Statistical feature ordering for neural-based incremental attribute learning

Wang, Ting
Statistical feature ordering for neural-based incremental attribute learning. PhD thesis, University of Liverpool.

[img] Text
WangTing_Jun2013_13633.pdf - Author Accepted Manuscript
Available under License Creative Commons Attribution.

Download (4MB)


In pattern recognition, better classification or regression results usually depend on highly discriminative features (also known as attributes) of datasets. Machine learning plays a significant role in the performance improvement for classification and regression. Different from the conventional machine learning approaches which train all features in one batch by some predictive algorithms like neural networks and genetic algorithms, Incremental Attribute Learning (IAL) is a novel supervised machine learning approach which gradually trains one or more features step by step. Such a strategy enables features with greater discrimination abilities to be trained in an earlier step, and avoids interference among relevant features. Previous studies have confirmed that IAL is able to generate accurate results with lower error rates. If features with different discrimination abilities are sorted in different training order, the final results may be strongly influenced. Therefore, the way to sequentially sort features with some orderings and simultaneously reduce the pattern recognition error rates based on IAL inevitably becomes an important issue in this study. Compared with the applicable yet time-consuming contribution-based feature ordering methods which were derived in previous studies, more efficient feature ordering approaches for IAL are presented to tackle classification problems in this study. In the first approach, feature orderings are calculated by statistical correlations between input and output. The second approach is based on mutual information, which employs minimal-redundancy-maximal- relevance criterion (mRMR), a well-known feature selection method, for feature ordering. The third method is improved by Fisher's Linear Discriminant (FLD). Firstly, Single Discriminability (SD) of features is presented based on FLD, which can cope with both univariate and multivariate output classification problems. Secondly, a new feature ordering metric called Accumulative Discriminability (AD) is developed based on SD. This metric is designed for IAL classification with dynamic feature dimensions. It computes the multidimensional feature discrimination ability in each step for all imported features including those imported in previous steps during the IAL training. AD can be treated as a metric for accumulative effect, while SD only measures the one-dimensional feature discrimination ability in each step. Experimental results show that all these three approaches can exhibit better performance than the conventional one-batch training method. Furthermore, the results of AD are the best of the three, because AD is much fitter for the properties of IAL, where feature number in IAL is increasing. Moreover, studies on the combination use of feature ordering and selection in IAL is also presented in this thesis. As a pre-process of machine learning for pattern recognition, sometimes feature orderings are inevitably employed together with feature selection. Experimental results show that at times these integrated approaches can obtain a better performance than non-integrated approaches yet sometimes not. Additionally, feature ordering approaches for solving regression problems are also demonstrated in this study. Experimental results show that a proper feature ordering is also one of the key elements to enhance the accuracy of the results obtained.

Item Type: Thesis (PhD)
Additional Information: Date: 2013-06 (completed)
Uncontrolled Keywords: machine learning, incremental attribute learning, pattern recognition, neural networks, statistical feature ordering
Subjects: ?? QA75 ??
Divisions: Faculty of Science and Engineering > School of Electrical Engineering, Electronics and Computer Science
Depositing User: Symplectic Admin
Date Deposited: 11 Feb 2014 11:22
Last Modified: 16 Dec 2022 04:40
DOI: 10.17638/00013633