.00 (o), 18.29 (e), 18.05 (o), 13.76 (o), 12.11 (o), 9.51 (e), 7.01 (o), 5.23 (e), –4.08 (o), –4.65 (o).

IR (Neat) 2955 (s), 2927 (s), 2868 (s), 1599 (w), 1463 (m), 1114 (s), 1069 (s) cm\(^{-1}\).

HRMS (ESI, [M+Na]\(^{+}\)) calcd for C\(_{42}\)H\(_{90}\)O\(_3\)NaSi\(_3\)^{120}Sn 869.5118, found 869.5119.

(5R,9R,E)-5-((E)-3-Iodoallyl)-12,12-diisopropyl-2,2,3,3,13-pentamethyl-9-((triethylsilyl)oxy)-4,11-dioxa-3,12-disilatetradec-6-ene (92)

To a cooled to 0 °C solution of 68 (1.754 g, 2.07 mmol) in Et\(_2\)O (20 mL) was added solid iodine (1.05 g, 4.15 mmol). After ca. 20 min (TLC control) the reaction mixture was quenched with saturated aqueous Na\(_2\)SO\(_3\) and partitioned between water and DCM. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (Na\(_2\)SO\(_4\)), filtered and concentrated \textit{in vacuo}. Purification by flash chromatography (silica gel deactivated with 1% Et\(_3\)N, Et\(_2\)O/hexanes – 0:100, 1:100) afforded the vinyl iodide 92 (1.398 g, 2.05 mmol, 99%) as a colourless oil.

\(R_f = 0.44\) (Et\(_2\)O/hexanes – 1:50).
Chapter 4

$\alpha_{\text{D}}^{20} - 1.3$ (c 1.0, CH$_2$Cl$_2$).

1H NMR (500 MHz, C$_6$D$_6$) δ 6.46 (dt, $J = 14.6$, 7.4 Hz, 1H), 5.82 (dtd, $J = 15.4$, 7.7, 1.0 Hz, 1H), 5.77 (dt, $J = 14.4$, 1.2 Hz, 1H), 5.49 (ddt, $J = 15.4$, 6.1, 1.3 Hz, 1H), 3.68 (q, $J = 5.9$ Hz, 1H), 3.86 (app. dq, $J = 6.9$, 5.1 Hz, 1H), 3.74 (dd, A of ABX, $J_{AB} = 9.6$ Hz, $J_{AX} = 5.2$ Hz, 1H), 3.64 (dd, B of ABX, $J_{AB} = 9.6$ Hz, $J_{BX} = 7.0$ Hz, 1H), 2.46 (app. dtd, A of ABX$_2$Y, $J_{AB} = 12.9$ Hz, $J_{AX} = 6.7$ Hz, $J_{AY} = 1.0$ Hz, 1H), 2.36 (app. dtd, B of ABX$_2$Y, $J_{AB} = 13.6$ Hz, $J_{BX} = 6.7$ Hz, $J_{BY} = 1.2$ Hz, 1H), 2.05 (app. dtd, A of ABX$_2$Y, $J_{AB} = 14.2$ Hz, $J_{AX} = 7.0$ Hz, $J_{AY} = 0.9$ Hz, 1H), 1.98 (ddddd, B of ABXYZ, $J_{AB} = 14.0$ Hz, $J_{BX} = 7.1$ Hz, $J_{BY} = 2.1$ Hz, $J_{BZ} = 1.4$ Hz, 1H), 1.16-1.07 (m, 21H), 1.04 (q, $J = 7.0$ Hz, 9H), 0.97 (s, 9H), 0.65 (q, $J = 8.1$ Hz, 6H), 0.07 (s, 3H), 0.06 (s, 3H).

13C NMR (125 MHz, C$_6$D$_6$) δ 143.03 (o), 135.19 (o), 126.51 (o), 76.84 (o), 72.92 (o), 72.25 (o), 66.91 (e), 44.89 (e), 37.20 (e), 25.87 (o), 188.15 (e), 12.09 (o), 7.02 (o), 5.20 (e), –4.33 (o), –4.81 (o).

IR (Neat) 2950 (s), 2866 (s), 1607 (w), 1462 (m), 1116 (s), 1069 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{30}$H$_{63}$O$_3$NaSi$_3$I 705.3028, found 705.3019.

Following the procedure of Knochel et al.42,43 modified by Castle,44 a solution of 92 (0.548 g, 0.80 mmol) in THF (1.2 mL) was treated with 'PrMgCl·LiCl complex (2.47
mL, 1.055 M in THF, 2.61 mmol) at −10 °C. The reaction mixture was warmed to room temperature and stirred for ca. 1.5 h, then cooled to −20 °C and epoxide 67 was added as a solution in THF (0.7 mL with washings). The reaction was warmed to −10 °C and stirred for ca. 2 h (TLC control), before it was quenched with saturated aqueous NH₄Cl and partitioned between water and DCM. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/hexanes – 1:12, 1:8) afforded enone 93 (0.1713 g, 0.256 mmol, 64% yield) as a colourless oil.

\[\text{R} \text{f} = 0.72 \text{ (Et}_2\text{O/Hexanes – 2:1).} \]

\[[\alpha]_D^{20} +8.1 \text{ (c 0.5, CHCl}_3). \]

\(^1H\) NMR (500 MHz, CDCl₃) \(\delta \) 6.83 (dt, \(J = 15.8, 7.4 \text{ Hz, 1H} \)), 6.10 (d, \(J = 16.0 \text{ Hz, 1H} \)), 5.68 (dt, \(J = 15.0, 7.4 \text{ Hz, 1H} \)), 5.48 (dd, \(J = 15.4, 6.4 \text{ Hz, 1H} \)), 4.21 (q, \(J = 6.1 \text{ Hz, 1H} \)), 3.72 (app. dq, \(J = 7.0, 5.2 \text{ Hz, 1H} \)), 3.59 (dd, A of ABX, \(J_{AB} = 9.6 \text{ Hz, } J_{AX} = 5.1 \text{ Hz, 1H} \)), 3.47 (dd, B of ABX, \(J_{AB} = 9.6 \text{ Hz, } J_{BX} = 7.3 \text{ Hz, 1H} \)), 2.91 (dd, \(J = 6.3, 5.0, 3.8, 2.6 \text{ Hz, 1H} \)), 2.74 (dd, A of AMX, \(J_{AM} = 4.8 \text{ Hz, } J_{AX} = 4.1 \text{ Hz, 1H} \)), 2.62 (app. dt, A of ABX₂, \(J_{AB} = 16.8 \text{ Hz, } J_{AX} = 7.2 \text{ Hz, 1H} \)), 2.58 (app. dt, B of ABX₂, \(J_{AB} = 16.8 \text{ Hz, } J_{BX} = 7.2 \text{ Hz, 1H} \)), 2.47 (dd, M of AMX, \(J_{AM} = 5.0 \text{ Hz, } J_{MX} = 2.7 \text{ Hz, 1H} \)), 2.42-2.33 (m, 3H), 2.19 (app. dt, B of ABX₂, \(J_{AB} = 13.7 \text{ Hz, } J_{BX} = 6.8 \text{ Hz, 1H} \)), 1.80 (app. d of quintets, A of ABX₄, \(J_{AB} = 16.0 \text{ Hz, } J_{AX} = 7.4 \text{ Hz, 1H} \)), 1.77 (app. d of quintets, B of ABX₄, \(J_{AB} = 15.8 \text{ Hz, } J_{BX} = 7.4 \text{ Hz, 1H} \)), 1.61 (dddd, A of ABXYZ, \(J_{AB} = 13.9 \text{ Hz, } J_{AX} = 8.8 \text{ Hz, } J_{AY} = 6.5 \text{ Hz, } J_{AZ} = 5.0 \text{ Hz, 1H} \)), 1.52 (app. td, B of A₂BX, \(J_{AB} = 14.2 \text{ Hz, } J_{BX} = 7.1 \text{ Hz, 1H} \)), 1.12-0.99 (m, 21H), 0.95 (t, \(J = 8.0 \text{ Hz, 9H} \)), 0.88 (s, 9H), 0.59 (q, \(J = 7.8 \text{ Hz, 6H} \)), 0.03 (s, 3H), 0.02 (s, 3H).
13C NMR (125 MHz, CDCl$_3$) δ 199.92 (e), 144.24 (o), 134.98 (o), 132.42 (o), 127.25 (o), 72.83 (o), 72.66 (o), 66.90 (e), 52.16 (o), 47.01 (e), 41.90 (e), 39.21 (e), 37.21 (e), 32.07 (e), 25.97 (o), 20.64 (e), 18.31 (e), 18.15 (o), 12.09 (o), 7.03 (o), 5.12 (e), -4.05 (o), -4.67 (o).

IR (Neat) 2948 (m), 2866 (m), 1700 (w), 1676 (w), 1633 (w), 1067 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{36}$H$_{72}$O$_5$NaSi$_3$ 691.4585, found 691.4590.

(4R,5E,8R,9E,12R)-8-((tert-Butyldimethylsilyl)oxy)-1-((S)-oxiran-2-yl)-12-((triethylsilyl)oxy)-13-((triisopropylsilyl)oxy)trideca-5,9-dien-4-ol (51)

To a cooled to -40 °C solution of enone 93 (0.1713 g, 0.256 mmol) and (S)-Me-CBS (0.256 mL, 1 M in PhMe, 0.256 mmol) in THF (1.5 mL) was added borane dimethylsulfide complex (0.181 mL, 1.792 mmol). The reaction mixture was stirred for ca. 16 h, before it was quenched with MeOH (0.1 mL) and partitioned between water and DCM. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO$_4$), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et$_2$O/hexanes – 1:3, 1:2) afforded alcohol 51 (0.170 g, 0.253 mmol, 99% yield) as a colourless oil.

$R_f = 0.35$ (Et$_2$O/hexanes – 1:1).

$[\alpha]_D^{20} = +3.4$ (c 1.0, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$) δ 5.65 (ddd, $J = 15.7, 7.3, 0.6$ Hz, 1H), 5.61 (ddd, $J = 15.7, 7.6, 0.9$ Hz, 1H), 5.49 (ddt, $J = 11.9, 7.1, 1.2$ Hz, 1H), 5.46 (ddt, $J = 13.8, 6.1, 1.3$ Hz, 1H), 4.09 (q, $J = 6.2$ Hz, 1H), 4.05 (q, $J = 6.4$ Hz, 1H), 3.72 (app. dq, $J = 6.5,$
5.3 Hz, 1H), 3.59 (dd, A of ABX, $J_{AB} = 9.7$ Hz, $J_{AX} = 5.3$ Hz, 1H), 3.52 (dd, B of ABX, $J_{AB} = 9.7$ Hz, $J_{BX} = 6.7$ Hz, 1H), 2.91 (app. tdd, $J = 5.3, 4.0, 2.7$ Hz, 1H), 2.74 (dd, A of ABX, $J_{AB} = 5.0$ Hz, $J_{AX} = 4.0$ Hz, 1H), 2.47 (dd, B of ABX, $J_{AB} = 5.0$ Hz, $J_{BX} = 2.7$ Hz, 1H), 2.33 (app. dt, A of ABX, $J_{AB} = 13.6$ Hz, $J_{AX} = 6.7$ Hz, 1H), 2.27-2.16 (m, 3H), 1.62-1.43 (m, 7H), 1.10-1.03 (m, 21H), 0.95 (t, $J = 8.0$ Hz, 9H), 0.88 (s, 9H), 0.60 (q, $J = 7.9$ Hz, 6H), 0.03 (s, 3H), 0.02 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 135.44 (o), 135.18 (o), 128.86 (o), 126.53 (o), 73.41 (o), 73.13 (o), 73.05 (o), 66.94 (e), 52.35 (o), 47.21 (e), 41.54 (e), 37.14 (e), 36.96 (e), 32.50 (e), 26.03 (o), 22.10 (e), 18.37 (e), 18.16 (o), 12.09 (o), 7.04 (o), 5.10 (e), −4.09 (o), −4.58 (o).

IR (Neat) 3441 (br), 2929 (s), 2866 (s), 1462 (m), 1412 (w), 1167 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{36}$H$_{44}$O$_5$NaSi$_3$ 693.4742, found 693.4745.

(5R,6E,9R,10E,13R)-9-((tert-Butyldimethylsilyloxy)-16,16-diisopropyl-2,2,3,3,17-pentamethyl-5-((3-(S)-oxiran-2-yl)propyl)-13-((triethylsilyl)oxy)-4,15-dioxa-3,16-disilaoctadeca-6,10-diene (2)

51 (0.0713 g, 0.106 mmol) was dissolved in MeCN (0.15 mL) and treated with MTBSTFA (0.256 g, 1.062 mmol) and DMAP (0.065 g, 0.531 mmol). After ca. 3 h (TLC control) the reaction mixture was directly purified by flash chromatography (silica gel, Et$_2$O/hexanes – 1:30) to afforded TBS ether 2 (0.0825 g, 0.105 mmol, 99% yield) as a colourless oil.

$R_f = 0.77$ (Et$_2$O/hexanes – 1:2).
$[\alpha]_D^{20} +7.9$ (c 1.0, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$) δ 5.62 (dt, $J = 14.9, 7.3$ Hz, 1H), 5.58 (dt, $J = 14.9, 7.3$ Hz, 1H), 5.47 (dd, $J = 15.4, 6.4$ Hz, 1H), 5.41 (dd, $J = 15.4, 6.6$ Hz, 1H), 4.08 (q, $J = 5.9$ Hz, 1H), 4.05 (q, $J = 6.0$ Hz, 1H), 3.71 (app. dq, $J = 6.6, 5.3$ Hz, 1H), 3.59 (dd, A of ABX, $J_{AB} = 15.4$ Hz, $J_{AX} = 6.4$ Hz, 1H), 2.91-2.87 (m, 1H), 2.74 (dd, A of ABX, $J_{AB} = 13.2$ Hz, $J_{AX} = 6.4$ Hz, 1H), 2.34-2.14 (m, 3H), 1.58-1.40 (m, 6H), 1.12-1.00 (m, 21H), 0.96 (t, $J = 8.0$ Hz, 9H), 0.88 (s, 9H), 0.87 (s, 9H), 0.60 (q, $J = 7.9$ Hz, 6H), 0.04 (s, 3H), 0.03 (s, 3H), 0.02 (s, 3H), 0.02 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 135.70 (o), 135.56 (o), 126.66 (o), 126.35 (o), 73.60 (o), 73.54 (o), 73.04 (o), 67.04 (e), 52.45 (o), 47.26 (e), 41.82 (e), 38.31 (e), 37.40 (e), 32.63 (e), 26.07 (o), 21.85 (e), 18.37 (e), 18.16 (o), 12.09 (o), 7.05 (o), 5.11 (e), -3.96 (o), -4.06 (o), -4.60 (o), -4.63 (o).

IR (Neat) 2947 (s), 2928 (s), 2864 (s), 1463 (m), 1069 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{42}$H$_{88}$O$_5$NaSi$_4$ 807.5607, found 807.5618.

(4S,5R,6S,8S)-4-((S)-5-(Benzyloxy)-2-((tert-butyldimethylsilyl)oxy)pentyl)-5-((tert-butyldimethylsilyl)oxy)-2,2-diisopropyl-6-methyl-8-
Chapter 4

26,26-diisopropyl-2,2,3,3,27-pentamethyl-9-(phenylsulfonyl)-23-
((triethylsilyl)oxy)-4,25-dioxa-3,26-disilaoctacosa-16,20-dien-5-yl)-1,3,2-
dioxasilocane (97)

To a cooled to −78 °C solution of sulfone 63 (0.129 g, 0.128 mmol) in THF (0.3 mL)
was added "BuLi (0.080 mL, 1.6 M in hexanes, 0.128 mmol). After ca. 15 min the
resulting yellow mixture was treated with a solution of epoxide 2 (0.050 g,
0.064 mmol) in THF (0.3 mL with washings), followed by BF\(_3\)·Et\(_2\)O (0.020 mL,
48% w/w, 0.077 mmol). The reaction mixture was stirred for ca. 30 min (TLC
control), before it was quenched with RM saturated aqueous NH\(_4\)Cl and partitioned
between water and DCM. Phases were separated and aqueous was washed with
DCM (2x). The combined organic layers were dried (MgSO\(_4\)), filtered and
concentrated in vacuo to afford crude oil, which was used in the next step without
purification.

The crude hydroxyl sulfone product (∼0.064 mmol) was dissolved in DCM
(0.85 mL) and treated with triethylamine (0.053 mL, 0.384 mmol) and TBSOTf
(0.073 mL, 0.320 mmol) at 0 °C. After ca. 10 min (TLC control) the reaction was
quenched with saturated aqueous NaHCO\(_3\) and partitioned between water and Et\(_2\)O.
Phases were separated and aqueous was washed with Et\(_2\)O (2x). The combined
organic layers were dried (MgSO\(_4\)), filtered and concentrated in vacuo. Purification
by flash chromatography (silica gel, Et\(_2\)O/hexanes – 1:30, 1:22, 1:10, 1:5) afforded
alcohol the TBS ether 97 (0.11 g, 0.058 mmol, 90% yield) as a colourless oil,
together with the recovered sulfone 63 (0.056 g, 0.0556 mmol, 87%).

\(R_f = 0.42\) (Et\(_2\)O/hexanes – 1:7).

\([\alpha]^{20}_D + 5.9\) (c 0.47, CHCl\(_3\)).
Chapter 4

The presence of diastereoisomers complicated the NMR analysis. The 1H data of the major diastereoisomer is presented, while all observed 13C peaks are outlined.

1H NMR (500 MHz, CDCl$_3$) δ 7.87-7.85 (m, 2H), 7.65-7.61 (m, 1H), 7.56-7.52 (m, 2H), 7.34-7.33 (m, 4H), 7.30-7.26 (m, 1H), 5.63 (dt, $J = 15.0$, 7.4 Hz, 1H), 5.55 (dd, $J = 15.3$, 7.7 Hz, 1H), 5.48 (ddd, $J = 15.5$, 6.3, 2.4 Hz, 1H), 5.40 (dd, $J = 12.9$, 6.6 Hz, 1H), 4.52 (d, A of AB, $J_{AB} = 12.5$ Hz, 1H), 4.49 (d, B of AB, $J_{AB} = 12.4$ Hz, 1H), 4.08 (app. dt, $J = 9.5$, 5.8 Hz, 1H), 4.03-3.96 (m, 2H), 3.91-3.86 (m, 2H), 3.83-3.79 (m, 1H), 3.75-3.68 (m, 2H), 3.59 (dd, A of ABX, $J_{AB} = 9.7$ Hz, $J_{AX} = 5.3$ Hz, 1H), 3.50-3.46 (m, 3H), 3.49 (dd, B of ABX, $J_{AB} = 9.6$ Hz, $J_{BX} = 6.9$ Hz, 1H), 3.16-3.09 (m, 1H), 2.35 (app. dt, A of ABX$_2$, $J_{AB} = 13.2$ Hz, $J_{AX} = 6.4$ Hz, 1H), 2.27-2.13 (m, 2H), 1.94-1.53 (m, 11H), 1.46-1.27 (m, 13H), 1.10-0.99 (m, 17H), 1.06 (s, 12H), 1.05 (s, 6H), 0.95 (t, $J = 8.0$ Hz, 9H), 0.91-0.85 (m, 15H), 0.89 (s, 21H), 0.87 (s, 12H), 0.85 (s, 6H), 0.81 (s, 3H), 0.60 (q, $J = 7.9$ Hz, 6H), 0.07 (s, 3H), 0.06 (d, $J = 7.1$ Hz, 3H), 0.06 (s, 3H), 0.06 (d, $J = 7.2$ Hz, 3H), 0.04 (s, 9H), 0.03 (d, $J = 4.9$ Hz, 3H), 0.02 (s, 3H), 0.02 (d, $J = 6.3$ Hz, 3H), 0.01 (d, $J = 6.5$ Hz, 3H), −0.01 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 138.87 (e), 138.47 (e), 138.24 (e), 135.73 (o), 135.59 (o), 133.61 (o), 133.54 (o), 129.23 (o), 129.19 (o), 129.14 (o), 128.87 (o), 128.44 (o), 127.65 (o), 127.56 (o), 126.57 (o), 126.34 (o), 77.47 (o), 75.50 (o), 75.27 (o), 74.79 (o), 74.72 (o), 73.68 (o), 73.62 (o), 73.05 (o), 72.80 (e), 71.41 (o), 71.36 (o), 70.96 (e), 70.36 (o), 69.59 (o), 69.57 (o), 69.52 (o), 67.04 (e), 61.70 (o), 61.44 (o), 43.29 (e), 43.22 (e), 41.91 (e), 38.99 (e), 38.95 (e), 38.40 (e), 37.74 (e), 37.41 (e), 36.35 (e), 35.88 (e), 35.56 (e), 34.26 (o), 34.18 (o), 33.24 (e), 31.29 (e), 31.18 (e), 30.65 (e), 29.85 (e), 29.01 (e), 26.13 (o), 26.12 (o), 26.11 (o), 26.09 (o), 26.03 (o), 25.98 (o), 24.84 (e), 24.80 (e), 23.74 (e), 23.65 (e), 20.83 (e), 20.40 (e), 18.38 (e), 18.23 (e), 18.17 (o), 18.07 (e), 17.90 (o), 17.87 (o), 17.83 (o), 17.56 (o), 17.54 (o), 17.46
(S)-4-((tert-Butyldimethylsilyl)oxy)-5-((4S,5R,6S,8S)-5-((tert-butyldimethylsilyl)oxy)-2,2-diisopropyl-6-methyl-8-
disilaoctacosa-16,20-dien-5-yl)-1,3,2-dioxasilocan-4-yl)pentan-1-ol (98)

To a cooled to −78 °C solution of 97 (0.0463 g, 0.024 mmol) in THF (0.2 mL) was added LiDBB (0.6 mL, 0.3 M in THF, 0.180 mmol) dropwise until the mixture became deep green-blue and did not faint (TLC control). The reaction mixture was quenched with saturated aqueous NH₄Cl and partitioned between water and DCM. Phases were separated and aqueous was washed with DCM (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/hexanes – 1:20, 1:10, 1:7) afforded alcohol
Chapter 4

98 (0.026 g, 0.016 mmol, 64% yield) as a colourless oil.

Rf = 0.21 (Et2O/hexanes – 1:7).

[α]D +3.6 (c 0.07, CHCl3).

1H NMR (500 MHz, CDCl3) δ 5.67 (dt, J = 14.9, 7.4 Hz, 1H), 5.53 (dt, J = 14.8, 7.3 Hz, 1H), 5.47 (dd, J = 15.4, 6.9 Hz, 1H), 5.42 (dd, J = 15.2, 6.7 Hz, 1H), 4.10-4.05 (m, 2H), 4.07 (q, J = 5.6 Hz, 1H), 4.01 (app. dt, J = 10.0, 5.0 Hz, 1H), 3.92 (dd, J = 4.4 Hz, 1H), 3.81 (app. dt, J = 10.0, 4.7 Hz, 1H), 3.71 (quintet, J = 5.6 Hz, 1H), 3.67-3.55 (m, 3H), 3.58 (dd, A of ABX, JAB = 9.7 Hz, JAX = 5.4 Hz, 1H), 3.49 (dd, B of ABX, JAB = 9.6 Hz, JBX = 6.9 Hz, 1H), 2.34 (app. dt, A of ABX2, JAB = 13.2 Hz, JAX = 6.4 Hz, 1H), 2.24-2.13 (m, 4H), 1.95-1.87 (m, 2H), 1.83 (app. dt, A of ABX2, JAB = 13.9 Hz, JAX = 6.9 Hz, 1H), 1.72 (ddd B of ABXY, JAB = 13.7 Hz, JBX = 8.8 Hz, JBY = 4.9 Hz, 1H), 1.67-1.58 (m, 5H), 1.53 (q, J = 6.2 Hz, 1H), 1.49-1.20 (m, 15H), 1.12-1.01 (m, 35H), 0.95 (t, J = 8.0 Hz, 9H), 0.92-0.87 (m, 57H), 0.60 (q, J = 7.9 Hz, 6H), 0.09 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H), 0.04 (s, 3H), 0.04-0.03 (m, 15H), 0.02 (s, 3H), 0.01 (s, 3H).

13C NMR (125 MHz, CDCl3) δ 135.98 (o), 135.61 (o), 126.32 (o), 126.28 (o), 77.42 (o), 75.79 (o), 75.09 (o), 73.79 (o), 73.65 (o), 73.07 (o), 72.48 (o), 71.62 (o), 69.57 (o), 67.05 (e), 63.47 (e), 42.33 (e), 41.89 (e), 38.92 (e), 37.43 (e), 37.41 (e), 37.29 (e), 36.51 (e), 34.37 (o), 33.01 (e), 31.00 (e), 30.41 (e), 27.70 (e), 26.57 (e), 26.13 (o), 26.11 (o), 26.09 (o), 26.08 (o), 26.04 (o), 25.52 (e), 21.46 (e), 18.38 (e), 18.30 (e), 18.28 (e), 18.24 (e), 18.17 (o), 17.84 (o), 17.49 (o), 17.42 (o), 16.19 (o), 13.67 (o), 13.35 (o), 12.09 (o), 7.06 (o), 5.11 (e), −3.66 (o), −3.95 (o), −4.06 (o), −4.23 (o), −4.30 (o), −4.31 (o), −4.35 (o), −4.59 (o).

IR (Neat) 3347 (br), 2929 (m), 2868 (m), 1472 (w), 1463 (w), 1067 (m) cm⁻¹.

MS (ESI, [M+Na]+) calcd for C88H190O11NaSi9 1698.2, found 1698.3.
To a solution of alcohol 98 (0.0164 g, 9.78 µmol) in DCM (0.1 mL) was added NMO (0.011 g, 0.098 mmol) and TPAP (0.9 mg, 2.56 µmol) at 0 °C. After ca. 1 h (TLC control) the reaction mixture was passed through a pad of silica gel (washed with Et₂O/petroleum ether – 1:10) and concentrated to furnish crude aldehyde which was used in the following step without purification.

A solution of crude aldehyde in 1:1 mixture of MeOH and THF (0.2 mL) was treated with dimethyl 1-diazo-2-oxopropylphosphonate (0.019 g, 0.098 mmol) and K₂CO₃ (0.014 g, 0.098 mmol) at 0 °C. The reaction left to warm up to room temperature and stirred overnight. After ca. 16 h (TLC control) the reaction mixture was passed through a pad of silica gel (washed with Et₂O), concentrated and purified by flash chromatography (silica gel, Et₂O/hexanes – 1:100) to afford alkyne 99 (0.0145 g, 8.68 µmol, 89 % yield over 2 steps) as a colourless oil.

\[R_f = 0.89 \ (\text{Et}_2\text{O/hexanes} \ – \ 1:1). \]
\[[\alpha]^2_{D} = -3.2 \ (c \ 0.32, \ \text{CHCl}_3). \]

\(^1\text{H} \text{ NMR} \ (500 \text{ MHz, CDCl}_3) \delta \ 5.65 \ (\text{dt}, J = 15.0, \ 7.4 \text{ Hz, 1H}), \ 5.53 \ (\text{dt}, J = 14.9, \ 7.3 \text{ Hz, 1H}), \ 5.47 \ (\text{dd}, J = 15.5, \ 6.3 \text{ Hz, 1H}), \ 5.41 \ (\text{dd}, J = 15.3, \ 6.7 \text{ Hz, 1H}), \ 4.06 \ (\text{q}, J = 6.3 \text{ Hz, 1H}), \ 4.04-3.99 \ (\text{m, 2H}), \ 3.92-3.89 \ (\text{m, 2H}), \ 3.78 \ (\text{app. dt, } J = 8.0, \ 4.1 \text{ Hz, 1H}), \ 3.70 \ (\text{quintet, } J = 5.7 \text{ Hz, 1H}), \ 3.61-3.54 \ (\text{m, 2H}), \ 3.58 \ (\text{dd, A of ABX, } J_{AB} = 9.5 \text{ Hz, } J_{AX} = 5.3 \text{ Hz, 1H}), \ 3.48 \ (\text{dd, B of ABX, } J_{AB} = 9.6 \text{ Hz, } J_{BX} = 6.9 \text{ Hz, 1H}), \ 2.34 \ (\text{app. dt, A of ABX}_2, J_{AB} = 13.0 \text{ Hz, } J_{AX} = 6.2 \text{ Hz, 1H}), \ 2.29 \ (\text{dd, A of ABX, } J_{AB} = 11.2 \text{ Hz, } J_{AX} = 3.0 \text{ Hz, 1H}), \ 2.28-2.25 \ (\text{m, 1H}), \ 2.21 \ (\text{quintet, } J = 7.0 \text{ Hz, 1H}), \ 2.17-2.13 \ (\text{m, 2H}), \ 1.93 \ (t, J = 2.6 \text{ Hz, 1H}), \ 1.89 \ (\text{dd, B of ABX, } J_{AB} = 10.7 \text{ Hz, } J_{BX} = 6.2 \text{ Hz, 1H}), \ 1.82 \ (\text{app. dt, A of ABX}_2, J_{AB} = 13.5 \text{ Hz, } J_{AX} = 6.9 \text{ Hz, 1H}), \ 1.78 \ (\text{dd, B of ABX, } J_{AB} = 8.8 \text{ Hz, } J_{BX} = 3.3 \text{ Hz, 1H}), \ 1.68-1.51 \ (\text{m, 2H}), \ 1.66 \ (\text{ddd B of ABXY, } J_{AB} = 14.0 \text{ Hz, } J_{BX} = 8.2 \text{ Hz, } J_{BY} = 4.1 \text{ Hz, 1H}), \ 1.53 \ (\text{d, B of ABX, } J_{AB} = 13.7 \text{ Hz, } J_{BX} = 7.7 \text{ Hz, 1H}), \ 1.47-1.38 \ (\text{m, 6H}), \ 1.34-1.18 \ (\text{m, 10H}), \ 1.10-0.98 \ (\text{m, 35H}), \ 0.95 \ (\text{t, } J = 7.9 \text{ Hz, 9H}), \ 0.90-0.87 \ (\text{m, 57H}), \ 0.59 \ (\text{q, } J = 7.9 \text{ Hz, 6H}), \ 0.08 \ (\text{s, 3H}), \ 0.08 \ (\text{s, 3H}), \ 0.07 \ (\text{s, 3H}), \ 0.06 \ (\text{s, 3H}), \ 0.04 \ (\text{s, 3H}), \ 0.03 \ (\text{m, 3H}), \ 0.03 \ (\text{s, 6H}), \ 0.02 \ (\text{s, 6H}), \ 0.01 \ (\text{s, 3H}), \ 0.01 \ (\text{s, 3H}). \]

\(^{13}\text{C} \text{ NMR} \ (125 \text{ MHz, CDCl}_3) \delta \ 135.94 \ (\text{o}), \ 135.58 \ (\text{o}), \ 126.19 \ (\text{o}), \ 126.14 \ (\text{o}), \ 85.08 \ (\text{e}), \ 77.33 \ (\text{o}), \ 75.70 \ (\text{o}), \ 75.07 \ (\text{o}), \ 73.77 \ (\text{o}), \ 73.63 \ (\text{o}), \ 73.02 \ (\text{o}), \ 72.45 \ (\text{o}), \ 71.44 \ (\text{o}), \ 68.47 \ (\text{o}), \ 68.33 \ (\text{e}), \ 67.00 \ (\text{e}), \ 42.96 \ (\text{e}), \ 41.87 \ (\text{e}), \ 38.89 \ (\text{e}), \ 37.39 \ (\text{e}), \ 37.26 \ (\text{e}), \ 36.33 \ (\text{e}), \ 35.60 \ (\text{e}), \ 34.45 \ (\text{o}), \ 30.85 \ (\text{e}), \ 30.38 \ (\text{e}), \ 26.57 \ (\text{e}), \ 26.15 \ (\text{o}), \ 26.09 \ (\text{o}), \ 26.08 \ (\text{o}), \ 26.05 \ (\text{o}), \ 26.02 \ (\text{o}), \ 25.51 \ (\text{e}), \ 21.47 \ (\text{e}), \ 19.93 \ (\text{e}), \ 18.38 \ (\text{e}), \ 18.29 \ (\text{e}), \ 18.22 \ (\text{e}), \ 18.16 \ (\text{o}), \ 17.81 \ (\text{o}), \ 17.50 \ (\text{o}), \ 17.41 \ (\text{o}), \ 16.08 \ (\text{o}), \ 13.87 \ (\text{e}), \ 13.63 \ (\text{o}), \ 13.31 \ (\text{o}), \ 12.04 \ (\text{o}), \ 7.07 \ (\text{o}), \ 5.07 \ (\text{e}), \ -3.65 \ (\text{o}), \ -3.84 \ (\text{o}), \ -3.94 \ (\text{o}), \ -3.96 \ (\text{o}), \ -4.07 \ (\text{o}), \ -4.25 \ (\text{o}), \ -4.33 \ (\text{o}), \ -4.45 \ (\text{o}), \ -4.60 \ (\text{o}). \)
Chapter 4

IR (Neat) 3315 (w), 2952 (m), 2929 (m), 2858 (m), 1463 (w), 1252 (w), 1071 (m) cm\(^{-1}\).

MS (ESI, [M+Na+H]\(^+\)) calcd for C\(_{89}\)H\(_{189}\)O\(_{10}\)NaSi\(_{9}\) 1693.2, found 1693.2.
4.19 References

25 For recent reviews of polypropionate natural products syntheses, see:
Chapter 4

4.20 Appendix B. 1H and APT Spectrums for Compound 99
Chapter 4
Chapter 5

Synthetic Studies of the bis-THP Fragment of Amphidinol 3

5.1 Introduction to Tetrahydropyran Segment of Amphidinol 3

Synthetically, the bis-tetrahydropyran (bis-THP) fragment of amphidinol 3 is considered to be the most challenging in the molecule (Figure 5.1.1). This C31-C52 subunit comprises a polyol chain having two highly functionalised pentasubstituted tetrahydropyran rings isolated by three carbon spacer and accounts for 15 of the 24 stereogenic centres found in the molecule.

![Figure 5.1.1: Bis-Tetrahydropyran Fragment in Amphidinol 3](image)

A crucial feature of this section of the molecule is the presence of two identical tetrahydropyran rings. This fact allows the synthetic plan to be simplified, thereby providing a more convergent synthesis. As highlighted in Scheme 5.1.1, the C32-C52 fragment could be constructed via the preparation of the common intermediate 2, which bears most of the required stereocentres.

Scheme 5.1.1: Strategic Disconnection in the Retrosynthetic Analysis of the bis-THP fragment of AM3
Chapter 5

The aim of this chapter is to overview all published synthetic efforts toward AM3 in the context of the formation of the bis-THP segment, to highlight the strategies developed to exploit the partial symmetry of the natural product and review reported synthesis of fragment 2.

5.2 Rychnovsky’s Synthesis of the C31-C67 Fragment of Amphidinol 3

In 2005, the Rychnovsky group was the first to publish an approach towards the common tetrahydropyran fragment in 2005. Their initial advent to the bis-THP fragment 3 was based on the synthesis of a common 2-thiophenyl tetrahydropyran intermediate 4 followed by successive C-glycosidation of its lithium anion nucleophile at C45 with the known epoxyaldehyde 5 (Scheme 5.2.1).

Scheme 5.2.1: Rychnovsky’s Retrosynthetic Analysis of the bis-THP Fragment of Amphidinol 3

The synthetic sequence leading to 15 is shown in Scheme 5.2.2. Titanium acetylide addition to known aldehyde 7 (available in 5 steps from D-(-)-tartaric acid) furnished alcohol 8 with excellent diastereocntrol (ds = 95:5). Selective
alkyne reduction to the corresponding (Z)-olefin was effected with P-2 nickel, followed by desilylation with TBAF. Successive chemoselective TEMPO oxidation of primary alcohol 9 afforded the δ-lactone 10 in good yield.

Scheme 5.2.2: Synthesis of the C39-C52 Fragment of Amphidinol 3

Anomeric acetate 11 formation from lactone 10 was achieved in excellent yield and with high diastereoselectivity (ds = 98:2) via DIBAL-H reduction and acetylation of intermediate lactol. Upjohn dihydroxylation proceeded from less sterically encumbered face of the alkene 11 and produced diol 12 with excellent
diastereocontrol ($ds = 96:4$). It is noteworthy that dihydroxylation of lactone 10 was shown to be less selective, delivering a 4:1 mixture of 1,2-\textit{cis} diols. Acetonide formation of 12 and hydrogenolysis of the primary benzyl ether in methanol afforded alcohol 13 as an inconsequential 1:1 mixture of O-methyl anomers and set the stage for the formation of the C-glycoside donor 14. Thus, TBS protection of primary alcohol 13, followed by ZnI$_2$ mediated PhSTMS addition gave phenylthio acetal 14, which is the common THP fragment. Subsequent reductive lithiation of the latter with LiDBB7 at $-78~\text{°C}$ and addition of epoxy aldehyde 58 resulted in formation of alcohol 15 with poor diastereocontrol ($ds = 48:26:14:12$), albeit slightly favouring the desired isomer. The modest stereocontrol in the key coupling reaction was attributed to non-selective axial radical formation during the lithiation step.

The futile C-glycosidation led to a reinvestigation of the synthetic plan.9 The alternative route, presented in Scheme 5.2.3, maintained a similar coupling strategy. However, the common THP fragment selected in this case was the α,β-unsaturated ester 18, which in turn can be accessed from earlier described diol 12 (\textit{vide supra}).

\textbf{Scheme 5.2.3: Revised Retrosynthetic Analysis of the bis-THP Fragment of Amphidinol 3}
The new route to the common fragment 18 is shown in Scheme 5.2.4. Axial addition of allylTMS10 furnished the required 2,6-	extit{trans}-THP ring with excellent stereocontrol ($ds = 10:1$). Subsequent protection of diol, followed by ozonolysis provided aldehyde 19. Knoevenagel condensation with the chiral sulfoxide 2111 using conditions developed by Trost and Malart12 established final stereogenic centre at C39(C44) of 18 in acceptable yield and selectivity ($ds = 85:15$).

Scheme 5.2.4: Revised Synthesis of the Common THP Fragment

![Scheme 5.2.4: Revised Synthesis of the Common THP Fragment](image)

Reaction conditions:

a) AllylTMS, TMSOTf, DTBMP, DCM, $-78 \, ^\circ\text{C}$, $ds = 10:1$.
b) K_2CO_3, MeOH, RT, 82\% over two steps.
c) 2,2-DMP, \textit{cat.} TsOH, C\textsubscript{6}H\textsubscript{6}, RT, 82\%.
d) O$_3$, sudan III, DCM, then PPh\textsubscript{3}, $-78 \, ^\circ\text{C}$ to RT, 94\%.
e) 20, piperidine, MeCN, $-5 \, ^\circ\text{C}$, $ds = 85:15$, 80\%.

Further elaboration of 18 to stannane 23 began with TBS protection, followed by strategic protecting group exchange \textit{via} hydrogenative debenzylation, with concomitant olefin reduction, and primary alcohol silylation (Scheme 5.2.5).

Scheme 5.2.5: Synthesis of the C31-C42 THP Fragment

![Scheme 5.2.5: Synthesis of the C31-C42 THP Fragment](image)

Reaction conditions:
a) TBSOTf, 2,6-lutidine, DCM, 0 \, ^\circ\text{C} to RT, 97\%.
b) H\textsubscript{2} (90 psi), Pd/C, RT, THF.
c) TBSOTf, 2,6-lutidine, DCM, 0 \, ^\circ\text{C} to RT, (84\% over two steps).
d) Me(OMe)NH·HCl, $^4\text{BuLi}$, THF, $-78 \, ^\circ\text{C}$ to 0 \, ^\circ\text{C}, then 21, THF, $-78 \, ^\circ\text{C}$.
e) MeMgBr, THF, 0 \, ^\circ\text{C} (98\% for two steps).
f) LDA, THF, $-78 \, ^\circ\text{C}$, then N-(5-chloro-2-pyridyl)triflimide, 74\%.
g) Me\textsubscript{3}SnSnMe\textsubscript{3}, LiCl, \textit{cat.} [Pd(PPh\textsubscript{3})\textsubscript{4}], THF, 80 \, ^\circ\text{C} in a sealed tube, 85\%.

292
Chapter 5

Ester 21 was transformed to ketone 22 with intermediate formation of a Weinreb amide.13 The construction of vinyl stannane 23 was secured through a reaction sequence involving kinetic deprotonation of 22, formation of an enol triflate using Comins reagent14 and Stille cross-coupling with hexamethylditin15 (63\% for 2 steps).

With the C31-C42 fragment in hand, efforts towards the synthesis of the second THP fragment and assembly of full segment were effected (Scheme 5.2.6). SEM protection of alcohol 18,16 followed by Johnson-Lemieux oxidative cleavage of the olefin afforded \(\alpha\)-alkoxy aldehyde 24.17 The union of the two THP fragments was achieved using lithium-tin exchange of 23, followed by addition of aldehyde 24. The resulting 1:1 mixture of diastereoisomers was oxidised with Dess-Martin periodinane18 and the resultant ketone was submitted to a chelation-controlled reduction with Zn\((\text{BH}_4)_2\), which provided the required alcohol as a single stereoisomer. Finally, silylation of the latter furnished the fully protected C31-C52 bis-THP fragment of amphidinol 3.

Scheme 5.2.6: Synthesis of the C43-C52 THP Fragment and Elaboration of the bis-THP Segment 17

Reaction conditions: a) SEMCl, DIPEA, DCM, 40 °C, 85\%. b) \textit{cat.} OsO\textsubscript{4}, NMO, acetone/H\textsubscript{2}O (8:1), RT. c) NaIO\textsubscript{4}, THF/H\textsubscript{2}O (1:1), RT, 82\% over two steps. d) 23, 6BuLi, THF, −78 °C, then 24, \(ds = 1:1\). e) DMP, Py, DCM, RT. f) Zn\((\text{BH}_4)_2\), Et\textsubscript{2}O, −35 °C, \(ds \geq 19:1\), 43\% over three steps. g) TBSOTf, 2,6-lutidine, DCM, RT, 73\%.
Additional studies to install the polyene chain to the bis-THP fragment 17 using Julia-type coupling were explored (Scheme 5.2.7). Reductive debenzylation of 17 with LiDBB\(^7\) afforded a primary alcohol, which was further oxidised to aldehyde 25 using Dess-Martin periodinane.\(^{18}\) Julia-Lythgoe coupling\(^9\) with the lithiated sulfone 28 furnished the \(\beta\)-hydroxy sulfone product in 76% yield. Successive acylation with benzoic anhydride and reductive elimination using sodium amalgam resulted in the C31-C67 fragment of AM3 with excellent 11:1 \(E/Z\) ratio.

Scheme 5.2.7: Polyene Linkup with the bis-THP Fragment

Reaction conditions:

a) LiDBB, THF, \(-78\) °C, 98%. b) DMP, Py, DCM, 0 °C to RT, 100%. c) PTSH, PPh\(_3\), DIAD, THF, 0 °C to RT, 86%. d) Mo-O\(_2\)(NH\(_4\))\(_6\)H\(_2\)O, H\(_2\)O\(_2\), EtOH, 59%. e) 28, LDA, THF, \(-78\) °C, then 25, THF, \(-78\) °C to RT, 76%. f) Bz\(_2\)O, DMAP, Py, DCM, RT, 89%. g) Na(Hg), Na\(_2\)HPO\(_4\), THF/MeOH (3:1), \(-20\) °C, \(E/Z = 11:1\), 72%. h) 26, KHMDS, THF, \(-78\) °C, then 29, THF, \(-78\) °C to RT, \(E/Z = 1:1\), 40%.

In sharp contrast, when Julia-Kocienski olefination\(^{20}\) was applied to aldehyde 29 and sulfone 26 (obtained by debenzylation of 17, Mitsunobu reaction with
PTSH21 and molybdate-mediated oxidation),22 the coupling product 27 was obtained in 40\% yield as a mixture of isomers (\(E/Z = 1:1\)).

In conclusion, Rychnovsky and co-workers developed a convergent route to the C31-C52 bis-THP segment of amphidinol 3, which constitutes of 22 longest linear steps with 3.7\% yield (12 steps to the common THP fragment, 24\% yield). The key assembly steps included \(C\)-glycosidation to produce the 2,6\textit{-trans}-THP ring, which was followed by organolithium coupling with an aldehyde to assemble the bis-THP segment. Additionally, extensive studies were carried out for the incorporation of polyene moiety into the molecule; showing that Julia-Lythgoe olefination was the method of the choice to deliver superior \(E/Z\) selectivity and yield.

5.3 Marko’s Synthesis of Polysubstituted 2,6\textit{-anti}-Tetrahydropyrans

Marko and co-workers were next to disclose their account towards the synthesis of highly functionalised tetrahydropyrans found in AM3.23 They have developed methodology that allowed preparation of 2,6\textit{-anti}-configured tetrahydropyrans having required functionalities and the stereochemical relationships of amphidinol 3.

\textbf{Scheme 5.3.1: Lewis Acid Mediated Synthesis of syn- and anti-Tetrahydropyrans}
Thus, zinc(II) chloride mediated condensation of alcohol 30 with an alkyl orthoester produced a 3:1 mixture of pyrans 31/32 favouring the all syn isomer (Scheme 5.3.1). The reaction proceeds via an intermediate ion, which presumably undergoes an Intramolecular Silyl-Modified Sakurai (ISMS) reaction.24

The authors envisaged the application of this methodology to the synthesis of the fully functionalised THP fragment of amphidinol 3 (Scheme 5.3.2). Each of the diastereomeric pyrans was used independently and the exocyclic double bonds in 34 and 38 were cleaved by ozonolysis in good yield. Stereoselective reduction of the ketone derived from 38 with various bulky reducing reagents proceeded smoothly to afford the equatorial alcohol. In contrast, reduction of the ketone obtained from 34 proceeded stereoselectively only with DIBAL-H. Both alcohols were acetylated and subjected to TMSOTf mediated axial allylation10 to provide anti-37 in excellent yield.

Scheme 5.3.2: Elaboration of the Highly Substituted anti-Tetrahydropyran 37

\begin{align*}
\text{34} & \xrightarrow{a} \text{35} \quad \text{86\%} \\
\text{35} & \xrightarrow{b} \text{36} \quad \text{86\%} \\
\text{38} & \xrightarrow{d} \text{39} \quad \text{84\%} \\
\text{39} & \xrightarrow{e} \text{40} \quad \text{86\%} \\
\end{align*}

Reaction conditions: a) O\textsubscript{3}, Me\textsubscript{2}S, DCM, -78 °C, then toluene, DIBAL-H, -40 °C, 86%. b) Ac\textsubscript{2}O, Py, DMAP, RT, 86%. c) AllylTMS, TMSOTf, MeCN, -40 °C to 0 °C, 92%. d) O\textsubscript{3}, Me\textsubscript{2}S, DCM, -78 °C, then L-Selectride, THF, -78 °C, 84%. e) Ac\textsubscript{2}O, Py, DMAP, RT, 86%.

In summary, Marko and co-workers have developed an appealing methodology that provides the pseudoenantiomer of the common THP intermediate.
found in amphidinol 3, epimeric at C33(50), in 8 longest linear steps and with 43% overall yield. Further elaboration of this method could in principle provide rapid access to the bis-THP segment of AM3.

5.4 Roush’s Synthesis of C26-C42 and C43-C67 Fragments of Amphidinol 3

In 2005 Roush, Flamme and Hicks reported an account towards the synthesis of the C43-C67 fragment of amphidinol 3. During the course of their studies, they applied previously developed double allylboration methodology to access the THP rings present in the natural product.

Scheme 5.4.1: Roush’s Retrosynthetic Analysis of the bis-THP Fragment of AM3

The retrosynthetic analysis of 41 reveals a pivotal disconnection of the C43-C42 bond that gives tetrahydropyrans 42 and 43, which are available from the common intermediate 44 (Scheme 5.4.1). The latter could be obtained from syn-1,5-diol 45 using a dehydrative cyclisation.
Chapter 5

Initial studies were directed towards the preparation of the differentially protected cyclisation precursor 48 (Scheme 5.4.2). A double allylboration reaction between aldehydes 46, 51 and in situ generated 50 (prepared by hydroboration of 2-allenyldioxaborolane with \(^1\)Ipc\(_2\)BH) afforded the 1,5-syn diol 45, through the formation of intermediate 47, in good yield and selectivity (ds = 9:1). Chemoselective mesylation of 48 met with no success, thus a stepwise approach was implemented. Selective silylation of allylic alcohol was achieved at \(-78^\circ C\) with excellent regiocontrol (rr >20:1). Subsequent mesylation and TES ether removal afforded the desired cyclisation precursor 48 in 75% overall yield. After extensive optimisation of the cyclisation conditions, dihydropyran 49 was obtained upon treatment with KO'Bu in 80% yield with concomitant formation of a conjugated diene as an elimination by-product.

Scheme 5.4.2: Synthesis of the Cyclisation Precursor 48 via Double Allylboration

![Scheme Diagram]

Reaction conditions:

a) 50, DCM, \(-78^\circ C\), then 51, DCM, \(-78^\circ C\) to RT, ds = 9:1, 70-80%.
b) TESCl, imid, cat. DMAP, DCM/DMF (1:1), \(-78^\circ C\), 81%.
c) MsCl, Et\(_3\)N, cat. DMAP, DCM, 0 \(^\circ\)C.
d) AcOH, H\(_2\)O/THF (1:1), RT, 93% over 2 steps.
e) KO'Bu, 'AmOH, 0 \(^\circ\)C, (0.03 M), 80%.
With 49 in hand, stereoselective dihydroxylation using a stoichiometric amount of osmium oxidant produced the common THP fragment 44 in 75% yield and with good selectivity (ds = 9:1) (Scheme 5.4.3). In contrast, when catalytic osmylation was implemented, the reaction afforded poor stereocontrol (ds = 1.6:1, 80% yield), whereas Sharpless conditions, using the chiral DHQD-IND ligand, gave 3:1 selectivity favouring the required isomer in excellent 97% yield. Diol protection as bis-PMB ether and primary TBDPS ether removal afforded alcohol 52. Swern oxidation and vinyl Grignard addition furnished 53 as an inconsequential 2:1 mixture of diastereoisomers, which set stage for Johnson-Claisen ortho ester rearrangement.

Scheme 5.4.3: Synthesis of the C43-C67 Fragment

Reaction conditions: a) OsO₄, TMEDA, DCM, −78 °C, ds = 9:1, 75%. b) PMBr, NaH, cat. TBAI, THF, 0 °C to 50 °C. c) TBAF, THF, 0 °C to RT. d) (COCl)₂, DMSO, Et₃N, DCM, −78 °C to RT. e) VinylMgBr, THF, 0 °C, ds = 2:1. f) (EtO)₂CMe, pivalic acid, xylene, 140 °C. g) DIBAL-H, DCM, −78 °C, 70%. h) 55, nBuLi, THF, −78 °C to RT, E/Z > 90:10, 22% for 55a, E/Z = 86:14, 66% for 55b.
Hence, addition of triethyl orthoacetate in presence of pivalic acid at 140 °C gave, after DIBAL-H reduction, aldehyde 54 in 70% yield and successfully established the C52-C53 (E)-alkene. Installation of the polyolefin chain under Horner-Wadsworth-Emmons conditions was met with moderate success. Addition of lithiated phosphonate 55a proceeded with good E/Z control (>90:10), but in very poor yield due to the low reactivity of the phosphonate and oligomerisation of the aldehyde. Conversely, the more reactive diethyl phosphate 55b gave higher yield, but diminished selectivity (E/Z = 86:14).

The same group later reported a revised strategy towards the C26-C42 and C43-C67 fragments of amphidinol 3 (Scheme 5.4.4).33 While the major disconnection remained at the same position, the protecting group choice was refined.

Scheme 5.4.4: Revised Retrosynthetic Analysis
Chapter 5

The main reasons for alterations were difficulties encountered during the deprotection studies of 42 (Scheme 5.4.5). Attempts to chemoselectively cleave the terminal acetonide in 42 using various Lewis and protic acids were inefficient (<20% yield) and accompanied by decomposition. Additionally, deprotection of the bis-PMB ether could not be accomplished in the presence of the polyene due to competitive oxidation of the triene moiety.

Scheme 5.4.5: Deprotection Studies of the Polyene Fragment 42

![Scheme 5.4.5](image)

Reaction conditions:
a) Protic or Lewis acids, <20%.
b) i. DDQ, DCM/H₂O, 0 °C. ii. 1% NaOH/MeOH.

Gratifyingly, model studies suggested that cyclopentylidene ketals could be a viable replacement for the acetonide groups owing to their greater acid lability under mild conditions (Scheme 5.4.6).³⁴

Scheme 5.4.6: Model Deprotection of Cyclopentylidene Ketals

![Scheme 5.4.6](image)

Reaction conditions:
a) conc. HCl, MeOH, 55% (unoptimised).
Chapter 5

The common THP fragment 59 was prepared using a slightly modified procedure to that described previously (Scheme 5.4.7). Double allylboration reaction of aldehydes 64 and 67 afforded 1,5-syn diol 60 in good yield and selectivity ($ds = 9:1$). Formation of the methanesulfonate of homoallylic alcohol 60 was achieved using a sequence of TES protection of the allylic alcohol, mesylation and silyl deprotection. Dehydrative cyclisation of 65 gave dihydropyran 66 in 78% yield. Sharpless dihydroxylation29,30 of the latter, followed by TBS protection gave bis-silyl ether 59 in 66% overall yield.

Scheme 5.4.7: Synthesis of the Common THP Fragment 59 via Double Allylboration

Reaction conditions: a) 50, DCM, −78 °C, then 67, DCM, −78 °C to RT, $ds = 9:1$, 73%. b) TESCl, imid, cat. DMAP, DCM/DMF (1:1), −78 °C, 79%. c) MsCl, Et3N, cat. DMAP, DCM, 0 °C. d) AcOH, H2O/THF (1:1), RT, 86% over 2 steps. e) KOtBu, t-AmOH, 0 °C, (0.03 M), 78%. f) cat. K2OsO2(OH)6, cat. DHQD-IND, K3Fe(CN)6, K2CO3, tBuOH/H2O (1:1), 0 °C, $ds = 3:1$, quant., 74% of desired isomer. g) TBSOTf, 2,6-lutidine, DCM, −40 °C to RT, 89%.
Construction of the polyene fragment from the common intermediate 59 is described in Scheme 5.4.8. Chemoselective deprotection of primary TBDPS ether was achieved under mild conditions with TAS-F.35 Oxidation and vinylmagnesium bromide addition, succeeded by Johnson-Claisen ortho ester rearrangement32 of the intermediate alcohol 68 furnished ester 69. Mild and selective removal of the terminal cyclopentylidene ketal was achieved using FeCl$_3$/SiO$_2$.36 Notably, these conditions were incompatible with the polyene hence, requiring its installation to be postponed to a later stage in the synthesis. Diol 70 was masked as bis-TES ether and the ester functionality was selectively reduced to an aldehyde using DIBAL-H.

Scheme 5.4.8: Synthesis of the C43-C67 Fragment 72

Reaction conditions: a) TAS-F, DMF, 0 °C, 70-96%. b) (COCl)$_2$, DMSO, Et$_3$N, DCM, −78 °C to RT. c) VinylMgBr, THF, 0 °C, $ds = 2:1$, 82% over 2 steps. d) (EtO)$_3$CMe, pivalic acid, xylene, 140 °C, 54%. e) FeCl$_3$/SiO$_2$, CHCl$_3$, RT, 85%. f) TESCl, imid, DMAP, DCM/DMF (1:1), 0 °C, 75%. g) DIBAL-H, DCM, −78 °C, 70%. h, i) 73, tBuLi, THF/HMPA (2:1), −78 °C, then 71, THF, −78 °C to 0 °C, E/Z = 92:8, 75%. j) (COCl)$_2$, DMSO, Et$_3$N, DCM, −78 °C to −40 °C, 73%.

Next, improved olefination conditions were applied, which involved addition of Wittig ylide, derived from the phosphonium salt 73, to produce the polyene.
fragment with 92:8 E/Z selectivity. Finally, Swern oxidation of the primary TES ether\(^3\) afforded aldehyde 72 as an advanced C43-C67 fragment of amphidinol 3.

The synthetic sequence leading to the C26-C42 fragment 58 began with deprotection of the common fragment 59 using FeCl\(_3\)/SiO\(_2\) (Scheme 5.4.9).\(^{36}\) Selective tosylation of the primary alcohol using Martinelli’s protocol\(^3\) and formation of epoxide 75 proceeded in excellent overall yield (97%). Subsequent epoxide opening with dilithiopropyne\(^3\) and TBS protection of the newly formed alcohol furnished alkyne 76, ready for the crucial installation of the vinyl iodide moiety. Construction of 77 was secured via stannylalumination/iodination\(^4\) sequence in excellent 94% yield. Lastly, selective removal of the primary TBDPS ether afforded alcohol 78 in good yield.

Scheme 5.4.9: Synthesis of the Vinyl Iodide 78

Reaction conditions: a) FeCl\(_3\)/SiO\(_2\), CHCl\(_3\), RT, 85%. b) cat. Bu\(_2\)Sn(OMe)\(_2\), TsCl, Et\(_3\)N, DCM. c) NaH, THF, 0 °C to RT, 97%. d) 1,3-Dilithiopropyne, Et\(_2\)O/hexane, −78 °C. e) TBSOTf, 2,6-lutidine, −40 °C to 0 °C, 83% over 2 steps. f) Bu\(_2\)SnAlEt\(_3\), cat. CuCN, THF, −30 °C. g) NIS, DCM, RT, 94% over 2 steps. h) TAS-F, DMF, RT, 76%.

The completion of fragment 58 was achieved as follows (Scheme 5.4.10). Oxidation of the primary alcohol under Swern conditions,\(^3\) followed by isopropenylmagnesium bromide addition furnished a 2:1 mixture of allylic
alcohols 79. Formation of the vinyl ether and subsequent Claisen rearrangement\(^1\) afforded the C26-C42 segment of amphidinol 3 in 43% yield over 2 steps and excellent selectivity (\(E/Z = 95:5\)).

Scheme 5.4.10: Synthesis of the C26-C42 Fragment 58

Reaction conditions:
- a) (COCl)\(_2\), DMSO, Et\(_3\)N, DCM, \(-78~\text{°C} \text{ to } \text{RT.}\)
- b) Isopropenylmagnesium bromide, THF, 0 °C, 82% over 2 steps.
- c) 2-Methoxypropene, PPTS.
- d) Cat. K\(_2\)CO\(_3\), 170 °C, \(E/Z = 95:5\), 43%.

To conclude, the route developed by Roush and co-workers offered an elegant and highly effective synthesis of the common THP fragment of amphidinol 3 in 7 longest linear steps with a remarkable 26% yield. The revised synthetic strategy improved the \(E/Z\) selectivity of the Wittig olefination and furnished the C43-C67 polyene fragment in 16 steps and 2.3% overall yield, while the C26-C42 fragment was prepared in 19 steps and 4.3% yield (longest linear sequence).

5.5 Paquette’s Synthesis of C31-C52 and C44-C67 Fragments of Amphidinol 3

The Paquette group had also made an important contribution towards overcoming the synthetic challenge of amphidinol 3.\(^{42,43}\) Their approach had an analogous strategic disconnection and a somewhat similar common THP fragment when compared to reports of Rychnovsky\(^1,9\) and Roush\(^{25,33}\) (Scheme 5.5.1). However, in contrast with other strategies the elaboration of the common intermediate 83 was achieved from a readily available sugar.
In their first report, the synthesis of the THP intermediate 92 and its union with the polyene segment was demonstrated. The synthesis of epoxy alcohol 89 commenced from 3,4- O-isopropylidene-β-D-ribofuranose 84 (Scheme 5.5.2). Homologation of 82 with a carbonyl stabilised Wittig reagent, followed by silylation afforded α,β-unsaturated ester 85 as a single geometrical isomer. Formation of 86 was achieved with a series of steps that involved ester reduction to an alcohol, SEM protection and chemoselective primary TBS ether cleavage using NBS in wet DMSO (78% yield over 4 steps). Next, Dess-Martin oxidation and one-carbon homologation of the resultant aldehyde, via Wittig olefination with methoxymethylene(triphenyl)phosphorane, followed by mercuration-reductive demercuration furnished aldehyde 87 in good yield. Ensuing conversion of the latter into the (Z)-allylic alcohol 88 was readily achieved using Still-Gennari modified HWE coupling with trifluoroethylphosphono ester in excellent yield and
selectivity \((Z/E > 20:1)\). Ester reduction and Sharpless asymmetric epoxidation\(^8\) afforded the required epoxy alcohol \(89\) in \(90\%\) yield as a \(5.3:1\) mixture of diastereoisomers.

Scheme 5.5.2: Synthesis of the Epoxy Alcohol 89

![Scheme 5.5.2](image)

Reaction conditions:
- a) \(\text{Ph}_3\text{PCHCO}_2\text{Bu}, \text{DMF/dioxane (1:1), 75 °C, } E/Z \geq 19:1, 90\%\).
- b) \(\text{TBSCl, Et}_3\text{N, DMAP, quant.}\)
- c) \(\text{TBDPSCI, imid, DMAP, DMF, 50 °C, quant.}\)
- d) \(\text{DIBAL-H, DCM, –78 °C.}\)
- e) \(\text{NaBH}_4, \text{THF/MeOH, 95% over 2 steps.}\)
- f) \(\text{SEMCI, DIPEA, Bu}_4\text{NI, 99%.}\)
- g) \(\text{NBS, DMSO/H}_2\text{O, RT, 93%.}\)
- h) \(\text{DMP, Py, DCM, 99%.}\)
- i) \(\text{Ph}_3\text{PCHOMe, THF, 99%.}\)
- j) \(\text{Hg(OAc)}_2, \text{then NaBH}_4, \text{THF/H}_2\text{O, 0 °C, 75%.}\)
- k) \(\text{(CF}_3\text{CH}_2\text{O)POCH}_2\text{CO}_2\text{Me, 18-crown-6, KHMDS, } Z/E > 20:1, 91%.}\)
- l) \(\text{DIBAL-H, DCM, –78 °C, 99%.}\)
- m) \(\text{Ti(OPr)}_4, \text{BuO}_2\text{H, (–)-DIPT, 4Å MS, DCM, } ds = 5.3:1, 82%.}\)

Next, the key task was the formation of the THP ring from epoxy alcohol precursor (Scheme 5.5.3). This was achieved in one-pot during secondary TBDPSE ether cleavage with TBAF, which proceeded with concomitant 6-exo-tet cyclisation. Regioselective tritylation of the diol,\(^50\) followed by MOMCl protection gave intermediate \(90\) ready for the asymmetric dihydroxylation. Application of Sharpless conditions\(^29\) resulted in the corresponding diol with 9:1 selectivity, which was protected as its acetonide \(91\). Formation of the Julia-Kocienski olefination precursor was achieved by removal of the primary SEM ether, Mitsunobu reaction with PTSH and oxidation with molybdate-hydrogen peroxide complex.\(^22\) With sulfone \(92\) in hand the olefination reaction with polyene aldehyde \(29\) was evaluated. Remarkably,
Chapter 5

the coupling product 93 was obtained in excellent yield and selectivity (E/Z >20:1) using KHMDS as base and THF as solvent. This result is in great contrast with findings of Rychnovsky et al. who reported the similar reaction of bis-THP sulfone 26 and aldehyde 29 to be non-selective and low yielding (Scheme 5.2.7).¹

Scheme 5.5.3: Elaboration of the THP and its Union with the Polyolefin

![Scheme 5.5.3: Elaboration of the THP and its Union with the Polyolefin](image)

Reaction conditions: a) TBAF, THF, RT, 84%. b) TrCl, Py, 35 °C, 89%. c) MOMCl, DIPEA, 40 °C, CHCl₃, 94%. d) AD-mix-β, "BuOH/H₂O, 98%, ds = 9:1. e) 2,2-DMP, PPTS, 86%. f) TBAF, THF, 55 °C, 90%. g) PTSH, DIAD, Ph₃P, THF. h) Mo₇O₂₄(NH₄)₆·4H₂O, H₂O₂, 80% over 2 steps. i) 29, KHMDS, THF, E/Z >20:1.

In 2007, the same group reported a revised strategy to the synthesis of the bis-THP C31-C52 core of amphidinol 3.⁵¹ In their earlier synthesis, the formation of the THP ring using a 6-exo-tet cyclisation of 89 proceeded with good yield (Scheme 5.5.4). However, the scale up procedure was complicated by the lack of cyclisation during silyl ether deprotection (Scheme 5.5.4). The problem was circumvented by subjecting the mixture of 94 and 95 to selective dibutyltin(IV) oxide mediated tosylation³⁸ of primary alcohols and methanolic K₂CO₃ induced cyclisation to afford epoxide 96 in excellent overall yield. The formation of the common THP fragment
83 was then achieved via asymmetric dihydroxylation with AD-mix-β,29 followed by acetonide formation using 2,2-dimethoxypropane.

Scheme 5.5.4: Synthesis of the Common THP Fragment 83

Reaction conditions:

- a) TBAF, THF, RT, \(94/95 = 15:1\), 0 °C, 91%.
- b) TsCl, Et\(_3\)N, cat. Bu\(_2\)SnO, RT, 91%.
- c) K\(_2\)CO\(_3\), MeOH, 0 °C, 86%.
- d) AD-mix-β, tBuOH/H\(_2\)O (1:1), 0 °C, 97%.
- e) 2,2-DMP, cat. PPTS, RT, 90%.

With the common THP fragment in hand, elaboration to the C31-C52 segment of amphidinol 3 was carried out (Scheme 5.5.5).

Scheme 5.5.5: Synthesis of the C43-C52 Fragment

Reaction conditions:

- a) Me\(_3\)Si, "BuLi, THF, –10 °C, 87%.
- b) MOMCl, DIPEA, CHCl\(_3\), 40 °C, 92%.
- c) TBAF, THF, 4Å MS, 55 °C, 86%.
- d) TBDPSCl, imid, DMAP, DCM, RT, 89%.
- e) cat. OsO\(_4\), NaIO\(_4\), THF/pH 7 buffer (1:1), RT, 88%.
Chapter 5

Epoxide opening of 83 with a sulfonium ylide, followed by MOM protection resulted in terminal alkene 97. Protecting group exchange and Johnson-Lemieux oxidation furnished aldehyde 81, which constitutes the C43-C52 fragment of AM3.

The synthesis of the C31-C42 vinyl iodide 82 is shown in Scheme 5.5.6. Addition of allenylmagnesium bromide to epoxide 83 and protection of resultant alcohol as a MOM ether afforded alkyne 99 in 96% yield over 2 steps. Elaboration of the alkyne to the vinyl iodide 82 was achieved in a sequence involving silylstannation, hydrolysis of the dimethylphenylsilyl intermediate 100 and tin-iodine exchange using I₂. It is noteworthy that the choice of silyl group was crucial for smooth formation of the terminal alkene. The use of the conventional TMS group led to concomitant removal of SEM group under TBAF conditions.

Scheme 5.5.6: Synthesis of the C31-C42 Fragment

![Scheme 5.5.6]

Reaction conditions: a) Propargyl bromide, Mg, cat. HgCl₂, −78 °C to RT, quant. b) MOMCl, DIPEA, CHCl₃, 40 °C, 96%. c) nBu₃SnSiMe₂Ph, cat. Pd(PPh₃)₄, 35 °C, 76%. d) TBAF, DMSO, 80 °C to RT, 71%. e) I₂, DCM, 0 °C, 91%.

Strategic coupling of the THP fragments is described in Scheme 5.5.7. Addition of vinyl iodide 82 to aldehyde 81 was achieved under Nozaki-Hiyama-Kishi conditions and provided 102 in 62% yield as a 1:1 mixture of isomers.
Chapter 5

It should be noted that coupling of the corresponding lithium reagent, derived from transmetallation of the stannane, was extremely sluggish (7% yield). This result is opposed to the report of Rychnovsky and co-workers who successfully used this reaction in their coupling strategy (vide supra). Finally, the completed C31-C52 fragment 80 was obtained after oxidation and enantioselective CBS reduction. 55

Scheme 5.5.7: Elaboration of the bis-THP fragment 80

In summary, Paquette and co-workers have developed a rather linear (18 steps from the known compound) but quite effective route (28% overall yield) to the common THP intermediate of amphidinol 3. The unique feature of their approach is
the application of a sugar derivative as the starting material, which obviated the need for stereoselective dihydroxylation of the pyran ring, which is known to be challenging. Other highlights include the NHK coupling and CBS-reduction to access *bis*-THP segment and application of Julia olefination for the union of the polyene with the pyran fragment.

5.6 Oishi’s Synthesis of the Common THP Fragment of Amphidinol 3

In 2009, Oishi, Murata and Kanemoto reported their approach towards the stereoselective synthesis of the common THP fragment of amphidinol 3. The authors envisaged that the *bis*-THP system of AM3 could arise by positioning disconnections at the (E)-olefinic regions (Scheme 5.6.1). This in turn could be traced to the common intermediate 103, which corresponds to the C31-C40/C43-C52 fragments of the natural product.

Scheme 5.6.1: Oishi’s Retrosynthetic Analysis of AM3

As shown in Scheme 5.6.2, the synthesis of the common intermediate 103 commenced with the chemoselective cross-metathesis of 104 (available through enzymatic resolution) and 105, mediated by Grubbs 2nd generation catalyst, to afford 106 with modest selectivity (*E/Z* = 4:1). Sharpless dihydroxylation of the more electron-rich olefin, followed by acetylation furnished 107 (68% yield), which was separated from unwanted isomers. Mogita-Kosugi-Stille coupling with
stannane 11260 gave (\textit{E},\textit{E})-diene. The latter was desilylated with HF-Py in good overall yield (88%). Formation of the THP ring was achieved by performing Sharpless epoxidation of 108,8 acetate removal and subsequent 6-\textit{endo}-tet cyclisation61 of the resultant epoxy vinyl alcohol (60% yield over 3 steps). Treatment of 110 with TBSOTf/2,6-lutidine effected protection of the triol. Finally, asymmetric dihydroxylation29 and silyl protection installed the last stereocentres in the molecule with excellent stereocontrol (ds = 10:1).

Scheme 5.6.2: Synthesis of the C31-C40/C43-C52 Fragment of AM3

Reaction conditions:

a) \textit{cat}. G-II, DCM, 40 °C, \textit{E}/\textit{Z} = 4:1, 71%.
b) AD-mix-\textit{β}, \textit{BuOH}/H\textsubscript{2}O (1:1), 0 °C, 68% (isomers 18%).
c) Ac\textsubscript{2}O, Py, \textit{cat}. DMAP, 0 °C to RT, 99%.
d) 112, \textit{cat}. PdCl\textsubscript{2}(MeCN)\textsubscript{2}, DMF, 0 °C to RT, 92%.
e) HF-Py, THF, 0 °C to 35 °C, 86%.
f) \textit{cat}. Ti(\textit{OPr})\textsubscript{4}, TBHP, \textit{cat}. (−)-DET, 4Å MS, −20 °C, DCM.
g) K\textsubscript{2}CO\textsubscript{3}, MeOH, 0 °C.
h) \textit{cat}. PPTS, DCM, 0 °C, 60% over 3 steps.
i) TBSOTf, 2,6-lutidine, DCM, 0 °C, 79%.
j) AD-mix-\textit{β}, \textit{BuOH}/H\textsubscript{2}O (1:1), 0 °C, ds = 10:1, 97%.
k) TBSOTf, 2,6-lutidine, DCM, 0 °C to RT, 96%.
Chapter 5

In summary, Oishi and co-workers developed a concise synthesis of the THP intermediate of amphidinol 3 in 16% yield over 11 longest linear steps. The highlights of their route include chemoselective cross-metathesis, regioselective dihydroxylation and pyran formation via 6-endo-tet cyclisation of an epoxy vinyl alcohol.

5.7 Crimmins’ Synthesis of the bis-THP Fragment of Amphidinol 3

In 2010, Crimmins and co-workers reported the synthesis of the bis-THP segment of amphidinol 3. They planned to disconnect fragment 113 at C40-C41 to deliver two THP cores of similar complexity, each of which could be prepared in a concise manner from the common intermediate 116 (Scheme 5.7.1). The latter could be obtained using the asymmetric glycolate alkylation/ring-closing metathesis strategy developed by the same group.

Scheme 5.7.1: Crimmins’ Retrosynthetic Analysis of the bis-THP Fragment
The synthesis of the common THP fragment 116 commenced from known allylic alcohol 117, available via Felkin-Ahn vinylation of 7 as 9:1 mixture of diastereoisomers (Scheme 5.7.2). Alkylation with bromoacetic acid gave 118, which was coupled with the valine-derived chiral auxiliary 122 to provide N-glycolyl oxazolidinone 119 in 83% yield. Diastereoselective alkylation of the sodium enolate of 119 with allyl iodide installed the crucial stereocentre at C45 with excellent stereocontrol ($ds >95:5$). The chiral auxiliary was removed under reductive conditions, followed by the acetylation of resultant primary alcohol (72% yield). The formation of 116 set the stage for the RCM/dihydroxylation sequence.

Scheme 5.7.2: Synthesis of the Common THP Fragment 116

Reaction conditions:

a) BrCH$_2$CO$_2$H, NaH, THF/DMF (3:1), 0 °C to RT, 91%.
b) PivCl, Et$_3$N, THF, −78 °C to RT, then 122, THF, −78 °C to RT, 83%.
c) NaHMDS, THF, allyl iodide, −78 °C to −65 °C, 60%.
d) NaBH$_4$, THF/H$_2$O (4:1), 0 °C.
e) Ac$_2$O, Py, cat. DMAP, DCM, RT, 72% over 2 steps.
f) cat. G-I, DCM, 40 °C.
g) NaIO$_4$, cat. YbCl$_3$, EtOAc/MeCN/H$_2$O (3:3:1), 0 °C, $ds = 5:1$.
h) 2,2-DMP, PTSA, RT, 73% over 3 steps.
By taking advantage of ruthenium able to act as oxidant, the RCM reaction and dihydroxylation with NaIO$_4$/YbCl$_3$ were carried out in one-flask. The latter Lewis acid was necessary to reduce the unwanted over-oxidation of the diol. Subsequent formation of the acetonide afforded 116 in 73% overall yield and good selectivity ($ds = 5:1$).

With the common fragment 116 in hand, bidirectional elaboration to C41-C52 and C31-C40 segments was carried out (Scheme 5.7.3). Synthesis of the C41-C52 fragment commenced with primary acetate cleavage, Swern oxidation and anti glycolate aldol reaction64 with the titanium enolate of 125 in presence of (−)-sparteine. This sequence furnished 123 in satisfactory yield and introduced the C43 and C44 stereocentres with good stereocontrol ($ds = 10:1$).

Scheme 5.7.3: Synthesis of the C41-C52 Fragment 114

Reaction conditions: a) cat. K$_2$CO$_3$, MeOH, RT, 87% b) (COCl)$_2$, DMSO, Et$_3$N, DCM, −78 °C to RT, 93%. c) 125, TiCl$_4$, (−)-sparteine, DCM, −78 °C, $ds = 10:1$, 44%. d) TBSOTf, 2,6-lutidine, DCM, −78 °C to 0 °C, 91%. e) MePO(OMe)$_2$, tBuLi, THF, −78 °C, 89%.

316
Conversion of 123 into the \(\beta \)-ketophosphonate 114 was then secured in two steps by TBS protection of the secondary alcohol in 123, followed by addition of lithiated dimethyl methylphosphonate.\(^{65}\)

The synthesis of the C31-C40 aldehyde 115 is depicted in Scheme 5.7.4. Protecting group exchange in 116 was effected by hydrogenolysis of the benzyl ether, followed by TBS protection. Primary acetate methanolysis and Swern oxidation\(^{31}\) afforded aldehyde 127, which was next tested in the stereoselective vinylation reaction. Unfortunately, all attempts to stereoselectively add a vinyl nucleophile to 127 were encountered with low selectivity (\(ds \leq 3.5:1 \)) thus, an oxidation/reduction sequence was carried out. Vinylmagnesium bromide addition and oxidation with Dess-Martin periodinane\(^{18}\) gave \(\alpha,\beta \)-unsaturated ketone 128 in acceptable 50% yield. Application of Corey-Bakshi-Shibata reduction conditions\(^{55}\) resulted in 129 as single stereoisomer.

Scheme 5.7.4: Synthesis of the C31-C40 Fragment 102

Reaction conditions:
- a) cat. Pd(OH)\(_2\), H\(_2\), EtOAc, RT, 87%.
- b) TBSCI, Et\(_3\)N, cat. DMAP, DCM, RT, 73% over 2 steps.
- c) cat. K\(_2\)CO\(_3\), MeOH, RT.
- d) (COCl)\(_2\), DMSO, Et\(_3\)N, DCM, \(-78^\circ C\) to RT, 87% over 2 steps.
- e) VinylMgBr, THF, 0 °C to RT.
- f) DMP, DCM, RT, 50% over 2 steps.
- g) (R)-Me-CBS, BH\(_3\), DMS, DCM, 0 °C, \(ds = 20:1 \), 82%.
- h) MOMCl, DIPEA, CHCl\(_3\), 40 °C, 94%.
- i) OsO\(_4\), NaIO\(_4\), THF/pH 7 buffer (1:1), RT, 66%.
Finally, MOM protection of the allylic alcohol and Johnson-Lemieux oxidation,17 using conditions utilised by Paquette,43 afforded aldehyde 115 in 62% yield over 2 steps.

With an efficient route to both fragments of the bis-THP core, studies towards their union were carried out (Scheme 5.7.5). A modified HWE coupling reaction66 between β-ketophosphonate 114 and aldehyde 115 delivered α,β-unsaturated ketone 130 in good yield. Selective 1,4-reduction of enone 13067 was achieved using methyl copper and DIBAL-H. Installation of the exomethylene group proved to be non-trivial and was accomplished using Tebbe’s reagent68 at elevated temperature.

Scheme 5.7.5: Synthesis of the bis-THP Fragment 113

![Scheme 5.7.5: Synthesis of the bis-THP Fragment 113](image)

Reaction conditions: a) Ba(OH)$_2$, then 115, THF/H$_2$O (40:1), RT, 74%. b) Cul, MeLi, HMPA, DIBAL-H, THF, -50 °C, 55%. c) Tebbe reagent, THF, toluene, 50 °C, 73%.
Chapter 5

In conclusion, Crimmins and co-workers developed a convergent route to the bis-THP fragment of amphidinol 3, which proceeds in 20 longest linear steps and 1.1% overall yield. The synthesis of the common THP intermediate was accomplished using an asymmetric glycolate alkylation/RCM sequence, followed by substrate-controlled dihydroxylation in 8 steps and 24% yield. Using a bidirectional approach, two segments of the bis-THP fragment were elaborated using anti glycolate aldol reaction and vinylation, oxidation/stereoselective reduction sequence. The union of the latter was culminated using Horner-Wadsworth-Emmons olefination.
Chapter 5

5.8 THP Fragment Syntheses Overview

Scheme 5.8.1: Overview of Amphidinol 3 THP Segment Syntheses

Rychnovsky's synthesis:

8 longest linear steps, 43% overall yield

Marko's synthesis:

8 longest linear steps, 43% overall yield
Scheme 5.8.2: Overview of Amphidinol 3 THP Segment Syntheses (Cont.)

Roush's synthesis:

7 steps 25%

9 steps 12 steps 9.2% 17%

16 longest linear steps, 2.3% overall yield

19 longest linear steps, 4.3% overall yield
Scheme 5.8.3: Overview of Amphidinol 3 THP Segment Syntheses (Cont.)

Paquette’s synthesis:

18 steps 28%

5 steps 41%

5 steps 60%

3 steps 36%

26 longest linear steps, 4.2% overall yield

Oishi’s synthesis:

11 longest linear steps, 16% overall yield
Scheme 5.8.4: Overview of Amphidinol 3 THP Segment Syntheses (Cont.)

Crimmins’ synthesis:

20 longest linear steps, 1.1% overall yield
Chapter 5

5.9 References

Chapter 5

33 Hicks, J. D.; Roush, W. R. *Org. Lett.* **2008**, 10, 681.
Chapter 5

Chapter 5

Chapter 6

Synthesis of the Common THP Fragment of Amphidinol 3

6.1 Introduction

In the following chapter, the development of a novel TST-based methodology for the stereoselective synthesis of syn- and anti-tetrahydropyrans (THPs) is discussed. This led to the realisation of an innovative strategy, which accounted for a highly stereoselective and efficient preparation of syn- and anti-tetrahydropyrans, present in numerous natural products. Furthermore, the application of this approach led to a convergent synthesis of a common THP fragment of amphidinol 3.

6.2 Analysis of the Common THP Fragment of Amphidinol 3

In the strategic planning for the synthesis of amphidinol 3 we aimed to develop a unified approach towards the natural product based on the application of the TST-based strategy outlined earlier. The evaluation of the bis-THP fragment of AM3 revealed the presence of two identical tetrahydropyran rings. Subsequently, the whole segment could be obtained with a high degree of convergence by the synthesis of the common THP intermediate 2, as was the case with related approaches (Figure 6.2.1).

Scheme 6.2.1: Retrosynthetic Analysis of the bis-THP fragment of AM3

P = protecting group
We hypothesised two avenues for the construction of the model anti-THP 7 (Scheme 6.2.2). Based on the knowledge acquired from the hydroboration reactions of the cyclic silaketals (Chapter 4), we envisaged that the dihydroxylation of syn-silaketal 3 would introduce the desired dioxygen functionality in a highly stereoselective manner, governed by the absolute configuration of the allylic stereocentre in 3. Subsequent diol protection in 4 and functional group manipulations could provide the anti-THP unit 7, which would constitute a model common fragment of the bis-THP segment of amphidinol 3.

Scheme 6.2.2: Synthetic Hypothesis of the anti-THP 7 Formation

Furthermore, we also planned an alternative route to 7. At the outset, deprotection of silaketal 3 would furnish the diol intermediate, which could be cyclised to dihydropyran 6 by exploiting the difference in the reactivity between the allylic and homoallylic alcohols. Ultimately, the stereoselective dihydroxylation and protection of the diol intermediate would deliver the common THP fragment 7.

According to the previous studies on the dihydroxylation of anti-dihydropyrans (DHPs), in the synthesis of amphidinol 3¹ and other natural products,² an important conclusion regarding the stereochemical outcome of the dihydroxylation of 6 could be predicted. Since anti-DHP rings favour a twisted
conformation, consisting of two equilibrating conformers 8 and 9, the stereoselective osmylation of the alkene represents a significant challenge due to the uneven shielding of olefin (Scheme 6.2.3). Thus, as a general strategy, increasing the steric bulk of R1 and decreasing R2 is commonly exploited to achieve the preference for conformer 8 over 9 and deliver the requisite diol 8a with acceptable levels of stereocontrol. As was highlighted in Chapter 5, this approach produces a marginal selectivity in the catalytic dihydroxylation (ds up to 5:1) and good selectivity (ds = 9:1) in the stoichiometric variant of the osmylation. However, the introduction of chiral ligands was typically necessary in the former process, while the latter resulted in difficulties associated with the utilisation of large quantities of toxic osmium(VIII) oxide and complications in the hydrolysis of the osmate ester intermediate.

Scheme 6.2.3: Conformational Equilibrium During the Dihydroxylation of anti-THP Rings

While considering a synthetic strategy towards the common fragment of the bis-THP segment of AM3, we decided to exploit the first approach listed in Scheme 6.2.2 in the expectation that the assembly of 7 would be subject to substrate control, which could provide a more elegant route to the common THP fragment of AM3 and highlight the effectiveness of the TST-RCM-based methodology. Moreover, the application of dihydropyran dihydroxylation in conjunction with the cyclisation is well preceded, since these transformations have been utilised by other groups in the same context (*vide supra*).
Chapter 6

Scheme 6.2.4 depicts the retrosynthetic analysis of the anti-THP fragment 10. We hypothesised that the formation of the THP 10 could be achieved using a Lewis/Bronsted acid catalysed 6-exo-tet cyclisation of the δ-hydroxy epoxide 11 with complete regio- and stereoselectivity, and with inversion of the epoxide C6 stereocentre. The generation of the latter could be achieved via the fluoride-mediated desilylation of the tosylate 12, which would proceed through an intramolecular cyclisation of the intermediate dihydroxytosylate.

Scheme 6.2.4: Retrosynthetic Analysis of the anti-THP Unit 10

6.3 Synthesis of the Model anti-THP Ring

The synthesis of the anti-THP fragment commenced from the formation of the mixed cyclic syn-silaketal 16 as outlined in Scheme 6.3.1. Generation of the ring-closing metathesis precursor 15 was accomplished using 'Pr₂SiCl₂, as a temporary tether, and allylic 13 and homollylic alcohol 14 in 84% yield.

Scheme 6.3.1: Synthesis of the Cyclic syn-Silaketal 16

Reaction conditions: a) 13, 'Pr₂SiCl₂, imid, DCM, 0 °C to RT, then 14, imid, DCM, 0 °C to RT, 84%. b) 1 mol% G-II, DCM, 40 °C, 95%, Z/E ≥19:1.
Chapter 6

Treatment of the diene 15 with 1 mol% of Grubbs 2nd generation catalyst in DCM afforded the cyclic anti-silaketal 16 as a single geometrical isomer (Z/E ≥19:1) in almost quantitative yield. It is noteworthy to mention that undesirable double bond migration was not detected during the process and the reaction was complete in less that 1 hour.

With the desired eight-membered cyclic alkene in hand, the pivotal dihydroxylation reaction was attempted. Gratifyingly, the catalytic osmylation under standard Upjohn conditions4 allowed for the stereoselective introduction of the diol in 89% yield and with excellent diastereoselectivity (ds ≥19:1) by virtue of the cyclic stereocontrol offered by silaketal 16 (eq. 1).

\[
\begin{align*}
\text{BnO} & \quad \text{H} & \quad \text{O-Si} & \quad \text{OPMB} \\
\text{H} & \quad \text{O-Si} & \quad \text{OPMB} & \quad \text{BnO} \\
\text{Pr} & \quad \text{Pr} & \quad \text{Pr} & \quad \text{Pr}
\end{align*}
\]

\[
\begin{align*}
\text{HO} & \quad \text{O-Si} & \quad \text{OPMB} \\
\text{HO} & \quad \text{O-Si} & \quad \text{OPMB} \\
\text{Pr} & \quad \text{Pr} & \quad \text{Pr} & \quad \text{Pr}
\end{align*}
\]

\[
\text{BnO} & \quad \text{H} & \quad \text{O-Si} & \quad \text{OPMB} \\
\text{H} & \quad \text{O-Si} & \quad \text{OPMB} & \quad \text{BnO} \\
\text{Pr} & \quad \text{Pr} & \quad \text{Pr} & \quad \text{Pr}
\]

\[
\begin{align*}
\text{HO} & \quad \text{O-Si} & \quad \text{OPMB} \\
\text{HO} & \quad \text{O-Si} & \quad \text{OPMB} \\
\text{Pr} & \quad \text{Pr} & \quad \text{Pr} & \quad \text{Pr}
\end{align*}
\]

\[
\text{ds} \geq 19:1
\]

Reaction conditions: a) cat. OsO₄, NMO, acetone/water (9:1), RT, 89%.

Notably, the competitive rearrangement of the diol via an intramolecular silyl migration was observed when the transformation was conducted at low concentration and over prolonged reaction times. However, this could be avoided by conducting the oxidation in a concentrated solution (c = 0.6 M), which only gave trace amounts of the migration products (ds ≥10:1).

The stereochemical outcome of the transformation was explained using conformational analysis, as discussed in Chapter 4.5 The eight-membered syn-silaketal ring adopts the energetically preferable boat-boat conformation 18, where the presence of the alkene and two oxygen atoms effectively minimise the transannular nonbonded interactions (Figure 6.3.1, benzyloxy groups are omitted for
The addition of the electrophile can only proceed from the less sterically hindered concave face of the molecule, since the benzyl group shields the alkene on the convex face. Furthermore, the Kishi model for the dihydroxylation of allylic alcohols could be successfully implemented to explain the selective formation of 17. Arrangement of the eclipsed conformation 19 by the alkene 16 would direct the approaching osmium tetroxide to the face opposite to the silyloxy ether, due to the electrostatic repulsions between the electrophile and the oxygen lone pairs.

Figure 6.3.1: Prediction of Stereochemistry of the Dihydroxylation Reaction of 16

The relative stereochemistry of the diol was assigned using extensive 2D NOESY, COSY and coupling constant analysis (Figure 6.3.2).

Figure 6.3.2: Stereochemical Assignment of Diol 17
Chapter 6

Based on the data acquired, the molecule was predicted to adopt a boat-chair conformation, as supported by the strong nOe enhancements between the consecutive syn-hydrogens (H1-H2, H3-H4-H6) and H7-H6-H5. Furthermore, the spatial arrangement of the silyldioxy group was established by the nOe signal between the iPr group and two axial protons (H9-H8-H1).

The coupling analysis provided additional evidence for the proposed relative stereochemistry. For example, typical 1,2-diaxial coupling constants were observed for the key protons including \(J_{H1,H3} \) (9.9 Hz), \(J_{H2,H4} \) (10.3 Hz) and \(J_{H8,H6} \) (9.1 Hz) as well as 1,2-syn couplings \(J_{H1,H2} \) (4.5 Hz), \(J_{H3,H4} \) (3.8 Hz) and \(J_{H4,H6} \) (2.3 Hz), pointing to the proposed boat-chair conformation adopted by diol 17.

The next key step in the synthesis of the model common fragment of AM3 was the protection of diol 17. Since we hypothesised a fluoride-mediated deprotection during the cyclisation, the 1,2-acetonide was elected as a masking group. Unfortunately the propensity of 17 to undergo an acid-catalysed rearrangement required a fine-tuning of the protection conditions (Table 6.3.1).

Table 6.3.1: Optimisation of Acetonide 20 Formation (eq. 2)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Yield (%)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cat. CSA, 2,2-DMP, DCM, RT</td>
<td>62</td>
</tr>
<tr>
<td>2</td>
<td>cat. PPTS, 2,2-DMP, DCM, RT</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>cat. PPTS, 2-methoxypropene, DCM, RT</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>cat. VO(OTf)(_2), 2,2-DMP, MeCN, RT</td>
<td>91</td>
</tr>
</tbody>
</table>

\(^a\)Isolated yield.
Application of the standard conditions, namely catalytic CSA and 2,2-dimethoxypropane, gave the desired product 20 in average yield in conjunction with inseparable rearranged products (entry 1). We hypothesised that a more mildly acidic catalyst, *i.e.* PPTS, could be used to avoid the undesired silyl migration. To our dismay, this had little effect on the efficiency of the transformation (entry 2). Albeit the reactivity was improved by the use of the more reactive 2-methoxypropene electrophile (entry 3), the self-condensation of the latter during the protection made it difficult to isolate the pure product. Gratifyingly, the utilisation of VO(OTf)$_2$ mediated isopropylidation conditions7 delivered the requisite acetonide 20 in high yield (91%). Notably, no silyl migration was observed under these conditions.

Encouraged by the success of the protection reaction, we initiated the examination of the chemoselective deprotection of the primary PMB ether and the ultimate conversion of the alcohol intermediate to tosylate 22. Surprisingly, the cleavage of the *p*-methoxybenzyl ether in the presence of the primary benzyl group was troublesome (Table 6.3.2, eq. 3).

Table 6.3.2: Chemoselective Deprotection of the PMB ether 20 (eq. 3)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DDQ, DCM/pH 7 buffer, 0 °C</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>CAN, DCM, 0 °C</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>TMSI, DCM then K$_2$CO$_3$, 0 °C</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>cat. SnCl$_2$, TMSCl, anisole, DCM, –78 °C</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>SnCl$_2$, PhSH, DCM, –78 °C</td>
<td>81%</td>
</tr>
</tbody>
</table>
Standard conditions such as buffered DDQ, which were successfully employed in the synthesis of the polyol segment of AM3, led to the concomitant loss of the Bn ether and low yields of 21 (entry 1). Interestingly, ceric ammonium nitrate, which is known to be a selective reagent for PMB ether removal, was completely incompatible with this substrate and afforded only the desilylated product (entry 2). Selective conversion of PMBO group to TMS ether using TMSI/Et$_3$N and subsequent one-pot hydrolysis by K$_2$CO$_3$, reported by Kadota et al.,8 afforded only moderate yields of 21 (entry 3). The use of Lewis acid activation under mild conditions, as demonstrated by Akiyama and Ozaki, could effect selective removal of PMB group.9 Thus, a combination of catalytic SnCl$_2$, TMSCl and anisole improved the yield of 21 to 67%. Upon screening a range of conditions for the selective deprotection of 20, it became apparent that the similar reactivity of both benzylic ethers could be attributed to the electronic impact of the silyloxy moiety in the α-position. We hypothesised that the utilisation of Lewis acid at low temperature could result in greater chemoselectivity and allow for a more efficient cleavage. Gratifyingly, we discovered that the application of stoichiometric SnCl$_2$ in conjunction with a thiophenol nucleophile at $-78 \, ^\circ\text{C}$10 resulted in an instantaneous reaction and excellent selectivity favouring the monodeprotected product 21 (entry 5, 81% yield). With an efficient route to the primary alcohol 21 in hand, the formation of tosylate 22 was achieved in excellent yield using standard conditions (eq. 4).

![Reaction scheme](image)

Reaction conditions: a) TsCl, Et$_3$N, *cat.* DMAP, DCM, RT, 100%.
This success set the stage to test our proposed deprotection/double cyclisation transformation. Treatment of tosylate 22 with TBAF accounted for the cleavage of the silaketal and furnished 23 (Scheme 6.3.2). Subsequently, the basic reaction medium facilitated the intramolecular reaction of the intermediate dihydroxy tosylate 23 to afford the epoxy alcohol 24 through a 3-exo-tet cyclisation. Although a one-pot conversion to the 25 was viable at this stage simply by addition of the excess of BF$_3$:Et$_2$O, the isolation of alcohol 25 in pure form proved to be challenging due to an impurity formed during the deprotection step. Therefore a two-step approach was pursued. Hence, in agreement with our hypothesis a Brønsted acid activation of the epoxide moiety in 24 promoted the critical intramolecular nucleophilic cyclisation to furnish the anti-THP ring 25 in excellent yield via a 6-exo-tet cyclisation, which represents a model anti-THP fragment of amphidinol 3.

Scheme 6.3.2: Synthesis of the Model Common anti-THP Fragment of AM3

Reaction conditions: a) TBAF, THF, 0 °C, 84%.
b) cat. CSA, DCM, 0 °C, 85%
6.4 Retrosynthetic Analysis of the syn-THP Ring

The successful implementation of the TST-based strategy for the construction of the anti-THPs let us to anticipate that we should be able to adapt the methodology for the preparation of the polysubstituted syn-THP rings, which are prevalent in many important natural products (Figure 6.4.1).

![Figure 6.4.1: Selected Natural Products with the syn-THP Ring Functionality](image)

We assumed that the syn-THP 26 could be obtained from diol 27 using the cyclisation reaction outlined in Chapter 6.3.2 (Scheme 6.4.1). Subsequently, the catalytic dihydroxylation of the cyclic anti-silaketal 28 was envisaged to deliver 27, which would proceed from the less sterically encumbered face of the alkene, by analogy with the reaction of syn-silaketal 16. Additionally, this transformation would be important test of the influence of the homoallylic stereocentre on the facial selectivity of the osmylation reaction.

Scheme 6.4.1: Retrosynthetic Analysis of the syn-THP Ring Formation
6.5 Synthesis of the \textit{syn}-THP Ring

The synthesis of the \textit{syn}-THP unit was initiated with the formation of the desired mixed silaketal 31 in 82\% yield from alcohols 30 and 14 (Scheme 6.5.1). Subsequent RCM of the diene using Grubbs 2nd generation catalyst afforded the cyclic \textit{anti}-silaketal 31 with excellent Z/E control (98\% yield).

\textbf{Scheme 6.5.1: Synthesis of the Cyclic anti-Silaketal 31}

\[
\begin{array}{c}
\text{BnO} \underset{\text{OH}}{\text{O}} \underset{\text{OH}}{\text{O}} \underset{\text{H}}{\text{Pr}} \underset{\text{Si}}{\text{Pr}} \underset{\text{OPMB}}{\text{H}} \text{31} \\
\text{BnO} \underset{\text{OH}}{\text{O}} \underset{\text{Pr}}{\text{SiCl}} \text{29} + \text{PMBO} \underset{\text{OH}}{\text{O}} \underset{\text{H}}{\text{Pr}} \text{30}
\end{array}
\]

Reaction conditions: a) 29, iPr\textsubscript{2}SiCl\textsubscript{2}, imid, DCM, 0 °C to RT, then 14, imid, DCM, 0 °C to RT, 82\%. b) 1 mol\% G-II, DCM, 40 °C, 98\%, Z/E ≥ 19:1.

Our next task was to extend the dihydroxylation methodology to the \textit{anti}-silaketal 31. Gratifyingly, the addition of catalytic OsO\textsubscript{4} in the presence of NMO in a mixture of acetone and water resulted in excellent 1,2-stereoinduction from the resident allylic stereocentre and afforded the requisite diol 32 as a single diastereoisomer (Scheme 6.5.2).

\textbf{Scheme 6.5.2: Synthesis of Acetonide 33}

\[
\begin{array}{c}
\text{BnO} \underset{\text{O}}{\text{Si}} \underset{\text{Pr}}{\text{Pr}} \text{31} + \text{PMBO} \underset{\text{O}}{\text{H}} \underset{\text{Pr}}{\text{Pr}} \text{30} \\
\text{BnO} \underset{\text{O}}{\text{Si}} \underset{\text{Pr}}{\text{Pr}} \text{31} \rightarrow \text{BnO} \underset{\text{O}}{\text{Si}} \underset{\text{Pr}}{\text{Pr}} \text{32} \rightarrow \text{BnO} \underset{\text{O}}{\text{Si}} \underset{\text{Pr}}{\text{Pr}} \text{33}
\end{array}
\]

Reaction conditions: a) cat. OsO\textsubscript{4}, NMO, acetone/water (9:1), RT, 92\%, ds ≥ 19:1. b) cat. VO(OTf)\textsubscript{2}, 2,2-DMP, MeCN, RT, 100\%.
Chapter 6

It is noteworthy that rearrangement products were not observed in this instance, even after prolonged reaction times and with reduced catalyst loading, which could be attributed to the lower ring strain energy within the molecule when compared to 18.

Analogous to the osmylation of syn-silaketals, the addition of the electrophile to 31 proceeded from the less sterically hindered face of the olefin residing in the boat-chair conformation 34 (Figure 6.5.1). The stereochemical outcome of the transformation was in agreement with Kishi’s model 35, predicting the attack of the OsO₄ progressing perpendicular to silyloxy functionality.

Figure 6.5.1: Prediction of Stereochemistry of the Dihydroxylation Reaction of 31

The relative stereochemistry of the dihydroxylation product was deducted using the extensive 2D NOESY, COSY and coupling constant analysis (Figure 6.5.2). The spectroscopic data strongly suggested that diol 32 adopted a twisted boat-chair conformation,¹¹ as supported by strong nOe enhancements between the consecutive syn-hydrogens (H₁-H₂, H₁-H₄-H₆) and H₃-H₈, residing on the bottom face of the molecule. Additionally, nOe signals were evident between the two distinctive methyl groups and protons H₁ and H₈. Analysis of coupling constants contributed to the proposed arrangement of 32. The typical 1,2-diaxial coupling constants were observed for the protons including $J_{H1,H3}$ (10.5 Hz), $J_{H3,H4}$ (7.7 Hz) and $J_{H6,H8}$ (9.1 Hz) in addition to 1,2-syn couplings $J_{H4,H6}$ (2.0 Hz).
The conformational preference of diol 32 could be attributed to the stabilising effect of a hydrogen bond formed between OH₇ and OH₅, where H₇ is in the centre of the hydrogen bond network, which is consistent with its downfield shifted resonance at 3.24 ppm, while H₅ was observed at 2.54 ppm. Notably, hydroxyl protons are coplanar with H₄ and H₆, which was apparent from nOe experiments. It is worth mentioning that the conformational preference of 32 was fully supported by conformer searches using Spartan ’08, calculated at a semi-empirical level of theory using an AM1 basis set.

With the requisite diol 32 in hand, the formation of acetonide 33 was then secured using previously optimised conditions, which involved the use of catalytic VO(OTf)₂ and 2,2-DMP, in excellent yield. Gratifyingly, the silyl migration products were not observed by ¹H NMR analysis.

The synthetic sequence leading to tosylate 37 is shown in Scheme 6.5.3. Chemoselective removal of the PMB ether 34 using SnCl₂/PhSH mixture, followed by tosylation of the intermediate alcohol 36 afforded the cyclisation precursor 37 in 93% yield over 2 steps.
Chapter 6

Scheme 6.5.3: Synthesis of Tosylate 37

![Scheme 6.5.3: Synthesis of Tosylate 37]

Reaction conditions: a) SnCl₂, PhSH, DCM, –78 °C, 96%. b) TsCl, Et₃N, cat. DMAP, DCM, RT, 97%.

Following the procedure described in Chapter 6.3, treatment of tosylate 37, with TBAF afforded the hydroxyepoxide intermediate 38, which was smoothly converted to the requisite syn-THP 39 via a pivotal 6-exo-tet cyclisation using catalytic CSA in 79% yield over 2 steps (Scheme 6.5.4).

Scheme 6.5.4: Synthesis of the syn-THP 39

![Scheme 6.5.4: Synthesis of the syn-THP 39]

Reaction conditions: a) TBAF, THF, 0 °C, 84%. b) cat. CSA, DCM, 0 °C, 94%

In summary, a rapid and convergent synthesis of syn-THP and anti-THP rings was achieved by taking advantage of a novel and highly stereoselective TST-RCM/dihydroxylation methodology using the inherent substrate control. This sequence readily afforded the densely substituted tetrahydropyrans, relevant to a plethora of natural products, in just 8 longest linear steps starting from known materials and will likely find application in the field of the target-oriented synthesis.
6.6 Retrosynthetic Analysis of the Common THP Fragment of Amphidinol 3

Having developed a stereoselective synthesis of the model anti-THP fragment of amphidinol 3, we turned our attention to the foremost goal, i.e. the synthesis of the advanced common THP fragment of the natural product. From a retrosynthetic perspective the route to 42 would require formation of the cyclic syn-silaketal 41, hinged upon the TST formation between 14 and advanced allylic alcohol 40 with subsequent ring-closing metathesis (Scheme 6.6.1).

Scheme 6.6.1: Retrosynthetic Analysis of the bis-THP Fragment of Amphidinol 3

6.7 Synthesis of the Common THP Fragment of Amphidinol 3

Synthesis of the allylic TST coupling fragment 40 was initiated by the monobenzylation of the commercially available diol 43. We were pleased to find that conditions, developed by Sauve for the monoprotection of symmetrical diols, which involved the utilisation of Ag₂O as a base, afforded 44 on large scale in 70% yield 90% b.r.s.m., eq. 5), with easy recovery of the unreacted starting material and a trace of the dibenzylation product.
A Felkin-Ahn controlled vinyl organometallic addition to the alkoxy aldehyde 45 was anticipated to provide the allylic alcohol 40. Following the precedent of Crimmins,13 divinyl zinc formation from the vinyl magnesium bromide and ZnCl\textsubscript{2}, succeeded by the addition of the former to aldehyde 45, obtained via Swern oxidation of 44,14 furnished the requisite alcohol 40 in modest yield (Scheme 6.7.1). Unfortunately, the stereoselectivity of the transformation was considerably lower than that reported (4:1 vs. 9:1). Subsequent attempts to optimise the reaction by employing various zinc salts, solvents and temperatures did not provide suitable conditions for the preparation of 40 in a satisfactory manner.

Scheme 6.7.1: Initial Approach to the Allylic Alcohol 40

Although Mukaiyama et al. explained the anti-selective addition to 45 by the Felkin-Ahn model 46 (eq. 6),15,16 in principle, the generation of mixed chelated species 47 and 48 could have a dramatic effect on the stereochemical outcome. Thus, formation of the Cram β-chelate 48 (eq. 8) would furnish the requisite alcohol 40, whereas the α-chelate model 47 (eq. 7) could reverse the stereochemical sense of the addition and result in the accumulation of the undesired syn-adduct 45.
In search of alternative routes to alcohol 40, we were intrigued by the prospect of a highly stereoselective lithium trimethylsilylacetylide addition to the α,β-alkoxy aldehyde 45 in the presence of Ti(O'iPr)$_4$ and TiCl$_4$ (Scheme 6.7.2).14,15 Generation of the titanium acetylidy species, followed by the addition of aldehyde 45 resulted in the propargylic alcohol 49 in 68% yield over 2 steps and with excellent stereocontrol ($ds \geq 19:1$). Notably, consistently high selectivity was obtained when reaction was performed on gram-scale. However, on larger scale (10-15 g) erosion in selectivity was observed ($ds = 8:1$). Although the diastereoisomers of 49 were inseparable at this stage, further synthesis of the mixed silaketal 51 accounted for their efficient separation.
Scheme 6.7.2: Alternative Approach to Alcohol 40

![Scheme 6.7.2](image)

Reaction conditions: a) (COCl)$_2$, DMSO, DIPEA, DCM, -78°C to RT.
 b) HCCTMS, $^\circ$BuLi, Ti(OiPr)$_4$, TiCl$_4$, THF, -78°C to RT, 68% over 2 steps, ds = 19:1 to 8:1. c) TBAF, THF, RT, 97%.
 d) Red-Al, THF, reflux, 64% over 2 steps.

The stereochemical outcome of the transformation could be explained by the generation of the highly sterically demanding titanium nucleophile, which, by the virtue of coordinative saturation, could avoid the formation of chelated species (*vide supra*) and would direct the acetylide addition to aldehyde 45 in a Felkin-Ahn fashion (Figure 6.7.1).

![Figure 6.7.1](image)

Figure 6.7.1: Felkin-Ahn Model for Acetylide Addition to 45

With an efficient route to 49 in hand we turned our attention to the construction of the allylic alcohol 40. Thus, generation of alkyne 50 using TBAF in THF, followed by the hydroxyl-directed alkyne reduction to the alkene forged 40 in 64% yield over 2 steps. It should be noted that the reaction with soluble Red-Al was more beneficial than the commonly employed LiAlH$_4$, since the transformation with the latter failed to go to completion due to the formation of the insoluble metal alkoxide intermediates.

With the required alcohol precursor in hand, we then followed the optimised strategy towards the THP ring as discussed in Chapter 6.3. Formation of the mixed
silaketal from 40 and 14 using \(\text{iPr}_2\text{SiCl}_2 \) afforded smoothly 51 in 84% yield on up to 7 mmol scale (Scheme 6.7.3). The diene 51 was then taken forward to the TST-RCM reaction. Gratifyingly, introduction of the more sterically hindered 1,2-acetonide functionality on the left hand side of the molecule did not have an impact on the reaction efficiency and the requisite syn-silaketal 41 was obtained in excellent yield as a single (Z)-geometrical isomer by employing Grubbs 2\(^\text{nd} \) generation catalyst in DCM.

Scheme 6.7.3: Formation of the Advanced syn-Silaketal 41

By analogy with model studies (*vide supra*), catalytic Upjohn dihydroxylation \((ds \geq 19:1)\) and VO(OTf)_2 mediated protection of the diol intermediate 52 furnished acetonide 53 in excellent overall yield (Scheme 6.7.4). Although some silyl migration was observed in the former step \((ds \geq 10:1)\), careful flash chromatography accounted for the isolation of pure 52.
Scheme 6.7.4: Formation of Acetonide 53

Reaction conditions:
a) cat. OsO₄, NMO, acetone/water (9:1), RT, ds ≥ 19:1, 96%.
b) cat. VO(OTf)₂, 2,2-DMP, MeCN, RT, 99%.

The stereochemistry of the dihydroxylation product 52 was assigned in a similar fashion to the diol 17 (vide supra).

Figure 6.7.2: Stereochemical Assignment of Diol 52

Examination of the spectroscopic data of diol 52 confirmed its stereochemical correlation with the model dihydroxylation product 17 (Figure 6.7.2). Specifically, the boat-chair conformation was consistent with nOe correlations between the iPr group and pseudo-axial hydrogens (H₁-H₉-H₈), in addition to enhancements of syn-hydrogens (H₁-H₂-H₈). Furthermore, the presence of a nOe signal between H₃-H₄-H₆, residing on the bottom face of the molecule, and H₇-H₆-H₅-H₄, arising from the hydrogen bond network, contributed to the proposed spatial arrangement of the diol.
The suggested relative stereochemistry was consistent with the patterns of 1H-1H coupling. Thus, typical 1,2-diaxial coupling constants were observed for a number of protons including J_{H_1,H_3} (10.1 Hz), J_{H_2,H_4} (9.3 Hz) and J_{H_8,H_6} (8.5 Hz) as well as 1,2-syn-couplings J_{H_1,H_2} (4.6 Hz), J_{H_3,H_4} (3.4 Hz) and J_{H_4,H_6} (2.7 Hz), further indicating that diol 53 adopted a boat-chair conformation.

With the advanced acetonide 53, containing the correct stereochemistry, we moved forward towards the synthesis of tosylate 55 and formation of the common THP fragment of amphidinol 3. Chemoselective deprotection of the primary benzyl ether in 53 using SnCl$_2$/PhSH at $-78 \, ^\circ\text{C}$ and generation of the primary tosylate 55 afforded the requisite cyclisation precursor in 93% yield over 2 steps (Scheme 6.7.5).

Scheme 6.7.5: Formation of Tosylate 55

![Scheme 6.7.5](image)

Reaction conditions: a) SnCl$_2$, PhSH, DCM, $-78 \, ^\circ\text{C}$, 96%. b) TsCl, Et$_3$N, cat. DMAP, DCM, RT, 97%.

At this stage, we elected to exploit a one-pot cyclisation strategy to effect the formation of the common THP fragment of amphidinol 3 from tosylate 55 (Scheme 6.7.6). Thus, treatment of 55 with TBAF afforded the hydroxy epoxide intermediate, which was not isolated and converted to alcohol 42 upon addition of the excess of Lewis acid in 74% yield. Notably, the latter product constitutes the C31(52)-C39(44) THP fragment of amphidinol 3.
Scheme 6.7.6: Formation of the Common THP Fragment 42

![Diagram of Scheme 6.7.6]

Reaction conditions: a) TBAF, then BF$_3$·Et$_2$O, THF, 0 °C, 74%.

6.8 Conclusion

In summary, a substrate-controlled synthesis of the common C31(52)-C39(44) THP fragment of amphidinol 3 was achieved via the development of a novel TST-RCM/dihydroxylation methodology in conjunction with a pivotal 6-exo-trig cyclisation of a hydroxy epoxide in 7 longest linear steps from known materials and exceptional 58% overall yield. The succinct route to the fragment could be utilised in further studies directed towards a highly convergent bidirectional approach towards the bis-THP unit of the natural product. In addition, the methodology allowed for an expeditious stereoselective formation of the challenging tetrasubstituted syn- and anti-THP rings starting from the readily available allylic and homoallylic alcohols. In principle this transformation could be extended towards the formation of fully substituted THP rings present in numerous natural products and the preparation of the novel sugars.
Scheme 6.8.1: Overview of Syntheses of THP Rings Using TST-RCM
Chapter 6

6.9 Experimental

6.9.1 General Information

All reactions were carried out under Argon atmosphere, unless otherwise stated. Anhydrous DCM, hexane, Et₂O were obtained by passing degassed solvents through activated alumina columns in a Grubbs solvent purification system (PureSolv MD-6 of Innovative Technology Inc.). Anhydrous THF was obtained by distillation from benzophenone ketyl. Anhydrous MeCN was purchased from Aldrich. Et₃N, DIPEA, BF₃·Et₂O were distilled from CaH₂ under nitrogen and stored under 4Å MS. For other general information, see Chapter 2.

6.9.2 Experimental Procedures

General procedure for the temporary silicon tether formation.

\[
\text{(4S,8R)-4- Allyl-6,6-diisopropyl-1-(4-methoxyphenyl)-11-phenyl-8-vinyl-2,5,7,10-tetraoxa-6-silaundecane (15)}
\]

The procedure requires usage of Schlenk techniques and performed under an atmosphere of argon at all operational steps! The 250 mL round bottom Schlenk flask was charged with dry imidazole (1.123 g, 16.50 mmol) and dissolved in DCM (77 mL). The solution was cooled to 0 °C and Pr₂SiCl₂ (2.71 mL, 15.00 mmol) was added dropwise. After ca. 10 min a solution of 13 (0.891 g, 5.0 mmol) in DCM (3 mL) was added using a syringe pump over ca. 5 h and the reaction left to warm to room temperature. After ca. 13 h (TLC control) the reaction mixture was
concentrated under reduced pressure using a dry ice trap. The residue was triturated with hexane (24 mL) and the solution was carefully decanted from precipitates using a syringe into a separate 250 mL Kugelrohr flask (3x). The hexane washings were concentrated under reduced pressure using a dry ice trap and the residue was heated at 75 °C in vacuo (1 Torr) for ca. 3 h to remove the excess of iPr₂SiCl₂. The crude monochloroalkoxysilane (~5 mmol) was cooled to 0 °C and imidazole (1.021 g, 15.00 mmol) in DCM (8 mL with washings) was added, followed by a 14 (1.778 g, 8.00 mmol) in DCM (12 mL with washings) and the reaction was warmed to room temperature. After 15 h (TLC control) the reaction mixture was quenched with saturated aqueous NH₄Cl and partitioned between Et₂O and water. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were washed with water (2x), brine, dried (MgSO₄), filtered and concentrated. Purification by flash chromatography (silica gel, Et₂O/hexanes – 1:16) afforded the mixed silaketal 15 (2.14 g, 4.18 mmol, 84% yield) as a colourless oil.

\[R_f = 0.26 \text{ (Et}_2\text{O/hexanes – 1:20).} \]

\[[\alpha]_D^{20} +14.8 \text{ (c 1.0, CHCl}_3). \]

\[^1\text{H NMR} \ (500 \text{ MHz, C}_6\text{D}_6) \delta 7.36-7.26 \text{ (m, 2H), 7.22-7.19 \text{ (m, 2H), 7.17-7.15 \text{ (m, 2H), 7.09-7.06 \text{ (m, 1H), 6.79-6.76 \text{ (m, 2H), 5.97 (ddt, J = 17.2, 10.1, 7.1 Hz, 1H), 5.91 (ddd, J = 17.2, 10.5, 5.5 Hz, 1H), 5.36 (dt, J = 17.2, 1.7 Hz, 1H), 5.10 (ddt, J = 17.2, 12.3, 1.2 Hz, 1H), 5.06 (dt, J = 10.5, 1.7 Hz, 1H), 5.05 (ddt, J = 10.2, 2.2, 1.1 Hz, 1H), 4.67 (app. ddt, J = 11.9, 5.7, 1.3 Hz, 1H), 4.36-4.32 (m, 2H), 4.33 (s, 2H), 4.29 (app. dt, J = 11.1, 5.5 Hz, 1H), 3.50 (dd, A of ABX, J_{AB} = 9.4 Hz, J_{AX} = 1.5 Hz, 1H), 3.48 (dd, A of ABX, J_{AB} = 9.5 Hz, J_{AX} = 0.5 Hz, 1H), 3.42 (dd, B of ABX, J_{AB} = 9.4 Hz, J_{BX} = 5.5 Hz, 1H), 3.35 (dd, B of ABX, J_{AB} = 9.4 Hz, J_{BX} = 5.3 Hz, 1H), 3.30 (s, 3H), 2.50 (app. dddt, A of ABXYZ, J_{AB} = 12.7 Hz, J_{AX} = 8.2 Hz, J_{AY} = 5.7 Hz, ...
$J_{AZ} = 1.2 \text{ Hz}, 1\text{H}), 2.43$ (app. dddt, B of ABXYZ, $J_{AB} = 12.9 \text{ Hz}, J_{BX} = 7.5 \text{ Hz}, J_{BY} = 5.4 \text{ Hz}, J_{BZ} = 1.2 \text{ Hz}, 1\text{H}), 1.21-1.04$ (m, 5H), 1.18 (s, 3H), 1.17 (s, 3H), 1.16 (s, 3H).

$^{13}\text{C NMR}$ (125 MHz, C$_6$D$_6$) δ 159.75 (e), 139.23 (o), 139.01 (e), 135.15 (o), 131.08 (e), 129.51 (o), 128.55 (o), 127.89 (o), 127.71 (o), 117.25 (e), 115.11 (e), 114.06 (o), 75.53 (e), 73.96 (e), 73.47 (e), 73.20 (e), 72.84 (o), 71.33 (o), 54.79 (o), 39.76 (e), 17.86 (o), 17.83 (o), 13.37 (o), 13.23 (o).

IR (Neat) 2943 (m), 2864 (s), 1641 (w), 1613 (w), 1587 (m), 1090 (vs), 1037 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{30}$H$_{44}$O$_5$NaSi 535.2856, found 535.2859.

General procedure for the temporary silicon-tethered ring-closing metathesis.

(4S,8R,Z)-8-((Benzyloxy)methyl)-2,2-diisopropyl-4-(((4-methoxybenzyl)oxy)methyl)-5,8-dihydro-4H-1,3,2-dioxasilocine (16)

To a solution of diene 15 (0.977 g, 1.91 mmol) in DCM (185 mL) was added Grubbs 2nd generation catalyst (0.0162 g, 0.019 mmol) as solution in DCM (5 mL with washings). The reaction mixture was refluxed for ca. 1 h (TLC control), before it was cooled to room temperature and treated with DMSO (6.8 mL, 95 mmol). After ca. 16 h the reaction was concentrated in vacuo and passed though a pad of silica gel (washed with Et$_2$O/petroleum ether – 1:5). Purification by flash chromatography (Et$_2$O/hexanes – 1:12, 1:10) afforded alkene 16 (0.881 g, 1.82 mmol, 95% yield) as a colourless oil.

$R_f = 0.63$ (Et$_2$O/hexanes – 1:1).

354
Chapter 6

\[\alpha \]_D^{20} –1.3 (c 1.0, CHCl₃).

¹H NMR (500 MHz, C₆D₆) δ 7.32-7.30 (m, 2H), 7.20-7.16 (m, 4H), 7.11-7.08 (m, 1H), 6.80-6.77 (m, 2H), 5.79 (dd, A of ABX, A of ABX, \(J_{AB} = 11.0 \text{ Hz} \), \(J_{AX} = 6.3 \text{ Hz} \), 1H), 5.63 (q, \(J = 9.4 \text{ Hz} \), 1H), 4.70 (q, \(J = 5.9 \text{ Hz} \), 1H), 4.40 (d, A of AB, \(J_{AB} = 12.4 \text{ Hz} \), 1H), 4.41 (d, B of AB, \(J_{AB} = 12.4 \text{ Hz} \), 1H), 4.33 (d, A of AB, \(J_{AB} = 11.7 \text{ Hz} \), 1H), 4.31 (d, B of AB, \(J_{AB} = 11.7 \text{ Hz} \), 1H), 4.29 (app. dtd, \(J = 7.5, 5.6, 3.7 \text{ Hz} \), 1H), 3.54 (dd, A of ABX, \(J_{AB} = 9.7 \text{ Hz} \), \(J_{AX} = 6.4 \text{ Hz} \), 1H), 3.50 (dd, A of ABX, \(J_{AB} = 9.1 \text{ Hz} \), \(J_{AX} = 5.3 \text{ Hz} \), 1H), 3.44 (dd, B of ABX, \(J_{AB} = 9.7 \text{ Hz} \), \(J_{BX} = 5.1 \text{ Hz} \), 1H), 3.54 (dd, B of ABX, \(J_{AB} = 9.0 \text{ Hz} \), \(J_{BX} = 7.7 \text{ Hz} \), 1H), 3.31 (s, 3H), 2.62 (ddd, A of ABXY, \(J_{AB} = 13.8 \text{ Hz} \), \(J_{AX} = 7.6 \text{ Hz} \), \(J_{AY} = 6.2 \text{ Hz} \), 1H), 2.43 (ddd, B of ABXY, \(J_{AB} = 13.5 \text{ Hz} \), \(J_{BX} = 9.5 \text{ Hz} \), \(J_{BY} = 3.8 \text{ Hz} \), 1H), 1.25-1.09 (m, 1H), 1.19 (d, \(J = 1.4 \text{ Hz} \), 3H), 1.17 (d, \(J = 1.4 \text{ Hz} \), 3H), 1.16 (s, 3H), 1.14 (s, 3H), 1.02 (sextet, \(J = 7.4 \text{ Hz} \), 1H).

¹³C NMR (125 MHz, C₆D₆) δ 159.76 (e), 139.30 (e), 134.32 (o), 131.00 (e), 129.46 (o), 129.32 (o), 128.55 (o), 127.66 (o), 127.63 (o), 114.10 (o), 74.87 (e), 73.51 (e), 73.42 (e), 73.17 (o), 73.11 (e), 69.30 (o), 54.79 (o), 32.83 (e), 17.98 (o), 17.94 (o), 17.88 (o), 17.86 (o), 13.61 (o), 13.45 (o).

IR (Neat) 2942 (m), 2864 (m), 1612 (w), 1586 (w), 1085 (vs), 1036 (s) cm⁻¹.

HRMS (ESI, [M+Na]+) calcd for C₂₈H₄₀O₅NaSi 507.2543, found 507.2540.

General procedure for the dihydroxylation of cyclic silaketals.

![Image of a chemical structure](image)

(4S,5R,6R,8S)-4-((Benzyloxy)methyl)-2,2-diisopropyl-8-((4-methoxybenzyl)oxy)methyl)-1,3,2-dioxasilocane-5,6-diol (17)
A solution of 16 (0.1683 g, 0.347 mmol), NMO (0.122 g, 1.042 mmol) in a 10:1 mixture of acetone and water (0.605 mL) was treated with osmium(VIII) oxide (0.110 mL, 4% in water, 0.017 mmol) and stirred for ca. 2 h (TLC control). The reaction mixture was quenched with saturated aqueous Na₂SO₃ and partitioned between EtOAc and water. Phases were separated and the aqueous layer was washed with EtOAc (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/hexanes – 1:1, 2:1, 3:1, 20:1) afforded diol 17 (0.160 g, 0.308 mmol, 89% yield) as a colourless oil.

R_f = 0.07 (Et₂O/hexanes – 1:1).

[α]_D^20 +7.6 (c 1.0, CHCl₃).

1H NMR (500 MHz, CDCl₃) δ 7.37-7.28 (m, 5H), 7.27-7.25 (m, 2H), 6.91-6.86 (m, 2H), 4.60 (d, A of AB, J_AB = 12.0 Hz, 1H), 4.57 (d, B of AB, J_AB = 11.9 Hz, 1H), 4.49 (s, 2H), 4.34 (app. dq, J = 9.9, 5.0 Hz, 1H), 4.26 (ddd, J = 10.3, 3.6, 2.4 Hz, 1H), 4.10 (app. dt, A of ABX₂, J_AB = 9.1 Hz, J_AX = 5.4 Hz, 1H), 3.96 (dd, B of ABX, J_AB = 9.1 Hz, J_BX = 2.1 Hz, 1H), 3.80 (s, 3H), 3.70 (dd, A of ABX, J_AB = 9.5 Hz, J_AX = 4.9 Hz, 1H), 3.60 (dd, B of ABX, J_AB = 9.6 Hz, J_BX = 5.8 Hz, 1H), 3.46 (dd, A of ABX, J_AB = 9.8 Hz, J_AX = 5.8 Hz, 1H), 3.38 (dd, B of ABX, J_AB = 9.8 Hz, J_BX = 5.0 Hz, 1H), 3.31 (br s, 1H), 2.52 (br s, 1H), 2.13 (ddd, A of ABXY, J_AB = 14.0 Hz, J_AX = 10.2 Hz, J_AY = 3.9 Hz, 1H), 1.75 (ddd, B of ABXY, J_AB = 13.9 Hz, J_BX = 10.3 Hz, J_BY = 3.7 Hz, 1H), 1.17 (septet, J = 7.3 Hz, 1H), 1.07 (d, J = 7.6 Hz, 3H), 1.05 (d, J = 7.7 Hz, 3H), 1.04 (d, J = 6.7 Hz, 3H), 1.03 (d, J = 7.2 Hz, 3H), 1.01-0.94 (m, 1H).

13C NMR (125 MHz, CDCl₃) δ 159.20 (e), 137.82 (e), 130.49 (e), 129.27 (o), 128.54 (o), 127.89 (o), 127.75 (o), 113.81 (o), 76.91 (o), 75.17 (e), 74.80 (e), 73.74 (e),
Chapter 6

73.05 (e), 71.85 (o), 68.36 (o), 68.22 (o), 55.32 (o), 35.75 (e), 17.57 (o), 17.50 (o), 17.32 (o), 17.30 (o), 11.53 (o), 11.48 (o).

IR (Neat) 3404 (br), 2926 (m), 2866 (m), 1612 (w), 1586 (w), 1513 (m), 1088 (s), 1027 (vs) cm⁻¹.

HRMS (ESI, [M+Na]⁺) calcd for C_{28}H_{42}O_{7}NaSi, 541.2598, found 541.2605.

General procedure for the VO(OTf)₂ catalysed acetonide formation.

![Chemical Structure](image)

(3aR,4S,8S,9aR)-4-((Benzyloxy)methyl)-6,6-diisopropyl-8-(((4-methoxybenzyl)oxy)methyl)-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-e][1,3,2]dioxasilocine (20)

To a solution of 17 (0.268 g, 0.52 mmol) in MeCN (2.5 mL) was added 2,2-dimethoxypropane (6.40 mL, 51.6 mmol) and vanadyl triflate (0.028 g, 0.077 mmol). After ca. 20 min (TLC control) the reaction mixture was quenched with saturated aqueous NaHCO₃ and partitioned between DCM and water. Phases were separated and the aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated *in vacuo*. Purification by flash chromatography (silica gel, Et₂O/petroleum ether – 1:10, 1:8, 1:7) afforded acetonide 20 (0.262 g, 0.47 mmol, 91% yield) as a colourless oil.

Rᵢ = 0.74 (Et₂O/hexanes – 2:1).

[α]_D^{20} = −35.9 (c 0.5, CHCl₃).

¹H NMR (500 MHz, CDCl₃) δ 7.35-7.28 (m, 4H), 7.27-7.22 (m, 3H), 6.87-6.84 (m, 2H), 4.59 (d, A of AB, J_{AB} = 12.8 Hz, 1H), 4.57 (d, B of AB, J_{AB} = 13.0 Hz, 1H),

357
Chapter 6

4.54 (d, A of AB, $J_{AB} = 11.7$ Hz, 1H), 4.47 (d, B of AB, $J_{AB} = 11.7$ Hz, 1H), 4.35 (ddd, $J = 11.2$, 4.1, 2.4 Hz, 1H), 4.29 (app. ddt, $J = 11.0$, 6.3, 2.0 Hz, 1H), 4.15-4.09 (m, 2H), 3.78 (s, 3H), 3.75 (dd, A of ABX, $J_{AB} = 12.0$ Hz, $J_{AX} = 1.6$ Hz, 1H), 3.60 (dd, B of ABX, $J_{AB} = 10.1$ Hz, $J_{BX} = 5.3$ Hz, 1H), 3.51 (dd, A of ABX, $J_{AB} = 10.2$ Hz, 1H), 3.45 (dd, B of ABX, $J_{AB} = 9.7$ Hz, $J_{BX} = 5.3$ Hz, 1H), 3.36 (ddd, A of ABXY, $J_{AB} = 14.7$ Hz, $J_{AX} = 11.2$ Hz, $J_{AY} = 5.9$ Hz, 1H), 2.11 (app. dt, B of ABX$_2$, $J_{AB} = 14.7$ Hz, $J_{BX} = 2.3$ Hz, 1H), 1.35 (s, 3H), 1.30 (s, 3H), 1.08-1.03 (m, 7H), 0.98 (d, $J = 8.8$ Hz, 3H), 0.97 (d, $J = 8.8$ Hz, 3H), 0.95-0.89 (m, 1H).

13C NMR (125 MHz, CDCl$_3$) δ 159.28 (e), 138.85 (e), 130.57 (e), 129.25 (o), 128.28 (o), 127.63 (o), 127.41 (o), 113.91 (o), 106.96 (e), 77.91 (o), 73.60 (o), 73.42 (e), 73.09 (e), 73.02 (e), 72.72 (e), 71.52 (o), 68.56 (o), 55.35 (o), 32.32 (e), 28.33 (o), 25.96 (o), 17.75 (o), 17.53 (o), 17.31 (o), 13.20 (o), 12.44 (o).

IR (Neat) 2939 (m), 2865 (m), 1612 (w), 1586 (w), 1100 (s), 1037 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{28}$H$_{40}$O$_5$NaSi 581.2908, found 581.2911.

General procedure for the chemoselective PMB ether deprotection.

(3aR,4S,8S,9aR)-4-((Benzyloxy)methyl)-6,6-diisopropyl-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-e][1,3,2]dioxasilocin-8-yl)methanol (21)

To a cooled to −78 °C solution of 20 (0.262 g, 0.47 mmol) and benzenethiol (0.058 mL, 0.56 mmol) in DCM (2.6 mL) was tin(II) chloride (0.52 mL, 1 M in DCM, 0.52 mmol). After ca. 30 min (TLC control) the reaction mixture was quenched with
saturated aqueous NaHCO₃, warmed to room temperature and partitioned between DCM and water. Phases were separated and aqueous layer was washed with DCM (2x). The combined organic layers were dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/hexanes – 1:4, 1:3, 1:2) afforded the primary alcohol 21 (0.166 g, 0.38 mmol, 81% yield) as a colourless oil.

Rf = 0.12 (Et₂O/hexanes – 1:2).

[α]D²⁰ –23.5 (c 0.5, CHCl₃).

1H NMR (500 MHz, CDCl₃) δ 7.36-7.31 (m, 4H), 7.27-7.21 (m, 1H), 4.62 (d, A of AB, J_AB = 13.1 Hz, 1H), 4.59 (d, B of AB, J_AB = 12.9 Hz, 1H), 4.40 (ddd, J = 10.9, 4.8, 2.1 Hz, 1H), 4.22 (dddd, J = 8.1, 6.1, 4.1, 2.0 Hz, 1H), 4.17 (dd, A of ABX, J_AB = 10.0 Hz, J_AX = 4.9 Hz, 1H), 4.12 (ddd, B of ABXY, J_AB = 10.0 Hz, J_BX = 5.5 Hz, J_BY = 1.9 Hz, 1H), 3.77 (dd, A of ABX, J_AB = 10.2 Hz, J_AX = 1.9 Hz, 1H), 3.67 (ddd, A of ABXY, J_AB = 10.3 Hz, J_AX = 8.9 Hz, J_AY = 1.4 Hz, 1H), 3.63 (dd, B of ABX, J_AB = 10.2 Hz, J_BX = 5.4 Hz, 1H), 3.54 (ddd, B of ABXY, J_AB = 10.6 Hz, J_BX = 9.0 Hz, J_BY = 4.0 Hz, 1H), 2.42 (dd, A of ABXY, J_AB = 15.1 Hz, J_AX = 10.9 Hz, J_AY = 6.2 Hz, 1H), 2.17 (dd, J = 8.9, 2.5 Hz, 1H), 1.90 (app. dt, B of ABX₂, J_AB = 15.1 Hz, J_BX = 2.1 Hz, 1H), 1.36 (s, 3H), 1.33 (s, 3H), 1.16-1.11 (m, 1H), 1.09 (d, J = 7.6 Hz, 3H), 1.07 (d, J = 6.3 Hz, 3H), 0.95-0.89 (m, 7H).

13C NMR (125 MHz, CDCl₃) δ 138.72 (e), 128.30 (o), 127.64 (o), 127.46 (o), 107.22 (e), 77.74 (o), 73.80 (o), 73.45 (e), 72.94 (e), 71.41 (o), 69.72 (o), 66.38 (e), 32.64 (e), 28.29 (o), 25.90 (o), 17.69 (o), 17.56 (o), 17.44 (o), 17.35 (o), 13.07 (o), 12.35 (o).

IR (Neat) 3461 (br), 2941 (m), 2867 (m), 1497 (w), 1462 (m), 1153 (s), 1102 (s), 1040 (s) cm⁻¹.
HRMS (ESI, [M+Na]+) calcd for C_{38}H_{38}O_{6}NaSi, 461.2355, found 461.2335.

General procedure for tosylation.

((3aR,4S,8S,9aR)-4-((Benzyloxy)methyl)-6,6-diisopropyl-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-e][1,3,2]dioxasilocin-8-yl)methyl 4-methylbenzenesulfonate (22)

To a solution of 21 (0.166 g, 0.38 mmol) in DCM (2 mL) was added sequentially TsCl (0.108 g, 0.59 mmol), Et$_3$N (0.132 mL, 0.95 mmol) and DMAP (4.63 mg, 0.038 mmol). After ca. 16 h (TLC control) the reaction mixture was quenched with saturated aqueous NaHCO$_3$ and partitioned between EtOAc and water. Phases were separated and the aqueous layer was washed with EtOAc (2x). The combined organic layers were dried (MgSO$_4$), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, EtOAc/hexanes – 1:8, 1:7) afforded tosylate 22 (0.225 g, 0.390 mmol, 100%) as a colourless oil.

R$_f$ = 0.51 (Et$_2$O/hexanes – 1:1).

$[\alpha]_D$^{20} = -22.7 (c 0.5, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$) δ 7.81-7.79 (m, 2H), 7.35-7.30 (m, 6H), 7.27-7.24 (m, 1H), 4.59 (d, A of AB, $J_{AB} = 12.5$ Hz, 1H), 4.56 (d, B of AB, $J_{AB} = 12.4$ Hz, 1H), 4.37 (app. dq, $J = 6.2$, 2.5 Hz, 1H), 4.23 (ddd, $J = 11.1$, 4.7, 2.2 Hz, 1H), 4.10 (dd, A of ABX, $J_{AB} = 10.0$ Hz, $J_{AX} = 4.8$ Hz, 1H), 4.07-4.04 (m, 1H), 4.06 (dd, B of ABX, $J_{AB} = 9.9$ Hz, $J_{BX} = 6.5$ Hz, 1H), 3.96 (dd, B of ABX, $J_{AB} = 9.9$ Hz, $J_{BX} = 6.0$ Hz, 1H), 3.73 (dd, A of ABX, $J_{AB} = 10.2$ Hz, $J_{AX} = 1.9$ Hz, 1H), 3.59 (dd, B of ABX, J_{AB}
\(\text{Chapter 6} \)

\[\delta = 10.2 \text{ Hz}, J_{BX} = 5.4 \text{ Hz}, 1\text{H}, 2.44\text{ (s, 3H), 2.36}\text{ (ddd, A of ABX, } J_{AB} = 15.2 \text{ Hz, } J_{AX} = 11.1 \text{ Hz, } J_{AY} = 6.0 \text{ Hz, 1H),} 1.95\text{ (app. dt, B of ABX, } J_{AB} = 15.1 \text{ Hz, } J_{BX} = 2.3 \text{ Hz, 1H),} 1.34\text{ (s, 3H), 1.28 (s, 3H), 1.05-0.99 (m, 7H), 0.96-0.88 (m, 1H), 0.95 (d, } J = 6.0 \text{ Hz, 3H),} 0.93 \text{ (d, } J = 5.6 \text{ Hz, 3H).} \]

\(\text{13C NMR (125 MHz, CDCl}_3\) \delta 144.96\text{ (e), 138.69\text{ (e), 133.06\text{ (e), 130.00\text{ (o), 128.28\text{ (o), 128.00\text{ (o), 127.61\text{ (o), 127.45\text{ (e), 107.26\text{ (e), 77.65\text{ (o), 73.42\text{ (e), 73.19\text{ (o), 72.87\text{ (e), 71.98\text{ (e), 71.40\text{ (o), 66.90\text{ (o), 32.07\text{ (e), 28.26\text{ (o), 25.87\text{ (o), 21.74\text{ (o), 17.57\text{ (o), 17.36\text{ (o), 17.32\text{ (o), 17.13\text{ (o), 12.97\text{ (o), 12.27\text{ (o).} }}\}

\text{IR (Neat) 2942 (m), 2867 (m), 1598 (w), 1496 (w), 1454 (m), 1368 (s), 1177 (s), 1098 (s cm}^{-1}.\]

\(\text{HRMS (ESI, [M+Na]}^+\) \text{calcd for C}_{30}\text{H}_{44}\text{O}_8\text{NaSiS 615.2424, found 615.2428.} \)

\textit{General procedure for the hydroxy epoxide formation.}\n
\(\text{(S)-2-(Benzyloxy)-1-((4S,5R)-2,2-dimethyl-5-((S)-oxiran-2-ylmethyl)-1,3-dioxolan-4-yl)ethanol (24)} \)

To a solution of 22 (0.2274 g, 0.384 mmol) in THF (2.1 mL) was added TBAF (0.84 mL, 1 M in THF, 0.84 mmol) at 0 °C. After ca. 30 min (TLC control) the reaction mixture was quenched with saturated aqueous NaHCO\(_3\) and partitioned between EtOAc and water. Phases were separated and the aqueous layer was washed with EtOAc (2x). The combined organic layers were dried (MgSO\(_4\)), filtered and concentrated \textit{in vacuo}. Purification by flash chromatography (silica gel,
Chapter 6

EtOAc/hexanes – 1:3, 1:2.5, 1:2) afforded the hydroxy epoxide 24 (0.111 g, 0.360 mmol, 94%) as a colourless oil.

R_f = 0.6 (EtOAc/hexanes – 1:1).

[α]_D^20 −1.0 (c 0.5, CHCl_3).

{}^1 H NMR (500 MHz, CDCl_3) δ 7.37-7.29 (m, 5H), 4.57 (s, 2H), 4.34 (app. dt, A of ABX_2, J_AB = 8.5 Hz, J_AX = 5.4 Hz, 1H), 4.00 (dd, B of ABX, J_AB = 9.4 Hz, J_BX = 5.7 Hz, 1H), 3.81 (dddd, J = 9.1, 6.8, 4.5, 2.5 Hz, 1H), 3.74 (dd, A of ABX, J_AB = 9.5 Hz, J_AX = 2.8 Hz, 1H), 3.57 (dd, B of ABX, J_AB = 9.5 Hz, J_BX = 6.6 Hz, 1H), 3.15 (app. tt, J = 5.6, 4.0 Hz, 1H), 2.77 (app. t, A of AM_2, J_AM = 4.5 Hz, 1H), 2.60 (d, J = 4.7 Hz, 1H), 2.57 (dd, M of AMX, J_AM = 5.0 Hz, J_MX = 2.7 Hz, 1H), 1.99 (app. dt, A of ABX_2, J_AB = 14.2 Hz, J_AX = 5.4 Hz, 1H), 1.95 (app. dt, B of ABX_2, J_AB = 14.3 Hz, J_BX = 4.9 Hz, 1H), 1.42 (s, 3H), 1.33 (s, 3H).

{}^{13} C NMR (125 MHz, CDCl_3) δ 137.90 (e), 128.57 (o), 127.96 (o), 127.84 (o), 108.56 (e), 77.16 (o), 75.44 (o), 73.52 (e), 71.98 (e), 68.37 (o), 50.31 (o), 46.88 (e), 32.56 (e), 28.25 (o), 25.76 (o).

IR (Neat) 3448 (br), 2986 (w), 2932 (w), 1454 (w), 1217 (s), 1052 (s) cm\(^{-1}\).

HRMS (ESI, [M+Na]^+) calcd for C_{17}H_{24}O_5Na 331.1521, found 331.1524.

General procedure for THP formation.

![THP formation](image)

((3aR,4S,6R,7aR)-4-((Benzyloxy)methyl)-2,2-dimethyltetrahydro-3aH-1,3]dioxolo[4,5-c]pyran-6-yl)methanol (25)

362
To a cooled to 0 °C solution of the epoxy alcohol 24 (0.096 g, 0.311 mmol) in DCM (4.5 mL) added CSA (7.23 mg, 0.031 mmol). After ca. 40 min (TLC control) the reaction mixture was quenched with 50 µL Et₃N, concentrated and purified by flush chromatography (SiO₂, EtOAc/hexanes – 1:2, 1:1) to afford the **anti-**THP 25 (0.088 g, 0.285 mmol, 92% yield) as a colourless oil.

FC (SiO₂, EtOAc/hexanes – 1:2.5, 1:2, 1:1.5).
Rf = 0.3 (EtOAc/hexanes – 1:1).

[α]D²⁰ –34.8 (c 0.25, CHCl₃).

¹H NMR (500 MHz, C₆D₆) δ 7.28-7.26 (m, 2H), 7.17-7.14 (m, 2H), 7.09-7.06 (m, 1H), 4.38 (d, A of AB, J_AB = 12.2 Hz, 1H), 4.34 (d, B of AB, J_AB = 12.2 Hz, 1H), 4.05 (app. dt, A of ABX₂, J_AB = 8.7 Hz, J_AX = 6.4 Hz, 1H), 4.02 (dd, J = 7.1, 6.3, 2.3 Hz, 1H), 3.89 (app. t, B of AB₂, J_AB = 6.8 Hz, 1H), 3.66 (ddd, J = 6.6, 4.4, 3.7 Hz, 1H), 3.63 (dd, A of ABX, J_AB = 10.4 Hz, J_AX = 2.6 Hz, 1H), 3.58-3.54 (m, 1H), 3.48 (dd, B of ABX, J_AB = 10.4 Hz, J_BX = 6.1 Hz, 1H), 3.43-3.41 (m, 1H), 3.01 (br s, 1H), 1.68 (ddd, A of ABXY, J_AB = 13.7 Hz, J_AX = 9.7 Hz, J_AY = 9.0 Hz, 1H), 1.62 (ddd, B of ABXY, J_AB = 13.7 Hz, J_BX = 6.7 Hz, J_BY = 4.6 Hz, 1H), 1.43 (s, 3H), 1.22 (s, 3H).

¹³C NMR (125 MHz, C₆D₆) δ 138.75 (e), 128.65 (o), 127.92 (o), 127.83 (o), 108.64 (e), 73.59 (e), 72.68 (o), 72.30 (o), 71.92 (o), 71.78 (e), 71.68 (o), 64.93 (e), 29.31 (e), 27.99 (o), 25.59 (o).

IR (Neat) 3434 (br), 2985 (w), 2933 (w), 2871 (w), 1497 (w), 1454 (w), 1052 (s) cm⁻¹.

HRMS (ESI, [M+Na]⁺) calcd for C₁₇H₂₄O₅Na 331.1527, found 331.1521.
(4S,8S)-4-Allyl-6,6-diisopropyl-1-(4-methoxyphenyl)-11-phenyl-8-vinyl-2,5,7,10-tetraoxa-6-silaundecane (30)

Prepared according the general procedure for the temporary silicon tether formation on 5 mmol scale with 82% yield.

Colour and state: Colourless oil.

FC (SiO$_2$, Et$_2$O/hexanes – 1:16).

$R_f = 0.4$ (Et$_2$O/hexanes – 1:5).

$[\alpha]_D^{20} – 11.4$ (c 1.0, CHCl$_3$).

1H NMR (500 MHz, C$_6$D$_6$) δ 7.29-7.27 (m, 2H), 7.23-7.20 (m, 2H), 7.19-7.16 (m, 2H), 7.10-7.07 (m, 1H), 6.80-6.77 (m, 2H), 5.96 (ddt, $J = 17.1, 10.1, 7.1$ Hz, 1H), 5.94 (ddd, $J = 17.0, 10.7, 6.1$ Hz, 1H), 5.36 (dt, $J = 17.2, 1.5$ Hz, 1H), 5.13-5.04 (m, 3H), 4.69 (app. ddt, $J = 11.8, 5.3, 1.2$ Hz, 1H), 4.38 (d, A of AB, $J_{AB} = 12.3$ Hz, 1H), 4.36 (d, B of AB, $J_{AB} = 12.5$ Hz, 1H), 4.35 (s, 2H), 4.32 (quintet, $J = 5.6$ Hz, 1H), 3.53 (dd, A of ABX, $J_{AB} = 9.4$ Hz, $J_{AX} = 6.2$ Hz, 1H), 3.52 (dd, A of ABX, $J_{AB} = 9.4$ Hz, $J_{AX} = 5.5$ Hz, 1H), 3.43 (dd, B of ABX, $J_{AB} = 9.4$ Hz, $J_{BX} = 5.3$ Hz, 1H), 3.37 (dd, B of ABX, $J_{AB} = 9.4$ Hz, $J_{BX} = 5.3$ Hz, 1H), 3.31 (s, 3H), 2.50 (app. dt, A of ABX$_2$, $J_{AB} = 13.9$ Hz, $J_{AX} = 6.4$ Hz, 1H), 2.42 (app. dt, B of ABX$_2$, $J_{AB} = 13.6$ Hz, $J_{BX} = 6.7$ Hz, 1H), 1.20-1.17 (m, 12H), 1.15-1.05 (m, 2H).

13C NMR (125 MHz, C$_6$D$_6$) δ 159.77 (e), 139.26 (o), 139.07 (e), 135.12 (o), 131.10 (e), 129.52 (o), 128.55 (o), 127.84 (o), 127.69 (o), 117.24 (e), 115.11 (e), 114.07 (o), 75.55 (e), 74.00 (e), 73.46 (e), 73.21 (e), 72.86 (o), 71.31 (o), 54.79 (o), 39.76 (e), 17.86 (o), 13.32 (o).
IR (Neat) 3072 (w), 2943 (m), 2865 (m), 1642 (w), 1612 (w), 1586 (w), 1187 (vs), 1036 (s) cm\(^{-1}\).

HRMS (ESI, [M+Na]\(^+\)) calcd for C\(_{30}\)H\(_{44}\)O\(_5\)NaSi 535.2856, found 535.2839.

\[
\begin{align*}
(4S,8S,Z)-8-((Benzyloxy)methyl)-2,2-diisopropyl-4-((4-methoxybenzyl)oxy)methyl)-5,8-dihydro-4H-1,3,2-dioxasilocine (31)
\end{align*}
\]

Prepared according the general procedure for the temporary silicon-tethered ring-closing metathesis on 0.497 mmol scale with 98% yield.

Colour and state: Colourless oil.

FC (SiO\(_2\), Et\(_2\)O/hexanes – 1:12, 1:10).

\[R_f = 0.63 \text{ (Et}_2\text{O/hexanes – 1:1).} \]

\[[\alpha]_{D}^{20} = -23.5 \text{ (c 1.0, CHCl}_3). \]

\[^1\text{H NMR} \text{ (500 MHz, C}_6\text{D}_6) \delta 7.31-7.30 \text{ (m, 2H), 7.23-7.20 \text{ (m, 2H), 7.20-7.16 \text{ (m, 2H), 7.10-7.07 \text{ (m, 1H), 6.81-6.79 \text{ (m, 2H), 5.80 \text{ (dd, J = 10.8, 8.1 Hz, 1H), 5.59 \text{ (dt, J = 10.9, 8.7 Hz, 1H), 4.74 \text{ (app. dt, J = 7.9, 5.6 Hz, 1H), 4.44 \text{ (d, A of AB, J}_{AB} = 12.4 Hz, 1H), 4.41 \text{ (d, B of AB, J}_{AB} = 12.3 Hz, 1H), 4.40 \text{ (d, A of AB, J}_{AB} = 11.7 Hz, 1H), 4.36 \text{ (d, B of AB, J}_{AB} = 11.7 Hz, 1H), 4.01 \text{ (dddd, J = 9.0, 7.3, 5.6, 1.7 Hz, 1H), 3.59 \text{ (dd, A of ABX, J}_{AB} = 9.7 Hz, J}_{AX} = 6.1 Hz, 1H), 3.50 \text{ (dd, A of ABX, J}_{AB} = 9.0 Hz, J}_{AX} = 5.4 Hz, 1H), 3.48 \text{ (dd, B of ABX, J}_{AB} = 9.6 Hz, J}_{BX} = 5.3 Hz, 1H), 3.32 \text{ (s, 3H), 3.30 \text{ (dd, B of ABX, J}_{AB} = 9.2 Hz, J}_{RX} = 6.9 Hz, 1H), 2.47 \text{ (ddd, A of ABXY, J}_{AB} = 13.6 Hz, J}_{AX} = 8.5 Hz, J}_{AY} = 1.7 Hz, 1H), 2.26 \text{ (app. dt, B of ABX}_2\text{Y, J}_{AB} = \}
\]
13.6 Hz, $J_{BX} = 8.8$ Hz, $J_{BY} = 0.9$ Hz, 1H), 1.21 (d, $J = 7.3$ Hz, 3H), 1.20 (d, $J = 7.3$ Hz, 3H), 1.15 (d, $J = 6.8$ Hz, 3H), 1.10 (d, $J = 6.5$ Hz, 3H), 1.10-1.02 (m, 2H).

^{13}C NMR (125 MHz, CD_6) δ 159.77 (e), 139.34 (e), 134.55 (o), 131.10 (e), 129.92 (o), 129.39 (o), 128.53 (o), 127.67 (o), 127.59 (o), 114.11 (o), 74.61 (e), 74.19 (e), 73.43 (e), 73.35 (o), 73.19 (e), 68.37 (o), 54.80 (o), 32.84 (e), 17.94 (o), 17.87 (o), 17.83 (o), 17.74 (o), 13.38 (o), 12.96 (o).

IR (Neat) 3003 (w), 2942 (m), 2864 (m), 1612 (w), 1586 (w), 1513 (s), 1092 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{28}$H$_{40}$O$_5$NaSi 507.2543, found 507.2555.

Preparation of (4R,5S,6S,8S)-4-((Benzyloxy)methyl)-2,2-diisopropyl-8-(((4-methoxybenzyl)oxy)methyl)-1,3,2-dioxasilocane-5,6-diol (32)

Prepared according to the general procedure for the dihydroxylation of cyclic silaketals on 3.97 mmol scale with 92% yield.

Colour and state: Colourless oil.

FC (SiO$_2$, Et$_2$O/hexanes – 1:1, 2:1, 3:1, 20:1).

$R_f = 0.07$ (Et$_2$O/hexanes – 1:1).

$\lbrack \alpha \rbrack_{D}^{20} = -36.5$ (c 1.0, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$) δ 7.37-7.24 (m, 7H), 6.88-6.86 (m, 2H), 4.60 (d, A of AB, $J_{AB} = 12.1$ Hz, 1H), 4.59 (d, B of AB, $J_{AB} = 12.2$ Hz, 1H), 4.51 (d, A of AB, $J_{AB} = 11.7$ Hz, 1H), 4.48 (d, B of AB, $J_{AB} = 11.8$ Hz, 1H), 4.15 (ddddd, $J = 10.6$, 6.6, 5.6, 0.9 Hz, 1H), 4.03 (app. td, $J = 7.5$, 2.0 Hz, 1H), 3.96 (ddd, A of ABXY, $J_{AB} = 9.1$ Hz,
$J_{AX} = 6.3$ Hz, $J_{AY} = 4.3$ Hz, 1H), 3.91 (app. dt, B of ABX, $J_{AB} = 9.1$ Hz, $J_{BX} = 2.0$ Hz, 1H), 3.80 (s, 3H), 3.74 (dd, A of ABX, $J_{AB} = 9.6$ Hz, $J_{AX} = 4.4$ Hz, 1H), 3.63 (dd, B of ABX, $J_{AB} = 9.5$ Hz, $J_{BX} = 6.5$ Hz, 1H), 3.47 (dd, A of ABX, $J_{AB} = 9.7$ Hz, $J_{AX} = 5.5$ Hz, 1H), 3.34 (dd B of ABX, $J_{AB} = 9.7$ Hz, $J_{BX} = 6.2$ Hz, 1H), 3.24 (br s, 1H), 2.54 (d, $J = 7.9$ Hz, 1H), 2.17 (ddd, A of ABXY, $J_{AB} = 15.5$ Hz, $J_{AX} = 10.3$ Hz, $J_{AY} = 7.8$ Hz, 1H), 1.71 (d, B of AB, $J_{AB} = 15.2$ Hz, 1H), 1.05-1.02 (m, 7H), 1.00-0.84 (m, 7H).

13C NMR (125 MHz, CDCl$_3$) δ 159.12 (e), 137.61 (e), 130.50 (e), 129.16 (o), 128.51 (o), 127.90 (o), 127.75 (o), 113.76 (o), 76.01 (o), 74.61 (e), 73.94 (e), 73.73 (e), 73.02 (e), 72.99 (o), 72.44 (o), 69.62 (o), 55.29 (o), 36.81 (e), 17.65 (o), 17.46 (o), 17.38 (o), 17.31 (o), 12.50 (o), 11.73 (o).

IR (Neat) 3419 (br), 2924 (m), 2865 (m), 1612 (w), 1586 (w), 1513 (m), 1102 (s), 1061 (s), 1033 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{28}$H$_{42}$O$_7$NaSi 541.2598, found 541.2584.

\[(\text{3aS,4R,8S,9aS})-4-((\text{Benzyloxy})\text{methyl})-6,6-\text{diisopropyl}-2,2-\text{dimethyltetrahydro}-3aH-[1,3]\text{dioxolo}[4,5-e][1,3,2]\text{dioxasilocin-8-yl})\text{methanol} (33)\]

Prepared according the general procedure for the VO(OTf)$_2$ catalysed acetonide formation on 1.23 mmol scale with 100% yield.

Colour and state: Colourless oil.

FC (SiO$_2$, Et$_2$O/hexanes – 1:4, 1:3, 1:2).
Chapter 6

R_f = 0.3 (Et_2O/hexanes – 1:1).

[α]_D^20 = -12.0 (c 0.5, CHCl_3).

^1H NMR (500 MHz, CDCl_3) δ 7.37-7.31 (m, 4H), 7.29-7.25 (m, 1H), 4.64 (d, A of AB, J_{AB} = 12.3 Hz, 1H), 4.59 (d, B of AB, J_{AB} = 12.3 Hz, 1H), 4.29 (dd, A of ABX, J_{AB} = 10.8 Hz, J_{AX} = 3.7 Hz, 1H), 4.22-4.17 (m, 2H), 3.96 (app. td, J = 8.2, 3.8 Hz, 1H), 3.73 (dd, A of ABX, J_{AB} = 10.3 Hz, J_{AX} = 1.4 Hz, 1H), 3.65 (dd, B of ABX, J_{AB} = 10.4 Hz, J_{BX} = 5.0 Hz, 1H), 3.54 (ddd, A of ABXY, J_{AB} = 10.9 Hz, J_{AX} = 8.8 Hz, J_{AY} = 3.6 Hz, 1H), 3.46 (ddd, B of ABXY, J_{AB} = 10.9 Hz, J_{BX} = 7.7 Hz, J_{BY} = 3.4 Hz, 1H), 2.10 (dd, J = 9.2, 4.1 Hz, 1H), 2.05 (ddd, A of ABXY, J_{AB} = 15.5 Hz, J_{AX} = 10.8 Hz, J_{AY} = 9.1 Hz, 1H), 1.57 (d, B of AB, J_{AB} = 15.4 Hz, 1H), 1.37 (s, 3H), 1.32 (s, 3H), 1.09-1.04 (m, 7H), 1.03-0.98 (m, 7H).

^13C NMR (125 MHz, CDCl_3) δ 138.69 (e), 128.35 (o), 127.67 (o), 127.53 (o), 108.38 (e), 79.38 (o), 77.38 (o), 73.62 (e), 73.06 (e), 72.88 (o), 69.65 (o), 67.80 (e), 37.68 (e), 28.38 (o), 25.99 (o), 17.82 (o), 17.49 (o), 17.45 (o), 17.30 (o), 12.77 (o), 12.04 (o).

IR (Neat) 3689 (br), 2941 (m), 2867 (m), 1497 (w), 1464 (w), 1455 (w), 1117 (s), 1083 (s), 1065 (s) 1031 (s) cm^{-1}.

HRMS (ESI, [M+Na]^+) calcd for C_{23}H_{38}O_6NaSi 461.2335, found 461.2329.
Chapters 6

\[(3aS,4R,8S,9aS)-4-((\text{Benzyloxy})methyl)-6,6\text{-diisopropyl-2,2-
dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-e][1,3,2]dioxasilocin-8-yl)methanol\]

(36)

Prepared according the general procedure for the chemoselective PMB ether deprotection on 1.056 mmol scale with 96% yield.

Colour and state: Colourless oil.

FC (SiO2, EtOAc/hexanes – 1:8, 1:7).

Rf = 0.12 (Et2O/hexanes – 1:2).

\[\alpha\]D20 = −12.0 (c 0.5, CHCl3).

1H NMR (500 MHz, CDCl3) δ 7.37-7.31 (m, 4H), 7.29-7.25 (m, 1H), 4.64 (d, A of AB, JAB = 12.3 Hz, 1H), 4.59 (d, B of AB, JAB = 12.3 Hz, 1H), 4.29 (dd, A of ABX, JAB = 10.8 Hz, JAX = 3.7 Hz, 1H), 4.22-4.17 (m, 2H), 3.96 (app. td, J = 8.2, 3.8 Hz, 1H), 3.73 (dd, A of ABX, JAB = 10.3 Hz, JAX = 1.4 Hz, 1H), 3.65 (dd, B of ABX, JAB = 10.4 Hz, JBX = 1.4 Hz, 1H), 3.54 (ddd, A of ABXY, JAB = 10.9 Hz, JAX = 8.8 Hz, JAY = 3.6 Hz, 1H), 3.46 (ddd, B of ABXY, JAB = 10.9 Hz, JBX = 7.7 Hz, JBY = 3.4 Hz, 1H), 2.10 (dd, J = 9.2, 4.1 Hz, 1H), 2.05 (ddd, A of ABXY, JAB = 15.5 Hz, JAX = 10.8 Hz, JAY = 9.1 Hz, 1H), 1.57 (d, B of AB, JAB = 15.4 Hz, 1H), 1.37 (s, 3H), 1.32 (s, 3H), 1.09-1.04 (m, 7H), 1.03-0.98 (m, 7H).

13C NMR (125 MHz, CDCl3) δ 138.69 (e), 128.35 (o), 127.67 (o), 127.53 (o), 108.38 (e), 79.38 (o), 77.38 (o), 73.62 (e), 73.06 (e), 72.88 (o), 69.65 (o), 67.80 (e), 37.68 (e), 28.38 (o), 25.99 (o), 17.82 (o), 17.49 (o), 17.45 (o), 17.30 (o), 12.77 (o), 12.04 (o).
IR (Neat) 3468 (br), 2941 (m), 2867 (m), 1497 (w), 1464 (w), 1117 (s), 1182 (s), 1031 (s) cm\(^{-1}\).

HRMS (ESI, [M+Na]\(^+\)) calcd for C\(_{38}\)H\(_{38}\)O\(_6\)NaSi 461.2329, found 461.2335.

\[
\begin{array}{c}
\text{(3aS,4R,8S,9aS)-4-((Benzyl)oxy)methyl)-6,6-diisopropyl-2,2-dimethyltetrahydro-3aH-1,3]dioxolo[4,5-e][1,3,2]dioxasilin-8-yl)methyl 4-methylbenzenesulfonate (37)}
\end{array}
\]

Prepared according the general procedure for tosylation on 0.958 mmol scale with 97% yield.

Colour and state: Colourless oil.

FC (SiO\(_2\), EtOAc/hexanes – 1:8, 1:7).

R\(_f\) = 0.9 (EtOAc/hexanes – 1:1).

\([\alpha]\)\(_D\)\(^{20}\) 14.3 (c 1.0, CHCl\(_3\)).

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.80-7.78 (m, 2H), 7.35-7.30 (m, 6H), 7.28-7.24 (m, 1H), 4.62 (d, A of AB, \(J_{AB} = 12.3\) Hz, 1H), 4.56 (d, B of AB, \(J_{AB} = 12.3\) Hz, 1H), 4.21-4.16 (m, 2H), 4.11 (ddd, \(J = 9.5, 5.2, 2.1\) Hz, 1H), 4.02 (app. dt, \(J = 8.8, 5.8\) Hz, 1H), 3.97 (dd, A of ABX, \(J_{AB} = 9.7\) Hz, \(J_{AX} = 6.4\) Hz, 1H), 3.87 (dd, B of ABX, \(J_{AB} = 9.7\) Hz, \(J_{BX} = 5.2\) Hz, 1H), 3.70 (dd, A of ABX, \(J_{AB} = 10.4\) Hz, \(J_{AX} = 2.1\) Hz, 1H), 3.62 (dd, B of ABX, \(J_{AB} = 10.4\) Hz, \(J_{BX} = 5.2\) Hz, 1H), 2.44 (s, 3H), 1.95 (ddd, A of ABXY, \(J_{AB} = 15.2\) Hz, \(J_{AX} = 10.3\) Hz, \(J_{AY} = 9.2\) Hz, 1H), 1.62 (d, B of AB, \(J_{AB} = 15.1\) Hz, 1H), 1.33 (s, 3H), 1.30 (s, 3H), 1.03-0.99 (m, 1H), 1.02 (s, 3H), 1.01 (s, 3H), 0.96-0.89 (m, 1H), 0.95 (d, \(J = 5.5\) Hz, 3H), 0.92 (s, 3H).
Chapter 6

13C NMR (125 MHz, CDCl$_3$) δ 144.94 (e), 138.64 (e), 133.08 (e), 129.96 (o), 128.32 (o), 128.05 (o), 127.62 (o), 127.49 (o), 108.35 (e), 79.18 (o), 77.26 (o), 73.56 (e), 73.43 (e), 72.94 (e), 69.84 (o), 69.51 (o), 37.42 (e), 28.32 (o), 25.92 (o), 21.73 (o), 17.66 (o), 17.29 (o), 17.23 (o), 17.08 (o), 12.58 (o), 11.86 (o).

IR (Neat) 2943 (w), 2867 (w), 1599 (w), 1497 (w), 1464 (w), 1454 (w), 1365 (m), 1177 (s), 969 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{30}$H$_{44}$O$_8$NaSiS 615.2424, found 615.2425.

(R)-2-(Benzyloxy)-1-((4R,5S)-2,2-dimethyl-5-((S)-oxiran-2-ylmethyl)-1,3-dioxolan-4-yl)ethanol (38)

Prepared according the general procedure for the hydroxy epoxide formation on 0.336 mmol scale with 84% yield.

Colour and state: Colourless oil.

$R_f = 0.6$ (EtOAc/hexanes – 1:1).

$[\alpha]_D^{20} -15.0$ (c 0.5, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$) δ 7.37-7.28 (m, 5H), 4.57 (s, 2H), 4.43 (app. dt, A of ABX$_2$, $J_{AB} = 8.0$ Hz, $J_{AX} = 5.7$ Hz, 1H), 4.01 (dd, B of ABX, $J_{AB} = 9.3$ Hz, $J_{BX} = 5.8$ Hz, 1H), 3.78 (dddd, $J = 9.2$, 7.2, 4.8, 2.7 Hz, 1H), 3.73 (dd, A of ABX, $J_{AB} = 9.5$ Hz, $J_{AX} = 2.8$ Hz, 1H), 3.57 (dd, B of ABX, $J_{AB} = 9.5$ Hz, $J_{BX} = 6.5$ Hz, 1H), 3.14 (app. tdd, $J = 5.9$, 3.7, 2.7 Hz, 1H), 2.83 (dd, A of AMX, $J_{AM} = 5.0$ Hz, $J_{AX} = 4.1$ Hz, 1H), 2.62 (d, $J = 4.9$ Hz, 1H), 2.57 (dd, M of AMX, $J_{AM} = 5.0$ Hz, $J_{MX} = 2.7$ Hz, 1H), 1.89 (app. dt, A of ABX$_2$, $J_{AB} = 14.2$ Hz, $J_{AX} = 6.2$ Hz, 1H), 1.85 (app. dt, B of ABX$_2$, $J_{AB} = 14.0$ Hz, $J_{BX} = 5.4$ Hz, 1H), 1.40 (s, 3H), 1.34 (s, 3H).
Chapter 6

13C NMR (125 MHz, CDCl$_3$) δ 137.98 (e), 128.58 (o), 127.95 (o), 127.85 (o), 108.54 (e), 77.15 (o), 75.34 (o), 73.56 (e), 72.02 (e), 68.49 (o), 50.34 (o), 47.94 (e), 33.35 (e), 28.31 (o), 25.76 (o).

IR (Neat) 3455 (br), 2986 (w), 2932 (w), 1454 (w), 1217 (s), 1050 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{17}$H$_{24}$O$_5$Na 331.1521, found 331.1528.

![Structure 39](image)

$\text{(3aS,4R,6R,7aS)-4-((Benzyloxy)methyl)-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-c]pyran-6-yl)methanol (39)}$

Prepared according the general procedure for THP formation on 0.221 mmol scale with 87% yield.

Colour and state: Colourless oil.

FC (SiO$_2$, EtOAc/hexanes – 1:2.5, 1:2, 1:1.5).

R$_f$ = 0.3 (EtOAc/hexanes – 1:1).

$\left[\alpha\right]_D^{20} +52.0$ (c 0.25, CHCl$_3$).

1H NMR (500 MHz, CD$_6$D$_6$) δ 7.31-7.29 (m, 2H), 7.16-7.13 (m, 2H), 7.09-7.05 (m, 1H), 4.42 (d, A of AB, $J_{AB} = 12.2$ Hz, 1H), 4.39 (d, B of AB, $J_{AB} = 12.2$ Hz, 1H), 4.01 (app. td, $J = 4.5$, 1.9 Hz, 1H), 3.77 (dd, A of ABX, $J_{AB} = 9.0$ Hz, $J_{AX} = 5.0$ Hz, 1H), 3.70 (d, B of AB, $J_{AB} = 8.9$ Hz, 1H), 3.67 (ddd, $J = 11.9$, 6.0, 3.0 Hz, 1H), 3.60 (ddd, A of ABXY, $J_{AB} = 7.6$ Hz, $J_{AX} = 5.9$ Hz, $J_{AY} = 1.6$ Hz, 1H), 3.56 (dd, B of ABX, $J_{AB} = 10.4$ Hz, $J_{BX} = 6.0$ Hz, 1H), 3.46 (dd, A of ABX, $J_{AB} = 11.6$ Hz, $J_{AX} = 3.3$ Hz, 1H), 3.34 (dd, B of ABX, $J_{AB} = 11.6$ Hz, $J_{BX} = 6.3$ Hz, 1H), 2.33 (br s, 1H), 1.71
(4R,5R)-5-((Benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol (44)\(^{17}\)

To a solution of diol 43 (8.77 g, 54.1 mmol) in DCM (221 mL) was added sequentially silver(I) oxide (18.81 g, 81.0 mmol) and benzyl bromide (7.12 mL, 59.5 mmol). The reaction mixture was stirred for ca. 60 h (TLC control), before it was passed through a pad of silica gel (washed with EtOAc), concentrated \textit{in vacuo} and purified by flush chromatography (silica gel, Et\(_2\)O/hexanes – 1:1, 2:1, then EtOAc to recover 2.275 g of unreacted 43) to afford the benzyl ether 44 (9.1 g, 36.1 mmol, 70\%, 90\% b.r.s.m.).

\textit{Colour and state}: Colourless oil.

\(R_f = 0.47\) (EtOAc/hexanes – 1:1)

\([\alpha]_D^{20} = -9.0\) (c 1.0, CHCl\(_3\)), Lit. \([\alpha]_D^{25} = -8.0\) (c 0.975, CHCl\(_3\)).\(^{17}\)

\(^1\text{H} \text{NMR}\) (500 MHz, CDCl\(_3\)) \(\delta 7.37-7.28\) (m, 5H), 4.60 (dd, A of AB, \(J_{AB} = 12.4\) Hz, 1H), 4.58 (dd, B of AB, \(J_{AB} = 12.4\) Hz, 1H), 4.06 (app. dt, A of ABX\(_2\), \(J_{AB} = 8.2\) Hz, 1H).
$J_{AX} = 5.5 \text{ Hz, 1H}$, $3.95 \text{ (app. dt, B of ABX}_2$, $J_{AB} = 8.4 \text{ Hz, } J_{BX} = 4.3 \text{ Hz, 1H}$, $3.77 \text{ (app. dt, A of ABX}_2$, $J_{AB} = 11.7 \text{ Hz, } J_{AX} = 4.5 \text{ Hz, 1H}$, $3.70-3.65 \text{ (m, 1H)}$, $3.68 \text{ (dd, A of ABX}, J_{AB} = 10.0 \text{ Hz, } J_{AX} = 5.1 \text{ Hz, 1H})$, $3.56 \text{ (dd, B of ABX}, J_{AB} = 9.8 \text{ Hz, } J_{BX} = 5.8 \text{ Hz, 1H})$, 2.30 (br s, 1H), 1.42 (s, 3H), 1.41 (s, 3H).

IR (Neat) cm$^{-1}$ 3444 (w), 2986 (w), 2868 (w), 1454 (m), 1078 (s).

(R)-1-((4R,5R)-5-((Benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-(trimethylsilyl)prop-2-yn-1-ol (49)

To a solution of oxalyl chloride (4.3 mL, 50.3 mmol) in DCM (157 mL) at $-78 \degree C$ was added DMSO (6.0 mL, 84 mmol) in DCM (12 mL with washings). After ca. 30 min alcohol 44 (8.465 g, 33.5 mmol) was added as a solution in DCM (16 mL with washings). After ca. 1 hour (TLC control) DIPEA (35.0 mL, 201 mmol) was added and the reaction was stirred for ca. 30 min at $-78 \degree C$ and ca. 30 min at room temperature, before it was quenched with pH 7 buffer and partitioned between water and Et$_2$O. Phases were separated and the aqueous layer was washed with Et$_2$O (2x). The combined organic layers were washed with water (2x), brine, dried (Na$_2$SO$_4$), filtered and concentrated in vacuo to afford crude aldehyde 45, which was used in the next step without purification.

To a cooled to $-78 \degree C$ solution of trimethylsilylacetylene (10.5 mL, 73.7 mmol) in THF (91 mL) was added 6BuLi (26.8 mL, 2.5 M in hexanes, 67.0 mmol). After ca. 30 min a premixed solution of Ti(O’Pr)$_4$ (11.5 mL, 37.9 mmol) and TiCl$_4$ (37.9 mL, 1 M in PhMe, 37.9 mmol) was slowly added over ca. 40 min, (exotherm!) and the
reaction mixture was stirred for ca. 1 hour at that temperature, before it was treated with a solution of crude aldehyde 45 (~33.5 mmol) in THF (27 mL with washings). The reaction was stirred at −78 °C for ca. 2 hours and then left to slowly warm up to room temperature. After ca. 14 h (TLC control) the reaction mixture was quenched with saturated aqueous NH₄Cl and partitioned between water and Et₂O. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were washed with water, brine, dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et₂O/hexanes – 1:5, 1:4) afforded the propargylic alcohol 49 (7.91 g, 22.69 mmol, 68% yield) as a brown oil.

Rf = 0.51 (Et₂O/hexanes – 1:1).

\[\alpha \]D²⁰ +11.7 (c 1.0, CHCl₃), Lit. [\(\alpha \)D]D²⁰ −2.7 (c 0.47, CCl₄) for ent.¹⁸

¹H NMR (500 MHz, CDCl₃) δ 7.34-7.33 (m, 4H), 7.30-7.26 (m, 1H), 4.60 (s, 2H), 4.55 (t, \(J = 4.1 \) Hz, 1H), 4.29 (app. dt, A of ABX₂, \(J_{AB} = 8.5 \) Hz, \(J_{AX} = 4.4 \) Hz, 1H), 4.02 (dd, B of ABX, \(J_{AB} = 8.1 \) Hz, \(J_{BX} = 3.5 \) Hz, 1H), 3.73 (dd, AB of ABX, \(J_{AB} = 10.3 \) Hz, \(J_{AX} = 3.9 \) Hz, 1H), 3.68 (dd, B of ABX, \(J_{AB} = 10.3 \) Hz, \(J_{BX} = 5.5 \) Hz, 1H), 2.62 (d, \(J = 5.0 \) Hz, 1H), 1.46 (s, 3H), 1.14 (s, 3H), 0.16 (d, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 137.91 (e), 128.43 (o), 127.72 (o), 127.62 (o), 109.93 (e), 102.12 (e), 92.06 (e), 79.87 (o), 76.27 (o), 73.67 (e), 71.04 (e), 62.66 (o), 27.23 (o), 26.95 (o), −0.26 (o).

IR (Neat) 3434 (w), 2987 (w), 2899 (w), 2176 (w), 1497 (w), 1083 (m) cm⁻¹.

(R)-1-((4R,5R)-5-((Benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)prop-2-yn-1-ol (50)

To a solution of the TMS protected alkyne 49 (24.73 g, 71.0 mmol) in THF (80 mL) was added TBAF (82 mL, 82 mmol) and the reaction mixture was stirred for ca. 30 min (TLC control). After that time the reaction quenched with saturated aqueous NH₄Cl and partitioned between water and Et₂O. Phases were separated and the aqueous layer was washed with Et₂O (2x). The combined organic layers were washed with water, brine, dried (MgSO₄), filtered and concentrated in vacuo. The crude product was used in the next step without further purification. An analytical sample was obtained using purification by flash chromatography (silica gel, Et₂O/hexanes – 1:2).

Colour and state: Colourless oil.

\[\alpha \]D \text{ } ^{20} +3.7 (c 0.5, CHCl₃).

H NMR (500 MHz, CDCl₃) δ 7.38-7.33 (m, 4H), 7.32-7.27 (m, 1H), 4.60 (s, 2H), 4.51 (app. td, J = 4.5, 2.2 Hz, 1H), 4.24 (app. dt, A of ABX₂, J_{AB} = 7.9 Hz, J_{AX} = 4.9 Hz, 1H), 4.00 (dd, A of ABX, J_{AB} = 8.0 Hz, J_{BX} = 4.8 Hz, 1H), 3.69 (d, J = 5.0 Hz, 2H), 2.83 (d, J = 4.7 Hz, 1H), 2.45 (d, J = 2.2 Hz, 1H), 1.45 (s, 3H), 1.44 (s, 3H).

C NMR (125 MHz, CDCl₃) δ 137.71 (e), 128.56 (o), 127.95 (o), 127.94 (o), 110.18 (e), 81.09 (e), 80.23 (o), 76.90 (o), 74.96 (e), 73.73 (e), 70.71 (e), 62.64 (o), 27.24 (o), 26.99 (o).
Chapter 6

IR (Neat) 3423 (br), 3284 (br), 2988 (w), 2870 (w), 2118 (w), 1497 (w), 1454 (w), 1075 (vs cm\(^{-1}\)).

HRMS (ESI, [M+Na]\(^+\)) calcd for C\(_{16}\)H\(_{20}\)O\(_4\)Na 299.1259, found 299.1259.

(R)-1-((4R,5R)-5-((Benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)prop-2-en-1-ol (40)\(^{43}\)

To a solution of crude alkyne 50 (~71.0 mmol) in THF (280 mL) was added Red-Al\(^{®}\) (60.9 mL, 3.5 M in toluene, 213 mmol) and the reaction mixture refluxed for ca. 13 hours (TLC control). After that time the reaction was cooled to 0 °C and carefully quenched with saturated aqueous Rochelle salt and partitioned between water and EtOAc. Phases were separated and the aqueous layer was washed with EtOAc (2x). The combined organic layers were washed with water (2x), brine, dried (MgSO\(_4\)), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, Et\(_2\)O/hexanes – 1:2.5, 1:2) afforded alkene 40 (12.73 g, 45.8 mmol, 64% yield over 2 steps) as a colourless oil.

R\(_f\) = 0.3 (Et\(_2\)O/hexanes – 1:1).

\([\alpha]_{D}^{20} = +15.4\) (c 1.0, CHCl\(_3\)), Lit. \([\alpha]_{D}^{20} = -21.6\) (c 1.1, CHCl\(_3\)) for ent.\(^{[19]}\)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 7.36-7.26\) (m, 5H), 5.84 (ddd, \(J = 17.2, 10.6, 5.6\) Hz, 1H), 5.37 (dt, \(J = 17.3, 1.6\) Hz, 1H), 5.20 (dt, \(J = 10.6, 1.5\) Hz, 1H), 4.61 (d, A of AB, \(J_{AB} = 12.1\) Hz, 1H), 4.57 (d, B of AB, \(J_{AB} = 12.1\) Hz, 1H), 4.25 (dddd, \(J = 6.8, 5.2, 2.9, 1.4\) Hz, 1H), 4.13 (app. dt, A of ABX\(_2\), \(J_{AB} = 8.0\) Hz, \(J_{AX} = 5.0\) Hz, 1H), 3.83 (dd, B of ABX, \(J_{AB} = 8.0\) Hz, \(J_{BX} = 5.5\) Hz, 1H), 3.63 (dd, A of ABX, \(J_{AB} = 10.1\) Hz,
\(J_{AX} = 5.1 \text{ Hz, 1H} \), \(3.60 \) (dd, B of ABX, \(J_{AB} = 10.1 \text{ Hz, } J_{BX} = 4.9 \text{ Hz, 1H} \)), \(2.81 \) (d, \(J = 2.9 \text{ Hz, 1H} \)), \(1.42 \) (s, 3H), \(1.41 \) (s, 3H).

IR (Neat) 3439 (br), 2986 (w), 2866 (w), 1611 (w), 1080 (s) cm\(^{-1}\).

(4S,8R)-4-Allyl-8-((4S,5R)-5-((benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-6,6-diisopropyl-1-(4-methoxyphenyl)-2,5,7-trioxa-6-siladec-9-ene (51)

Prepared according the general procedure for the temporary silicon tether formation on 7 mmol scale with 84% yield.

Colour and state: Colourless oil.

FC (SiO\(_2\), Et\(_2\)O/hexanes – 1:10, 1:8, 1:7).

\(R_f = 0.56 \) (Et\(_2\)O/hexanes – 1:2).

\([\alpha]^{20}_D +14.4 \) (c 1.0, CHCl\(_3\)).

\(^1H\) NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.33-7.31 (m, 4H), 7.29-7.22 (m, 3H), 6.88-6.85 (m, 2H), 5.84 (ddt, \(J = 17.3, 10.2, 7.1 \text{ Hz, 1H} \)), 5.80 (ddd, \(J = 17.3, 10.4, 6.8 \text{ Hz, 1H} \)), 5.23 (d, \(J = 17.3 \text{ Hz, 1H} \)), 5.13 (d, \(J = 10.4 \text{ Hz, 1H} \)), 5.06 (dd, \(J = 17.6, 1.7 \text{ Hz, 1H} \)), 5.03 (dd, \(J = 10.8, 2.0 \text{ Hz, 1H} \)), 4.59 (d, A of AB, \(J_{AB} = 12.3 \text{ Hz, 1H} \)), 4.56 (d, B of AB, \(J_{AB} = 12.3 \text{ Hz, 1H} \)), 4.46 (dd, \(J = 6.4, 5.3 \text{ Hz, 1H} \)), 4.42 (s, 2H), 4.25 (ddd, A of ABXY, \(J_{AB} = 7.5 \text{ Hz, } J_{AX} = 6.7 \text{ Hz, } J_{AY} = 2.7 \text{ Hz, 1H} \)), 4.11 (quintet, \(J = 5.5 \text{ Hz, 1H} \)), 3.80 (s, 3H), 3.77 (dd, B of ABX, \(J_{AB} = 7.7 \text{ Hz, } J_{BX} = 5.0 \text{ Hz, 1H} \)), 3.64 (dd, A of ABX, \(J_{AB} = 10.3 \text{ Hz, } J_{AX} = 2.8 \text{ Hz, 1H} \)), 3.51 (dd, B of ABX, \(J_{AB} = 10.3 \text{ Hz, } J_{BX} = 6.5 \text{ Hz, 1H} \)), 3.41 (dd, A of ABX, \(J_{AB} = 9.5 \text{ Hz, } J_{AX} = 5.3 \text{ Hz, 1H} \)), 3.36 (dd, B of ABX, \(J_{AB} = 9.5 \text{ Hz, } J_{BX} = 5.8 \text{ Hz, 1H} \)), 2.40 (app. dt, A of ABX\(_2\), \(J_{AB} = 13.6 \text{ Hz, } J_{AX} = 6.7 \text{ Hz, 1H} \)).
Hz, 1H), 2.30 (app. dtd, B of ABX2Y, \(J_{AB} = 13.6 \) Hz, \(J_{BX} = 6.7 \) Hz, \(J_{BY} = 1.0 \) Hz, 1H), 1.41 (s, 6H), 1.04-0.92 (m, 2H), 1.02 (s, 3H), 1.00 (s, 6H), 0.99 (s, 3H).

\(^{13}\)C NMR (125 MHz, CDCl3) \(\delta \) 159.10 (e), 138.17 (e), 137.80 (o), 134.49 (o), 130.53 (e), 129.24 (o), 128.31 (o), 127.73 (o), 127.56 (o), 117.25 (e), 116.86 (e), 113.68 (o), 109.41 (e), 80.59 (o), 77.33 (o), 74.15 (o), 73.43 (e), 73.26 (e), 72.89 (e), 71.63 (e), 70.78 (o), 55.28 (o), 39.15 (e), 27.17 (o), 17.50 (o), 17.45 (o), 17.43 (o), 12.85 (o), 12.81 (o).

IR (Neat) 2940 (w), 2866 (m), 1641 (w), 1613 (w), 1587 (w), 1084 (vs), 1036 (s) cm\(^{-1}\).

HRMS (ESI, [M+Na]\(^+\)) calcd for C\(_{35}\)H\(_{52}\)O\(_7\)NaSi 635.3380, found 635.3379.

(4S,8R,Z)-8-((4S,5R)-5-((Benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-diisopropyl-4-((4-methoxybenzyl)oxy)methyl)-5,8-dihydro-4H-1,3,2-dioxasilocine (41)

Prepared according the general procedure for the temporary silicon-tethered ring-closing metathesis on 5 mmol scale with 99% yield.

Colour and state: Colourless oil.

FC (SiO\(_2\), Et\(_2\)O/hexanes – 1:5).

\(R_f = 0.58 \) (Et\(_2\)O/hexanes – 1:1).

\([\alpha]_D\(^{20}\) +13.3 (c 1.0, CHCl\(_3\)).

\(^1\)H NMR (500 MHz, C\(_6\)D\(_6\)) \(\delta \) 7.32-7.31 (m, 2H), 7.20-7.15 (m, 4H), 7.10-7.07 (m, 1H), 6.80-6.77 (m, 2H), 6.03 (dd, \(J = 11.2, 6.1 \) Hz, 1H), 5.63 (q, \(J = 9.5 \) Hz, 1H),
4.62 (t, \(J = 6.5\) Hz, 1H), 4.47 (s, 2H), 4.43 (ddd, \(J = 7.7, 5.3, 2.6\) Hz, 1H), 4.34 (d, A of AB, \(J_{AB} = 11.7\) Hz, 1H), 4.30 (d, B of AB, \(J_{AB} = 11.7\) Hz, 1H), 4.24 (app. dtd, \(J = 7.4, 5.7, 3.7\) Hz, 1H), 4.08 (t, \(J = 7.2\) Hz, 1H), 3.81 (dd, A of ABX, \(J_{AB} = 11.7\) Hz, 1H), 3.80 (d, B of ABX, \(J_{AB} = 11.7\) Hz, 1H), 4.24 (app. dtd, \(J = 7.4, 5.7, 3.7\) Hz, 1H), 4.08 (t, \(J = 7.2\) Hz, 1H), 3.81 (dd, A of ABX, \(J_{AB} = 11.7\) Hz, 1H), 3.80 (d, B of ABX, \(J_{AB} = 11.7\) Hz, 1H), 3.32-3.29 (m, 1H), 3.30 (s, 3H), 2.59 (ddd, A of ABXY, \(J_{AB} = 13.9\) Hz, \(J_{AX} = 7.5\) Hz, \(J_{AY} = 6.5\) Hz, 1H), 2.37 (ddd, B of ABXY, \(J_{AB} = 13.5\) Hz, \(J_{BX} = 9.5\) Hz, \(J_{BY} = 3.7\) Hz, 1H), 1.45 (s, 3H), 1.44 (s, 3H), 1.12 (d, \(J = 7.5\) Hz, 3H), 1.11 (d, \(J = 7.4\) Hz, 3H), 1.10 (s, 3H), 1.09 (s, 3H), 1.08-1.01 (m, 1H), 0.94 (septet, \(J = 7.4\) Hz, 1H).

\(^{13}\text{C NMR}\) (125 MHz, C\(_6\)D\(_6\)) \(\delta\) 159.81 (e), 139.09 (e), 134.50 (o), 130.94 (e), 129.48 (o), 129.40 (o), 128.55 (o), 127.84 (o), 127.68 (o), 114.12 (o), 109.62 (e), 80.90 (o), 80.25 (o), 73.60 (e), 73.50 (e), 73.26 (o), 73.11 (e), 72.04 (e), 71.83 (o), 54.79 (o), 32.93 (e), 27.59 (o), 27.50 (o), 17.94 (o), 17.86 (o), 17.79 (o), 13.62 (o), 13.32 (o).

\(\text{IR (Neat) 2939 (m), 2865 (m), 1612 (w), 1586 (s)}\) cm\(^{-1}\).

\(\text{HRMS (ESI, [M+Na]}^+\) calcd for C\(_{33}\)H\(_{48}\)O\(_7\)NaSi 607.3067 found 607.3063.

Prepared according the general procedure for the dihydroxylation of cyclic silaketals on 1.08 mmol scale with 96% yield.

(4\(R\),5\(R\),6\(R\),8\(S\))-4-((4\(R\),5\(S\))-5-((Benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-diisopropyl-8-(((4-methoxybenzyl)oxy)methyl)-1,3,2-dioxasilocane-5,6-diol (52)
Chapter 6

Colour and state: Colourless oil.

FC (SiO₂, Et₂O/hexanes – 1:1, 2:1, 3:1, 20:1).

Rf = 0.07 (Et₂O/hexanes – 1:1).

[α]D²⁰ +7.2 (c 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃) δ 7.34-7.33 (m, 4H), 7.31-7.27 (m, 1H), 7.26-7.24 (m, 2H), 6.88-6.86 (m, 2H), 4.64 (d, A of AB, JAB = 12.1 Hz, 1H), 4.52 (d, B of AB, JAB = 12.1 Hz, 1H), 4.49 (d, A of AB, JAB = 12.0 Hz, 1H), 4.47 (d, B of AB, JAB = 11.9 Hz, 1H), 4.31 (app. dq, J = 9.9, 5.1 Hz, 1H), 4.30 (app. td, J = 7.2, 3.1 Hz, 1H), 4.18 (app. tt, J = 8.6, 2.9 Hz, 1H), 4.04 (dd, a of ABX, JAB = 8.4 Hz, JAX = 6.5 Hz, 1H), 3.97 (app. dt, B od ABX₂, JAB = 8.5 Hz, JBX = 2.4 Hz, 1H), 3.84 (dd, B of ABX, JAB = 7.4 Hz, JBX = 6.8 Hz, 1H), 3.80 (s, 3H), 3.69 (dd, A of ABX, JAB = 10.3 Hz, JAX = 3.0 Hz, 1H), 3.56 (dd, B of ABX, JAB = 10.3 Hz, JBX = 6.8 Hz, 1H), 3.47 (dd, A of ABX, JAB = 9.7 Hz, JAX = 5.7 Hz, 1H), 3.38 (dd, B of ABX, JAB = 9.7 Hz, JBX = 5.1 Hz, 1H), 3.22 (d, J = 2.7 Hz, 1H), 2.39 (d, J = 8.5 Hz, 1H), 2.11 (ddd, A of ABXY, JAB = 14.0 Hz, JAX = 9.9 Hz, JAY = 4.0 Hz, 1H), 1.76 (ddd, B of ABXY, JAB = 14.0 Hz, JBX = 10.2 Hz, JBY = 3.8 Hz, 1H), 1.44 (s, 3H), 1.43 (s, 3H), 1.08 (d, J = 5.4 Hz, 3H), 1.05-1.00 (m, 4H), 0.97 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H), 0.85 (septet, J = 5.8 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 159.24 (e), 137.86 (e), 130.40 (e), 129.31 (o), 128.46 (o), 128.01 (o), 127.85 (o), 113.82 (o), 109.99 (e), 81.35 (o), 78.72 (o), 77.16 (o), 74.97 (e), 74.93 (o), 73.72 (e), 73.11 (e), 71.80 (e), 68.55 (o), 67.72 (o), 55.33 (o), 35.88 (e), 27.20 (o), 27.14 (o), 17.80 (o), 17.55 (o), 17.21 (o), 12.45 (o), 11.76 (o).

IR (Neat) 3448 (br), 2932 (m), 2866 (m), 1612 (w), 1587 (w), 1513 (m), 1247 (s), 1087 (s) 1035 (s) cm⁻¹.
HRMS (ESI, [M+Na]+) calcd for C_{33}H_{50}O_{9}NaSi 641.3122 found 641.3098.

(3aR,4R,8S,9aR)-4-(((4R,5S)-5-((Benzyl)oxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-6,6-diisopropyl-8-(((4-methoxybenzyl)oxy)methyl)-2,2-dimethyloxirane-3aH-[1,3]dioxolo[4,5-e][1,3,2]diasilocene (53)

Prepared according the general procedure for the VO(OTf)_2 catalysed acetonide formation on 0.986 mmol scale with 99% yield.

Colour and state: Colourless oil.

FC (SiO_2, Et_2O/hexanes – 1:7, 1:5).

R_f = 0.58 (Et_2O/hexanes – 1:1).

[α]_D^{20} = −3.3 (c 1.0, CHCl_3).

^1H NMR (500 MHz, CDCl_3) δ 7.36-7.32 (m, 4H), 7.27-7.26 (m, 3H), 6.88-6.77 (m, 2H), 4.97 (d, A of AB, J_{AB} = 9.4 Hz, 1H), 4.56 (d, B of AB, J_{AB} = 9.4 Hz, 1H), 4.53 (d, A of AB, J_{AB} = 13.8 Hz, 1H), 4.49 (d, B of AB, J_{AB} = 12.0 Hz, 1H), 4.48 (ddd, J = 7.5, 6.6, 2.7 Hz, 1H), 4.40 (ddd, A of ABXY, J_{AB} = 10.3 Hz, J_{AX} = 5.4 Hz, J_{AY} = 1.5 Hz, 1H), 4.31 (dd, A of ABX, J_{AB} = 9.7 Hz, J_{AX} = 2.0 Hz, 1H), 4.25 (app. dq, J = 6.2, 3.1 Hz, 1H), 4.14 (dd, B of ABX, J_{AB} = 8.1 Hz, J_{BX} = 2.0 Hz, 1H), 3.85 (dd, B of ABX, J_{AB} = 9.7 Hz, J_{BX} = 5.4 Hz, 1H), 3.80 (s, 3H), 3.68 (dd, A of ABX, J_{AB} = 10.6 Hz, J_{AX} = 2.6 Hz, 1H), 3.55 (dd, B of ABX, J_{AB} = 10.6 Hz, J_{BX} = 6.9 Hz, 1H), 3.51 (dd, A of ABX, J_{AB} = 9.7 Hz, J_{AX} = 5.8 Hz, 1H), 3.43 (dd, B of ABX, J_{AB} = 9.6 Hz, J_{BX} = 7.0 Hz, 1H), 2.24 (ddd, A of ABXY, J_{AB} = 15.6 Hz, J_{AX} = 10.0 Hz, J_{AY} = 5.9 Hz, 1H), 1.96 (app. dt, B of ABX_2, J_{AB} = 15.4 Hz, J_{BX} = 2.3 Hz, 1H), 1.43 (s, 3H),
1.42 (s, 3H), 1.35 (s, 3H), 1.14 (s, 3H), 1.11 (s, 3H), 1.08 (d, \(J = 5.8 \) Hz, 3H), 1.04-0.99 (m, 1H), 1.01 (d, \(J = 7.4 \) Hz, 3H), 1.00 (d, \(J = 7.4 \) Hz, 3H), 0.91 (septet, \(J = 7.2 \) Hz, 1H).

\(^{13}\text{C NMR}\) (125 MHz, CDCl\(_3\)) \(\delta \): 159.27 (e), 138.35 (e), 130.53 (e), 129.26 (o), 128.44 (o), 127.75 (o), 127.67 (o), 113.88 (o), 109.17 (e), 107.75 (e), 79.23 (o), 78.03 (o), 74.85 (o), 73.77 (o), 73.42 (e), 73.12 (e), 73.07 (e), 71.77 (e), 69.25 (o), 68.27 (o), 55.37 (o), 33.52 (e), 27.99 (o), 27.38 (o), 27.19 (o), 25.60 (o), 17.58 (o), 17.55 (o), 17.41 (o), 17.35 (o), 12.18 (o), 12.09 (o).

IR (Neat) 2936 (w), 2866 (w), 1613 (w), 1587 (w), 1513 (m), 1245 (s), 1087 (s) \(1038 \) (s) cm\(^{-1}\).

HRMS (ESI, [M+Na]\(^+\)) calcd for C\(_{36}\)H\(_{54}\)O\(_9\)NaSi 681.3435 found 681.3418.

\[((3aR,4R,8S,9aR)-4-((4R,5S)-5-(Benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-6,6-diisopropyl-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-e][1,3,2]dioxasilocin-8-yl)methanol (54)\)

Prepared according the general procedure for the chemoselective PMB ether deprotection on 0.968 mmol scale with 96% yield.

Colour and state: Colourless oil.

\([\alpha]_D^{20} +4.7 \) (c 0.5, CHCl\(_3\)).

FC (SiO\(_2\), Et\(_2\)O/hexanes – 1:3, 1:2).

\(R_f = 0.28 \) (Et\(_2\)O/hexanes – 1:1).
Chapter 6

1H NMR (500 MHz, CDCl$_3$) δ 7.35-7.30 (m, 4H), 7.29-7.24 (m, 1H), 4.66 (d, A of AB, $J_{AB} = 12.4$ Hz, 1H), 4.55 (d, B of AB, $J_{AB} = 12.4$ Hz, 1H), 4.48 (ddd, A of ABXY, $J_{AB} = 8.0$ Hz, $J_{AX} = 7.0$ Hz, $J_{AY} = 2.8$ Hz, 1H), 4.40 (ddd, $J = 10.2$, 5.4, 1.4 Hz, 1H), 4.30 (dd, A of ABX, $J_{AB} = 9.8$ Hz, $J_{AX} = 2.0$ Hz, 1H), 4.16 (dd, $J = 6.9$, 4.0, 2.9 Hz, 1H), 4.14 (dd, B of ABX, $J_{AB} = 8.1$ Hz, $J_{BX} = 2.0$ Hz, 1H), 3.85 (dd, B of ABXY, $J_{AB} = 10.9$ Hz, $J_{BX} = 9.0$ Hz, 1H), 3.65 (dd, A of ABXY, $J_{AB} = 11.0$ Hz, $J_{AX} = 7.8$ Hz, $J_{AY} = 3.4$ Hz, 1H), 3.55 (dd, B of ABX, $J_{AB} = 10.6$ Hz, $J_{BX} = 6.9$ Hz, 1H), 3.52 (dd, B of ABXY, $J_{AB} = 10.9$ Hz, $J_{BX} = 9.0$ Hz, $J_{BY} = 4.4$ Hz, 1H), 2.29 (ddd, A of ABXY, $J_{AB} = 15.6$ Hz, $J_{AX} = 10.1$ Hz, $J_{AY} = 6.6$ Hz, 1H), 2.15 (ddd, $J = 9.0$, 3.6 Hz, 1H), 1.72 (ddd, A of ABXY, $J_{AB} = 15.6$ Hz, $J_{BX} = 2.6$ Hz, $J_{BY} = 1.9$ Hz, 1H), 1.42 (s, 3H), 1.40 (s, 3H), 1.32 (s, 3H), 1.16-1.05 (m, 1H), 1.11 (s, 6H), 1.08 (d, $J = 6.3$ Hz, 3H), 1.02 (d, $J = 6.7$ Hz, 3H), 1.01 (d, $J = 6.2$ Hz, 3H), 0.98-0.91 (m, 1H).

13C NMR (125 MHz, CDCl$_3$) 138.22 (e), 128.43 (o), 127.72 (o), 127.69 (o), 109.18 (e), 107.98 (e), 79.37 (o), 77.75 (o), 74.66 (o), 73.85 (o), 73.39 (e), 71.71 (e), 69.43 (o), 69.04 (o), 66.36 (e), 33.40 (e), 27.95 (o), 27.30 (o), 27.14 (o), 25.50 (o), 17.55 (o), 17.52 (o), 17.41 (o), 17.33 (o), 11.97 (o), 11.91 (o).

IR (Neat) 3474 (br), 2985 (w), 2934 (w), 2867 (w), 1497 (w), 1455 (w), 1040 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{28}$H$_{46}$O$_8$NaSi 561.2860 found 561.2849.
(3aS,4S,8R,9aS)-4-((4R,5S)-5-((Benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-y1)-6,6-diisopropyl-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-e][1,3,2]dioxasilocin-8-yl)methyl 4-methylbenzenesulfonate (55)

Prepared according the general procedure for tosylation on 0.223 mmol scale with 96% yield.

Colour and state: Colourless oil.

$\text{R}_f = 0.51$ (Et$_2$O/hexanes – 1:1).

$[\alpha]_D^{20} +2.2$ (c 0.5, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$) δ 7.80-7.36 (m, 2H), 7.36-7.28 (m, 6H), 6.27-6.24 (m, 1H), 4.65 (d, A of AB, $J_{AB} = 12.4$ Hz, 1H), 4.53 (d, B of AB, $J_{AB} = 12.4$ Hz, 1H), 4.44 (ddd, A of ABXY, $J_{AB} = 8.0$ Hz, $J_{AX} = 6.9$ Hz, $J_{AY} = 2.8$ Hz, 1H), 4.49-4.24 (m, 2H), 4.24 (d, A of ABX, $J_{AB} = 10.0$ Hz, $J_{AX} = 2.2$ Hz, 1H), 4.11 (dd, B of ABX, $J_{AB} = 8.1$ Hz, $J_{BX} = 2.1$ Hz, 1H), 4.00 (dd, A of ABX, $J_{AB} = 9.9$ Hz, $J_{AX} = 6.7$ Hz, 1H), 3.92 (dd, B of ABX, $J_{AB} = 9.9$ Hz, $J_{BX} = 5.3$ Hz, 1H), 3.63 (A of ABX, $J_{AB} = 10.5$ Hz, $J_{AX} = 2.9$ Hz, 1H), 3.53 (B of ABX, $J_{AB} = 10.6$ Hz, $J_{BX} = 6.8$ Hz, 1H), 2.44 (s, 3H), 2.23 (ddd, A of ABXY, $J_{AB} = 15.6$ Hz, $J_{AX} = 10.3$ Hz, $J_{AY} = 6.5$ Hz, 1H), 1.74 (ddd, B of ABXY, $J_{AB} = 15.6$ Hz, $J_{BX} = 3.3$ Hz, $J_{BY} = 1.9$ Hz, 1H), 1.41 (s, 3H), 1.39 (s, 3H), 1.31 (s, 3H), 1.09 (s, 3H), 1.07 (d, $J = 2.2$ Hz, 1H), 1.05-0.98 (m, 1H), 0.96 (d, $J = 7.0$ Hz, 1H), 0.93 (d, $J = 6.9$ Hz, 1H), 0.87 (d of quintets, B of ABX$_5$, $J_{AB} = 7.0$ Hz, $J_{BX} = 6.7$ Hz, 1H).

^{13}C NMR (125 MHz, CDCl$_3$) δ 144.90 (e), 138.13 (e), 132.86 (e), 129.91 (o), 128.36 (o), 127.94 (o), 127.64 (o), 109.12 (e), 107.98 (e), 79.09 (o), 77.62 (o), 74.59
(3aS,4S,6S,7aS)-4-((4R,5S)-5-((Benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-c]pyran-6-yl)methanol (42)

To a solution of tosylate 55 (0.0343 g, 0.049 mmol) in THF (1 mL) was added TBAF (0.124 mL, 1 M in THF, 0.124 mmol). After ca. 30 min (TLC control) the reaction mixture was cooled to −78 °C and treated with BF₃·Et₂O (0.020 mL, 0.074 mmol). The reaction was warmed to room temperature and stirred for ca. 2 h (TLC control), before it was quenched with saturated aqueous NH₄Cl and partitioned between water and EtOAc. Phases were separated and the aqueous layer was washed with EtOAc (2x). The combined organic layers were washed with water, brine, dried (MgSO₄), filtered and concentrated in vacuo. Purification by flash chromatography (silica gel, EtOAc/hexanes – 1:2.5, 1:1.5) afforded alcohol 42 (0.0157 g, 0.038 mmol, 78% yield) as a colourless oil.

$R_f=0.3$ (EtOAc/hexanes – 1:1).

$[\alpha]_D^{20}+1.5$ (c 0.5, CHCl₃).
1H NMR (500 MHz, CDCl$_3$) δ 7.38-7.33 (m, 4H), 7.32-7.22 (m, 1H), 4.59 (s, 2H), 4.34 (app. dt, A of ABX$_2$, $J_{AB} = 8.5$ Hz, $J_{AX} = 6.1$ Hz, 1H), 4.26 (app. dt, $J = 8.7$, 4.7 Hz, 1H), 4.24 (app. dt, $J = 7.4$, 6.0 Hz, 1H). 4.10 (dd, B of ABX, $J_{AB} = 8.3$ Hz, $J_{BX} = 3.5$ Hz, 1H), 3.93 (dd, $J = 5.3$, 3.6 Hz, 1H), 3.83 (app. ddt, $J = 10.2$, 7.3, 3.6 Hz, 1H), 3.65-3.61 (m, 3H), 3.52 (dd, B of ABX, $J_{AB} = 11.8$ Hz, $J_{AX} = 3.2$ Hz, 1H), 2.01 (br s, 1H), 1.93 (ddd, A of ABXY, $J_{AB} = 13.8$ Hz, $J_{AX} = 5.9$ Hz, $J_{AY} = 4.5$ Hz, 1H), 1.63 (app. dt, B of ABX$_2$, $J_{AB} = 13.7$ Hz, $J_{BX} = 9.2$ Hz, 1H), 1.46 (s, 3H), 1.44 (s, 3H), 1.43 (s, 3H), 1.34 (s, 3H).

13C NMR (125 MHz, CDCl$_3$) δ 137.97 (e), 128.55 (o), 127.91 (o), 110.03 (e), 108.77 (e), 79.33 (o), 76.89 (o), 73.63 (e), 72.47 (o), 71.43 (o), 71.28 (o), 71.17 (o), 70.57 (e), 64.81 (e), 29.09 (e), 28.07 (o), 27.29 (o), 27.02 (o), 25.94 (o).

IR (Neat) 3470 (br), 2985 (w), 2936 (w), 2873 (w), 1635 (w), 1062 (s) cm$^{-1}$.

HRMS (ESI, [M+Na]$^+$) calcd for C$_{22}$H$_{32}$O$_7$Na 431.2046 found 431.2042.
6.10 References

Chapter 6

6.11 Appendix C. 1H and APT Spectrums for Compound 42