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Summary

Summary

This thesis presents the results of an investigation into the flow of several non-
Newtonian fluids through two curved gradual planar contractions (contraction ratios
8:1 and 4:1). The objectives were to determine whether a newly discovered effect
(velocity overshoots were observed in the flow of a 0.05% polyacrylamide solution
close to the sidewalls of a gradual contraction followed by a sudden expansion by
Poole et al., 2005) could be reproduced in the absence of the expansion, learn more
about the phenomenon and to provide a comprehensive set of experimental results
for numerical modellers to compare their results to. Previous research on contraction

flows, both numerical and experimental, has been summarised.

The fluids investigated were a Newtonian control fluid (a glycerine-water mixture),
four concentrations of polyacrylamide (PAA), varying from the ‘dilute’ range to the
‘semi-dilute’ range and two concentrations of xanthan gum (XG), both in the ‘semi-
dilute’ range. All fluids were characterised using shear rheology techniques and
where possible extensional rheology measurements were also undertaken. This
characterisation showed that both PAA and XG are shear-thinning fluids but XG is
less elastic than PAA. The fluid properties determined from the characterisation were
used to estimate various non-dimensional numbers such as the Reynolds and

Deborah numbers, which can then be used to characterise the flow.

The flow under investigation was the flow through a gradual contraction section.
Two smooth curved planar gradual contractions were used: the contraction ratios
were 8:1 and 4:1. The contractions were made up of a concave 40mm radius
followed by a convex 20mm radius. The upstream internal duct dimensions were
80mm by 80mm in both cases and the downstream internal duct dimensions were
80mm by 10mm for the 8:1 contraction and 80mm by 20mm for the 4:1 contraction.
Polymer degradation within the test rig was assessed and the maximum time that the
solutions could be reliably used was found to be six hours. The fluid velocity was
measured at discrete locations within the flow using laser Doppler anemometry

(LDA), which is a non-intrusive flow measurement technique. In both contractions
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measurements were taken across the XZ-centreplane (side to side) and in some cases

across the XY-centreplane (top to bottom).

The flow of the Newtonian control fluid through the 8:1 contraction was as expected
with the flow flattening into the ‘top hat’ shape usually observed in Newtonian flow
through a gradual contraction (as utilised in wind tunnel design for example). The
flows of 0.01% PAA (‘dilute’) and 0.07% XG (‘semi-dilute’) also flattened as the
flow progressed through the 8:1 contraction as the Deborah numbers in these flows
were very low. Velocity overshoots close to the plane sidewalls were observed in
both the 0.03% and 0.05% PAA solutions through the 8:1 and 4:1 contractions. The
overshoots through both contractions seemed to be influenced most by the Deborah
number (i.e. the extensional properties of the flow and fluid). Velocity overshoots
were observed in the 0.3% PAA solution through both contractions but they were
different in shape to those seen at the lower concentrations. The overshoots were
closer to the centre of the flow growing into one large ‘overshoot’ at the end of the

contraction.

This investigation showed that the velocity overshoots can be reproduced in both the
8:1 and 4:1 gradual contraction in several concentrations of PAA providing the right
parameters are met (i.e. fluid properties, flow rate etc.). Good quality sets of data
have been produced, which can be used in the future by researchers interested in
numerical modelling of non-Newtonian fluid flows through curved gradual

contractions.
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at Re=2, Dec=0.34.

Figure 5.9: Normalised velocity profiles along the XZ-centreplane for (a) 0.07%
xanthan gum at Re =50, (b) 0.05% polyacrylamide at Re=50, Dec=0.52, (¢) 0.07%
xanthan gum at Re=~120 (filled symbols represent reflected values) and (d) 0.05%
polyacrylamide at Re= 110, Dec~0.96.

Figure 5.10: Normalised velocity profiles along the XZ-centreplane for (a) 0.3%
polyacrylamide at Re=15, Dec=60 and (b) 0.5% xanthan gum at Re=0.86,
Dec=~0.21.

Figure 5.11: Normalised velocity profiles along the XZ-centreplane for (a) 0.03%
polyacrylamide at Re=290, Dec=0.13, (b) 0.05% polyacrylamide at Re=30,
Dec=0.13, (¢) 0.03% polyacrylamide at Re=115, Dec=0.06 and (d) 0.05%

polyacrylamide at Re~65, Dec=0.24 (In the 4:1 contraction O represents x/L=-1, ¢

x/L=-0.71, V x/L=-0.42, O x/L=-0.23, > x/L=-0.13 and < x/L=0.15. These symbols

are valid for all figures for the 4:1 contraction unless stated).

Figure 5.12: Velocity profiles along the XZ-centreplane for (a) 0.03%
polyacrylamide at Re=140, Dec=~0.24 in the 8:1 contraction, (b) 0.05%
polyacrylamide at Re=~110, Dec=~0.96 in the 8:1 contraction and (c) 0.03%
polyacrylamide at Re=115, Dec=0.06 in the 4:1 contraction, the key shown in (b) is
valid for (a).
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Figure 5.13: Velocity profiles along the XZ-centreplane for (a) 0.05%
polyacrylamide at Re=50, Dec=0.52 in the 8:1 contraction and (b) 0.05%
polyacrylamide at Re=65, Dec=0.24 in the 4:1 contraction, the keys shown in

Figure 5.10 are valid for the relevant contraction.

Figure 5.14: Velocity profiles along the XZ-centreplane for 0.05% polyacrylamide at
Re =50, Dec=0.52 in the 8:1 contraction (open symbols) and 0.05% polyacrylamide
at Re=65, Dec=0.24 in the 4:1 contraction (filled symbols) at (a) x/L-1, (b) x/L=
-0.72 and -0.71, (c) x/L=-0.45 and -0.42, (d) x/L=-0.27 and -0.23, (e) x/L=-0.17 and
-0.13 and (f) »/L=0.10 and 0.15.

Figure 5.15: Velocity profiles along the XZ-centreplane for (a) 0.03%
polyacrylamide at Re~140, Dec=0.24 in the 8:1 contraction and (b) 0.05%
polyacrylamide at Re=65, Dec=0.24 in the 4:1 contraction, the keys shown in

Figure 5.10 are valid for the relevant contraction.

Figure 5.16: Velocity profiles along the XZ-centreplane for 0.03% polyacrylamide at
Re =140, Dec=0.24 in the 8:1 contraction (open symbols) and 0.05% polyacrylamide
at Re=65, Dec=0.24 in the 4:1 contraction (filled symbols) at (a) x/L-1, (b) x/L=
-0.72 and -0.71, (¢) x/L=-0.45 and -0.42, (d) x/L=-0.27 and -0.23, (e) x/L=-0.17 and
-0.13 and (f) #/L=0.10 and 0.15.

Figure 5.17: Velocity profiles along the XZ-centreplane for (a) 0.05%
polyacrylamide at Re=110, Den;=9.4 in the 8:1 contraction (b) 0.05%
polyacrylamide at Re=65, Den;=9.0 in the 4:1 contraction (c) 0.05%
polyacrylamide at Re=50, Den;=9.2 in the 8:1 contraction and (d) 0.05%
polyacrylamide at Re =30, Den; =8.9 in the 4:1 contraction, the keys shown in Figure

5.10 are valid for the relevant contraction.

Figure 5.18: Velocity profiles along the XZ-centreplane for (a) 0.03%
polyacrylamide at Re=290, Den;=5.3 in the 4:1 contraction (b) 0.03%
polyacrylamide at Re=115, Den;=5.1 in the 4:1 contraction (c) 0.03%
polyacrylamide at Re=140, Den;=5.2 in the 8:1 contraction and (d) 0.3%
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polyacrylamide at Re =5, Den;=5.6 in the 8:1 contraction, the keys shown in Figure

5.10 and 5.14 are valid for the relevant contraction.

Figure 5.19: Velocity profiles along the XZ-centreplane for (a) 0.3% polyacrylamide
at Re=~15, El;c=3.9 in the 8:1 contraction and (b) 0.3% polyacrylamide at Re~2,

El, c=3.7 in the 4:1 contraction.

Figure 5.20: Velocity profiles along the XZ-centreplane for (a) 0.03%
polyacrylamide at Re=390, El;x;1=0.0016 in the 8:1 contraction and (b) 0.03%
polyacrylamide at Re =290, El; n;=0.0018 in the 4:1 contraction, the keys shown in

Figure 5.10 are valid for the relevant contraction.

Figure 5.21: Velocity profiles along the XZ-centreplane for (a) 0.3% polyacrylamide
at Re=5, El,c=7.0 in the 8:1 contraction and (b) 0.3% polyacrylamide at Re=2,
El,c=8.3 in the 4:1 contraction, the keys shown in Figure 5.14 are valid for the

relevant contraction.

Figure 5.22: Velocity profiles along the XZ-centreplane for (a) 0.03%
polyacrylamide at Re=140, El;n;=0.020 in the 8:1 contraction and (b) 0.03%
polyacrylamide at Re=115, El,N;=0.018 in the 4:1 contraction, the keys shown in

Figure 5.10 are valid for the relevant contraction.

Figure 5.23: Velocity profiles along the XZ-centreplane for (a) 0.05%
polyacrylamide at Re=50, El,nN;=0.089 in the 8:1 contraction and (b) 0.05%
polyacrylamide at Re=65, El;N1=0.082 in the 4:1 contraction, the keys shown in

Figure 5.10 are valid for the relevant contraction.

Figure 5.24: Non-dimensionalised (a) shear and (b) extensional stresses for 0.03%
PAA in the 8:1 contraction at Re=140, Dec=0.24 (0) and Re=390, Dec~=0.53 (m);
(c) shear and (d) extensional stresses for 0.05% PAA in the 8:1 contraction at
Re=50, Dec=0.52 (O0) and Re=110, Dec=0.96 (m); (e) shear and (f) extensional
stresses for 0.3% PAA in the 8:1 contraction at Re=5, Dec=34 (0) and Re=15,
Dec~60 (m).
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Figure 5.25: Non-dimensionalised (a) shear and (b) extensional stresses for 0.03%
PAA in the 4:1 contraction at Re=115, Dec=0.06 (0) and Re=290, Dec=0.13 (m);
(c) shear and (d) extensional stresses for 0.05% PAA in the 4:1 contraction at
Re=30, Dec=0.13 (O0) and Re=65, Dec=0.24 (m); (e) shear and (f) extensional
stresses for 0.3% PAA in the 4:1 contraction at Re=2, Dec=8.4.
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Introduction

1. Introduction

Much less is known about non-Newtonian fluid flow compared with the
comprehensive knowledge we have about Newtonian fluid behaviour. Newtonian
laminar flow has previously been particularly well researched. Virtually all man-
made fluids, such as those used in manufacturing and other industries (for example
polymer melts used to produce various plastic items and drilling mud used to assist
oil retrieval) and everyday fluids like shampoo and toothpaste, are non-Newtonian
and to this end it is extremely important to further develop the understanding of non-
Newtonian fluid behaviour. Contraction flows, such as those we investigate in the
current study, are particularly important in polymer processing techniques such as
extrusion and injection moulding and also as so called ‘benchmark’ flows for

validating and developing numerical simulation techniques.

1.1. Newtonian fluids

In 1687 Newton postulated in his Principia (translated, 1999),
The resistance which arises from the friction [lit. lack of lubricity or
slipperiness] of the parts of a fluid is, other things being equal, proportional to
the velocity with which the parts of the fluid are separated from one another.
The resistance is equivalent to the shear stress (7, Pa), the friction [lack of

slipperiness] is now known as the viscosity ( &, Pa.s) and the velocity with which the
parts of the fluid are separated is the velocity or shear rate (¥ , sh. Using these

definitions the postulate says that the shear stress is proportional to the shear rate and

the viscosity is the constant of proportionality, which gives the following equation,
T=Uy. (1.1)

This law is linear and assumes that the shear stress is directly proportional to the

strain, or rate of strain, regardless of the variation in stress. The most common fluids,

water and air, followed Newton’s postulate and it was not until the 19" century that

scientists started to doubt that the postulate covered all fluids.
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In the 19™ century Navier and Stokes, independently of one another, developed a
three-dimensional theory for Newtonian fluid flow. The Navier-Stokes equations are

the governing equations for the flow of a Newtonian fluid.

Some examples of Newtonian fluid behaviour are:

(a) At constant temperature and pressure the shear viscosity for a Newtonian
fluid is constant and does not vary with shear rate.

(b) The viscosities due to different types of deformation or flow (see Figure 1.1
for examples of shear and extensional deformation) are always in simple
proportion to one another, for example the uniaxial extensional viscosity is
always three times the shear viscosity.

(c) The only stress generated in simple shear flow is the shear stress.

(d) The shear viscosity is constant regardless of the length of time of shearing.

(e) In the absence of inertia, the shear stress in the fluid falls immediately to zero

when shearing stops.

Any deviation from the above would characterise a fluid as being ‘non-Newtonian’.

1.2. Non-Newtonian fluids

There are several types of non-Newtonian fluid, for example shear-thinning
(breaking rule (a) above), thixotropic (breaking rule (d)) and viscoelastic (breaking

rules (c) and (e) and possibly (a), (b) and (d)!).

Newton’s postulate was obeyed by common fluids such as water, air and glycerine
so it was believed to be true for all fluids, hence all fluids were assumed to be purely
viscous. Similarly Hooke’s law, published in 1678, that the extension of a solid is
directly proportional to the force exerted on the material had been used to describe
solid behaviour and all solids were assumed to be elastic. Hooke’s law is given as
o =Ee, (1.2)

where o is extensional stress (Pa), E is Young’s modulus or the modulus of
elasticity (Pa) and &£ is strain. If a stress is placed on an elastic solid obeying

Hooke’s law the material will strain immediately and once the stress is removed the
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material will immediately return to its original state (a viscous fluid would not return
to its original state once the same stress was removed). In contrast to this behaviour
if a stress is placed on a viscoelastic material the material will strain linearly over
time and once the stress is removed the material will return to its original state over

time, this phenomenon is known as ‘fading” memory (Brinson and Brinson (2008)).

In 1835 Weber experimented on silk threads and discovered that they were neither
perfectly elastic nor perfectly viscous (Weber (1835)). He found that on applying a
load to a silk thread the thread would immediately extend, then there would be a
continuing elongation. On removing the load an immediate contraction was observed
followed by a slow contraction to the initial thread length. The immediate extension
and contraction both follow Hooke’s law, exhibiting elastic behaviour, however the
slower elongation and contraction are viscous behaviour. This combination of
viscous and elastic behaviour from one material seemed unusual at the time but is
now known as viscoelastic behaviour. Viscoelasticity describes behaviour between
the two extremes of Newtonian behaviour and the Hookean elastic response. Creep
(increase in strain at constant stress) and relaxation (decrease in stress at constant
strain) are both viscoelastic effects (Brinson and Brinson (2008)) occurring over a

period of time, hence viscoelasticity is often observed as a time effect.

1.2.1. Shear-thinning fluids

Shear-thinning fluids are fluids that exhibit a decrease in shear viscosity with an
increasing shear stress. If the applied shear stress is increased, the corresponding
shear rate also increases and the shear viscosity is seen to decrease. Many inelastic
mathematical models have been suggested to describe this relationship, such as the
power law, Sisko and Carreau fits (Barnes et al. (1989)). Some of these models will

be discussed further in Chapter 2.

The shear viscosity of a shear-thinning fluid decreases with an increase in shear rate
because the molecules in the fluid align under the shear stress that is being exerted
on the sample (Rosen (1993)). For each shear-thinning fluid there are two plateaus

on a log-log plot where the viscosity is constant, one at low shear rates (zero shear
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rate viscosity, L, Pa.s), which occurs when the molecules are entangled, and one at

high shear rates (infinite shear rate viscosity, #_, Pa.s), which occurs once the

molecules are fully aligned and untangled. Some examples of every day shear-

thinning fluids are

¢ Paint - it can be picked up by a brush or roller and transferred to walls or ceilings
but will not run down the wall or drip from the ceiling.

e Shampoo - it can be squeezed from the bottle but will sit on your hand without

flowing.

1.2.2. Shear-thickening fluids

Shear-thickening fluids are less common than shear-thinning fluids and although
shear-thickening fluids have not been investigated here they are considered to be of
sufficient interest for a brief inclusion in this Introduction. The shear viscosity of a
shear-thickening fluid increases with an increase in shear rate. As with shear-
thinning fluids for each shear-thickening fluid there are two plateaus on a log-log
plot where the viscosity is constant, one at low shear rates and one at high shear
rates. Examples of every day shear-thickening fluids include any sauces in which a
thickening agent (for example corn starch) has been used such as gravy and custard —

both appear to thicken as they are stirred.

1.3. Reynolds, Deborah, Weissenberg and Elasticity numbers

1.3.1. Reynolds number

The Reynolds number, Re, is a dimensionless number used to characterise fluid
flows in classical Newtonian fluid mechanics, it is the ratio of inertial forces to
viscous forces within a flow (Escudier (1998)). A flow with a ‘low’ Reynolds
number is more likely to be laminar as the viscous forces will dominate the flow. A
flow with a ‘high’ Reynolds number is more likely to be turbulent as the inertial
forces will dominate. For an internal flow the Reynolds number is determined using

characteristics of the fluid (the density and the viscosity), a length scale from the
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geometry of the test rig and a characteristic fluid velocity. The Reynolds number is
usually defined as

_ pUl
u(y)

where p is the density (kg.m™), U is the bulk velocity (m.s™), [ is a characteristic

Re (1.3)

length scale (m) and (%) is the shear-viscosity (Pa.s). It is not possible to

determine a single shear-viscosity for most non-Newtonian fluids. The fluids under
investigation here are shear-thinning so the approach we adopt is to estimate a
characteristic shear-viscosity at a characteristic shear rate. This problem is discussed
in further detail in Chapter 3. Examples of typical flows expected across a range of

Reynolds numbers for internal Newtonian flows are given in Table 1.1.

1.3.2. Deborah number

The Deborah number, De, is used to characterise the degree of viscoelasticity within
a fluid flow or how ‘fluid’ a material will behave under different types of
deformation. A Newtonian fluid flow always has a Deborah number equal to zero,
whereas a perfectly elastic solid will have an infinite Deborah number (McKinley
(1991), Phan-Thien (2002)). A viscoelastic fluid flow will have a Deborah number
somewhere between these two extremes and significant elastic effects are generally
not observed until De>0.5 (Haas and Durst (1982)). The Deborah number is defined

as
De =— (1.4)

where 4 is a characteristic time of the material (s) (often called a relaxation time) and
T is a characteristic time of the deformation process being observed (s), usually taken

as an inverse characteristic shear rate, e.g. Ug/l.

The Deborah number for a given material can vary greatly depending on the
deformation process that it is undergoing (Bird et al. (1987)). If we take a nominal
material with relaxation time Is and a process such as flow through a section of
converging duct taking 5s we obtain a Deborah number of 0.2 giving weakly
viscoelastic behaviour. If however, we take the same material and subject it to an

impact lasting, say, 10ms we obtain a Deborah number of 100 indicating much more
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elastic behaviour. This example is an extreme simplification used to illustrate the
importance of the process the material is undergoing when calculating the Deborah

number and estimating viscoelastic effects.
1.3.3. Weissenberg number

The Weissenberg number, Wi, is defined as the ratio of elastic to viscous forces
within a flow. For a pure shear flow, the Weissenberg number can be expressed as
the ratio of the elastic recoverable shear (V;/2, Pa) to the applied shear stress

_MN/2
pt

Wi (L.5)

For arguably the simplest viscoelastic model (the upper convected Maxwell model

(Samsal (1995), Owens and Phillips (2002))), N, =247y and therefore
wi=2% ~ 15 (1.6)
T

where 7 is the shear (or strain, &) rate (s'l). We note that this is essentially the same

definition as the Deborah number where T is taken as the inverse of the shear rate.
1.3.4. Elasticity number

The Elasticity number, El, is another measure of how elastic a fluid flow is: the
higher the Elasticity number the more elastic the flow. The Elasticity number is
defined as the Deborah number divided by the Reynolds number (McKinley (1991)),

_De_iu

El = ,
' Re o’

(1.7)

and can be seen to be dependent on the fluid properties and the dimensions of the test
section only. For fluids of constant viscosity and relaxation time, El is the same no
matter what the flowrate. However, for shear-thinning fluids where the viscosity and
relaxation time are dependent on the shear rate, and hence also dependent on the

flow velocity, El will vary with the flow rate.

We can also define a second Elasticity number (Astarita and Marucci (1974)) using

the Weissenberg number, i.e.
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Wi
El, =—. 1.8
> Re (1.8)

1.4. Gradual contractions

Gradual contractions are used in pipe or duct flows to slowly decrease the cross-
sectional area that the flow passes through; this slowly increases the flow velocity
whereas using a sudden contraction changes the area and the velocity immediately
and causes recirculating flows/vortices at the corners of the contraction. Gradual
contractions can be either tapered or curved and can be used in both planar and
axisymmetric duct flow: Figure 1.2 shows schematics of curved and tapered gradual
contractions and an abrupt contraction for comparison. The type of gradual
contraction under investigation in this study is a planar curved gradual contraction
and is discussed in detail in Chapter 3. It is well known that for Newtonian fluid flow
at high Reynolds numbers through a curved gradual planar contraction the flow
profile flattens producing a ‘top hat’ flow on exit from the section. This type of
contraction is commonly used in wind tunnels to increase the flow velocity while
producing a uniform flow within the test section (Pankhurst and Holder (1965),
Mehta and Bradshaw (1979)). In contrast, little research has been undertaken on the
study of non-Newtonian fluid flow through gradual contractions. However, due to it
being a ‘benchmark’ problem in computational rheology (Hassager (1988), Phillips
and Williams (2002)), there are numerous studies investigating abrupt contraction

flow.

1.5. Background

As mentioned, much of the experimental work concerned with non-Newtonian fluid
flow through contractions has concentrated on abrupt contractions, both
axisymmetric and planar, and mostly focuses on two phenomena, the enhanced
pressure drop and vortex enhancement. Vortex enhancement is the increase in the
size and strength of the corner vortex observed as the relevant dimensionless number
(the Deborah number, for example) is increased and the enhanced pressure drop is
the difference between the actual observed pressure drop and the equivalent pressure

drop that would be observed if only the pressure losses expected in fully developed
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flow were considered. There is an abundance of literature in this area so we have
concentrated on the most significant works, favouring that which is the most recent.
Astarita et al. (1968 (a) and 1968 (b)) investigated the excess pressure drop in
axisymmetric flow for both Newtonian (1968 (a)) and non-Newtonian (1968 (b))
fluids. They found that the pressure drop had been hugely underestimated for
Newtonian flow (the pressure drop had been estimated previously using inaccurate
Hagenbach and Couette corrections, however Astarita ef al. were unable to provide
alternative values for these corrections as they appear to be dependent on the
contraction geometry). They also found that it is not always true that the observed
enhanced pressure drop is larger for elastic fluids than for viscous fluids as
previously hypothesised. Cable and Boger experimentally explored axisymmetric
flow of viscoelastic fluids (1978 (a), 1978 (b), 1979). They investigated in detail 11
flows of a polyacrylamide, with concentrations from 0.4% to 2% by weight, at
different flow rates through a 4:1 abrupt axisymmetric contraction and six flows
through a 2:1 abrupt axisymmetric contraction. They identified two distinct flow
regimes: the vortex growth regime where the flow patterns appear to be independent
of inertia effects and the divergent flow regime where inertia appears to affect the
flow. Since this comprehensive study was performed many more investigations have
been undertaken on axisymmetric contraction and expansion flows including, more
recently, an experimental investigation into the effects of extensional rheology
(Rothstein and McKinley (2001)). In this study the flow of a Boger fluid (an elastic
fluid with constant viscosity, often used to separate viscous effects from elastic
effects in viscoelastic flows (Boger (1977))) through abrupt axisymmetric
contraction expansion ratios of 8:1:8, 4:1:4 and 2:1:2 with both a sharp and curved
re-entrant corner was investigated and it was found that introducing a curved re-
entrant corner delays the vortex development. They observed an enhanced pressure
drop larger than that seen in a Newtonian fluid, which was seen to grow with an

increase in Deborah number.

Evans and Walters (1986) investigated abrupt planar and square-square contractions.
They tested Boger fluids and shear thinning aqueous polyacrylamide (PAA)
solutions through several contraction ratios and attempted to change the re-entrant
corner conditions by inserting ‘ramps’ and cutting away the re-entrant corners from

the geometries. They had previously thought (Walters (1985)) that for Boger fluids
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vortex enhancement would always be present in the square-square contraction and it
would never be observed in the planar contraction. However, during this study,
Evans and Walters observed no vortices in the square-square contraction for the low
elasticity Boger fluid at the lowest flow rate while they did observe vortices and
asymmetry in the higher elasticity Boger fluid through the planar contraction. In the
1% PAA solution through the 4:1 planar contraction corner vortices are observed,
which grow as the flow rate is increased. Through the 16:1 contraction, corner
vortices are also observed but they grow more slowly and extend towards the re-
entrant corner until, for a range of Deborah numbers, two vortices are seen. This
effect showed that contraction ratios above 4:1 might be worth investigating as, until
then, they were thought to be of less interest (the selection of the 4:1 contraction
ratio as the ‘benchmark’ (Hassager (1988)) supports this statement). A further study
by Evans and Walters (1989) investigated flow of aqueous PAA solutions through
abrupt and tapered planar contractions. In an attempt to observe a lip vortex they
decreased the concentration of the PAA. While no lip vortex was seen in
concentrations of 0.3% and 0.5% PAA, a lip vortex was observed in 0.2% PAA. The
contraction angle was found to affect the occurrence and formation of both the
corner and lip vortices: at an angle of 150° the lip vortex is not visible and the corner

vortex barely so.

A further experimental study by Nigen and Walters (2002) compares Boger fluid
flow through both abrupt axisymmetric contractions and abrupt planar contractions
of varying ratios. The vortices seen in the axisymmetric case were not observed in
the planar contractions and the planar contractions appear to be much less sensitive
to elasticity effects. They also note that for axisymmetric contractions the enhanced
pressure drop is larger for a Boger fluid than for a Newtonian fluid; however in the
planar contraction there is no difference in the pressure drop between the Newtonian
and Boger fluids. Nigen and Walters question whether an axisymmetric contraction
can be compared to a planar contraction. To this end, it is worth mentioning square-
square contractions, which may be considered more similar to an axisymmetric
contraction than a planar contraction. Alves et al. (2005) investigated experimentally
both Boger and Newtonian fluid flow through a 4:1 square-square contraction. For
the Newtonian fluid flows, inertia was seen to cause a reduction in the corner vortex,

which showed good agreement with their numerical simulations. The less elastic of
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the two Boger fluids under investigation showed that as the Deborah number was
increased the corner vortex initially increased slightly before shrinking to around a
quarter of the maximum vortex size, while as the Deborah number was increased
further divergent flow was observed (i.e. as was observed by Cable and Boger (1978
(a))). The more elastic of the two Boger fluids shows a more intense initial increase
in vortex size with increase in Deborah number and the divergence seen in the lower
elasticity flow is also seen here. For the higher elasticity fluid a lip vortex is
observed for a range of Deborah numbers whereas it is not seen in the lower

elasticity fluid.

There has also been much numerical research concerned with contraction flow, both
axisymmetric and planar, but similar to the experimental works, the main focus has
been on abrupt contractions and attempting to improve numerical methods. A
growing interest in numerical simulations based on finite-volume methods rather
than finite-element methods has been seen in recent years (Wachs and Clermont
(2000)). This growth in interest may be due to the ease of use of finite-volume
methods (Wachs and Clermont). It has also been found that results obtained using
the finite-volume method provide a better approximation to theory in some cases
(O’Callaghan et al. (2003)). Wachs and Clermont investigated flow of an upper
convected Maxwell (UCM) fluid through an abrupt axisymmetric contraction using
five meshes of varying refinement throughout the contraction. It was found that,
although the coarsest mesh could qualitatively describe the vortex shape, finer
resolution was required close to the re-entrant corner in order to predict the flow
characteristics accurately and that with an increase in Weissenberg number the
corner vortex is seen to grow. Alves et al. (2000) also used a finite-volume method
to investigate the flow of a UCM fluid through a 4:1 abrupt planar contraction using
four meshes of varying resolution and provided benchmark results up to a Deborah
number, De, of three. Their results (similar to those of Wachs and Clermont (2000))
show that more refinement of the mesh is required close to the re-entrant corner in
order to accurately predict the characteristics of the flow. Alves et al. also find that
as the Deborah number increases the corner vortex decreases while the lip vortex
increases until they merge into one vortex (De = 5) and the pressure drop is seen to
decrease with increasing De (however this is not greatly affected by mesh

refinement). Further investigations by Alves et al. (2003) provide benchmark
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solutions for Oldroyd-B and Phan-Thien/Tanner (PTT) fluids flowing through a 4:1
abrupt planar contraction. For the Oldroyd-B fluid the corner vortex is seen to shrink
with an increase in Deborah number while the lip vortex is seen to grow and the
pressure drop is seen to decrease, agreeing with their previous work investigating a
UCM fluid. For the linear PTT fluid the corner vortex is seen to grow with an
increase in Deborah number and the exponential PTT fluid exhibits an increase in
vortex size up to a maximum at De = 6 —7, followed by a decrease in vortex size.
For both the linear and exponential PTT fluid they observe an initial decrease in
pressure drop with an increase in Deborah number, followed by an increase in the
pressure drop after minima observed at De =20 (linear PTT) and De =1

(exponential PTT).

Over the years there have been several papers that summarise the research on
contractions. The interested reader is referred to the recent papers of Rodd et al.
(2005, 2007) and Alves et al. (2005) along with earlier papers such as Cable and
Boger (1978 (a)), White et al. (1987) and Boger (1987) for a more in-depth
discussion. In order to briefly overview some of the most important works in Tables
1.2 and 1.3 we present a summary of some of the previous works, both experimental

(1.2) and numerical (1.3), on contraction and expansion flows.

While experimentally investigating the flow of a viscoelastic fluid through a sudden
expansion preceded by a curved gradual contraction section Poole et al. (2005)
discovered an unusual phenomenon within their gradual contraction section. The aim
of their study was to investigate the asymmetry seen in planar sudden expansion
flows (bifurcation). This effect is known to occur in Newtonian fluid flow above a
critical Reynolds number of the order of 10 (the exact critical Reynolds number is
dependent on the expansion ratio, inlet velocity profile and several other factors
(Drikakis (1997)). The aim of the investigation was to determine whether or not
viscoelasticity has any effect on the occurrence of this asymmetry (numerical
investigations had shown that viscoelasticity increases the critical Reynolds number,
Oliveira (2003)). A gradual contraction was used prior to the sudden expansion
because, for Newtonian fluid flow, this produces a virtually uniform velocity profile
across the contraction exit as we have already mentioned. The geometry was a planar

8:1 gradual contraction followed by a 1:4 sudden expansion and the fluid used was

11
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0.05% polyacrylamide in water, which is a shear thinning viscoelastic fluid. A
transverse velocity profile, shown in Figure 1.3, measured at the exit of the
contraction indicated a major deviation from the ‘top hat’ profile that was
anticipated. The figure clearly shows two peaks towards the top and bottom of the
section when it would be expected that the flow would be uniform; this prompted
further investigations into the flow within the contraction itself. Figure 1.4 shows
spanwise velocity profiles measured within the gradual contraction along the XZ-
centreplane. Close to the sidewalls of the contraction huge velocity overshoots are
clearly visible. These overshoots were dubbed ‘cat’s ears’ by the authors due to their
appearance. Poole et al. (2007) extended their earlier work by investigating a gradual
contraction followed by a sudden expansion with a lower contraction/expansion ratio
than that used previously and also by conducting some numerical simulations. The
velocity overshoots observed in the previous study were reproduced experimentally
in the new geometry and the numerical results agreed qualitatively with the

experimental results, although the overshoots were much weaker in the simulations.

Afonso and Pinho (2006) conducted a detailed numerical investigation into the
viscoelastic smooth contraction flow problem in an attempt to reproduce the results
of Poole et al. (2007). These numerical investigations agreed qualitatively with the
experimental results and showed that the velocity overshoots were dependent on
large Weissenberg numbers, large second-normal stress differences, strain hardening
of the extensional viscosity, intense shear-thinning of the fluid and non-negligible
inertia. As discussed, previous numerical investigations were predominantly two
dimensional in nature, again focussing mainly on abrupt contractions, and hence
fundamentally different to the work of Poole er al. (2005). An exception is the work
of Binding er al. (2006), who investigated abrupt contractions/expansions with
rounded corners. However, their investigation was concerned primarily with the
pressure at various locations within the flow and, in particular, with understanding
the enhanced pressure drop that is known to occur for viscoelastic fluid flow through
sudden contractions. Alves and Poole (2007) investigated the flow of viscoelastic
fluids through smooth gradual planar contractions of varying contraction ratio in an
attempt to determine the divergence of the flows (divergence is used to mean the
divergence of the streamlines throughout the contraction, the streamlines would

normally be expected to be parallel with one another then become closer together as
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the flow progresses through a contraction but, actually, they have been seen to
separate or ‘diverge’ inside contractions). They observed divergent flows with the

degree of divergence increasing for smaller contraction ratios.

1.6.  Objectives of PhD

The main objective of the research discussed in this thesis was to determine whether
the effect observed by Poole et al. (2005) through a sudden expansion preceded by a
gradual contraction can be reproduced when a sudden expansion is not present and to
gain physical insight into the phenomenon. To this end the fluids investigated are
aqueous polyacrylamide and xanthan gum solutions at various concentrations; they
are tested at several Reynolds, Deborah and Weissenberg numbers in an attempt to
‘separate out’ various effects (e.g. shear thinning vs increased elasticity effects,
extensional effects) and determine the conditions required for the velocity overshoots
or ‘cat’s ears’ to be observed. A further objective is to provide high quality data that
can be utilised as a benchmark set of 3D experimental results, which can be used by
researchers who investigate numerical flows of non-Newtonian fluids to test their
codes: the gradual contraction alone is much more attractive from a modelling
perspective as the, often troublesome (Afonso and Pinho (2006)), sharp corners of

the sudden expansion are removed.

The current work investigates the flow of several non-Newtonian fluids through two
gradual planar contractions of contraction ratio of 8:1 and 4:1. The fluids have been
characterised using a steady-state shear rheometer and a capillary break-up
extensional rheometer in order to determine shear viscosities and relaxation times
with which to estimate the appropriate Reynolds, Deborah, Weissenberg and
Elasticity numbers for each flow. These techniques are discussed in detail in Chapter
2. The shape of the 8:1 contraction section is identical to that used in Poole et al.
(2005), the 4:1 contraction was designed using the same methodology as the 8:1
contraction but the end height is necessarily different in order to produce a smaller
contraction ratio. Both contractions are discussed in Chapter 3 along with a detailed
description of the complete test rig. The technique utilised for measuring the flow
velocities was laser Doppler anemometry, which can be used to measure the velocity

at discrete locations within the flow without affecting the flow in any way.
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Information regarding the laser Doppler anemometry set up is also provided in
Chapter 3. The corresponding results of the investigations are presented in Chapter 4
and the results are discussed in Chapter 5 where comparisons are drawn between the
flows through both contractions. The thesis ends with some conclusions, which place

the work in context, and recommendations for further studies.
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1.7. Tables

Table 1.1: Flow characteristics for approximate ranges of Reynolds Numbers for

internal flows of Newtonian fluids (from White (1999)).

Re Flow characteristics

0<1 Highly viscous, laminar ‘creeping’ motion

1 <100 Laminar, strong Reynolds number dependence

100 <1000 Laminar, boundary layer theory useful

1000 < 10* Transition to turbulence

10* < 10° Turbulent, moderate Reynolds number dependence
10° < oo Turbulent, slight Reynolds number dependence

15




Introduction

Summary of experimental works on contraction and expansion flow.

Table 1.2
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Summary of numerical works on contraction and expansion flow.

Table 1.3
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1.8. Figures
o
o
T T
> >
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(a) (b)

Figure 1.1: Examples of (a) extensional deformation and (b) shear deformation.

N T~
e _

(a) (b)

(©)

Figure 1.2: Examples of different types of contraction (a) curved gradual contraction,

(b) tapered gradual contraction and (c) abrupt contraction.
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1.25 ————— 1.25

0.75

0.5

0.25 0.25

Figure 1.3: Transverse profile measured at the start of the sudden expansion section
of an 8:1:4 gradual contraction sudden expansion geometry, which prompted further

investigation into the gradual contraction. (Taken from Poole ez al. (2005))

1.2 1.2

Figure 1.4: Spanwise profiles measured inside the gradual contraction section of an
8:1:4 gradual contraction sudden expansion geometry. (Taken from Poole et al.

(2005))
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Fluid Characterisation

2. Fluid Characterisation

2.1.  Shear rheology

The TA Instruments Rheolyst AR-1000N is a rotational controlled-stress rheometer
used in conjunction with the manufacturer’s software (Rheology Advantage
Instrumental Control V5.5.0), which can be adapted for use with several different

geometries, e.g. the double-concentric cylinder, cone and plate and parallel plates.

The double-concentric cylinder geometry (see Figure 2.1 for schematic) comprises
two stationary concentric cylinders and a rotating cylinder; the rotating cylinder fits
between the two stationary cylinders. The working fluid is placed between the two
stationary cylinders and the rotating cylinder is lowered into position. A metal
‘jacket’ surrounds the geometry and water is pumped through the jacket to control
the temperature. Double-concentric cylinders are used to test samples that have
relatively low shear viscosities because they have a much larger contact area than
other geometries, this means that for the same viscosity the torque, and consequently
the force, is much greater. As a result they can also be used to test at lower shear
stresses and their corresponding shear rates and may be used to determine the zero

shear rate viscosity for some fluids.

The cone and plate geometry (see Figure 2.2 for schematic) comprises a stationary
plate and a rotating cone; the cone is positioned directly above the plate. The
working fluid is placed on the plate and the cone is lowered to trap the fluid sample
between the plate and the cone. The plate is a Peltier plate, which uses the Peltier
effect to control the temperature of the working fluid. The tip of the cone is slightly
truncated so that the tip cannot become worn or damage the plate and there is a small
gap between the plate and the cone to adjust for this truncation. The main advantage
of the cone and plate geometry is that the shear rate is uniform throughout the

sample (in the parallel plate geometry it is not).

The parallel plate (see Figure 2.3 for schematic) works in the same way as the cone

and plate except the cone is replaced with a flat plate, which is parallel to the
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stationary plate and the user can define the gap between the two plates. The shear
rate is not uniform across the sample when parallel plates are used, however the
software can compensate for this effect (by calculating a ‘relevant’ shear rate,

7, =R42, where R is the radius (m) and w is the angular velocity (rad.s'l)) and the

resulting shear viscosity measurements are still accurate. Parallel plates can be used
to reach higher shear stresses and shear rates than the double concentric cylinder or
the cone and plate geometries because parallel plates are available with smaller
surface areas than the cone and plate and double concentric cylinder geometries.

Parallel plates can often be useful in determining the infinite shear rate viscosity, f_

(Pa.s), of a fluid because the gap can be defined by the user, hence controlling the
resultant Reynolds number of the flow within the fluid sample. In steady state shear
at high rotational speeds the shear viscosity appears to increase implying that the
fluid becomes shear thickening at high shear rates, however this is not necessarily
the case if the flow is no longer viscometric' (Barnes et al. (1989)). High rotational
speeds may induce so-called secondary flows, secondary flows absorb energy hence
increasing the torque and making the ‘shear viscosity’ appear to increase. Secondary
flows occur within the fluid sample when the Reynolds number is high
(approximately 1000 (White (1999))) but if parallel plates are used with a small gap
then the Reynolds number will be lower (in this case Re = pRwh/ i , where p is the

density of the sample (kg.m3 ), R is the radius (m), e is the angular velocity (rad.s™)

and £ is the gap between the two plates (m)) than if the cone and plate geometry

(Re = pwR’ | 1) were used for example (Pipe and McKinley (2009)).

2.1.1. Steady-state shear

Steady-state shear measurements are taken over a range of shear stresses determined
by the user. The software calculates a torque to correspond to each shear stress. The
rheometer applies the calculated torque, and hence shear stress, to the working fluid
sample by rotating the non-stationary component from each geometry (see Figures
2.1, 2.2 and 2.3). The resulting shear rate can be found by measuring the angular

velocity of the geometry and the shear viscosity can be calculated using

" In viscometric flow each fluid element undergoes a steady shearing motion only (Tanner (1985))
and no secondary flows are present.
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u=— (2.1)
/4

where o is a function of the torque and 7 is a function of the angular velocity, both

functions are dependent on the geometry in use. The rheometer changes the torque
nominally instantaneously. However even for a Newtonian fluid the corresponding
shear rate does not change instantaneously, as it takes some time to come to
equilibrium due to inertia effects (due to the instrument, geometry and fluid for
example). To determine that a steady-state has been reached the shear rate is
calculated (from measurements of the angular velocity) every 15 seconds until three
consecutive values are within 3% (3% is an arbitrary value, 1% would have been
ideal but time constraints led to 3% being selected) of each other, once these
conditions are achieved the corresponding shear viscosity can be calculated. The
shear stress is varied as required and the shear viscosities for each shear rate are
calculated to enable the variation of shear viscosity with respect to shear rate to be

determined.

Several empirical inelastic models can be fitted to steady-state shear data, such as the
power law (Barnes et al. (1989)) and Cross (Cross (1965)) models for shear-thinning
fluids and the Bingham model (Barnes et al. (1989)) for fluids exhibiting a yield
stress amongst many others. Here we use the Carreau-Yasuda model, which is used
to model the complete range for shear-thinning fluids,

(:uo —,um)

2.2
I+ e 7 .

Hoy =M +

where ﬂcy is a constant representing the onset of shear thinning (s), a is a

parameter introduced by Yasuda et al. (1981) and n is a power law index.

The zero and infinite shear rate viscosities can be used to estimate Reynolds numbers
at zero shear and infinite shear. The shear viscosity for other characteristic shear
rates can be estimated using the Carreau-Yasuda model once all parameters have
been determined. The parameters are determined using the least-squares-fitting
method as described by Escudier et al. (2001), this method minimises the standard

deviation
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)

where fgxp is the shear viscosity measured by the rheometer and pcy is the viscosity

determined using equation 2.2. This standard deviation is preferable because the
fluids investigated during this study cover a wide range of values for the shear

viscosity and it will not be heavily weighted toward higher viscosities as other

deviations may be (e.g. (,uEXP — Moy ).

2.1.2. Critical overlap concentration, c*

The critical overlap concentration, c*, for a polymer in solution is defined as the
concentration at which the polymer coils start to overlap with each other (Lapasin
and Pricl (1995), Tirtaatmadja et al. (2006)). Fluids with concentrations below c* are
said to be in the dilute range, the polymer molecules in a dilute solution are spaced
so that they will not interact with each other; fluids with concentrations above c* are
said to be in the semi-dilute range as the polymer molecules are close enough
together to begin to interact with each other. One way of estimating the critical
overlap concentration of an aqueous polymer is to determine the zero shear-rate
viscosity, 4, (Pa.s), using the Carreau-Yasuda model fit for example (as described
earlier) for several concentrations of the specified polymer (see for example Rodd et
al. (2000), for a series of xanthan gums). When g, is plotted against concentration
two power-law ranges become apparent (See Figure 2.4 for an example). These two
ranges are representative of the dilute range and the semi-dilute/concentrated range

and the point of intersection between these two ranges is called the critical overlap

concentration. In the dilute range the shear viscosity has been found to be
proportional to the concentration with a slope approximately equal to one (o< c')
and in the semi-dilute range the shear viscosity has been found to be proportional to
the concentration with a slope of around three to four (o< ¢>*) depending on how

rigid the polymer is (Lapasin et al. (1990), Rodd et al. (2000)). If the slope is close
to 3 then the polymer is flexible and if it is closer to 4 it is rigid (Lapasin et al.

(1990)).
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2.1.3. Normal-stress difference

In a polymer solution at rest one polymer-chain molecule occupies a spherical
volume and the entropic forces within the polymer solution determine this shape
(Barnes et al. (1989)). When a polymer solution is under shear deformation the same
molecule becomes ellipsoidal in shape with its major axis tilted in the direction of
shearing and internal restoring forces attempt to return the molecule to its original
spherical shape. These restoring forces are larger along the molecule’s major axis
and the total restoring forces are greater in the direction normal to the shear
deformation and this gives rise to the first and second normal-stress differences N;

and N, (Pa).

Several effects are attributed to the development of significant normal forces within
a flow, including the Weissenberg or rod climbing effect in which polymer solutions
climb a rotating shaft and extrudate swell (also known as die swell) where polymer
melts or solutions commonly swell to two or three times the die exit diameter

(Barnes et al. (1989))

The normal force is generally measured under steady-state shear at the same time as
the shear viscosity. During this investigation the geometry used to measure the
normal force was a cone and plate; the cone had a diameter of 6cm and an angle of
1°. From the total normal force we can find the first normal-stress difference using

(Walters (1975)),

R’ 2F
F="" N, =N ==,
2 R

(2.4)

where F' is the total normal force (N) and R is the radius (m). The experimental
values for F' may be slightly lower than the true values due to the effects of inertia,
this effect is known as the ‘negative normal stress effect” (Barnes et al. (1989)) and
can be corrected using (Walters (1975)),

_ 3mpw’R*
40

AF (2.5)
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where AF is the reduction in F due to inertia (N), p is the density of the sample and

 is the angular velocity (rad.s™).
2.1.4. Small amplitude oscillatory shear

The rheometer can also be used to apply an ‘oscillatory’ shear stress to the working
fluid by rotating the non-stationary component alternately clockwise and then anti-
clockwise. A ‘stress sweep’, in which the oscillatory shear stress is varied while the
frequency of oscillations is kept constant, is performed as a check to determine the
linear viscoelastic region for the fluid (i.e. the region where the results are
independent of the applied oscillatory stress). A ‘frequency sweep’ is subsequently
performed at an oscillatory shear stress within the linear viscoelastic region, the
oscillatory shear stress is kept constant and the oscillation frequency (@, rad.s”) is
varied in this case. Two frequency sweeps are performed at different values of
constant oscillatory shear stress from within the linear viscoelastic region in order to
confirm that the observed viscoelastic properties (the storage modulus (G”, Pa) and
the loss modulus (G”, Pa)) are independent of the oscillatory shear stress. The
storage modulus and the loss modulus can be used to calculate the dynamic rigidity

(Pa.s®) and the dynamic viscosity (77”, Pa.s) respectively, using (Barnes er al.)

’

e 2G
Dynamic Rigidity=—-, (2.6)
w
R : , G
Dynamic Viscosity=7"=—. 2.7)
0]
The dynamic viscosity should tend towards the same value as the zero shear rate
viscosity as the frequency decreases as it is a requirement of continuum mechanics

that at low shear rates and frequencies the shear viscosity and the dynamic viscosity

are equal (Barnes et al. (1989), Al-Hadithi et al. (1992)) ,
7(@)yso = 1(7), 0 (2.8)

G’ is zero for an inelastic fluid, hence the dynamic rigidity is also zero for an
inelastic fluid; if G” is non-zero it shows that the fluid is viscoelastic to some
degree. When small amplitude oscillatory shear measurements are performed on

water, or another Newtonian fluid, the rheometer may indicate a non-zero value for
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the storage modulus. This error is again due to the effects of inertia and this value
provides information on the rheometer’s resolution: such ‘limit’ data is highlighted
in the results. Any small amplitude oscillatory shear measurements for polymer
solutions that are close to these limits (within 10%) have been discounted, as they

are unlikely to be reliable.

A maximum relaxation time may be estimated using the storage and loss modulus

data by performing a Maxwell model fit using (Bird et al. (1977))

, & A
G =y haZ_ 2.9
Z;: (/1,. o) &9

= Z (2.10)

1+ /160

The maximum relaxation time is then determined from
DA,
>,

i

2= 2.11)

It is also possible to estimate the shear viscosity variation for polymeric solutions
from the G* and G” data using a relationship known as the Cox-Merz rule (Cox and

Merz (1958)),
~ [y +@10] 2.12)

where ‘,u*‘ is the complex viscosity. The rule suggests that the complex viscosity,

when plotted against the angular frequency, should coincide with the shear viscosity
variation against shear rate data. This essentially empirical rule has been shown to be
applicable for many polymer solutions including polyisobutylene in decalin and a
polypropylene copolymer melt (Al-Hadithi et al. (1992)). Similarly it is possible to
estimate the first normal stress difference N; from oscillatory data. Al-Hadithi et al.
suggest that when the elastic equivalent of the complex viscosity, G¢, is plotted

against the angular frequency this curve coincides with N,/2 plotted against . They

give G¢ to be
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s 2.13)
20(97,)

This rule was found to hold for the same polymer solutions for which the Cox-Merz

GC=G'{M+I} .

rule is valid and would be expected to also hold for the polyacrylamide and xanthan

gum solutions that are under investigation here.
2.2. Extensional rheology

For a Newtonian fluid the uniaxial extensional viscosity is always three times that of
the shear viscosity (Barnes et al. (1989)). This is not true, however, for non-
Newtonian fluids. It is not possible to estimate the extensional viscosity from the
shear viscosity or vice versa for a non-Newtonian fluid because of the huge variation
in properties. Throughout this investigation extensional rheology is used to
determine a relaxation time, from which both Deborah and Weissenberg numbers
may be estimated and hence Elasticity numbers may also be obtained. It is now well
known that the extensional properties of fluids have a strong influence on flow
through contractions (see, for example, Debbaut and Crochet (1988), Purnode and

Crochet (1998)).

The Thermo Haake Capillary Break-up Extensional Rheometer (CaBER) exerts a
uniaxial step strain, e.g. by creating a fluid filament, on a sample of the working
fluid and measures the reduction in filament diameter due to surface tension over
time (Rodd et al. (2005)). In the configuration used here a small column of fluid
(Iess than 0.2ml) is placed between two cylindrical platens with diameters of 4mm,
the upper platen is moved away from the lower platen almost instantaneously
(approximately 50-100ms) (see Figure 2.5 for schematic). An extensional strain is
exerted on the fluid sample and an unstable cylindrical fluid filament is formed.
Once the stretching has stopped the fluid is subject to an extensional strain rate,
which is determined by the extensional properties of the fluid (i.e. not controlled by
the instrument). The midpoint of the filament diameter decreases over time due to
surface tension and the extensional stresses within the fluid element resist this
thinning. A laser micrometer, resolution 10um, measures the reduction in the

midpoint diameter in order to provide information on the extensional properties of
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the fluid. Analysis of the filament diameter decay over time gives an estimated
relaxation time, which can be used to estimate a Deborah number, the relaxation

time can be found using (from Oliveira et al. (2006))

Dmid(f)=(D1+ ul jexp[ﬁ]—vz(t—tz) (2.14)
t+t

1
where ¢ is time, A is the relaxation time for the fluid (perhaps, more correctly,
‘characteristic time scale for viscoelastic stress growth in a uniaxial elongational
flow’ due to the fact that the stress does not relax as such, it grows as the filament
diameter decays (Rodd et al. (2005)). Dy, t,, ki, V> and t, are fitting parameters
(determined using the least-squares-fitting method described in 2.1.1.). Equation
2.14 describes the three regimes usually observed during capillary break-up of
flexible polymer solutions, the initial necking, the exponential thinning and the final

drainage regimes.

The CaBER experiment and the results are affected by several factors, such as the
initial and final aspect ratios and the strike time (Rodd et al. (2005)). The initial
aspect ratio (A,) is the ratio of the initial sample height to the sample (or platen)

diameter. If the initial aspect ratio of the column of fluid is too large sagging will
occur because of gravitational effects, i.e. the column will not be cylindrical as there
will be more fluid towards the base of the sample than the top. Numerical

simulations suggest that the optimal range for the initial aspect ratio is 0.5< A, <1
(Yao & McKinley (1998) and Rodd et al. (2005)). The final aspect ratio (A; ) is the

ratio of the final sample height to the platen diameter. If the final aspect ratio is too
small the filament that is formed will not be cylindrical causing the flow at the mid
point not to be purely extensional, but if it is too large the sample will break during
the platen separation and the required cylindrical filament will not form. The strike
time is the time taken for the top platen to move from its initial position to its final
position. It can be varied according to requirements; normally the strike time is of
the order 50-100ms. When the strike time is low, e.g. 50ms, and a very elastic fluid
is being tested, e.g. 0.05% polyacrylamide, oscillations can be seen within the
sample once the filament has formed, this means that the rheometer will not always
be measuring the correct part of the fluid filament. If the strike time is increased

slightly the oscillations become smaller and the results more reliable.
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The Thermo Haake CaBER should be used in conjunction with a high-speed camera
in order that the required final aspect ratio and strike time can be correctly selected
and amended as necessary. It is useful to be able to view a magnified image of the
sample before performing the test to assess whether the correct amount of fluid has
been used, and to confirm that the sample is cylindrical and neither slightly concave
nor convex. The camera also shows any small air bubbles that may not be visible to
the naked eye and the sample can be reloaded before performing the test. Use of a
high-speed camera can also provide another method of estimating the filament break
up time (by estimating the equivalent length of each pixel) and this result can be
compared with results from the laser micrometer. Unfortunately, however, the
resolution of the camera used during these investigations was not good enough to

precisely determine the variation in the filament diameter over time.

2.3.  Fluid selection

2.3.1. Polyacrylamide (PAA)

Polyacrylamide is a water-soluble polymer and was selected because 0.05% PAA in
water had previously been used by Poole et al. (2005) during the first observations of
the ‘cat’s ears’ effect. PAA is transparent making it ideal for obtaining laser Doppler
anemometry measurements (see Chapter 3 for details). It is a viscoelastic shear-
thinning fluid and generally thought of as having a ‘very flexible’ molecular
structure (Walters et al. (1990)). This flexibility means that the fluid has more
pronounced elastic properties than other water-soluble polymers such as xanthan
gum or carboxymethylcellulose. The polyacrylamide used during the investigation

was Separan AP 273 E with a molecular weight of approximately 2x10°g/mol.

Figure 2.6 shows the variation of shear viscosity with shear rate for 16
concentrations of PAA in water varying between 25ppm (i.e. 0.0025% w/w) and
0.35%. It can clearly be seen that even at low concentrations PAA is a weakly shear-
thinning fluid. The Carreau-Yasuda model (Equation 2.12) has been fitted to each set
of results and the corresponding curve is also shown in Figure 2.6. The filled

symbols indicate those results deemed to be below the effective resolution of the
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rheometer or adversely affected by secondary flows and hence not included in the fit.
Table 2.1 presents the corresponding fitting parameters for the fits shown in Figure
2.6. From the Carreau-Yasuda fit a zero shear rate viscosity can be estimated for
each concentration of PAA, these values allow the determination of the critical

overlap concentration.

Figure 2.7 shows the oscillatory shear data for concentrations above 0.05% PAA, the
results for concentrations below 0.05% were deemed to be too close to the limits of
the rheometer and hence are not presented. Figure 2.7 (a) shows the variation in the
storage modulus with angular frequency and Figure 2.7 (b) shows the variation in the
loss modulus; from this data it is possible to calculate the dynamic viscosity and the
dynamic rigidity as described earlier in the chapter and these values can be seen in
Figures 2.7 (c¢) and 2.7 (d). Figure 2.7 (c) shows the dynamic rigidity for the various
concentrations, calculated from G, which should be zero for an inelastic fluid. As
can be seen from Figures 2.7 (a) and (c) neither G’ nor the dynamic rigidity are zero
hence the fluids are elastic. G'and G” both increase as the concentration of
polyacrylamide increases, hence the dynamic viscosity and dynamic rigidity are also

seen to increase with an increase in concentration.

Figure 2.8 shows the variation in zero shear rate viscosity with concentration. Two
clear power-law ranges can be seen indicating the dilute range and the semi-dilute
range. The point at which the curves intersect allows the determination of the critical
overlap concentration, c*, here found to be approximately 0.03% PAA. As
mentioned earlier in the chapter the slope of the dilute curve should be around 1 and
Figure 2.8 shows that for this polymer it is, in fact, 0.78. The slope of the semi-dilute
power law curve is 3.3 confirming that polyacrylamide is a flexible polymer. The
filled symbols show the concentrations selected for the detailed fluid dynamic
investigation. The concentrations of PAA chosen for these investigations were
0.05% (c/c*=1.67) to correspond to the measurements performed by Poole et al.
(2005), 0.03% because this concentration was determined to be approximately equal
to c*, 0.01% (c/c*=0.33), which is well within the dilute range and 0.3% (c/c*=10)
was selected with the intention of decreasing the Reynolds number in an attempt to

minimise the effects of inertia. Extensional rheology measurements were performed
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on these fluids in order to determine a relaxation time for the fluid, which could be

used to estimate a Deborah number, Dec.

Because 0.01% PAA is in the dilute range neither N;, oscillatory nor extensional
measurements were obtainable. The shear viscosity variation with shear rate for this
fluid can be seen in Figure 2.6 (b). Figure 2.9 shows the material properties for
0.03% PAA. It is seen to be shear thinning and, although the oscillatory data for
0.03% PAA was deemed to be too close to the limits to be reliable, the dynamic
viscosity has been included in this figure. At this concentration the G~ data makes
up approximately 99% (Barnes et al.) of the measurement while the G’ data is the
remaining 1% meaning the G’ data is still effectively reliable. The dynamic
viscosity, which corresponds to the G” data, agrees well with the zero shear rate
viscosity as the shear rate tends towards zero. Figure 2.10 shows the material
properties for 0.05% PAA and Figure 2.11 the material properties for 0.3% PAA.
Both fluids are seen to be shear thinning and elastic with the dynamic viscosity
tending towards the same value as the zero shear rate viscosity as the shear rate tends

towards zero as expected (Equation 2.8).

Figure 2.12 presents the normal force data for the 0.03%, 0.05% and 0.3% PAA,
along with the corresponding relaxation times (estimated using N, =2Ary as

discussed in Chapter 1). For each concentration the first normal-stress difference is
observed to increase with an increase in the shear rate and the relaxation time is seen
to decrease with an increase in the shear rate. As might be expected at a given shear
rate, the higher the concentration, the larger N, and the relaxation time. The power
law index of the first-normal stress difference (on a log-log plot at shear rate ranges
between approximately 700 and 6000) is approximately the same for each of the
three concentrations of polyacrylamide with a value of 0.8 as shown by the full black
lines. This result implies that the polymer itself determines this slope, rather than the

concentration.

Figure 2.13 shows the extensional rheology data for two samples of 0.03% PAA.
The filament diameter is seen to decay over time as expected and is fully broken up

after approximately 0.1s. The formula given in equation 2.14 was fitted to the data
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(shown as a full line in Figure 2.13) and a relaxation time of 1=0.025s was estimated
from this fit. The fitting parameters are given in Table 2.2. Figure 2.14 is a selection
of photographs taken with a high-speed camera during the tests. It is clear from these
images that the initial sample is correctly loaded and the filament diameter decay
over time can be seen. Figure 2.15 gives the extensional rheology measurements for
two samples of 0.05% PAA, again the filament diameter is seen to decay over time
but for the 0.05% PAA solution the break-up time is longer than for the 0.03%
solution, indicating that 0.05% PAA has a longer relaxation time than 0.03% PAA.
As for the 0.03% PAA, the data was fitted to Equation 2.14 and a relaxation time of
4=0.056s was estimated. Figure 2.16 shows some of the high-speed camera images
taken during the 0.05% PAA measurements. Clearly the sample has been correctly
loaded and a suitable cylindrical filament has formed during the test. Figure 2.17
shows the experimental data for two samples of 0.3% PAA. As might have been
expected the 0.3% PAA solution takes much longer to break up than either the
0.03% or 0.05% solutions. In this case the relaxation time was estimated to be
A=3.44s, which is an order of magnitude larger than that for the lower concentrations.
Figure 2.18 is a sample of the high-speed images obtained during a test on 0.3%
PAA. The images show that the fluid sample was loaded correctly and that the
filament is cylindrical throughout its decay. On closer inspection of the high-speed
camera images (Figures 2.14, 2.16 and 2.18) the filament in each case was found to
be perfectly cylindrical with no discernible ‘bowing’, which means that the flow at
the filament mid-point is purely extensional and provides a level of confidence in

any relaxation times obtained from the fitted data.

2.3.2. Xanthan gum (XG)

Xanthan gum is classed as ‘semi-flexible’ (Rodd ef al. (2000)) i.e. less flexible than
polyacrylamide and was chosen for comparison with PAA in an attempt to isolate
any effects that may be due to shear thinning. Similar to PAA, xanthan gum is also
soluble in water and transparent making it ideal for obtaining LDA measurements.
The xanthan gum used during this investigation was Keltrol TF from Kelco with a

molecular weight of approximately 106g/m01.
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Figure 2.19 shows the variation in shear viscosity with shear rate for 13
concentrations of XG varying from 0.01% to 1%. As for polyacrylamide, the
Carreau-Yasuda model was fitted to this data (fitting parameters are given in Table
2.3) to estimate the zero shear rate viscosities and determine the critical overlap
concentration. Figure 2.20 shows where the dilute and concentrated ranges intersect,
giving an estimate for ¢* of 0.064%. The slope of the dilute curve is 1.4 and the
slope of the semi-dilute curve is 4.6, which means that xanthan gum is more of a
rigid polymer than a flexible polymer similar to the polyacrylamide described earlier

(Lapasin and Pricl (1995)).

The filled symbols in Figure 2.20 represent the two concentrations chosen for the
detailed fluid dynamic measurements. 0.07% xanthan gum was selected because its
viscosity at the relevant characteristic shear rates approximately matches that of
0.05% polyacrylamide. Figure 2.21 shows the variations in shear viscosity with
shear rate for 0.07% XG and 0.05% PAA for comparison. Figure 2.22 includes a
complete set of material properties for 0.07% xanthan gum showing that it is a

weakly elastic shear thinning fluid.

Extensional rheology measurements could not be obtained for 0.07% xanthan gum
using the CaBER technique previously described, presumably as it is more rigid than
polyacrylamide and therefore less tension thickening (Barnes et al. (1989)).
Measurements of the first normal-stress difference for this fluid were also below the
sensitivity of the rtheometer and confirm the less elastic nature of xanthan gum in
comparison to PAA. This lack of data prevents estimating a Deborah number for

0.07% xanthan gum.

0.5% xanthan gum was selected because a relaxation time can be estimated from
CaBER extensional rheology measurements. The relaxation time is similar to that for
0.03% PAA so 0.5% XG was chosen in the hope that velocity overshoots might be
observed for the flow of this fluid through the gradual contraction. Figure 2.23
provides a full set of material properties for 0.5% xanthan gum showing that the
fluid is shear thinning and much more elastic than the lower concentration. Figure
2.24 shows the extensional rheology results for two samples of 0.5% XG. From

these results a relaxation time of 0.034s was estimated for 0.5% xanthan gum and the

37



Fluid Characterisation

fitting parameters are given in Table 2.4. Figure 2.25 shows a selection of images
taken by the high-speed camera. They clearly show that the sample was correctly

loaded and how the filament diameter decays over time.
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2.4. Tables

Table 2.1: Table of fitting parameters for the Carreau-Yasuda fits performed on

polyacrylamide solutions.

Conc (%) U, (Pa.s) U, (Pas) | Acy (s) a n

0.0025 0.0017 0.0014 0.017 1.23 1.96
0.00375 0.0024 0.0015 0.037 0.94 1.10
0.005 0.0027 0.0016 0.041 0.87 0.95
0.01 0.0058 0.0018 0.095 0.82 0.77
0.02 0.0086 0.0026 0.043 0.70 1.37
0.03 0.012 0.0025 0.086 0.48 1.50
0.04 0.029 0.0023 0.27 0.72 0.56
0.05 0.073 0.0025 0.45 0.52 0.61
0.075 0.28 0.0033 8.89 1.04 0.57
0.1 0.63 0.0031 13.86 1.25 0.56
0.125 1.75 0.0034 13.01 0.72 0.63
0.15 2.90 0.0044 62.12 0.91 0.61
0.2 5.17 0.0076 50.93 0.78 0.68
0.3 22.68 0.0096 104.5 0.77 0.72
0.35 39.91 0.0097 100.9 0.74 0.75

Table 2.2: Table of fitting parameters for the fits performed on the extensional

rheology measurements for the polyacrylamide solutions.

Conc (%) D (mm) t1 (s) k1 (mm.s) Vs (mm.s'l) t (s)
0.03 -0.25 0.23 0.085 0.70 0.10
0.05 -0.16 2.16 0.82 0.26 0.51
0.3 2.32 0.55 0.20 -0.099 2091
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Table 2.3: Table of fitting parameters for the Carreau-Yasuda fits performed on

xanthan gum solutions.

Conc (%) U, (Pa.s) U, (Pas) | Acy (s) a n

0.01 0.0040 0.0013 0.44 0.37 0.56
0.025 0.015 0.0013 0.30 0.38 0.51
0.04 0.026 0.0013 0.49 0.42 0.53
0.05 0.041 0.014 0.78 0.51 0.51
0.07 0.17 0.0017 1.12 0.34 0.64
0.1 0.18 0.0021 0.73 0.55 0.67
0.15 2.37 0.0028 1.77 0.28 0.85
0.2 11.08 0.0033 7.40 0.27 0.87
0.25 16.01 0.0031 41.50 0.52 0.75
0.38 350 0.0051 563 1.15 0.81
0.5 870 0.0069 500 0.67 0.88
0.75 1200 0.0094 650 1.37 0.85
1 9000 0.018 650 0.74 1.01

Table 2.4: Table of fitting parameters for the fits performed on the extensional

rheology measurements for the xanthan gum solutions.

Conc (%)

Dy (mm)

11 (s)

ki (mm.s)

Vs (mm.s’l)

12 (s)

0.5

5.32

2.52

5.94

4.37

-1.46
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2.5. Figures
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Figure 2.1. Schematic diagram of the double concentric cylinder geometry: (a)
Rotating cylinder, (b) Stationary cylinders, (c) Cross section of geometry while in

use (R;=20mm, R,=20.38mm, R3=21.96mm and R4=22.34mm).
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Figure 2.2. Schematic diagram of the cone and plate geometry while in use.
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Figure 2.3 Schematic diagram of the parallel plate geometry while in use.
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Figure 2.4: Example of the two power law ranges apparent when plotting zero shear
rate viscosity against polymer concentration.
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Figure 2.5: Schematic showing the dimensions and aspect ratios for initial and final
CaBER plate positions.
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Figure 2.6: Variation of shear viscosity with shear rate and Carreau-Yasuda model
fits for various concentrations of polyacrylamide (NIF indicates points not included
in the fit).
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Figure 2.7: Oscillatory shear data for PAA, (a) storage modulus (G”) data, (b) loss
modulus (G”) data, (c) dynamic viscosity data (=G”/@) and (d) dynamic rigidity

data (=2G’/@”), the black line shown in (a) and (b) indicates the limits of the
rheometer and the key given in (d) is valid for all figures.
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Figure 2.8: Variation in zero shear rate viscosity, determined using the Carreau-
Yasuda model fit, with increase in concentration of polyacrylamide showing the
critical overlap concentration (=0.03% PAA), the filled symbols identify the
concentrations used during the detailed fluid dynamical measurements.
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Figure 2.9: Material properties for 0.03% polyacrylamide (L] represents the shear
viscosity and Il the dynamic viscosity).
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Figure 2.10: Material properties for 0.05% polyacrylamide (L] represents the shear
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Figure 2.12: First normal-stress difference (open symbols) and relaxation time (filled
symbols) data for 0.3% polyacrylamide (m), 0.05% polyacrylamide (A) and 0.03%

polyacrylamide (e).
10”5
g
i 10" 4
) ]
Eﬁ 1
|5 .
£ |
<
S
=
Q
;% 1074
= ]
lO’3 \\\\I\\\\I\\\\I\\\\I\\\\I\\\\
0 0.02 0.04 0.06 0.08 0.1 0.12
Time, t, s

Figure 2.13: Extensional rheology data for 0.03% polyacrylamide, the lines

correspond to the fit given in Equation 2.14.
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Figure 2.14: High-speed camera images of extensional rheology tests for 0.03%
polyacrylamide at (a) -0.1s, (b) -0.05s, (c) 0.0s, (d) 0.05s and (e) 0.1s A,=0.5, A,

=1.78 and the strike time is 100ms.
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Figure 2.15: Extensional rheology data for 0.05% polyacrylamide, the lines
correspond to the fit given in Equation 2.14.
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Figure 2.16: High-speed camera images of extensional rheology tests for 0.05%
polyacrylamide at (a) -0.1 s, (b) -0.05s, (c) 0.0s, (d) 0.05s, (e) 0.10s, (f) 0.20s, (g)
0.25s, (h) 0.35s, (i) 0.40s, and (j) 0.50s A;=0.5, A ,=1.78 and the strike time is

100ms.
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Figure 2.17: Extensional rheology data for 0.3% polyacrylamide, the lines
correspond to the fit given in Equation 2.14.
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Figure 2.18: High-speed camera images of extensional rheology tests for 0.3%
polyacrylamide at (a) -0.1s, (b) -0.05s, (c) Os, (d) 0.5s, (e) 1s, (f) 1.5s, (g) 2s, (h)
2.5s, (i) 3s and (j) 3.5s in 0.5s intervals A;=0.5, A,=2.08 and the strike time is

100ms.
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Figure 2.19: Variation of shear viscosity with shear rate and Careau-Yassuda model
fits for various concentrations of xanthan gum (NIF indicates not included in fit).
(Japper-Jaafar, 2009)
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Figure 2.20: Variation in zero shear rate with increase in concentration of xanthan
gum showing the critical overlap concentration (=0.064% XG), the filled symbols
identify the concentrations used during the detailed fluid dynamical measurements.
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Figure 2.21: Variation in shear viscosity with shear rate and Careau-Yassuda fits for
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Figure 2.22: Material properties for 0.07% xanthan gum ([ represents the shear
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Figure 2.23: Material properties for 0.5% xanthan gum ([ represents the shear
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Figure 2.24: Extensional rheology data for 0.5% xanthan gum (Japper-Jaafar, 2009)
the lines correspond to the fit given in Equation 2.14.

Figure 2.25: High speed camera images of extensional rheology tests for 0.5%
xanthan gum at (a) -0.1s, (b) Os, (c) 0.04s, (d) 0.08s and (e) 0.12s, A;=0.5, A ,=2.2

and the strike time is 50ms (Japper-Jaafar, 2008).
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3. Experimental Test Rig and Instrumentation

3.1. Testrig and mixing protocol

A schematic diagram of the flow loop is shown in Figure 3.1. A stainless steel tank
with a capacity of approximately 80 litres feeds a progressive cavity pump
(manufactured by Mono Pumps, type Monobloc B021) capable of pumping up to
3m’/hr at maximum power. The flow enters a square duct comprising 1.2m long
sections, which have internal dimensions of 80mm by 80mm, i.e. hydraulic diameter

Dy = 80mm (where D, = (4A)/ P, A being the cross-sectional area (mmz) and P the

wetted perimeter of the duct (mm)). The sections of square duct were manufactured
from stainless steel and precision ground to the correct size, two of these sections
precede the contraction test section (described below), giving a distance of at least 32
hydraulic diameters before the contraction to ensure that the flow is fully developed
(Durst et al. (2005)) when it reaches the contraction. The contraction test section is
then followed by another 1.2m section of square duct. The flow returns to the tank
through a 1¥4” plastic pipe via a Coriolis flowmeter (manufactured by Endress and
Hauser, type Promass 63), which measures the mass flow rate, (kg.s'l), from
which the bulk velocity, Ug (m.s'l), can be estimated. The uncertainty in the flow
rate was estimated to be approximately 1.5%. A Coriolis flowmeter was used since
they have been found to be more accurate for non-Newtonian fluids than other
flowmeters such as electromagnetic and especially ultrasonic flowmeters (Fyrippi et
al. 2004). The fluid temperature is monitored using a platinum resistance
temperature probe, with resolution of +0.01°C, mounted within the tank. The
variation in fluid temperature was within 1°C for each velocity profile, which

typically took 1 hour to measure.

Although a mixing loop is incorporated into the test rig, for the majority of the
results in this investigation it was not used to mix the fluids. Initially the polymer
solutions were mixed within the mixing loop and the test rig, but early measurements
indicated that the polymer solution was degrading before the solution had reached
homogeneity. Shear viscosity measurements of the solution were taken during

mixing and compared to benchtop results in order to determine whether the fluid was

55



Experimental Test Rig and Instrumentation

correctly mixed. In the ‘mixing loop’ case the shear viscosity never reached the
expected level, even after several days of mixing. To overcome this problem an
alternative mixing protocol was developed. The polymer solutions were mixed
outside of the rig in 10 litre batches using an overhead stirrer then transported into
the tank where the solution was mixed for around 30 minutes using the mixing loop
before being drained into the rest of the test rig. This mixing method proved to be
both more efficient and more reproducible than the previous method. In addition,
mixing the polymer solutions external to the rig meant that it was possible to
perform velocity measurements on one batch and mix further batches at the same
time. This method also meant that the exact amount of polymer was added to the
exact amount of water required. When mixing in the rig, ensuring the correct amount
of water was more problematic as often there were air bubbles trapped in sections of

the rig that were not immediately apparent.

Degradation of the polymer solution before the fluid was fully mixed highlighted
that the fluids would have a limited lifetime during which they would produce
reliable and repeatable results. To this end a set of degradation tests was performed
to determine the length of time that 0.05% polyacrylamide (at two different flow
rates) could be used within the test rig in conjunction with the 8:1 contraction
section. Velocity profiles were measured and the time at which the maximum
velocity was observed for each profile recorded. A fluid sample was taken from the
rig (via a tapping immediately upstream of the contraction section) between each
velocity profile measurement, then both shear and extensional rheology
measurements were performed and the total time that the fluid was pumped for was
also recorded. The velocity profiles in the contraction were seen to change
dramatically, as shown in Figure 3.2, with the maximum near wall velocity
decreasing significantly over time; however there was a period of approximately 5-6
hours where the results, particularly the maximum overshoot velocity, exhibited little
variation, as shown in Figure 3.3. The shear viscosity of the fluid and the relaxation
time were also seen to decrease with time (see Figures 3.4 and 3.5). The shear
viscosities and relaxation times for the first sample and the sample taken after 6
hours give the ‘window’ in which the shear viscosity or relaxation time is still within
acceptable limits (see Figures 3.6 and 3.7). Interestingly, the extensional rheology

appeared to be affected to a greater extent than the shear rheology by the degradation
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of the polymer. As a consequence, for the remainder of the tests reported here the

extensional rheology was used as the primary check to monitor fluid degradation.

3.1.1. Gradual Contraction Test Section

The gradual contraction section is made up of three components, the first being a
square cross section with internal dimensions 80mm by 80mm (i.e. the same
dimensions as the upstream square duct), the second being the smooth gradual planar
contraction of either 8:1 or 4:1 contraction ratio, and the final part being a
rectangular cross section with internal dimensions of either 80mm by 10mm or
80mm by 20mm to accommodate the contraction ratio. In order to aid visualisation
of the flow at various positions, the walls of the contraction section are all made
from Perspex and the section can be rotated about the x-axis. The dimensions for
both contractions are given in Table 3.1 and an isometric diagram of both test
sections is shown in Figure 3.8. Figure 3.9 is a photograph of the 8:1 contraction test

section.

Figure 3.10 shows a schematic of the 8:1 contraction, which is a smooth gradual
planar contraction. The contraction has a length, L, of 54.54mm and constant width,
w, of 80mm. The contraction comprises two radii, the first being a 40mm concave
radius followed by a 20mm convex radius and the height of the contraction varies
gradually between the upstream duct height, D=80mm and the downstream duct
height d=10mm. A rectangular channel, with internal dimensions 80mm by 10mm,
follows the contraction. The end of the contraction is defined as x=0, which means

x/L =-1 represents the beginning of the contraction section.

For every fluid investigated in the 8:1 contraction, measurements were made from
wall to wall across the XZ-centreplane at six positions, x/L=-1, x/L=-0.72, x/L=-0.45,
x/L=-0.27, x/L=-0.17 and x/L=0.10. These positions correspond to the start of the
contraction then 15mm, 30mm, 40mm, 45mm and 60mm from the start of the
contraction. Once symmetry had been confirmed it was decided to measure only half
profiles in the spanwise direction because of the time limit on each batch of fluid
imposed by the rate of fluid degradation. For some of the fluids, measurements were

made at the same six positions across the XY-centreplane. For 0.3% PAA extra
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profiles were measured at x/L=-1.18 and x/L=-0.22 (i.e. 10mm before the start of the
contraction and 42.5mm into the contraction). In addition, for all fluids profiles were
measured at x/L=-3.2, approximately 120mm upstream of the contraction, across
both the XY- and XZ-centreplanes in order to confirm that the flow is fully
developed and a ‘centreline’ profile (i.e. —3.2<x/L<0 along z/w = 0) was measured to
determine the strain rate profile and also to provide a consistency check with the

profiles in the XZ-centreplane.

Figure 3.11 shows a schematic of the 4:1 contraction section. It is similar in shape to
the 8:1 contraction but there are obvious differences to accommodate the change in
contraction ratio. The contraction still comprises two radii, a 40mm concave
followed by a 20mm convex, however as the contraction ratio has been changed the
downstream duct height, d, is now 20mm and the length, L, is 51.98mm. Again x=0
has been defined at the end of the contraction, making x/L=-1 the start of the

contraction.

In the 4:1 contraction measurements were made across both the XY- and XZ-
centreplanes at six positions, x/L=-1, x/L=-0.71, x/L=-0.42, x/L=-0.23, x/L=-0.13 and
x/L=0.15. These positions, similar to in the 8:1 contraction, correspond to the start of
the contraction, 15mm, 30mm, 40mm, 45mm and 60mm from the start of the
contraction. For 0.3% PAA two extra profiles were measured 10mm prior to the start
of the contraction and 42.5mm after the start of the contraction (i.e. x/L=-1.19 and
x/L=-0.18). As for the 8:1 contraction profiles were measured at x/L=-3.2 across both
centreplanes to confirm that the flow is fully developed before it reaches the

contraction and a ‘centreline’ profile was also measured.

The following ‘definitions’ will be used throughout the results and discussion in
reference to both contractions. Transverse and top to bottom profiles are measured
on XY planes and the ‘top’ and ‘bottom’ of the contraction are the curved walls.
Spanwise and side to side profiles are those measured on XZ planes and the ‘side’

walls are the plane walls.

Figure 3.12 is a schematic of both contractions, provided for comparison. Both

contractions are identical to start with, changing towards the end of the contraction
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resulting in a different end height, d, length, L, and contraction ratio. The differences
between the two contractions are highlighted when the Hencky strain (Collier et al.
2002)) is determined for each contraction. The Hencky strain may be calculated

using

_(t. u,du . u,
£, —joedt:jul 7_znu—l:wnCR 3.1)

where CR is the contraction ratio and u; and u, are the velocities upstream and
downstream of the contraction respectively. This gives Hencky strains of £, =2.08
for the 8:1 contraction and &, =1.39 for the 4:1 contraction. It is clear that the

Hencky strain exerted on the fluids is much larger (approximately 50%) through the

8:1 contraction than through the 4:1 contraction.
3.2. Estimation of Reynolds, Deborah and Elasticity numbers

As stated in Chapter 1, the Reynolds number is defined as Re = pU ,l/ u(7)
(Equation 1.3). In this investigation the velocity scale has been defined as the bulk
velocity at the end of both contractions (i.e. Uy), which can be determined using the
contraction width and end heights along with the measured mass flow rate, the length
scale is defined as the end height of each contraction (i.e. d). For non-Newtonian
shear thinning fluids it is impossible to unambiguously define a single value of the
viscosity. The method adopted here was to determine a characteristic shear rate,

Veu » using the same velocity and length scales as used to calculate the Reynolds
number, giving ., =U,/d, and then to use the Carreau-Yasuda model fit
(Equation 2.2) to determine a characteristic shear viscosity, (., corresponding to

this shear rate. This gives us a redefined Reynolds number of
_pUd
Hen

Re (3.2)

The quantities used to calculate the Reynolds numbers and other parameters for both
contractions are given in Table 3.2. The Reynolds number could of course be
calculated using different values for the shear viscosity, such as the infinite shear-

rate viscosity () or the zero shear-rate viscosity (). These viscosities are
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measured at shear rates much larger or much smaller than those observed throughout
these investigations and as such would lead to either very high or very low Reynolds
numbers, which would not provide a very good estimate of the importance of inertia
forces in the flow. Another alternative is to use the wall shear rate instead of defining
a characteristic shear rate, however this method is best suited to fully-developed flow

as for contraction flows the wall shear rate is continually changing with location.

The Deborah number was also defined in Chapter 1 as De=A/T (Equation 1.4). T

is taken to be the inverse of the characteristic shear rate, i.e. d/U, . It is possible to

determine the relaxation time in a number of deformation modes, as discussed in
detail in Chapter 2. In this investigation relaxation times have been found using both
CaBER extensional viscosity measurements and, where possible, from steady-state
shear measurement of the first normal-stress difference. The flow is a combination of
shear flow close to the sidewalls of the contraction and extensional flow along the
centre of the contraction, which is why relaxation times have been estimated using
these two different methods. To this end two relaxation times, Ac and An; are defined

for each contraction ratio. These relaxation times lead us to define the Deborah

numbers as
AU
De. = Cd 4. 3.3)
Dey, = /IN;UC‘ . (3.4)

The Weissenberg number was defined in Chapter 1 as Wi=Ay or Wi=A¢é

(Equation 1.6). Because the strain rate, £, is not uniform throughout the contraction
it has been estimated along the centreline of the contraction (i.e. where the XY- and
XZ-centreplanes intersect) from streamwise velocity measurements taken along the
centreline. The strain rate is then simply the change in velocity divided by the
change in distance (i.e. dUc/dx). As discussed above the relaxation time, A, has been
estimated in two different ways, hence two Weissenberg numbers are defined as

Wi. = A.€, (3.5)

Wiy, = Ay, £ . (3.6)
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Two Elasticity numbers have been defined in Chapter 1 as El;=De/Re and El,=Wi/Re
(Equations 1.7 and 1.8). Since there are two Deborah and Weissenberg numbers for
each contraction there will be four Elasticity numbers, which are also defined in
Table 3.2. As there are so many alternative values for El, De and Wi it was decided
to focus primarily on Dec as we had a priori knowledge of the CaBER relaxation
times and could easily estimate the characteristic shear rates from the flow rates. As
a consequence of this, Dec was used to ‘match’ the Deborah number for some of the

fluids in an attempt to isolate various effects.
3.3. Laser Doppler Anemometry (LDA)

Laser Doppler anemometry is a method for measuring the flow velocity of a fluid at
discrete locations within a flow. LDA does not disturb the flow so can be used in
place of intrusive mechanical probes, such as hot-wire anemometers or pitot tubes,

which may become contaminated over time by polymer deposits (Rudd (1972)).

In 1964 Yeh and Cummins measured the velocity profiles in fully-developed laminar
pipe flow of water in the first application of LDA to fluid mechanics. Since then
many advancements to the technique have been made, including progress in optical
arrangements, signal-processing systems and light scattering or seeding particles
(Durst et al. (1976)). These developments and a thorough description of LDA are
given by Durst ef al. and more recent developments are noted by Tropea (1995). As

the technique is so well developed only a brief overview is given here.
3.3.1. Theory

A laser produces a single beam, which is split into two beams by a beam splitter
within the probe. The two beams are then focussed on an intersection volume within
the flow. Interference fringes form within this intersection volume (see Figure 3.13)
and the spacing between these interference fringes (0, m) can be calculated using
o= A, (3.7)
2 sin(%)

where 4y, (m) is the wavelength of the laser light and 6 (°) is the angle between the

two laser beams.
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When a particle crosses one of the interference fringes a burst of reflected and

scattered light, known as a Doppler burst, is produced. The frequency of this light

( fo» Hz) is dependent on the fringe spacing (Equation 3.7) and the particle velocity

normal to the laser beams. The Doppler burst is detected by a receiving optic and this

information is sent to a burst spectrum analyser (BSA) for analysis. The BSA

calculates the particle velocity (U , m.s™) using
2sin(%)

The probe is set up so that the interference fringes form normally to the direction of

(3.8)

the flow and a component of the flow velocity can be measured.

The LDA system may be arranged in either forward scatter or backward scatter. This
refers to the position of the receiving optics in relation to the intersection volume and
also the direction of the reflected light. If we say that the laser light is travelling
forwards from the probe then receiving optics on the same side of the intersection
volume as the probe are set up for backward scatter and will see the reflected light
from the Doppler burst. Receiving optics on the opposite side of the intersection are
set up for forward scatter and will see the scattered light from the burst. Some laser
systems have receiving optics incorporated into the laser probe and this may be used
for backward scatter rather than separate optics being required. It is, however,
preferable to use forward scatter as this will provide a much better data rate (van
Maanen (1999)) since more light from the Doppler burst is scattered forwards than is

reflected backwards.

3.3.2. Equipment

The LDA system used here (see Figure 3.14 for a schematic) is composed of an
integrated laser-optics system comprising a laser connected to a probe by a fibre
optic cable (see below for details), receiving optic set up to receive in forward scatter
with a focal length of 300mm connected to a photomultiplier (PM) tube and a burst
spectrum analyser (BSA), Dantec model number 57N21, in conjunction with a PC to

run the accompanying data-processing software. Throughout this investigation two
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integrated laser-optics systems were used, the Dantec Flowlite and the Dantec
Fibreflow, Table 3.3 presents the specifications for both systems. The Flowlite was
used due to the initial unavailability of a Fibreflow system. The Fibreflow has a
much smaller measuring volume, which means that the transit time of each particle is
shorter, as such there will be less noise in the data and broadening effects are
reduced. The average number of bursts collected at each point while using the
Flowlite was between 9500 and 10000, while when using the Fibreflow it was
increased to between 19000 and 20000 bursts per point. The maximum statistical

uncertainty for the data was estimated to be approximately 0.6% using

Error,,,, =Z. s 3.9

mean \/N_S

where Ny is the sample size, us is the sample average, o is the standard deviation and

Zc is a constant, with value 2, defined by Yanta and Smith (1973).

In order to increase the available data rate seeding particles are used within the flow.
These particles have no effect on the fluid characteristics and increase the number of
bursts that will be picked up by the BSA (Ikeda et al. (1994)). The seeding particles
used throughout this investigation were Timiron Supersilk MP-1005, manufactured
by S. Black Ltd. These particles have an average particle size of Sum and

approximately 0.05g were added to each solution (total mass approximately 70kg).

Movement of the LDA probe is achieved through use of an in-house three-
dimensional traverse with step size resolution of *5um. The traverse can be
automated or controlled manually and can move in the x, y and z planes, allowing

optical access to any region in the flow.

3.3.3. Refraction Correction

When light travels through different materials, such as glass, plastic and water, it
travels at different speeds (Overheim and Wagner (1982)). The same is true of a
laser beam. The refractive index of a material (n) is the factor by which the speed of

the laser light is slowed by the material. As well as being slowed the beam bends at
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the interface between the materials, a process called refraction. Snell’s Law, which
describes this phenomenon, is commonly written as

n,sin@, =n,sin 6, (3.10)
and is used to calculate the degree of refraction when light travels from one material

to another. This process is shown schematically in Figure 3.15.

Bicen (1982) introduced a refraction correction calculation for use when
investigating flow through cylindrical pipes. The laser beam is perpendicular to the
refracting surface and the intersection volume is moved along this perpendicular
plane, hence the calculation can also be used for flat boundaries, as the laser beam
will always be perpendicular to the refracting surface in this case. Bicen’s original

equation is rearranged to give

I A ) o

a
ng

where r; is the position within the flow (m), r, is the position of the probe (m), n,
and n, are the refractive indices of the fluid and the wall respectively, ¢ is the

thickness of the wall (m) and w is the internal width of the duct (m). Equation 3.5 is
used to calculate the required position of the probe in terms of the position of the
intersection volume within the flow. From this equation it was found that the actual
distance required to traverse the section (80mm) when the test rig was filled with
water or polymer solutions was only 60 mm making a probe movement of 0.75mm

outside the flow equivalent to a movement of 1mm inside the flow.
3.3.4. LDA system error

In circular pipe flow it is possible to validate continuity and determine whether mass
is conserved within the flow by integrating the velocity profiles. This validation is
only possible if the flow is axisymmetric. An alternative for square duct flow is to fit
the perform an RMS (root mean square) fit of the experimental data to the fully

developed theoretical data using

Error _ \/zll\il (‘xth - xexp )2 )

N

(3.12)
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The error within the LDA system was found to be approximately 4.5% using the
experimental data from the fully developed velocity profiles in the Newtonian case

(presented in detail in Chapter 4).
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3.4. Tables

Table 3.1: Dimensions for each contraction.

Contraction ratio 8:1 4:1
Length, L (mm) 54.54 51.98
Width, w (mm) 80 80
Start height, D (mm) 80 80
End height, d (mm) 10 20
First radius, Rp (mm) 40 40
Second radius, Ry (mm) 20 20
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Table 3.2: Values used to calculate Reynolds, Deborah, Weissenberg and Elasticity

numbers.
Quantity Definition
Up (m.s™) Uq
[ (m) d
Hcu (Pa.s) Mcu 1s determined at
Yen () Yen=Udld
Re Re = pUd
Hey
T (s) T=d/Uy
Ac (9) Ac
Ant (8) Ani is determined at 7.,
Dec De,. = AU,
d
Dex, Dey, = AU,
El ¢ El c= Dec/Re
Elini El; ni= Deni/Re
Wic Wi. = A.€
Wini Wiy, = A€
Ebc El>.c= Wic/Re
El N

Elz’N1= WiNl/ Re
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Table 3.3: Specifications for the Dantec Flowlite and Fibreflow.

Flowlite Fibreflow
Type 10mW Helium Neon 500mW Argon Ion
Colour Red Green
Focal length, F1, (mm) 160 160
Beam Diameter (mm) 0.998 0.998
Wavelength, A, (nm) 633 514.5
Beam separation, (mm) 38.4 51.5
Beam angle, 6 (°) 14 18
Fringe spacing, J (um) 2.656 1.619
Measuring volume 75 20
diameter (pum)
i\r/frzrals)uring volume length 0.63 021
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3.5.

Figures
Flowmeter
Mixing Loop
Flow direction _
|
I /_S_\
- - Square Duct - }:]
] ] ank
1.2m 1.2m N
2.4m Mono Pump

Contraction Section

Figure 3.1: Schematic diagram of the test rig (the flow is clockwise).

w/Us,

4.5

0 0.1 0.2 0.3 0.4 0.5
w

Figure 3.2: Variation in velocity profiles measured at identical positions over a

period of approximately 50 hours pumping.
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Figure 3.3: Variation in velocity profiles over a period of six hours pumping, inset

highlights effect on overshoots.

10"

Shear viscosity (Pa.s)

10" 0’ 10! 10° 10°
1
Shear rate (s'l)

Figure 3.4: Variation in shear viscosity for each sample taken from the test rig over a

period of approximately 50 hours pumping.
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Figure 3.5: Variation in filament diameter decay for each fluid sample taken from the

test rig over a period of approximately 50 hours pumping.

10"

Shear viscosity (Pa.s)
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10°

Figure 3.6: Variation in the shear viscosity over the first six hours of pumping

(power law fit shown as thick black line).
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Filament diameter (mm)

0 0.1 0.2 Tir(r)g(s) 0.4 0.5 0.6

Fig 3.7: Variation in the filament diameter decay over the first six hours of pumping,

the full black lines shows the data fitted to equation 2.14 for the limiting cases.

(a) (b)
Figure 3.8: Isometric diagrams of (a) the 8:1 contraction test section and (b) the 4:1

contraction test section.
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L =54.54mm

x/L

Figure 3.10: Dimensions of the 8:1 contraction.
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L =51.98mm

Figure 3.11: Dimensions of the 4:1 contraction.

Figure 3.12: Both contractions for comparison, the 8:1 contraction shown as dash/dot

line and 4:1 as full line.
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Flow Direction

Figure 3.13. Interference fringes, shown in green, formed within the intersection

volume.

Laser beams in flow

% To BSA
/PC
Receiving Optics

T

Flow Direction
UBULK

From Laser Laser Probe

Figure 3.14: Schematic diagram detailing the set up of an LDA system set up in

forward scatter.

Water
n=1.33

n=1 61=20 C_

Perspex
n=1.49

Figure 3.15. Figure showing the refraction angles between air and Perspex and

Perspex and water.
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4. Presentation of Results

This chapter presents the results of LDA measurements taken in the 8:1 contraction
followed by those taken in the 4:1 contraction. Measurements were taken at various
positions along the XZ-centreplane and any of the fluids that exhibited ‘interesting’
results across this plane prompted further investigation into the flow along the XY-
centreplane. A schematic diagram indicating the positions of each flow profile
accompanies each set of results. All of the flow profiles are non-dimensionalised
with respect to the bulk velocity at the end of the contraction, Uy,. In each case half
profiles were measured on the XZ-centreplane due to the time constraints on the
fluids from the degradation effects. Full profiles were measured on the XY-
centreplane since these could be measured more quickly due to the reduction in
height through the contraction. The velocity profiles presented in this chapter have
been offset with respect to the axial distance between each profile unless stated

otherwise.

4.1. 8:1 contraction

The fluids selected for measurement in the 8:1 contraction were a Newtonian fluid,
four concentrations of polyacrylamide and two concentrations of xanthan gum.
These results are presented below. Table 4.1 gives the non-dimensional numbers

estimated for each fluid and flow condition in the 8:1 contraction.

4.1.1. Newtonian fluid

As discussed in detail in Chapter 1, it is expected that the velocity profile for
Newtonian fluid flow at ‘high’ (=10) Reynolds numbers flattens into a ‘top hat’
shape as the flow progresses through a gradual planar contraction. The Newtonian
fluid here investigated was a mixture of glycerine and water (approximately 10%
glycerine to 90% water) and it was tested at a Reynolds number of approximately

115, which has been defined at the contraction exit.
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Velocity measurements were obtained upstream of the contraction in the square duct
in order to ensure that the flow is well developed prior to the contraction. Figure 4.1
shows the spanwise and transverse centreline velocity profiles measured within the
square duct section approximately 120mm prior to the start of the contraction (i.e.
x/L=-3). In this case the profiles are non-dimensionalised with respect to the bulk
velocity in the square duct Usq. Also included is the theoretical velocity profile for
fully-developed Newtonian fluid flow through a square duct (White (2006)). The
measured values have been reflected about y/w=0 and z/7w=0 respectively and these
reflected values are shown as filled symbols in Figure 4.1. A good degree of
symmetry is observed, which provides confidence in the quality of the flow loop.
The measured velocities also agree with the theoretical velocity profile for fully-
developed Newtonian fluid flow through a square duct showing that the flow is

indeed fully developed before it reaches the contraction.

Figure 4.2 shows six velocity profiles measured at x/L=-1, -0.72, -0.45, -0.27, -0.17
and 0.10 on the XZ-centreplane as indicated; the profiles have been offset with
respect to the axial distance between each profile. The velocity profiles are clearly
seen to flatten as expected as the flow progresses through the contraction. Velocity
overshoots are not anticipated for Newtonian fluid flow through a gradual
contraction. The final velocity profile at x/L=0.10, which is measured just after the

end of the contraction does indeed look like a ‘top hat’.

Figure 4.3 shows the velocity measured along the ‘centreline’ of the contraction (i.e.
7w and y/w are both zero) for the Newtonian fluid. The flow velocity is seen to
increase smoothly as the flow progresses through the contraction as expected of a

Newtonian fluid flow.

4.1.2. Polyacrylamide

The flow of four concentrations of a polyacrylamide was investigated. The polymer
solutions were characterised in Chapter 2 and each concentration was tested at two
flowrates through the 8:1 contraction. 0.05% PAA is discussed first, for reasons that

will become apparent to the reader as the discussion progresses.
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4.1.2.1. 0.05% PAA

As previously discussed 0.05% PAA was chosen to compare to the results of Poole
et al. (2005). Some of the results from that investigation are given in Figure 4.4,
which clearly shows velocity overshoots close to the sidewalls of the contraction.
These profiles were measured along the XZ-centreplane at a Reynolds number of
approximately 110 (and a Deborah number (from CaBER) of 0.96) at x/L=0, -0.28,
-0.46 and -0.92. It should be borne in mind that a sudden expansion directly followed
the contraction in this case and that the results were obtained in a completely
different test facility to the one used in this work. Figure 4.5 shows velocity profiles
measured along the same plane at the same Reynolds and Deborah numbers at
x/L=0.10, -0.17, -0.27, -0.45. -0.72 and -1 in the current 8:1 contraction (i.e. not
followed by a sudden expansion). Qualitative agreement is observed between the two
flows and clear similarities are observed when comparing Figures 4.4 and 4.5.
Comparing the profile x/L=-0.46 (Figure 4.4) to x/L=-0.45 (Figure 4.5) shows that
the width of the overshoot in both cases is very similar (x/L~0.06). The profiles at
x/L=-0.28 (Figure 4.4) and x/L=-0.27 (Figure 4.5) both show large overshoots with a
maximum overshoot velocity of u/U;= 1. Any slight differences between the two sets
of results may be explained by the fact that the profiles were measured at slightly
different locations within the contraction and that the two sets of results were
obtained using two different test facilities. Degradation effects may also play a role
in the differences between the two sets of data (see detailed discussion in Chapter 3).
These results show that the sudden expansion appears to play no significant role in

the ‘cat’s ears’ phenomenon.

Figure 4.6 shows the flow profiles seen in Figure 4.5 on the XZ-centreplane along
with the profiles measured on the XY-centreplane. The open symbols are the
measured velocities and the filled symbols are values reflected about the XY-
centreplane to highlight the symmetry of the flow. The profiles on the XZ-
centreplane clearly show velocity overshoots close to the sidewalls of the
contraction. The overshoots appear to grow in size as the flow progresses through the
contraction. The profiles on the XY-centreplane show little of interest except the
profile at x/L=0.10, which shows very small overshoots (approximately 1.5% above

the centreline velocity) much as was observed in Poole et al. (2005).
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Once the flow profiles at Re=110, Dec~0.96 had confirmed that the overshoots
could be reproduced in a contraction alone (i.e. not followed by a sudden expansion)
it was decided to investigate the flow of 0.05% PAA at a lower flowrate (Re =50,
Dec=0.52). The corresponding flow profiles are presented in Figure 4.7. The XZ
profiles show that the velocity overshoots do occur in 0.05% PAA at the lower
flowrate. They appear to be narrower, confined more closely to the sidewalls (for
example at x/L=-0.27 the overshoots are within 0.1 z/w at the higher flowrate and
within 0.06 z7w at the lower flowrate) and less pronounced than at the higher
flowrate. The XY profiles show nothing of note and the overshoots apparent at x/L=0

at Re=110, Dec=0.96 are not present in this case.

Figure 4.8 shows the velocity measured along the centreline for both flows of 0.05%
PAA. At the lower flowrate, Re~50, Dec~0.52, we see a slight increase in the
velocity then a small ‘dip’ before the flow smoothly increases to a maximum
velocity of u/U; = 1.14 at the end of the contraction. At the higher flowrate, Re~110,
Dec=0.96, we see a slight increase in the velocity around x/L=-0.7 and an apparent
plateau between x/L=-0.5 and x/L=-0.3 followed by an increase to a maximum

velocity of u/U; = 1.07, which is lower than that seen at the lower flowrate.

4.1.2.2. 0.01% PAA

Having determined that the velocity overshoots could be reproduced in 0.05% PAA
at two flowrates a much lower concentration of PAA was selected next to see if the
same effect would be observed in a more dilute solution. 0.01% PAA was chosen
because it is well within the ‘dilute’ range of concentrations for polyacrylamide as
described in Chapter 2. As this solution is much less viscous than 0.05% PAA the
Reynolds numbers for this solution are much higher at the same flowrate. As such it
is difficult to ‘separate out’ effects that may be due to changes in the Reynolds
number. In addition, as was shown in Chapter 2, CaBER data could not be obtained
for this solution, which would indicate A<lms (Rodd et al. (2005)) and therefore
observing elastic effects with this experimental setup for this concentration would

require much higher flowrates.
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Figure 4.9 shows velocity profiles for 0.01% PAA across the XZ-centreplane at
Reynolds numbers of approximately 420 (Figure 4.9 (a)) and 830 (Figure 4.9 (b)). It
is quite clear that velocity overshoots are not seen at either flowrate. If we compare
this figure to Figure 4.2, the 0.01% PAA solution appears to behave as a Newtonian
fluid. The velocity profile clearly flattens as it progresses through the contraction
section appearing similar in shape to a ‘top hat’ at x/L=0.10 for both cases, however

the flow flattens to a greater extent at the higher flowrate as seen in Figure 4.9 (b).

4.1.23. 0.03% PAA

After testing polyacrylamide at concentrations in the dilute range and in the semi-
dilute range, the next concentration chosen for examination was at the critical
overlap concentration, ¢*=0.03%. This concentration was tested at two Reynolds
numbers, Re=140, Dec=0.24 was chosen to approximately match Re=110 for
0.05% PAA and Re=390, Dec=~0.53 was chosen because at this Reynolds number
the Deborah number estimated from A¢ approximately matches Dec=0.52 for 0.05%
PAA at Re~50. These Reynolds numbers were chosen to compare the fluids in terms
of non-dimensional groups and again attempt to ‘separate out’ effects. However
observing the differences due solely to concentration is only possible when both the

Reynolds and Deborah numbers match, not just one of the two.

Figure 4.10 shows the flow profiles for 0.03% PAA at Re =140, Dec=0.24 along the
XZ- and XY-centreplanes. The profiles show overshoots very close to the sidewalls
in the XZ-centreplane. The overshoots are smaller in magnitude and narrower in
width (within 0.05 z/w) than those seen for 0.05% PAA and they also develop further
into the contraction at x/L=-0.45 whereas for 0.05% PAA they are seen to develop at
x/L=-0.72. The profiles in the XY-centreplane again exhibit little of note. Figure 4.11
shows the flow profiles at Re=390, Dec=~0.53. Again the overshoots are clearly
visible along the XZ-centreplane but they are much smaller and narrower (maximum
width 0.06 z/w) than those seen for 0.05% PAA. The overshoots are very similar to
the results at the lower flowrate (Figure 4.10) apart from the two profiles measured
at x/L=0.10, which clearly differ from one another. At the lower Reynolds number
the overshoots are ‘smooth’ whereas at the higher Reynolds number they are more

‘pointed’. These results indicate that more dilute concentrations of polyacrylamide
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can exhibit the ‘cat’s ears’ effect provided the correct Re-De parameter space can be

achieved.

Figure 4.12 presents the centreline velocity for 0.03% PAA at both flowrates. In both
cases the centreline velocity increases smoothly as the flow passes through the
gradual contraction but there are some subtle differences between the two flows. The
flow at Re=140, Dec=0.24 appears to take slightly longer before the velocity
increase begins and at the end of the contraction its final velocity (w/U,; = 1.18) is
larger than at the higher flowrate (u/U,; = 1.01), similar to the final velocities seen in

the 0.05% solution.

4124. 03% PAA

0.3% PAA was chosen because it is approximately ten times the critical overlap
concentration for PAA. Increasing the concentration increases the viscosity, which in
turn will decrease the Reynolds number at the same flowrate thereby reducing the
effects of inertia within the flow. This concentration should therefore reveal whether

significant inertial effects are required for overshoots to occur.

0.3% PAA was initially tested at a Reynolds number of approximately 5 and a
Deborah number (from CaBER) of 34 and the resulting velocity profiles are shown
in Figure 4.13. Overshoots are visible in the XZ-centreplane, although they are very
different to those previously seen at the lower concentrations. At the start of the
contraction (x/L=-1) the flow is almost stagnant close to the sidewalls and the
overshoot peaks are located further away from the sidewall, seemingly growing into
a single large overshoot in the centre at the end of the contraction (the velocity at the
centre is approximately equal to 2U,). A profile measured prior to the contraction at
x/L=-1.18 also shows overshoots, indicating that the combined effects of the
contraction and the fluid properties occur upstream of the contraction. It is possible
that this effect is caused by diffusion, which is more likely to be observed when
inertia effects are low. For the first time, significant overshoots are also present in
the XY-centreplane. Figure 4.13 shows that the flow is almost stagnant through a
large part of the contraction near to the top and bottom curved walls but the flow

velocities nearer to the centre of the contraction are much higher than might be
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expected (assuming 1d flow for example) to compensate for this. The lack of data in
the areas close to the curved top and bottom walls caused by a loss of the LDA
signal, presumably due to the very low velocity, does not allow us to see if the flow
may be recirculating, as would be expected in flow through a sudden contraction (see

background discussion in Chapter 1).

In an attempt to aid the reader’s visualisation of the flow, particularly as the
contraction height becomes smaller, the data has been replotted in Figure 4.14. In
this case the velocity profiles are identical to those shown in Figure 4.13 but they
have all been offset by an equal distance rather than by the distance between the

actual measurement positions.

Figure 4.15 shows profiles at the same locations as Figure 4.13 but the Reynolds
number has been increased to about 15 (Dec=60). Again overshoots are visible in
both planes and are very similar in appearance to those observed at Re =5, Dec=34.
The overshoots at Re = 15, Dec =60 are more pronounced than those seen at the lower
flowrate with a larger difference between the centreline velocity and the overshoot
peak. However at Re=5, Dec~34 the maximum velocity for each profile is higher
than at Re =15, Dec=60. Figure 4.16 has been plotted in the same manner as Figure
4.14, again to aid the reader’s visualisation of the 0.3% PAA flow through the
contraction at Re=15, Dec=60. It becomes particularly difficult to distinguish

between the profiles towards the end of the contraction and into the rectangular duct.

Figure 4.17 shows the centreline velocities for both flowrates of 0.3% PAA.
Throughout the contraction the flow at the lower flowrate has a higher velocity along
the centreline in agreement with the earlier discussion. In both cases the flow along
the centreline is almost constant over a long section of the contraction before a rapid
increase to a maximum velocity at the end of the contraction, which is more or less

identical for both flows.

4.1.3. Xanthan gum

Xanthan gum was tested at two concentrations: their rheological characterisation is

discussed in Chapter 2. Each concentration was tested at two different flowrates.
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413.1. 0.07% XG

0.07% XG was chosen to match the shear viscosity of 0.05% PAA at the relevant
characteristic shear rates in order to be able to match the Reynolds numbers and the
degree of shear thinning that 0.05% PAA was tested at. To that end 0.07% XG was
tested at Re=~50 and Re~120 and the results are presented in Figure 4.18. In both
cases the flow flattens as the fluid travels through the contraction in a similar manner
to that seen in the Newtonian fluid (Figure 4.2) and in the 0.01% PAA fluid flow
(Figure 4.9). The xanthan gum appears to show a slightly more curved profile than
the flat ‘ top hat’ shape observed for glycerine. This may be due to the effects of the
shear-thinning exhibited by 0.07% xanthan gum that is not seen at all in the
glycerine nor to such a degree in the 0.01% PAA. It is well known that in pipe flow
shear-thinning causes flattening of velocity profiles (Fortin et al. (2004)). The
velocity overshoots observed in 0.05% PAA are not seen in the 0.07% XG.

Figure 4.19 shows the centreline velocities for both flows of 0.07% XG. The flow
along the centreline appears to be almost identical up until x/L=-0.2 where it
diverges and the higher flowrate tends towards a lower final velocity than the lower
flowrate. The lower flowrate also exhibits a very small overshoot (approximately 2%

of the final velocity) at the end of the contraction.

413.2. 0.5% XG

0.5% xanthan gum was tested at Re=0.86, Dec=0.21 and Re=2, Dec=~0.34. Figure
4.20 shows the flow profiles across the XZ-centreplane for both flowrates. In each
case the flow appears to flatten as it progresses through the contraction however in
both flows small ‘bumps’ are visible (around z/w=0.2 at the lower Re and z7w=0.3 at
the higher Re). As these ‘bumps’ are at most 3% of the centreline velocity this is
close to the level of experimental uncertainty in the velocity measurements (see
Chapter 3). But it is possible that the ‘bumps’ could be ‘embryonic’ velocity
overshoots and if it were possible to measure higher concentrations of XG,

overshoots might be observed similar to those we have seen in polyacrylamide.

83



Presentation of Results

Figure 4.21 shows the centreline velocities for 0.5% XG at Re=0.86, Dec=0.21 and
Re=2, Dec=0.34. At these low Reynolds numbers there is little difference between

the flows and the data essentially collapse.

4.2. 4:1 contraction

Three concentrations of PAA were investigated through the 4:1 contraction. The

non-dimensional numbers corresponding to each flow are given in Table 4.2.

4.2.1. 0.03% PAA

0.03% polyacrylamide was tested at two flow conditions, Re= 115, Dec=0.06 and Re
=290, Dec~0.13. The flow profiles for Re~115, Dec~0.06 are presented in Figure
4.22. It is clear that along the XZ-centreplane velocity overshoots are not present and
the profiles start to flatten into the ‘top hat’ shape typical of Newtonian fluid flow.
The profiles at x/L=-1 and x/L=-0.71 along the XY-centreplane are of interest due to
their shape. The fluid in the top section (0.5>y/w>0.35) and bottom section
(-0.35<y/w<-0.5) of the contraction (i.e. close to the curved walls) is flowing much
more slowly than the fluid towards the centre, i.e. the fluid is jetting through the
central section. This shape is known as an inflection and is usually observed when
there is an adverse pressure gradient present (i.e. a positive pressure) (White (2006)).
The profile at x/L=0.15 appears to show the beginnings of overshoots that are
approximately 0.4% greater than the centreline velocity. This value is within the

experimental uncertainty but it is repeatable so it is believed to be a true effect.

Figure 4.23 shows the velocity profiles for 0.03% PAA at Re=290, Dec~0.13. Small
overshoots are visible close to the flat sidewall along the XZ-centreplane. The
overshoots appear much later (x/L=-0.23) and start to disappear much sooner than
those seen in the 8:1 contraction and are not as pronounced with the peak overshoot
velocity still lower than the centreline velocity. The profile at x/L=-1 along the XY-
centreplane shows an inflection, similar to that seen at the same position at Re~115,
Dec=0.06, however the slower moving part of the flow is confined closer to the
curved walls (0.5>y/w>0.4 and -0.4<y/w<-0.5). In the final profile at x/L=0.15 small

overshoots are visible and they are slightly larger at approximately 1% above the
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centreline velocity compared to 0.4% at the lower flowrate. This value is also within

the experimental uncertainty but is again repeatable.

Figure 4.24 shows the centreline velocities for 0.03% PAA at Re=115, Dec=~0.06
and Re=290, Dec=0.13. The figure shows that as the flow travels through the
contraction the centreline velocity increases steadily in both cases in agreement with
the profiles shown in Figure 4.22 and Figure 4.23. The centreline velocities are the
same for both flows at the start of the contraction but as the flow progresses the flow
at the lower flowrate exhibits a higher centreline velocity than at the higher flowrate.
This pattern is similar to that observed in the flows of 0.03% and 0.05% PAA

discussed earlier in the chapter.

4.2.2. 0.05% Polyacrylamide

0.05% PAA was tested at Re=~30, Dec=0.13 and Re=65, Dec=~0.24. The velocity
profiles measured at Re =30, Dec=0.13 are presented in Figure 4.25. The profiles
along the XZ-centreplane show velocity overshoots that develop midway through the
contraction. These overshoots are larger than those observed in 0.03% PAA but the
peak overshoot velocity is still lower than the centreline velocity, except for the final
profile at x/L=0.15. As previously observed for 0.03% PAA at Re=~290, Dec=~0.13,
along the XY-centreplane we see small overshoots at x/L=0.15 (approximately 1.4%
greater than the centreline velocity) and slower moving flow towards the top and

bottom curved walls of the contraction at x/L=-1.

Figure 4.26 shows the velocity profiles at Re =65, Dec=0.24. Velocity overshoots
are clearly visible along the XZ-centreplane. The overshoots are more pronounced
(the maximum overshoot velocities in this case are larger than the centreline
velocities at x/L=-0.27, x/L=-0.17 and x/L=0.10) and develop closer to the start of the
contraction than at the lower flowrate. Again in the XY-centreplane profiles we see
the inflections at the start of the contraction where the fluid is moving much more
slowly towards the top and bottom curved walls of the contraction. In this case the
effect is still present at x/L=-0.71 whereas at the lower flowrate it had disappeared by
this location. The overshoots after the end of the contraction at x/L=0.15 are

observed again; in this case they are more pronounced than at the lower flowrate
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(approximately 3.6% larger than the centreline velocity compared to 1.4% at the

lower flowrate and 0.4% and 1% in the 0.03% PAA solution).

Figure 4.27 shows the centreline velocities for 0.05% PAA at Re =30, Dec=0.13 and
Re=~65, Dec=0.24. The non-dimensionalised centreline velocity at the higher
flowrate is lower than that for the lower flowrate throughout the contraction in

agreement with the data at the lower concentration.

4.2.3. 0.3% Polyacrylamide

0.3% PAA was tested at a single flow condition Re=2, Dec=~8.4. The XY- and XZ-
centreplane flow profiles are shown in Figure 4.28. The profiles along the XZ-
centreline show clear velocity overshoots that are similar in appearance to those
previously seen in the 0.3% PAA flow through the 8:1 contraction (see Figures 4.13
and 4.15). The overshoots are not as pronounced as previously and the region of
essentially stagnant fluid, seen in the 0.3% PAA flow through the 8:1 contraction, is
not present in the 4:1 contraction although the near wall shear rates are quite low.
Velocity overshoots are also visible along the XY-centreplane but again are not as
pronounced as previously seen in the 8:1 contraction. The profiles at x/L=-0.71 and
x/L=-0.42 show almost stagnant zones (u = () close to the curved top and bottom

walls of the contraction.

The centreline velocity for 0.3% PAA at Re=2, Dec=8.4 is shown in Figure 4.29.
The velocity increases slowly at the start of the contraction followed by a rapid
increase in velocity towards the end resulting in a significant velocity overshoot.
Downstream of the contraction the velocity slowly decreases through the rectangular
section of duct. The maximum velocity in this case is approximately 2U, whereas for

both of the lower concentrations the maximum velocity is between U, and 1.4U,.

4.3. 0.05% PAA in the 8:1 contraction

Since the velocity overshoots readily occurred in the 0.05% PAA solution (and this

solution was substantially quicker (1 day compared with 5) and easier to mix than

the 0.3% PAA solution) it was decided to measure some velocity profiles away from
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the centrelines in this fluid to investigate off-centreline behaviour and provide some
indication of the three dimensionality of the flow. Velocity measurements were
performed in the 8:1 contraction at both z/w and y/w = 0, 0.125, 0.25 and 0.375
provided the contraction shape allowed. The flow condition chosen for investigation

was Re =110, Dec=0.96.

Figures 4.30 and 4.31 are 3D visualisations of a quarter of the flow (the top right
quadrant as you look downstream into the duct) shown for slightly different angles.
These figures shows the development of the velocity overshoots in the spanwise
direction as one might expect from the results presented earlier in this chapter.
Figures 4.32 and 4.33 are presented in an attempt to aid the reader’s visualisation of
the flow. The figures show the side view and the top view of the velocity profiles

respectively.

A high level of internal consistency has been achieved within the flow. This
consistency is seen most significantly in Figures 4.31 and 4.32 where the cross
sectional area of the contraction is at its largest. More spanwise off-centreline
velocity profiles could be measured at these locations than further into the

contraction.

Interestingly Figures 4.30 and 4.31 show the development of velocity overshoots in
the transverse plane at x/L=-0.17 and x/L=0.10 (show circled in Figure 4.30). The
overshoots observed at x/L=0.10 might have been expected since it was these
overshoots that first prompted Poole et al. (2005) to investigate the flow through
their gradual contraction and they have also been observed throughout this
investigation at y/w=0. The overshoots seen in the transverse plane at x/L=-0.17 are
more unexpected as we have not previously observed transverse velocity overshoots
at this location during the centreplane measurements. The overshoots develop
somewhere between x/L=-0.27 and -0.17, this distance in dimensional terms is only
Smm so these overshoots develop fairly rapidly within the latter half of the
contraction (i.e. after the change in radius of the contraction at x/L=0.3) before

shrinking towards the end of the contraction.
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4.4. Tables

Table 4.1: Reynolds, Deborah, Weissenberg and Elasticity numbers estimated for

flows through the 8:1 Contraction.

Fluid Re Dec ElL ¢ Den ElLixi
_pU,d AU, =Dec/Re AUy =Deni/Re
T dey | d T4
0.01% PAA 420 <<l <<l <<l <<l
0.01% PAA 830 <<l1 <<l <<l <<l
0.03% PAA 140 0.24 0.0016 52 0.036
0.03% PAA 390 0.53 0.0013 6.2 0.016
0.05% PAA 50 0.52 0.012 9.2 0.20
0.05% PAA 110 0.96 0.0091 9.4 0.088
0.3% PAA 5 34 5.6 53 0.87
0.3% PAA 15 60 39 6.2 0.41
0.07% XG 50 <<1 <<1 <<1 <<1
0.07% XG 120 <<l <<l <<1 <<1
0.5% XG 0.86 0.21 4.1 <<l <<1
0.5% XG 2 0.34 6.1 <<1 <<1
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Table 4.1 (continued)

Fluid Re Wic El ¢ Wini Eln
_pUd =€ =Wic/Re = Ay & =Wini/ Re
Mo
0.01% PAA 420 <<l <<1 <<1 <<l
0.01% PAA 830 <<l <<1 <<1 <<l
0.03% PAA 140 0.13 0.00091 2.9 0.020
0.03% PAA 390 0.21 0.00054 2.5 0.006
0.05% PAA 50 0.23 0.0051 4.1 0.089
0.05% PAA 110 0.58 0.0054 5.6 0.053
0.3% PAA 5 42 7.0 6.6 1.09
0.3% PAA 15 62 4.0 6.4 0.42
0.07% XG 50 <<1 <<1 <<1 <<1
0.07% XG 120 <<l <<1 <<1 <<l
0.5% XG 0.86 0.24 0.28 <<1 <<1
0.5% XG 2 0.24 0.12 <<1 <<1
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Table 4.2: Reynolds, Deborah, Weissenberg and Elasticity numbers estimated for

flows through the 4:1 Contraction.

Fluid Re Dec Ell,c D€N1 Ell,Nl
_pU . _ AU, =Dec/Re _ AuU, =Deni/Re
Hcy d d
0.03% PAA 115 0.06 5.3x10™ 5.1 0.045
0.03% PAA 290 0.13 4.6x10™ 5.3 0.018
0.05% PAA 30 0.13 4.7x107 8.9 0.31
0.05% PAA 65 0.24 3.8x107 9.0 0.14
0.3% PAA 2 8.4 3.7 3.5 1.5
Fluid Re Wic Elz’c WiNl Elz’Nl
_pUd =€ =Wic/Re = A & =Wini/ Re
Hen
0.03% PAA 115 0.02 2.1x10™ 2.0 0.018
0.03% PAA 290 0.07 2.4x10™ 2.8 0.010
0.05% PAA 30 0.08 2.8x107 5.3 0.18
0.05% PAA 65 0.14 2.2x107 5.3 0.082
0.3% PAA 2 18.9 8.3 7.9 3.5
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4.5. Figures
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Figure 4.1: Normalised velocity profiles for 10% glycerine measured in the square

duct section, prior to the contraction at x/L=-3, along (a) the XY-centreplane (L) and

(b) the XZ-centreplane (<) at Re~115. The filled symbols represent reflected values

and the full black line represents the theoretical solution (Equation 3-48 in White

(2006) p.113).
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Figure 4.2: Normalised velocity profiles along the XZ-centreplane for 10% glycerine
at Re = 115 measured at x/L=-1 (), -0.72 (0), -0.45 (<), -0.27 (0), -0.17 (V) and 0.10
(D).
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Figure 4.3: Normalised centreline velocity for 10% glycerine at Re ~115.
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Figure 4.4: Normalised velocity profiles along the XZ-centreplane for 0.05%
polyacrylamide at Re=~110, Dec=0.96 measured at x/L=-0.92 (O), -0.46 (V), -0.28
(o) and 0 (<), taken from Poole et al. (2005).
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Figure 4.5: Normalised velocity profiles along the XZ-centreplane for 0.05%
polyacrylamide at Re=110, Dec=0.96 measured at x/L=-1 (0), -0.72 (0), -0.45 (V),
-0.27 (0), -0.17 (>>) and 0.10 ().
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Figure 4.6: Normalised velocity profiles along (a) the XZ-centreplane and (b) the
XY-centreplane for 0.05% polyacrylamide at Re=110, Dec=0.96 measured at x/L=
-1 (o), -0.72 (©), -0.45 (<), -0.27 (o), -0.17 (V) and 0.10 (A), filled symbols

represent reflected values.
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Figure 4.7: Normalised velocity profiles along (a) the XZ-centreplane and (b) the
XY-centreplane for 0.05% polyacrylamide at Re =50, Dec=0.52 measured at x/L=-1
(o), -0.72 (©), -0.45 (<), -0.27 (0), -0.17 (V) and 0.10 (»), filled symbols represent

reflected values.
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Figure 4.8: Normalised centreline velocities for 0.05% polyacrylamide at Re =50,

Dec=~0.52 (o) and Re=110, Dec=0.96 (»).
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Figure 4.9 Normalised velocity profiles along the XZ-centreplane for 0.01%
polyacrylamide at (a) Re=~420 and (b) Re~830 measured at x/L=-1 (0), -0.72 (0),

-0.45 (<), -0.27 (0), -0.17 (V) and 0.10 (&).
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Figure 4.10: Normalised velocity profiles along (a) the XZ-centreplane and (b) the

XY-centreplane for 0.03% polyacrylamide at Re =140, Dec =0.24 measured at x/L=
-1 (o), -0.72 (0), -0.45 (<), -0.27 (o), -0.17 (V) and 0.10 (A), filled symbols

represent reflected values.
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Figure 4.11: Normalised velocity profiles along (a) the XZ-centreplane and (b) the
XY-centreplane for 0.03% polyacrylamide at Re~390, Dec=0.53 measured at x/L=
-1 (o), -0.72 (0), -0.45 (<), -0.27 (o), -0.17 (V) and 0.10 (A), filled symbols

represent reflected values.
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Figure 4.12: Normalised centreline velocities for 0.03% polyacrylamide at Re = 140,

Dec=0.24 (o) and Re =390, Dec=0.53 (A).
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Figure 4.13: Normalised velocity profiles along (a) the XZ-centreplane and (b) the

XY-centreplane for 0.3% polyacrylamide at Re=5, Dec=~34 measured at x/L=-1.18
(0), -1 (1), -0.72 (0), -0.45 (), -0.27 (0),-0.22 (I>), -0.17 (V) and 0.10 (A), filled

symbols represent reflected values.
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Figure 4.14: Normalised velocity profiles along (a) the XZ-centreplane and (b) the

XY-centreplane for 0.3% polyacrylamide at Re=5, Dec=~34 measured at x/L=-1.18

(0), -1 (o), -0.72 (©), -0.45 (V), -0.27 (0),-0.22 (A), -0.17 (>>) and 0.10 (), filled

symbols represent reflected values.
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Figure 4.15: Normalised velocity profiles along (a) the XZ-centreplane and (b) the
XY-centreplane for 0.3% polyacrylamide at Re =15, Dec =60 measured at x/L=-1.18
(0), -1 (o), -0.72 (0), -0.45 (<), -0.27 (0),-0.22 (I>), -0.17 (V) and 0.10 (»), filled

symbols represent reflected values.
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Figure 4.16: Normalised velocity profiles along (a) the XZ-centreplane and (b) the

XY-centreplane for 0.3% polyacrylamide at Re =15, Dec =60 measured at x/L=-1.18

(0), -1 (o), -0.72 (©), -0.45 (V), -0.27 (0),-0.22 (A), -0.17 (>>) and 0.10 (), filled

symbols represent reflected values.
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Figure 4.17: Normalised centreline velocities for 0.3% polyacrylamide at Re=5, Dec

=34 (0) and Re=15, Dec=60 (A).
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Figure 4.18: Normalised velocity profiles along the XZ-centreplane for 0.07%
xanthan gum at (a) Re~50 and (b) Re~ 120 measured at x/L=-1 (0), -0.72 (0), -0.45
(<), -0.27 (0), -0.17 (V) and 0.10 (2).
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Figure 4.19: Normalised centreline velocity for 0.07% xanthan gum at Re=50 (D)
and Re =120 (A).
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Figure 4.20: Normalised velocity profiles along the XZ-centreplane for 0.5%
xanthan gum at (a) Re=0.86, Dec=0.21 and (b) Re~2, Dec~0.34 measured at x/L=
-1 (o), -0.72 (©), -0.45 (<), -0.27 (0), -0.17 (V) and 0.10 ().
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Figure 4.21: Normalised centreline velocities for 0.5% xanthan gum at Re =~0.86, Dec

=0.21 (0) and Re=2, Dec=0.34 (A).
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Figure 4.22: Normalised velocity profiles along (a) the XZ-centreplane and (b) the
XY-centreplane for 0.03% polyacrylamide at Re=115, Dec~0.06 measured at
x/L=-1 (0), -0.71 (0), -0.42 (<), -0.23 (0), -0.13 (V) and 0.15 (»).
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Figure 4.23: Normalised velocity profiles along (a) the XZ-centreplane and (b) the

XY-centreplane for 0.03% polyacrylamide at Re=290, Dec=~0.13 measured at
x/L=-1 (0), -0.71 (0), -0.42 (<), -0.23 (0), -0.13 (V) and 0.15 (»).
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Figure 4.24: Normalised centreline velocities for 0.03% PAA at Re=115, Dec~0.06

(0) and Re=290, Dec=0.13 (A).

106



Presentation of Results

Il
8]

o o I
o w EN

7w
o
TR RERNEETAS SR ST R

Re =30
Dec=0.13

o
e

y/w
o
RN KRN KRR AR

S & ©
S w N
T S

S
3

(b)

xL=-1 Li=0
|
I
I
I
I
I
I
I
I
I
I
I
I
|

XZ-centreplane

XY -centreplane

Figure 4.25: Normalised velocity profiles along (a) the XZ-centreplane and (b) the

XY-centreplane for 0.05% polyacrylamide at Re =30, Dec~0.13 measured at x/L=-1

(D), -0.71 (0), -0.42 (<), -0.23 (0), -0.13 (V) and 0.15 (L).
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Figure 4.26: Normalised velocity profiles along (a) the XZ-centreplane and (b) the
XY-centreplane for 0.05% polyacrylamide at Re =65, Dec~0.24 measured at x/L=-1
(D), -0.71 (0), -0.42 (1), -0.23 (0), -0.13 (V) and 0.15 (A).
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Figure 4.27:Normalised centreline velocities for 0.05% PAA at Re~30, Dec~0.13
(0) and Re=65, Dec=0.24 (A).
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(b)
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Figure 4.28: Normalised velocity profiles along (a) the XZ-centreplane and (b) the
XY-centreplane for 0.3% polyacrylamide at Re~2, Dec~ 8.4 measured at x/L=-1.19
(0), -1 (o), -0.71 (0), -0.42 (), -0.23 (0), -0.18 (>>), -0.13(V) and 0.15 (A).

w/'U,
o o o4 4 o
o o = M R O N

N
EN

S
0 05 1 15
/L

Figure 4.29: Normalised centreline velocity for 0.3% PAA at Re=2, Dec~=8.4.
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Figure 4.30: 3D visualisation of the flow of 0.05% PAA solution through the 8:1
contraction at Re=110, Dec=0.96 measured at x/L=-1, -0.72, -0.45, -0.27, -0.17 and
0.10 (flow is from left to right).

Figure 4.31: 3D visualisation of the flow of 0.05% PAA solution through the 8:1
contraction at Re=110, Dec=0.96 measured at x/L=-1, -0.72, -0.45, -0.27, -0.17 and
0.10 (flow is from left to right).
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Figure 4.32: Visualisation of the flow of 0.05% PAA solution through the 8:1
contraction at Re=110, Dec=0.96 measured at x/L=-1, -0.72, -0.45, -0.27, -0.17 and

0.10 (flow is from left to right viewed from the side).
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Figure 4.33: Visualisation of the flow of 0.05% PAA solution through the 8:1
contraction at Re=110, Dec=0.96 measured at x/L=-1, -0.72, -0.45, -0.27, -0.17 and
0.10 (flow is from left to right viewed from the top).
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5. Discussion of Results

5.1.  Quantification of velocity overshoots

A factor, K, can be determined using
UO _UL
Kz—/]; ﬁd 5.1
CU,,
where Uy/U,; is the maximum overshoot velocity, U~/U, is the centreline velocity
and Uy/U, is the velocity at the change in the gradient of the velocity profile

observed at the bottom of the overshoot as defined in Figure 5.1.

Table 5.1 presents the estimated values for K along with the corresponding velocities
used to calculate the factors for all fluids in which velocity overshoots were seen
along the XZ-centreplane in the 8:1 contraction. The values of K are used to
determine the approximate location at which the overshoots develop and the
positions of the maximum overshoot for each fluid/flowrate. Figures 5.2 to 5.4 are

graphic representations of the K values presented in Table 5.1.

Table 5.1 shows that for both cases of 0.03% PAA the overshoots are seen to
develop between x/L=-0.72 and x/L=-0.45 whereas in the 0.05% solution the
overshoots are seen to develop earlier, between x/L=-1 and x/L=-0.72. This earlier
development agrees with the results seen in Figure 5.2. In all cases the magnitude of

the velocity overshoots increases up to a maximum then decreases.

Figure 5.2 shows that the velocity overshoots observed in 0.03% PAA are slightly
larger at the lower flowrate than at the higher flowrate, which would not be
immediately apparent from looking solely at Figures 4.10 and 4.11. In 0.03% PAA at
Re =140, Dec=0.24 the location of the maximum overshoot size is at x/L=-0.17,
whereas for 0.03% PAA at Re=390, Dec=0.53 and both sets of 0.05% PAA the
location of the maximum overshoot is located at x/L=-0.27. This location is
approximately at the crossover point between the concave radius and the convex

radius that make up the 8:1 contraction.
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Table 4.1 shows that as the concentration of PAA increases so does the Elasticity
number. The velocity overshoots are seen to develop between x/L=-0.72 and -0.45 in
0.03% PAA, between x/L=-1 and —0.72 in 0.05% PAA and before x/L=-1.18 in 0.3%
PAA. This result suggests that the Elasticity number has an effect on where the
velocity overshoots develop within the test section, i.e. the larger El the earlier the

overshoots develop.

Table 5.2 presents the overshoot and centreline velocities and the K values for the
four flows in which velocity overshoots are observed along the XZ-centreplane of
the 4:1 contraction. This table shows that the 0.03% PAA flow at Re=115,
Dec=0.13 the overshoots develop between x/L=-0.23 and x/L=-0.13 and disappear
between x/L=-0.13 and x/L=0.15. In 0.05% PAA at Re =30, Dec=0.13 the overshoots
develop between x/L=-0.42 and x/L=-0.23 with the maximum overshoot occurring at
x/L=0.15 whereas at Re=65, Dec~0.13 the overshoots develop earlier, between
x/L=-0.71 and x/L=-0.42, with the maximum overshoot also earlier at x/L=-0.13. The
overshoots develop before the start of the contraction in the 0.3% PAA flow and the

maximum overshoot is seen at x/L=-0.71.

Table 5.3 gives the overshoot velocities, the centreline velocities and the K values
for the flow of 0.05% PAA measured at locations away from the centreplanes. There
are two locations where side to side overshoots were observed (x/L=-0.72 and x/L=-
0.45) away from the centreplane. Table 5.3 shows that the K values decrease (hence
the overshoots decrease in size) as the distance from the centreplane increases at
x/L=-0.72, but at x/L=-0.45 the opposite is true and the K values increase as the
distance from the centreplane increases. Overshoots were observed away from the
centreplane in the transverse direction in two locations (x/L=-0.17 and x/L=0.10). In
these cases the overshoots are seen to increase in size the further away from the

centreplane they are measured, i.e. the closer the flow is to the plane side walls.

5.2.  Comparison between concentrations in the 8:1 contraction

The velocity profile sets presented in this chapter are the same sets that were shown

in Chapter 4 but they have not been offset in order to draw comparisons between the

data sets. Table 4.1 presents estimated values for Reynolds, Deborah, Weissenberg
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and Elasticity numbers for the flows of all the fluids discussed in Chapter 4 through
the 8:1 contraction; the values are estimated as described in Chapter 3. This table
shows that 0.03% PAA and 0.05% PAA were measured at comparable Reynolds
numbers of Re=140 and Re =110 but different Deborah numbers (both CaBER and
N;) and also at comparable Deborah and Weissenberg numbers (Dec=0.53 and
Dec=0.52 and Wic=0.21 and Wic=0.23) but different Reynolds numbers.
Comparisons may also be drawn between the Deborah numbers for 0.03% PAA
(Den1=5.2 and Den;=6.2) and 0.3% PAA (Den;=5.3 and Deyn;=6.2) and between
the Weissenberg numbers for 0.03% PAA (Wic=0.21), 0.05% PAA (Wic=0.23) and
0.5% XG at two Reynolds numbers (Wic=0.24 and Wic=0.24). The table also shows
that 0.05% PAA and 0.07% XG were both measured at Re~50 and at comparable
Reynolds numbers of Re~110 and Re~120 and that 0.3% PAA and 0.5% XG may
be compared in terms of Elasticity number (Elc=3.9 and El-=4.1 respectively).

These comparisons will be discussed in what follows.

Figure 5.5 (a) and (b) show the velocity profiles for 0.03% PAA at Re=140,
Dec=0.24 and 0.05% PAA at Re~110, Dec=0.96; these profiles were measured at
comparable Reynolds numbers but it is clear that the profiles are very different. The
overshoots in the 0.03% PAA develop between x/L=-0.72 and x/L=-0.45 whereas in
0.05% PAA they are seen to develop earlier between x/L=-1 and x/L=-0.72. In both
cases the overshoots increase with respect to U, through the contraction. The profiles
in the 0.05% PAA solution are much broader and rounder than those seen in 0.03%
PAA, particularly at x/L=-0.17 and x/L=-0.27; there is a much greater difference
between the maximum velocities and the centreline velocities in 0.05% PAA (Table
5.1 shows that the K values are much larger for 0.05% PAA than for 0.03% PAA).
The difference in the structure of the overshoots suggests that although the Reynolds
numbers are comparable the effects of a larger Deborah number (approximately four

times for Dec and nearly seven times for Dey;) are of key importance.

Figure 5.5 (¢) and (d) present the velocity profiles for 0.03% polyacrylamide at
Re=390, Dec=0.53 and 0.05% PAA at Re=50, Dec=0.52; the estimated Dec
numbers for these flows are obviously similar as are the Wic numbers but it is clear
that the flows themselves are quite different as seen in the figure. In the 0.03% PAA
the overshoots develop between x/L=-0.72 and x/L=-0.45 and in the 0.05% they
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develop earlier, between x/L=-1 and x/L=-0.72. The overshoots seen in the 0.05%

solution appear to be more ‘pointed’ than those seen in the 0.03% solution.

On inspection of the results in order of increasing Reynolds number (Figure 5.5 (d),
(b), (a), (c)) it seems that no obvious trend can be deduced solely based on this
information. However if we look at the results in order of increasing Deborah
number (Figure 5.5 (a), (d), (c), (b)) the velocity profiles appear to broaden and
become more ‘rounded’, in particular those at x/L=-0.17 and x/L=-0.27. These subtle
changes confirm that the Deborah number, and in particular the extensional
properties of the fluid, based on the CaBER relaxation time play a key role in the
appearance and strength of the velocity overshoots. It must be borne in mind that
there is a notable difference between the Elasticity numbers (both El- and Ely;) for
the 0.03% PAA flow and the 0.05% PAA flow; this difference may be the reason for
the velocity overshoots developing earlier in the 0.05% PAA flow than in the 0.03%

flow.

Figures 5.6 and 5.7 include data for both 0.03% PAA and 0.3% PAA at different
Reynolds numbers but comparable Deborah numbers based on N; data (Den;=5.2
and Den;=6.2 respectively). Velocity overshoots are clearly observed in all cases
but, although the Deborah numbers are comparable, there is a major difference
between the sets of profiles depending on the fluid concentration. This effect is
possibly due to the difference in the shear viscosities of the two fluids, as indicated
by the difference in the Reynolds and Elasticity numbers. Given that the flow in the
contraction is an extensional one, it may also be that Dec is a more appropriate

measure of elastic effects than Dey;.

Figure 5.8 shows 0.03% and 0.05% polyacrylamide along with 0.5% xanthan gum
(at two flowrates) at comparable Weissenberg numbers (Wic) of around 0.2. The
results in this figure suggest that although the Weissenberg numbers are similar this
number cannot be used alone in the determination of the occurance of the velocity
overshoots. The Reynolds numbers are much lower for the xanthan gum flows
implying that inertia might also play a role in the ‘cat’s ears’ effect. However the
results for 0.3% PAA at comparable Re are very different to the 0.5% XG results. It

should also be noted that xanthan gum is a more rigid polymer than polyacrylamide,
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which may affect the appearance of the velocity overshoots. This rigid behaviour is
emphasised by the lack of CaBER data for the XG polymer solution at the lower
concentration. The relaxation time for the xanthan gum solution is much lower than

for both concentrations of PAA.

Figure 5.9 shows velocity profiles for 0.07% xanthan gum and 0.05%
polyacrylamide at similar Reynolds numbers: velocity overshoots are seen in the
polyacrylamide solution but not in the xanthan gum solution in agreement with the
discussion above. A Deborah number could not be calculated for 0.07% XG as the
relaxation time was below the sensitivity of our CaBER so the Deborah number is
estimated to be essentially negligible (if A<lms, then Dec<0.0013 and 0.0024). The
occurrence of the overshoots in the PAA solution and not in the XG solution agrees
with the previous suggestion that the Deborah number is vitally important in the

appearance of the velocity overshoots.

Figure 5.10 presents the velocity profiles for 0.3% PAA and 0.5% XG at comparable
elasticity numbers of 3.9 and 4.1 respectively. The figure clearly shows overshoots
in the PAA and not in the XG confirming that the elasticity number alone cannot be

used to determine whether the velocity overshoots will occur.

5.3.  Comparison across the concentrations in the 4:1 contraction

Table 4.2 presents estimated Reynolds, Deborah, Weissenberg and Elasticity
numbers (determined as described in Chapter 3) for the various fluid flows through
the 4:1 contraction. The table shows that 0.03% PAA and 0.05% PAA were

measured at comparable values of Dec.

Figure 5.11 shows the velocity profiles for both flows of 0.03% polyacrylamide and
both flows of 0.05% polyacrylamide. Figure 5.11 (a) and (b) are the profiles for
0.03% PAA at Re=290, Dec=0.13 and 0.05% PAA at Re=30, Dec~0.13. The first
four velocity profiles (x/L=-1 to x/L=-0.23) are very similar for both sets of results.
In the lower concentration (a) the overshoot at x/L=-0.13 is larger than in the higher
concentration (b) but by x/L=0.15 the overshoot has disappeared in the 0.03% PAA

solution, whereas in 0.05% PAA solution the overshoot continues to grow.
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Looking at the velocity profile sets in Figure 5.11 in order of increasing Reynolds
numbers (Figure 5.11 (b), (d), (¢), (a)) the overshoots occur more easily at the lower
Reynolds numbers, although it must be noted that these fluids are at the higher
concentration and are therefore more elastic. On inspection of the profile sets in
order of increasing Deborah numbers (both Dec and Dey;) (Figure 5.11 (c¢), (a), (b),
(d)) the overshoots grow in size as the Deborah number increases. This agrees with
the earlier suggestion that the Deborah number and the elastic properties of the flow

play an important role in the development of the velocity overshoots.

5.4. Comparison across the contractions

Figure 5.12 shows 0.03% polyacrylamide and 0.05% polyacrylamide in the 8:1
contraction along with 0.03% polyacrylamide in the 4:1 contraction all at
comparable Reynolds numbers (110 to 140). Clearly the profile sets differ greatly
and Re alone is not a good indicator as to whether the velocity overshoots will occur.
Both Dec and Dey; increase in order (c), (a), (b) and it is obvious that as the Deborah

numbers increase the velocity overshoots become much more pronounced.

Figure 5.13 presents 0.05% PAA in both contractions at comparable Reynolds
numbers of Re=50, Dec=0.52 in the 8:1 contraction and Re =65, Dec=0.24 in the
4:1 contraction. Both Dec and Dey; are larger in the 8:1 contraction flow than in the
4:1 contraction flow in this case and although the overshoots look to be very similar
in shape, being quite ‘pointed’, they seem to be slightly larger in the 8:1 contraction.
Tables 5.1 and 5.2 confirm that the overshoots are more pronounced in the 8:1

contraction as the K values are larger in this case.

In an attempt to ‘eliminate’ the effects of the contraction ratio the data presented in
Figure 5.13 has been normalised with respect to the centreline velocity at each axial
location and this replotted data is presented in Figure 5.14. The flow through the 8:1
contraction is represented by open symbols and that through the 4:1 contraction
filled symbols. This figure highlights some similarities and differences between the
two flows that are not immediately apparent in the original normalisation (Figure
5.13). The flows have comparable Reynolds numbers but the Deborah number (from

CaBER data) is higher for the 8:1 flow than the 4:1 flow. The velocity overshoots
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observed in the 8:1 flow clearly develop earlier than in the 4:1 flow, they are also
larger at each location in the 8:1 flow. Interestingly, the width of the velocity
overshoots observed in (c), (d) and (e) is very similar at each location with the
change in velocity gradient occurring at more or less the same position for each
location. Over the majority of the flow, towards the centre of the contraction, the
velocity profiles in all cases, except (f), appear the same at each location for both

flows, i.e. the ‘cat’s ears’ effect is confined to within z/w=0.2 of the sidewalls.

Figure 5.15 presents the velocity profiles for 0.03% PAA at Re~140, Dec=0.24 in
the 8:1 contraction and 0.05% PAA at Re=65, Dec=0.24 in the 4:1 contraction.
Dec=0.24 for both flows, while the Wic values are compared at 0.14 and 0.13
respectively. The overshoots observed in the 4:1 contraction are larger than those in
the 8:1 contraction. However the K values for both sets of profiles are very similar.
In the 8:1 contraction the overshoots develop between x/L=-0.72 and x/L=-0.45 and
in the 4:1 contraction they develop between x/L=-0.71 and x/L=-0.42. The K values
for x/L=-0.27, -0.17 and 0.10 in the 8:1 contraction are nearly identical to those for
x/L=-0.23, -0.13 and 0.15 in the 4:1 contraction showing that the difference between
the maximum overshoot velocities and the centreline velocities are the same for the

profiles measured after the radius change in both contractions (i.e.x/L~0.3).

The data from Figure 5.15 has been replotted in Figure 5.16 in the same manner as
the data shown in Figure 5.14. In this case the flows have the same Deborah number
(Dec=0.24) but the 8:1 contraction flow (represented by open symbols) has a higher
Reynolds number than the 4:1 contraction flow (represented by closed symbols). The
two flows are obviously very similar. A larger overshoot is observed at the lower
Reynolds number in (c) but this is in fact a higher concentration of polyacrylamide.
The overshoots in (d) and (e) have the same magnitude but in the 8:1 contraction
they are confined closer to the sidewalls (within 0.06 z/w) than in the 4:1 contraction
(within 0.1 zZw). The opposite is true, however, of the profiles at (f), in this case the
magnitude of the overshoots is the same but the overshoot observed at the higher

flowrate is wider than at the lower flowrate.

Figure 5.17 shows four profile sets for 0.05% PAA at two Reynolds numbers in both

contractions at comparable Dey; values of between 8.9 and 9.2. Velocity overshoots
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are observed to a different extent in each case. On the whole the overshoots are more
pronounced in the 8:1 contraction ((a) and (c)), however the Reynolds numbers are
higher for these two flows so no direct conclusions can be drawn from the
comparison of these velocity profile sets, except that Re is a minor influence. Figure
5.18 shows the velocity profiles along the XZ-centreplane for 0.03% polyacrylamide
at Re=290, Dec=0.13 and Re=115, Dec=0.06 in the 4:1 contraction and at Re = 140,
Dec=0.24 in the 8:1 contraction along with 0.3% polyacrylamide at Re=5, Dec~34
in the 8:1 contraction: these profiles were measured at comparable Deyx; numbers of
between 5.1 and 5.3. It is clear from these profiles that Dey; alone is not a good
indicator of whether the velocity overshoots will occur. The overshoots are
obviously more pronounced within the 8:1 contraction when we look at (b) and (c)
which are at similar Re. As discussed earlier the flow through the gradual contraction
is predominantly extensional flow so the Deborah number found using the relaxation
time from CaBER is more likely to be a better indicator of the flow behaviour than

the Deborah number found using the N, data.

Figures 5.19 to 5.23 each present velocity profile sets that have comparable
Elasticity numbers. There are clear differences observed between each set of velocity
profiles and the more pronounced overshoots are always seen at the higher Deborah
numbers (and also in the 8:1 contraction). Figures 5.19 to 5.23 show that the
Elasticity numbers alone cannot be used to determine whether ‘cat’s ears’ will be

observed or the magnitude of the effect when it does occur.
5.5. Stresses acting within the flow

The shear rate on the flat side wall in the XZ-centreplane (7, , shata given location

can be found by estimating the gradient of the velocity profile next to the wall

(=4). Similarly the strain rate along the centreline (&, s can be found at a given

location by estimating the gradient of the centreline velocity profile at the same

location (=49¢). The estimated shear rates may then be used to calculate a shear
stress (7, , Pa) along the plane wall and the strain rates an extensional stress (7, , Pa)

along the centreline using the following equations.

T, =Vl (5.2)
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T, =€, (5.3)
where u (Pa) is the shear viscosity estimated at the wall shear rate using the

Carreau-Yasuda model fit as described in Chapter 2 (Equation 2.2) and A. (s) is the
relaxation time determined from CaBER measurements. To non-dimensionalise both

the shear stress and the extensional stress we use the dynamic pressure, % pU dz .

Figure 5.24 presents the non-dimensionalised shear stresses at the wall and
extensional stresses along the centreline for all flows of 0.03%, 0.05% and 0.3%
PAA through the 8:1 contraction. In the 0.03% PAA cases (Figure 5.24 (a)) the shear
stresses are fairly constant throughout the first half of the contraction before
increasing to maxima around x/L=-0.3 then decreasing and stabilising. In the 0.05%
case (Figure 5.24 (c)) the shear stresses start to increase immediately up to a
maximum value around x/L=-0.45 followed by a decrease to minima around x/L=-0.3
for the lower flowrate and x/L=-0.2 for the higher flowrate. The shear stress at the
lower flowrate then increases slightly towards a constant value whereas at the higher
flowrate the shear stress suddenly increases again. In the 0.3% PAA flow (Figure
5.24 (e)) at the lower flowrate the shear stress is seen to increase monotonically as
the flow progresses through the contraction with a sudden increase observed at
around x/L=-0.2. The shear stress for the 0.3% PAA flow at the higher flowrate
decreases slightly at the start of the contraction until around x/L=-0.2 when it begins
to increase rapidly. In all cases the extensional stresses (Figure 5.24 (b), (d) and (f))
are low and fairly constant throughout the first half of the contraction, which might
be expected due to the very small changes in the cross sectional area. The
extensional stresses then increase suddenly around x/L=-0.3, which is the
approximate location of the crossover between the 40mm concave radius and the
20mm convex radius and where the change in cross sectional area of the flow
becomes more significant. The maximum extensional stress is observed around x/L=-
0.2 (later than the maxima observed in the shear stress) except in the 0.03% PAA
flow at the higher flowrate where it occurs slightly earlier at around x/L=-0.3. After
the contraction ends the extensional stresses return to zero as should be expected
once the cross sectional area of the flow stops changing. The shear stress data for the
0.03% and 0.05% PAA (Figure 5.24 (a) and (c)) collapses onto approximately the
same curve in both cases whereas the 0.3% PAA data (Figure 5.24 (e)) does not to
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the same degree. This data shows that for the 0.03% and 0.05% PAA flows the shear
stresses along the walls behave in a similar manner regardless of the flow rate. The
extensional stress data for the 0.03% PAA solution (Figure 5.24 (b)) collapses onto
the same curve for the first half of the contraction then diverges in the second half of
the contraction. For the 0.05% and 0.3% PAA (Figure 5.24 (d) and (f)) the data

collapses onto approximately the same curve in each case.

Figure 5.25 shows the non-dimensionalised shear and extensional stresses for the
flows of 0.03%, 0.05% and 0.3% PAA through the 4:1 contraction. In all cases,
except the 0.05% PAA flow at the higher flowrate, the shear stress at the wall
increases monotonically through the contraction. The shear stress for the 0.05% PAA
flow at the higher flowrate exhibits a similar pattern to that observed in the 8:1
contraction for both the 0.03% and 0.05% flows and the maximum is around the
same location as for the 0.03% PAA flow through the 8:1 contraction. This
information shows that for all flows in which velocity overshoots do not occur
throughout the whole contraction the shear stresses at the wall increase
monotonically and where velocity overshoots are present throughout the whole
contraction the shear stresses increase non-monotonically. The extensional stresses
through the 4:1 contraction for 0.03% and 0.05% PAA (Figure 5.25 (b) and (d))
slowly increase to a maxima at around x/L=-0.2. The pattern seen in 0.03% PAA at
the lower flowrate is similar to that seen in the 8:1 contraction; the extensional stress
is around zero for over half of the contraction in this case. For 0.03% PAA at the
higher flowrate and the 0.05% PAA the extensional stresses increase from the start
of the contraction. In the 0.3% PAA flow the extensional stress along the centreline
is around zero until x/L=-0.3 before a large increase followed immediately by a
decrease towards the end of the contraction. The data collapses to the same order of
magnitude in each case, the collapse is better for the 0.05% PAA than for the 0.03%
PAA solution.

In both the 8:1 and 4:1 contractions the centreline extensional stresses are much
larger than the sidewall shear stresses. It is also noted that the stresses in the 0.03%
and 0.05% PAA solutions are much lower than those in the 0.3% PAA, most likely

due to the difference in shear viscosity at the relevant shear rates.
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Since this investigation is looking at contraction flow the shear stresses along the
curved walls will probably be more useful than those along the plane walls since the
curved walls of the contraction must be causing the velocity overshoots to occur. It is
not possible however, to estimate the shear stresses along the curved walls as the
flow component that has been measured is along a plane that is not perpendicular to

the curved wall.
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S5.6.

Tables

Table 5.1: Non-dimensionalised maximum overshoot and centreline velocities used

to quantify velocity overshoots for all fluids where the overshoots are seen along the

XZ-centreplane of the 8:1 contraction.

Fluid | Re Dec | L | Usus | U | uus | K

0.03% | 140 | 024 | -1.00

PAA 0.72
045 | 026 | 034 | 024 | 006
027 | 067 | 052 | 043 | 046
017 | 093 | 068 | 061 | 047
000 | 137 | 118 | 117 | 017

0.03% | 390 | 053 | -1.00

PAA 0.72
045 | 038 | 037 | 028 | 027
027 | 076 | 061 | 054 | 036
017 | 098 | 081 | 078 | 025
0.0 | 126 | 110 | 110 | 0.15

0.05% | 50 052 | -1.00

PAA 072 | 035 | 030 | 030 | 0.17
045 | 044 | 0290 | 022 | 076
027 | 076 | 043 | 033 | 1.00
017 | 105 | 069 | 064 | 059
010 | 137 | 114 | 114 | 020
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Table 5.1 (continued

Fluid | Re Dec YL | UsUs | UsUs | Usus | K

0.05% | 110 | 096 | -1.00

PAA 072 | 028 | 027 | 017 | 067
045 | 061 | 038 | 029 | 0.84
027 | 098 | 040 | 030 | 170
017 | 106 | 067 | 058 | 072
010 | 124 | 107 | 108 | 0.5

0.3% 5 34 118 | 070 | 060 | 059 | 0.8

PAA 100 | 084 | 073 | 073 | 0.16
072 | 09 | 077 | 077 | 025
045 | 107 | 071 | 071 | 049
027 | 122 | 091 | 091 | 034
022 | 120 | 110 | 110 | 018
0.17
0.10

0.3% 15 60 118 | 059 | 036 | 036 | 065

PAA .00 | 069 | 039 | 039 | 077
072 | 081 | 034 | 034 | 141
045 | 087 | 036 | 036 | 144
027 | 110 | o061 | 061 | 080
022 | 112 | 080 | 080 | 040
017 | 122 | 113 | 113 | 0082

0.10
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Table 5.2: Non-dimensionalised maximum overshoot and centreline velocities used
to quantify velocity overshoots for all fluids where the overshoots are seen along the

XZ-centreplane of the 4:1 contraction.

Fluid Re Dec x/L UO/Ud UC/Ud U[/Ud K

0.03% | 15 0.13 0.13 0.72 0.82 0.67 0.06

PAA

0.05% -0.13 0.78 0.85 0.76 0.02
30 0.13

PAA 0.15 1.34 1.23 1.24 0.08

-0.42 0.48 0.51 0.39 0.20

0.05% -0.23 0.84 0.65 0.55 0.45

PAA 65 0.24
-0.13 1.08 0.78 0.70 0.49

0.15 1.34 1.14 1.13 0.18

-1.19 0.36 0.28 0.28 0.31

-1.00 0.44 0.33 0.33 0.33

0.3% -0.71 0.63 0.42 0.42 0.49

PAA -0.42 0.90 0.65 0.65 0.38

-0.23 1.16 0.97 0.97 0.19

-0.18 1.28 1.19 1.19 0.072

-0.13 1.40 1.34 1.34 0.044
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Table 5.3: Non-dimensionalised maximum overshoot and centreline velocities used

to quantify velocity overshoots for all off centreplane locations where the overshoots

are seen in 0.05% PAA solution flowing through the 8:1 contraction.

x/L v/w 7w Uo/Uy UdU, U/Uy K
-0.72 0 0.28 0.27 0.17 0.41
-0.72 0.125 0.23 0.25 0.15 0.32
-0.72 0.25 0.13 0.18 0.10 0.17
-0.45 0 0.61 0.38 0.28 0.87
-0.45 0.125 0.54 0.30 0.20 1.13
-0.27 0 0.98 0.40 0.30 1.70
-0.17 0 1.06 0.67 0.58 0.72
-0.17 0.125 0.68 0.66 0.65 0.05
-0.17 0.25 0.74 0.64 0.64 0.16
-0.17 0.375 0.78 0.58 0.58 0.34
0.10 0 1.24 1.07 1.08 0.15
0.10 0 1.09 1.07 1.07 0.02
0.10 0.125 1.09 1.08 1.08 0.01
0.10 0.25 1.12 1.09 1.09 0.03

126



Discussion of Results

5.7.  Figures
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Figure 5.1: Diagrams indicating U/U,, U;/U,; and Uy/U,, which are used to quantify

the velocity overshoots.
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Figure 5.2: K values for flows of 0.03% PAA at Re=140, Dec=~0.24 (m) and

Re=390, Dec~0.53 (A).
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Figure 5.3: K values for flows of 0.05% PAA at Re~50, Dec~0.52 (m) and Re =110,
Dec=0.96 (A).
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Figure 5.5: Normalised velocity profiles along the XZ-centreplane for (a) 0.03%
polyacrylamide at Re=140, Dec=0.24, (b) 0.05% polyacrylamide at Re=110,
Dec=0.96, (c) 0.03% polyacrylamide at Re=390, Dec=0.53 and (d) 0.05%

polyacrylamide at Re=50, Dec~0.52 (In the 8:1 contraction O represents x/L=-1, ¢
x/L=-0.72, V x/L=-0.45, O x/L=-0.27, > x/L=-0.17 and < x/L=0.10. These symbols

are valid for all figures for the 8:1 contraction unless stated).
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Figure 5.6: Normalised velocity profiles along the XZ-centreplane for (a) 0.03%
polyacrylamide at Re~140, Dec~0.24, Dex;=5.2 and (b) 0.3% polyacrylamide at
RezS, Decz34, D€N1 =5.3.
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Figure 5.7: Normalised velocity profiles along the XZ-centreplane for (a) 0.03%
polyacrylamide at Re=390, Dec=~0.53, Den;~6.2 and (b) 0.3% polyacrylamide at
Re= 15, Decz60, D€N1 =0.2.
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Figure 5.8: Normalised velocity profiles along the XZ-centreplane for (a) 0.03%
polyacrylamide at Re=390, Dec=0.53 and (b) 0.05% polyacrylamide at Re=50,
Dec=0.52, (¢) 0.5% xanthan gum at Re~0.86, Dec=0.21 and (d) 0.5% xanthan gum
at Re=2, Dec=0.34.
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Figure 5.9: Normalised velocity profiles along the XZ-centreplane for (a) 0.07%
xanthan gum at Re =50, (b) 0.05% polyacrylamide at Re=50, Dec~0.52, (c) 0.07%

xanthan gum at Re=120 (filled symbols represent reflected values) and (d) 0.05%

polyacrylamide at Re =110, Dec=0.96.
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Figure 5.10: Normalised velocity profiles along the XZ-centreplane for (a) 0.3%
polyacrylamide at Re=15, Dec=~60 and (b) 0.5% xanthan gum at Re=0.86,
Dec=0.21.
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Figure 5.11: Normalised velocity profiles along the XZ-centreplane for (a) 0.03%
polyacrylamide at Re=290, Dec=0.13, (b) 0.05% polyacrylamide at Re=30,
Dec=0.13, (¢) 0.03% polyacrylamide at Re=115, Dec=0.06 and (d) 0.05%
polyacrylamide at Re =65, Dec~0.24 (In the 4:1 contraction O represents x/L=-1, O
x/L=-0.71, V x/L=-0.42, O x/L=-0.23, > x/L=-0.13 and < x/L=0.15. These symbols

are valid for all figures for the 4:1 contraction unless stated).

134



Discussion of Results

1ad Re=140 . 4] Re=110

1 Dec=0.24 ] Dec=0.96

0.3 0.3

0.2 0.2

0.1 0.1 1

(G o e e e LA e 0““I““I““I““|H\\
0 0.1 0.2 Z/W 0.3 0.4 0.5 0 0.1 0.2 Z/W 0.3 0.4 0.5

(a) (b)

1.5

14q Re=115

4 Dec=0.06

LN S s s s s S B
0.1 0.2 0.3 0.4 0.5

(C) Z/W

=]

Figure 5.12: Velocity profiles along the XZ-centreplane for (a) 0.03%
polyacrylamide at Re=140, Dec=~0.24 in the 8:1 contraction, (b) 0.05%
polyacrylamide at Re=110, Dec=~0.96 in the 8:1 contraction and (c) 0.03%
polyacrylamide at Re=115, Dec=0.06 in the 4:1 contraction, the key shown in (b) is
valid for (a).
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Figure 5.13: Velocity profiles along the XZ-centreplane for (a) 0.05%
polyacrylamide at Re=~50, Dec=~0.52 in the 8:1 contraction and (b) 0.05%
polyacrylamide at Re=65, Dec=0.24 in the 4:1 contraction, the keys shown in

Figure 5.10 are valid for the relevant contraction.
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Figure 5.14: Velocity profiles along the XZ-centreplane for 0.05% polyacrylamide at
Re =50, Dec=0.52 in the 8:1 contraction (open symbols) and 0.05% polyacrylamide
at Re=65, Dec=0.24 in the 4:1 contraction (filled symbols) at (a) x/L-1, (b) x/L=
-0.72 and -0.71, (c) x/L=-0.45 and -0.42, (d) x/L=-0.27 and -0.23, (e) x/L=-0.17 and
-0.13 and (f) »/L=0.10 and 0.15.
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polyacrylamide at Re~140, Dec=0.24 in the 8:1 contraction and (b) 0.05%

polyacrylamide at Re=65, Dec=0.24 in the 4:1 contraction, the keys shown in

Figure 5.10 are valid for the relevant contraction.
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Figure 5.16: Velocity profiles along the XZ-centreplane for 0.03% polyacrylamide at
Re =140, Dec=0.24 in the 8:1 contraction (open symbols) and 0.05% polyacrylamide
at Re=65, Dec=0.24 in the 4:1 contraction (filled symbols) at (a) x/L-1, (b) x/L=
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Figure 5.17: Velocity profiles along the XZ-centreplane for (a) 0.05%
polyacrylamide at Re=110, Den;=9.4 in the 8:1 contraction (b) 0.05%
polyacrylamide at Re=65, Den;=9.0 in the 4:1 contraction (c) 0.05%
polyacrylamide at Re=50, Deni=9.2 in the 8:1 contraction and (d) 0.05%
polyacrylamide at Re ~30, Den; =8.9 in the 4:1 contraction, the keys shown in Figure

5.10 are valid for the relevant contraction.
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Figure 5.18: Velocity profiles along the XZ-centreplane for (a) 0.03%
polyacrylamide at Re=290, Den;=5.3 in the 4:1 contraction (b) 0.03%
polyacrylamide at Re=115, Den;=5.1 in the 4:1 contraction (c) 0.03%
polyacrylamide at Re=140, Den;=5.2 in the 8:1 contraction and (d) 0.3%
polyacrylamide at Re =5, Den;=5.6 in the 8:1 contraction, the keys shown in Figure

5.10 and 5.14 are valid for the relevant contraction.
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Figure 5.19: Velocity profiles along the XZ-centreplane for (a) 0.3% polyacrylamide
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El c=3.7 in the 4:1 contraction.
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Figure 5.20: Velocity profiles along the XZ-centreplane for (a) 0.03%
polyacrylamide at Re=390, El;n;1=0.0016 in the 8:1 contraction and (b) 0.03%
polyacrylamide at Re =290, El; n;=0.0018 in the 4:1 contraction, the keys shown in

Figure 5.10 are valid for the relevant contraction.
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polyacrylamide at Re=140, El;n;=0.020 in the 8:1 contraction and (b) 0.03%
polyacrylamide at Re=115, El,n;=0.018 in the 4:1 contraction, the keys shown in

Figure 5.10 are valid for the relevant contraction.
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Figure 5.23: Velocity profiles along the XZ-centreplane for (a) 0.05%
polyacrylamide at Re=50, El,nN;=0.089 in the 8:1 contraction and (b) 0.05%
polyacrylamide at Re=65, El;N1=0.082 in the 4:1 contraction, the keys shown in

Figure 5.10 are valid for the relevant contraction.
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Figure 5.24: Non-dimensionalised (a) shear and (b) extensional stresses for 0.03%
PAA in the 8:1 contraction at Re=140, Dec=0.24 (0) and Re=390, Dec=0.53 (m);
(c) shear and (d) extensional stresses for 0.05% PAA in the 8:1 contraction at
Re =50, Dec=0.52 (0) and Re=110, Dec=0.96 (m); (e) shear and (f) extensional
stresses for 0.3% PAA in the 8:1 contraction at Re=5, Dec=34 (0) and Re=15,
Dec=60 (m).
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Figure 5.25: Non-dimensionalised (a) shear and (b) extensional stresses for 0.03%
PAA in the 4:1 contraction at Re=115, Dec=0.06 (0) and Re=290, Dec=0.13 (m);
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stresses for 0.3% PAA in the 4:1 contraction at Re=2, Dec=8.4.

146



Conclusions

6. Conclusions and Recommendations

One of the main objectives of this research was to determine whether the velocity
overshoots first observed by Poole ef al. (2005) could be reproduced when a sudden
expansion did not follow the gradual contraction. The results presented in Chapter 4
clearly show that ‘cat’s ears’ are reproducible in a gradual contraction (both 8:1 and
4:1 contraction ratios) when a sudden expansion is not present. Another objective
was to provide a set of ‘benchmark’ experimental results for researchers interested in
numerical modelling of non-Newtonian contraction flow to use to compare their
results to and to test the accuracy of the constitutive equations and their codes. A
wide variety of high quality velocity data of quantified accuracy has been presented
for two contraction ratios, two types of polymer and several concentrations of each
polymer. All of the fluids have been carefully characterised in terms of both shear
and, more importantly, extensional behaviour. In addition great care was taken to

ensure that the results were free from polymer degradation effects.

6.1. Contraction ratio effects

Two contraction ratios were investigated during this work: 8:1 and 4:1. The results
show that the velocity overshoots are more likely to occur in the 8:1 contraction and
in this contraction the overshoots will be larger than those seen in the 4:1
contraction. This is most likely due to the difference in the strain exerted on the flow
through the two contractions. The Hencky strain (discussed in Chapter 3) is larger
for the 8:1 contraction than the 4:1 contraction meaning that the flow through the 4:1
contraction undergoes a less severe extension than the flow through the 8:1
contraction. This fact implies that the extensional properties of the contraction, i.e.
the shape and the ratio, are important in the development of the velocity overshoots.
However when the velocity data is renormalized by the local centreline velocity in
an attempt to eliminate the effect of contraction ratio a fairly good collapse of the

data is observed, particularly when the flows have comparable Deborah numbers.
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6.2. Effect of polymer type and concentration

The polymers under investigation throughout this thesis were polyacrylamide
(classed as flexible) and xanthan gum (classed as semi-rigid). Velocity overshoots
were observed in polyacrylamide solutions at concentrations above the critical
overlap concentration whereas the same was not true of xanthan gum. The reason for
the overshoots occurring in the PAA solutions and not the XG solutions is probably
due to the way the polymers behave under extension. The PAA will stretch more
readily than the XG because it is more flexible. This difference in behaviour is seen
most strikingly in the results of the CaBER tests. We know that the extensional
properties of the contraction are important to the occurrence of ‘cat’s ears’ but it is
also clear that the behaviour of the polymer solution under extension also plays a

role.

Polyacrylamide was tested at four concentrations: 0.01%, 0.03%, 0.05% and 0.3%.
Velocity overshoots were not observed in the 0.01% PAA solution. These flows
were at high Reynolds numbers but extremely low Deborah numbers. Velocity
overshoots were seen to differing degrees in 0.03%, 0.05% and 0.3% PAA. Those
seen in the 0.3% solution were very different to those on 0.03% and 0.05% PAA
solutions. At the lower concentrations the effect is confined close to the sidewalls
and the central section of the flow seems to be largely unaffected. At the higher
concentration the entire flow is affected and the overshoots are a different shape to
those seen in the 0.03% and 0.05% PAA solutions. In this case the overshoots are
further away from the sidewalls and grow into one large central overshoot at the end
of the contraction. The shape of the overshoots observed in the 0.3% PAA solution
may be due to the concentration of the polymer and the greater effects of shear
thinning or it could also be the lower Reynolds and higher Deborah numbers than
those at the lower concentrations. Further tests with a high-viscosity Boger fluid may
help unravel which effects are responsible for the occurrence of the velocity

overshoots.

Xanthan gum was tested at two concentrations, 0.07% and 0.5%. The lower
concentration was seen to flatten as the flow progressed through the gradual

contraction, similar to the Newtonian fluid and the 0.01% PAA solution. In the
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higher concentration xanthan gum solution very small ‘bumps’ were observed,
which may have been the start of velocity overshoots. Testing this (or a higher)
concentration of xanthan gum solution over a wider range of flow conditions may

provide an insight into how the overshoots develop.

6.3. Reynolds, Deborah and Elasticity numbers

It has not been possible to determine whether the Reynolds number alone has an
effect on the occurrence of ‘cat’s ears’, although in the absence of elastic effects (i.e.
when De=0 and the flow is Newtonian) the overshoots are never observed. In both
contractions 0.03% and 0.05% PAA were each measured at two Reynolds numbers —
giving a total of eight Reynolds numbers. No conclusions can be drawn solely from
looking at the variations in Reynolds numbers for these two concentrations of PAA.
At the higher concentration (0.3%) the Reynolds numbers are much lower and a
different shape of overshoot is seen. In these cases, however, the Deborah numbers
from CaBER are much larger so this effect cannot be attributed only to the effects of

inertia.

As the flow is predominantly an extensional flow the Deborah, Weissenberg and
Elasticity numbers found using the extensional properties of the fluid, i.e. CaBER
data, are more realistic values by which to judge the fluid behaviour. In the lower
concentrations of PAA the velocity overshoots increase in size as the Deborah
number determined from the CaBER data increases. In both contractions there are
two flows that have comparable Deborah numbers but the flows are visibly different
to each other. This is because the flows have different Reynolds numbers and the
solutions are different concentrations. This makes providing a definitive ‘reason’ for
the ‘cat’s ears’ occurrence incredibly difficult. It seems that the Deborah number and
the extensional fluid properties play more of a role but the extent to which the flow
rate or the concentration of the polymer affects the overshoot cannot, at this time, be
determined. This effect of the extensional properties is highlighted in Figures 5.14
and 5.16 where an attempt has been made to eliminate the effects of the contraction.
The flows with comparable De (Figure 5.16) are very similar for different Reynolds
numbers whereas the flows with comparable Re (Figure 5.14) are different to each

other and the flow with the higher Deborah number produces much larger velocity
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overshoots, which might be expected given that when De=0 (i.e. Newtonian flow) no

overshoots are observed.

In the polyacrylamide solutions the Elasticity number seems to be responsible for the
location at which the velocity overshoots develop. The higher the Elasticity number
the earlier the overshoots are seen to develop. At the highest El (i.e. in the 0.3% PAA

solutions) the overshoots develop even before the start of the contraction.

6.4. Off-centre velocity profiles

The velocity profiles measured away from the two centreplanes in the 0.05% PAA
solution (Figures 4.30-4.36) show that it is important to measure a broader range of
locations than just the XY- and XZ-centreplanes. The transverse velocity profiles
measured towards the end of the contraction show velocity overshoots that were not
apparent on the XY-centreplane. Ideally detailed 3D flow visualisation (such as
Particle Image Velocimetry) would be performed to provide a better insight into the

flow.

6.5. Recommendations

In order to understand the ‘cat’s ears’ phenomenon completely more research must

be completed in this area.

e Pressure-drop measurements made across the gradual contraction would
determine whether an ‘enhanced’ pressure drop occurs as it does across a sudden
contraction and whether the ‘cat’s ears’ effect has any effect on the pressure drop
(increasing or decreasing it for example) across the contraction.

¢ Investigation of variations in contraction ratio, shape and length in an attempt to
vary the total strain and the strain rate exerted on the flow would determine how
important the contraction properties are in the development of the velocity
overshoots.

e Measuring the flow of a Boger fluid, which is elastic but has constant viscosity

(Boger (1977)), would eliminate the effects of shear thinning (if any).
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Examining different polymer solutions such as carboxymethylcellulose (CMC,
semi-rigid) and polyethylene oxide (PEO, flexible) would confirm whether the
conclusion drawn above that the polymer type affects the occurrence of ‘cat’s
ears’ is correct.

Studying a wider range of concentrations of PAA and observing differences in
the overshoot shapes would determine whether there is a ‘critical’ concentration
at which the overshoots shape changes between those seen in the 0.03% and
0.05% PAA solutions and those seen in the 0.3% PAA solution. This difference
in shape may be due to the lower Reynolds numbers and the higher Deborah
numbers. The Reynolds and Deborah numbers investigated here were
constrained by the test rig design. Different pumps may be able to reach higher
or lower flow rates to adjust Re and De accordingly.

Performing particle image velocimetry (PIV) measurements would enable
visualisation of the entire flow rather than discrete profiles within the flow. At
present profiles have only been measured along the XY- and XZ-centreplanes
and we have no idea what is happening in the corners of the contraction or on the

other planes in most cases, for example.
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