Structural cables subjected to blast fragmentation



Judge, Ryan
Structural cables subjected to blast fragmentation. Doctor of Philosophy thesis, University of Liverpool.

[thumbnail of JudgeRya_Nov2012_12061.pdf] PDF
JudgeRya_Nov2012_12061.pdf - Unspecified
Access to this file is embargoed until Unspecified.
After the embargo period this will be available under License Creative Commons Attribution No Derivatives.

Download (22MB)
[thumbnail of JudgeRya_Nov2012_12061_Edited.pdf] PDF
JudgeRya_Nov2012_12061_Edited.pdf - Unspecified
Access to this file is embargoed until Unspecified.
After the embargo period this will be available under License Creative Commons Attribution No Derivatives.

Download (19MB)
[thumbnail of JudgeRya_Nov2012_12073.pdf] PDF (JudgeRya_Nov2012_12073.pdf)
JudgeRya_Nov2012_12073.pdf - Unspecified
Access to this file is embargoed until Unspecified.
After the embargo period this will be available under License Creative Commons Attribution No Derivatives.

Download (22MB)
[thumbnail of JudgeRya_Nov2012_12073_abridged_version.pdf] PDF (JudgeRya_Nov2012_12073_abridged_version.pdf)
JudgeRya_Nov2012_12073_abridged_version.pdf - Unspecified
Available under License Creative Commons Attribution No Derivatives.

Download (19MB)

Abstract

In civil engineering, steel cables are widely used in the construction of bridges and sports stadia. However, their robustness and resilience against explosively formed fragment impact, whether accidental or malicious, remains largely unknown and very little research has been carried out on this subject to date. The concern is that small fragments projected from the explosion and travelling at high velocity may induce significant damage to the cables. This damage could rupture a cable releasing large amounts of kinetic energy into the surrounding structure and other damaged cables resulting in multiple cable loss and possible disproportionate collapse of the structure. To begin investigating this problem a good understanding of the localised damage sustained by the cables on impact is required. The work described within this thesis begins to address this problem by use of both physical tests and detailed finite element analysis. The tests involved firing fragment simulating projectiles at velocities ranging from 200 – 1400 m/s at un-tensioned spiral strand cables. Detailed finite element models have been developed for the spiral strand cables, with careful considerations given to the geometry of the cables, inter-wire contact mechanics, cable end boundary conditions and material modelling. The numerical results have been verified by comparison with the test results, with particular attention paid to the localised damage area, the fragment penetration depth, and the number of heavily damaged and totally broken wires. A global response study has also been undertaken on a case study structure to assess the effects of sudden cable loss. The work contained with this thesis forms part of larger research programme studying the robustness and resilience of cable supported structures subjected to highly transient loading conditions.

Item Type: Thesis (Doctor of Philosophy)
Additional Information: Date: 2012-11 (completed)
Uncontrolled Keywords: Blast, Fragmentation, Structural Cable, Spiral-strand, Impact
Divisions: Faculty of Science and Engineering > School of Engineering
Depositing User: Symplectic Admin
Date Deposited: 16 Aug 2013 08:39
Last Modified: 17 Dec 2022 01:18
DOI: 10.17638/00012073
Supervisors:
URI: https://livrepository.liverpool.ac.uk/id/eprint/12073