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Abstract  

Investigating the Role of Toll -like Receptors in Juvenile -onset 
Systemic Lupus Erythematosus  

Colin Thorbinson 

Background: Juvenile-onset Systemic Lupus Erythematosus (JSLE) is a chronic debilitating 
multi-system autoimmune condition characterised by auto-antibody production directed 
against nuclear antigens. It is associated with a more severe onset and more aggressive 
clinical course than in adults, with poor prognostic markers presenting earlier in childhood. 
It has been proposed that dysregulated neutrophil apoptosis may be a source of 
autoantigen in JSLE. Toll-like Receptors (TLRs) are essential in the function of the innate 
immune system recognising pathogenic material. Upon stimulation they initiate a non-
specific immune response leading to the production of an antigen-specific immune defence 
and autoantibody production. TLRs have been implicated in the development of 
autoimmunity. TLRs 3, 7, 8 & 9 are capable of recognising nucleic autoantigens typical of 
SLE and their expression has been shown to positively correlate with anti-dsDNA titres and 
disease activity in adult-onset SLE. To date there have been no studies examining the role 
of TLRs in JSLE. 
Aim: To assess whether apoptotic neutrophils in JSLE are providing a source of nuclear 
autoantigen which are being detected through TLRs 3, 7, 8 & 9 resulting in an inflammatory 
response through activation of an adaptive autoimmune response. 
Methods: Peripheral Blood Mononuclear Cells όt.a/Ωǎύ and B cells were isolated from JSLE 
patients, Juvenile Idiopathic Arthritis (JIA) (inflammatory controls) and non-inflammatory 
controls.  TLR 3, 7-9 mRNA and protein expression was measured using quantitative PCR 
(qPCR) and flow cytometry respectively. PBMCs were incubated with TLR agonists, 
activation was measured by IFN-ʰ ǇǊƻǘŜƛƴ ŀƴŘ Ƴwb! ŜȄǇǊŜǎǎƛƻƴΣ ōȅ 9[L{! ŀƴŘ ǉt/w 
respectively. Neutrophils were isolated from healthy controls and incubated with JSLE 
serum to induce apoptosis. Apoptotic neutrophils were incubated with PBMCs at varying 
concentrations for 6 hours. After which IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ ǿŀǎ ƳŜŀǎǳǊŜŘ ōȅ ǉt/wΦ  
PBMCs were treated with a MyD88 inhibitor to block TLRs 7-9 or left untreated. MyD88 
treated and untreated PBMCs were incubated with TLR9 agonist or apoptotic neutrophils 
for 6 hours. TLR activation was measured using IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ ōȅ ǉt/wΦ  
Results: JSLE patients have a significantly increased PBMC TLR 3, 8 and 9 protein and mRNA 
expression compared to controls (p<0.05). B cells also showed increased TLR 7 and 9 mRNA 
expression compared to controls (p<0.05). Stimulation of TLR 3, 7, 8 and 9 in PBMCs leads 
to a significantly increased IFN-ʰ ǇǊƻǘŜƛƴ ŀƴŘ Ƴwb! expression (p<0.05). Incubation of 
PBMCs with varying concentrations of apoptotic neutrophils demonstrated a dose-
response relationship as measured by IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ ŀƴŘ TLR expression 
positively correlated with increasing apoptosis (p<0.05). MyD88 inhibition of PBMCs was 
found to effectively inhibit IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ ƛƴ t.a/ǎ ƛƴŎǳōŀǘŜŘ ǿƛǘƘ ¢[wф ŀƎƻƴƛǎǘ 
and apoptotic neutrophils.          
Conclusions: This study has demonstrated increased TLR expression in JSLE PBMCs and B 
cells. We have shown TLR stimulation to result in IFN-ʰ ǇǊƻŘǳŎǘƛƻƴ ŀƴŘ ǳǎƛƴƎ ǘƘƛǎ ŎǊƛǘŜǊƛŀ 
have shown apoptotic neutrophils to be potent stimulators of TLRs and therefore a likely 
source of autoantigen in JSLE. The role of TLRs in this inflammatory response was 
demonstrated by a dose-response relationship to apoptotic neutrophil concentration and  
TLR expression being shown to positively correlate with apoptosis. MyD88 inhibition was 
shown to be an effective strategy in halting this inflammatory response to apoptotic 
neutrophils. 
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1 Introduction  

1.1 The Immune System  

The primary function of the immune system is the recognition and elimination of harmful 

pathogenic material. These actions are carried out to prevent or minimise the harmful 

effects of the presence of these substances. Pathogens have evolved many methods and 

modes of transmission and reproduction to which living organisms have had to evolve 

equally potent methods of protection to counteract their threat. This tug of war between 

mammals and the environment over millions of years has resulted in the creation of a 

multi-layered, interlocking defence mechanism incorporating both primitive and more 

recently evolved components. 

The immune response can be separated into two distinct, yet intricately interwoven 

systems. Primarily, the evolutionary ancient innate immune system is responsible for 

detecting pathogenic invasion, the initiation of a non-specific immune response and 

propagation of antigen-specific targeted immune response. This response is inborn and 

unchanging in its reaction to a particular pathogen. The adaptive immune system is then 

responsible for an antigen specific response in which an array of secretory antibodies and 

cell mediated methods are employed to destroy one specific pathogen. The employment of 

these two systems is a very effective method of defence against the environment and has 

maintained survival through evolution.    

1.1.1 The Immune Response 

Upon pathogenic invasion it is the responsibility of the innate immune system to identify 

foreign organisms amongst an array of body tissues. The innate immune system is capable 

of doing this through the detection of microbial markers, for example by-products of 

ƳŜǘŀōƻƭƛǎƳ ǿƘƛŎƘ ŀǊŜ ǊŜƭŜŀǎŜŘ ƛƴǘƻ ǘƘŜ ōƻŘȅΩǎ ƛƴǘŜǊƴŀƭ ŜƴǾƛǊƻƴƳŜƴǘ ŀǎ ŀ ǊŜǎǳƭǘ ƻŦ 
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respiration. These markers are unique to microorganisms but absent from their eukaryotic 

host and are therefore able to be recognised as non-self. The markers contain conserved 

molecular motifs which are used to distinguish between class of organism and are 

therefore termed pathogen-associated molecular patterns (PAMPs). Cells of the innate 

immune response, which primarily constitute phagocytes, bear receptors for specific 

PAMPs, termed pattern-recognition receptors (PRRs) [1-2]. Once stimulated, these cells 

engulf, internalize and destroy the pathogen. Specialised cells of the innate immune 

system, mainly dendritic cells (DCs) and macrophages, are capable of displaying the 

antigenic epitope of the ingested pathogen on their cell surface. These cells are termed 

antigen presenting cells (APCs) and their role is in linking the innate and adaptive immune 

response, allowing the production of a targeted antigen-specific immune response. T 

lymphocytes of the adaptive immune system express antigen specific receptors which are 

able to detect antigenic peptides only when bound to APCs. This is crucial as this highly 

discriminatory mechanism allows the recognition of specific pathogens and not just class of 

pathogen, as permitted by PAMP detection. Specific T helper cells stimulate B lymphocytes 

into clonal differentiation of plasma cells, which produce antigen-specific immunoglobulins 

capable of destroying the pathogenic invader. This process is complete and terminates 

once the pathogen, and therefore the antigenic stimulant has been eliminated. A 

proportion of these B lymphocytes persist in the body as memory B cells allowing a much 

quicker and effective immune response if the body should come into contact with that 

particular antigen (antigenic epitope) again. 
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1.1.2 Components of Innate Immunity  

Some form of innate immunity exists in all living organisms. The function of the innate 

immune system can be broken down into 2 mechanisms. 

1.1.2.1 Cell mediated innate defence 

The chief cell of the innate immune system is the phagocyte. This is a broad term describing 

any cell capable of ingesting and destroying pathogens [3]. In addition to its role in clearing 

pathogens they also have an important function in recognising cells undergoing apoptosis 

and are responsible for clearing this cellular debris [4]. The term phagocyte encompasses a 

variety of cells, however macrophages and neutrophils are considered to be the most 

important. 

Macrophages arise from myeloid stem cells in their immature form as monocytes where 

they migrate from the bloodstream to reside in different tissues in many forms. This cell 

has a particularly long life span and may reside in tissues for many years. Neutrophils are 

also descendants of myeloid stem cells and are the most numerous leukocyte in the body. 

They are attracted to sites of infection by pathogenic stimulation of resident macrophages 

in infected tissue, which produce soluble attractants called chemokines. They migrate 

rapidly to infected sites engulfing pathogens and exposing them to proteolytic enzymes 

which destroy the bacteria. They have a particularly short life span when active but release 

chemokines attracting other cells to the area, maintaining the immune response. 

Phagocytes owe their ability to respond to threats to a system of receptors. These include 

receptors for chemokines and cytokines, allowing the cell to navigate to the site of 

infection; complement, allowing the identification of candidates for phagocytosis (Section 

1.1.2.3); immunoglobulin, stimulating phagocytosis of antibody bound antigens and various 

PRRs (Section 1.1.1), which allow the body to determine the class of invading pathogen and 

mount an appropriate immune response.  
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1.1.2.2 Toll -like Receptors (PRRs) 

Toll-like receptors (TLR) are one class of PRR thought to be important in the innate immune 

response. They fall into the context of immunity at the very beginning of the innate 

immune response. The first TLR was identified as a maternal-effect gene that had a role in 

the signalling pathway controlling dorsoventral polarity in Drosophilia fruitfly embryos [5]. 

Analysis of the Toll gene revealed that in addition to its embryonic function it also encoded 

a transmembrane protein with a similar cytoplasmic domain to the mammalian interleukin-

1 receptor (IL-1R) [6]. This suggested that drosophilia toll was not only instrumental in 

embryonic development but also had a function in the immune response of adult fruit flies. 

A study by Lemaitre et al confirmed this hypothesis by demonstrating increased fungal 

susceptibility in toll gene deficient flies [7]. However drosophilia toll are incapable of 

directly identifying pathogens and therefore do not act as PRRs. Alternatively a pro-enzyme 

is cleaved immediately upon infection into an active form which goes on to stimulate the 

Toll pathway and induce an immune response [8]. TLR4 was the first TLR to be identified in 

humans [9]. 

In humans, TLRs comprise a family of 10 type 1 glycoprotein receptors characterised by an 

extracellular leucine-rich repeat domain and an intracellular Toll/IL-1R (TIR) domain [5, 9-

11]. TLRs detect PAMPs from a diverse range of pathogens including viruses, bacteria, fungi 

and protozoa (Figure 1) [12]. The chief function of TLRs is the induction of inflammation 

and establishment of an adaptive immune response.  Once stimulated they initiate a 

signalling cascade which results in the production of cytokines activating the surrounding 

cells resulting in the secretion of chemokines. Recruited neutrophils and macrophages are 

attracted to the site of inflammation where they ingest the pathogens through 

internalisation and activate the adaptive immune response [13].  
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TLRs are able to be distinguished not only by their pathogenic ligand but also by their 

cellular location. TLRs 1, 2, 4, 5, 6 are situated on the cell surface whereas TLRs 3, 7, 8 and 9 

have an intracellular location (Figure 1) [14]. 

Figure 1: TLR cellular location and natural ligands [15] 

 

 

 

 

 

 

 

 

 

 

The intracellular location of TLRs 3, 7, 8 and 9 is thought to be due to the origin of their 

natural ligands. As nucleic acid receptors they are susceptible to activation by self nucleic 

acids and therefore capable of detecting self-antigen. It has been shown that if TLR9 is 

manipulated to be expressed on the plasma membrane it can be stimulated by self DNA 

[16]. Endosomal sequestration of these TLRs is thought to protect them from gaining 

contact with endogenous nucleic acids, while still allowing detection of exogenous nucleic 

acids [13]. 

1.1.2.3 Soluble Mediators of the Innate Defence 

The innate immune system is reliant upon a host of soluble proteins to initiate a rapid 

response. Type 1 interferons (IFNs) comprise a family of associated cytokines essential in 

 

This text box is where the unabridged thesis included the following 

third party copyrighted material: 

TLR cellular location 

Means, T.K., et al., Human lupus autoantibody-DNA complexes 
activate DCs through cooperation of CD32 and TLR9. J Clin Invest, 
2005. 115(2): p. 407-17. 
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the innate immune response. Cytokines are soluble messenger molecules secreted by cells 

of the immune system [3]. This group of cytokines is named after their ability to interfere 

(interfer-) with viral replication (-on), practical applications of this can be seen in the use of 

recombinant IFN-  h for treating viral hepatitis [17]. Serum levels are increased hours after 

infection inhibiting further viral replication and stimulating innate immune cells to destroy 

infected cells [18]. IFNs also enhance antigen presentation, ensuring a more rapid adaptive 

immune response [19]. There are many cytokines important to the function of the immune 

system but IL-1, IL-6 and Tissue Necrosing Factor (TNF) are of particular importance due to 

their role in linking all facets of the immune system to produce one overall effective and co-

ordinated immune response [18].  

Another very important part of the innate immune response is the complement system of 

proteins which comprises 9 major components C1-9 and some smaller fragments. This 

system is directly and indirectly responsible for inducing cell death. Indirectly it causes the 

release of inflammatory cytokines and chemokines attracting cells of the immune system to 

target areas and the binding of opsonins to target cells allows identification off candidates 

for phagocytosis [3]. Directly, they are capable of disrupting the cell structure through a 

process of membrane lysis destroying cell integrity allowing leakage of contents resulting in 

cell death [3].   

1.1.3 Bridging  Innate and Adaptive immunity  

An effective immune response relies on the ability of the innate system to stimulate the 

adaptive immune system into a pathogen specific response. The Major Histocompatibility 

Complex (MHC) comprises a group of antigen-receptor molecules. Class I MHC molecules 

are present on virtually all cells and class II MHC molecules are present mainly on B cells, 

macrophages and dendritic cells. The function of this group is to identify and present 

antigen to cells of the adaptive immune system, promoting an antigen specific response. 



7 
 

Once cells of the innate immune system are stimulated they can produce a range of 

cytokines which induce proliferation of APCs, promoting a more efficient response, and 

cells involved in cell mediated and humoral immunity. 

1.1.4 Adaptive Immunity  

Cells of the adaptive immune system require activation by the innate immune system 

before they can begin to exert their effects. Cell mediated immunity is the process by which 

CD8+ cytotoxic T cells (Tc cells) migrate into peripheral tissues, physically and chemically 

attacking antigens [20]. However these cells must first be primed for activity by APCs 

before they can exert their effects. Once primed Tc cells will destroy any tissue bearing the 

antigenic epitope for which they have been primed. Each B cell carries its own unique 

antibody. Once this antibody comes into contact with its complementary antigen the B cell 

undergoes sensitization, a process by which the cell prepares for activation [21]. Once 

sensitized the B cell will not become active until stimulated by an activated CD4+ T helper 

cell (TH cell) [21]. These cells also carry their own unique receptor called the T cell receptor 

ό¢/wύ ŀƴŘ ǳƴŘŜǊƎƻ ŀŎǘƛǾŀǘƛƻƴ ǿƘŜƴ ǇǊŜǎŜƴǘŜŘ ǿƛǘƘ ŀƴ ŀƴǘƛƎŜƴ ŦǊƻƳ ŀƴ !t/ ǘƘŀǘΩǎ ŜǇƛǘƻǇŜ 

is specific for their TCR [17]. Once activated they promote B cell activation through the 

stimulation of the B cell receptor (BCR).  Some antigens also have the ability to directly 

stimulate B cell activation in the absence of TH cell assistance, these are termed T cell 

independent antigens [3]. Once activated, B cells undergo clonal expansion producing 

daughter cells which differentiate into plasma cells, capable of producing large volumes of 

soluble antibody, and memory cells, which persist after first exposure and confer long-

lasting immunity (Figure 2) [20].      
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Figure 2: Overview of the Adaptive Immune Response 

 

 

 

 

 

 

 

 

 

 

Antigen presenting cells (APC) detect antigen through pattern recognition receptors such as TLRs. B cells 

detect antigen and undergo sensitization. CD4
+ 
cells bind to APCs upon recognition of antigen and stimulate B 

cell clonal proliferation and produce antibody against target antigen. CD8
+
 cells become activated once they 

detect antigen on APC. They migrate toward sites of infection and initiate an immune response upon contact 

with the antigen they have been activated towards (Adapted from Immunology [3]). 

1.1.5 Apoptosis  

The process of apoptosis lies in the biochemical and morphologic events that occur to 

induce programmed cell death [22]. There are two major pathways involved (Figure 3). The 

extrinsic pathway is induced through death ligand/receptor interactions, such as FasL/FasR 

and TRAIL/Death Receptor (DR) 4/5 [23]. This stimulates the recruitment of an adapter 

protein, Fas Associated Death Domain (FADD), which cleaves pro-caspase 8 to its active 

form, caspase 8 [23]. The intrinsic pathway involves the release of cytochrome c from 

mitochondria leading to the activation of caspase 9. Both caspase 8 and 9 have the ability 

to cleave pro-caspase 3 to its active form, caspase 3, initiating the death cascade [23-24]. 

This process is integral in maintaining normal homeostasis and regulating immune 

autoreactivity through the deletion of autoreactive and immunologically redundant cells 

[4]. Apoptotic cells are recognised and cleared by phagocytes without inducing an 
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inflammatory reaction [4]. Necrosis is unprogrammed cell death usually the result of tissue 

insult and results in an inflammatory response [25]. 

Figure 3: Intrinsic and Extrinsic Apoptotic Pathway 

 

 

 

 

 

 

 

 

This figure is adapted from LeBlanc and Ashkenazi 2003. Death ligands/receptor interactions, for 

example TRAIL, stimulate the activation of caspase 8 through the extrinsic pathway. Mitochondria 

produce cytochrome c (cyt c) to activate caspase 9 through the intrinsic pathway. Caspases 8 & 9 

activate caspase 3 initiating apoptosis [26]. 

 

1.2 Autoimmunity  

Autoimmunity can be defined as an adaptive immune response with specificity for self-

antigens [27]. This process involves the production of autoantibodies against normal cell 

constituents, which in this scenario are looked upon as autoantigens. A certain level of 

autoantibody production is seen in healthy individuals and is considered normal. This is 

probably due to the process of random Ig gene recombination by which antigen receptor 

genes are randomly re-arranged with the intention of creating a diverse set of receptors 

capable of identifying all the antigens present in our environment [17]. A negative aspect of 

this process is the inevitability of the creation of receptors specific for host antigens. If the 

cell should come into contact with this antigen an autoimmune response may be mounted. 

However an extensive network of self-tolerance checkpoints ensures that significant 

numbers of these auto-reactive cells do not enter the active cell population. Central 
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tolerance occurs in the thymus.  Any T cell that binds to autoantigens present in the thymus 

will be deleted by negative selection. However not all autoantigens are present in the 

thymus and consequently some cells escape negative selection. Peripheral tolerance 

involves three mechanisms: sequestration of self-antigen so that autoreactive T cells 

cannot come into contact with it; immunologic privilege by where the self-antigen is 

protected from contact by physical or chemical means and anergy or apoptosis through 

deficiency in required co-stimulatory molecules [28]. If any of these mechanisms are 

ineffective then self-tolerance may be lost. For example if dsDNA is expressed in low levels 

in the thymus a cell may escape central tolerance, in addition to this if there is a deficiency 

in complement then cell debris, for example dsDNA, may be present in the circulation 

inducing an immune response resulting in the production of anti-dsDNA autoantibodies. 

There are many examples of autoimmune diseases in which the body mounts a response 

against itself, and it is no surprise that due to the complexity of their nature they are one of 

the more challenging groups of conditions to unravel their immunopathogenesis. 

1.2.1 Apoptosis  in Autoimmunity  

Defects in apoptosis are implicated in the pathogenesis of many significant diseases, 

including cancer, heart disease and many autoimmune diseases [25]. One example of 

dysregulated apoptosis leading to autoimmunity is the lymphoproliferative disorders were 

a failure of apoptosis leads to the unregulated proliferation of lymphocytes. For example in 

autoimmune lymphoproliferative syndrome, inherited defects in B cell apoptotic pathways, 

involving Fas, Fas ligand and the caspases, result in abnormalities in B cell apoptosis leading 

to uncontrolled clonal expansion of B cell populations which have the potential to develop 

into B cell lymphoma.  Conversely it has also been demonstrated that increased apoptosis 

may also lead to the development of autoimmune disease through increased exposure of 

self-antigen [22, 25]. This is thought to occur due to apoptosis leading to the breakdown of 

cell membranes exposing self-antigen, providing the opportunity for autoimmunity.  
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1.2.2 TLRs in Autoimmunity  

For years the induction of autoimmunity was thought to be solely dependent on the 

dysfunction of T and B cells. Now as we begin to better understand the functions and 

mechanisms of the innate immune system it has come to be accepted that it may be 

implicated in the triggering of autoimmunity [29]. Understandably this has led to a wave of 

research into the roles of TLRs in autoimmunity, in particular 3, 7, 8 and 9. The interest in 

these arises from the presence of nucleic acid derived autoantibodies in many autoimmune 

conditions, indicating that humans may be susceptible to detecting host DNA. The fact that 

these TLRs are capable of detecting nucleic acids has directed research in their direction. 

Mechanisms that prevent the detection of host nucleic acids are thought to be due to their 

endosomal localisation and subtle differences in the fundamental structure of exogenous 

and endogenous nucleic acids, allowing differentiation between the two [16, 30-31]. 

However, abnormalities in their regulatory role, or increased production and therefore 

potential exposure to self-antigen may result in them being activated in response to 

endogenous nucleic acids. Recent research has implicated TLRs in the pathogenesis of 

human SLE, rheumatoid arthritis (RA), diabetes and antiphospholipid syndrome [32-35]. 

This theory is further supported by the fact that TLR inhibitors have been being used in the 

treatment of autoimmune conditions for years. Hydroxychloroquine, initially developed as 

an anti-malarial drug is also employed in rheumatoid arthritis (RA), juvenile idiopathic 

arthritis (JIA), SLE and JSLE [36-37]. It is now known that the drug acts a potent inhibitor of 

TLRs 3, 7, 8 and 9 [38]. The fact that clinical and serological improvement can be seen with 

the use of this drug supports the potential role of TLRs in the development of 

autoimmunity. 
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1.3 JSLE 

1.3.1 Background  

Juvenile-onset Systemic Lupus Erythematosus (JSLE) is the childhood form of Systemic 

Lupus Erythematosus (SLE). It is a rare condition with an incidence of less than 1/100,000 

[39]. Onset occurs prior to the age of 18, typically between 12-16 years although children 

can be diagnosed at a much earlier age, and accounts for up to 20% of all cases of SLE [40-

42]. Gender predilection towards females is more balanced than in adult disease, with 

female:male ratios being approximately 5:1 and 8:1 respectively for pre- and post-pubertal 

young people [43]. It is a chronic, debilitating, multi-system autoimmune condition which 

has a more severe disease-onset and presentation and more aggressive clinical course than 

the adult form [44-48]. JSLE can present with severe life threatening disease, but often can 

be characterised by non-specific symptoms such as fatigue, mouth ulcers, arthralgia / 

myalgia and low mood, which in a teenage population may have many varied aetiologies. 

Such vague presentation, combined with low awareness among clinicians, health care 

professionals and the general population that lupus can occur in children, mean that it is 

often not recognised early on, leading to significant delays between initial presentation and 

diagnosis [49].  

 

1.3.2 Clinical Characteristics  

The complexity of this disease is reflected in the wide diversity of clinical and 

immunological manifestations that characterise lupus as well as the criteria upon which 

diagnosis is based. There are no validated diagnostic criteria for either juvenile- or adult-

onset SLE, but diagnosis is currently based upon the revised American College of 

Rheumatology classification criteria for SLE. These consist of 11 criteria (Table 1) of which 

four have to be met, cumulatively, before a diagnosis is formally made [50-51]. Although 

these criteria were intended for adults, their use has been adopted and subsequently 
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validated in the juvenile population [52]. However, differences in disease spectrum 

between adult and paediatric-onset disease means that young people are often deemed by 

their clinician to have or be developing lupus, without strictly meeting these criteria.  

Table 1: Diagnostic criteria for SLE (Adapted from Tucker et al [9]) 

Revised ACR 1997 criteria (ref) 

Malar Rash 
Discoid Rash 
Photosensitivity 
Oral or nasal ulcerations 
Nonerosive arthritis 
Nephritis 
              Proteinuria >0.5g/day 
              Cellular casts 
Encephalopathy 
          Seizures 
              Psychosis 
Pleuritis or pericarditis 
Cytopaenia 
Positive immunoserology 
              Antibodies to dsDNA &/or Sm nuclear antigen 
              Positive findings of antiphospholipid antibodies 

- Anti-cardiolipin antibodies 

- Lupus anti-coagulant 

Positive antinuclear antibody test  
 

Although there are strong similarities in the disease spectrum between JSLE and the adult 

form, there are clear differences in the clinical presentation. It has been found that 

constitutional symptoms, arthritis, visceromegaly, nephritis, lymphadenopathy, 

neurological and haematological abnormalities are far more prevalent in the juvenile 

population [53-54]. Although constitutional symptoms, defined as fever, fatigue and weight 

loss, are not part of the diagnostic criteria they can have a profound influence on clinical 

wellbeing and are thought to be the result of the underlying disease process in JSLE. In 

addition to the increased frequency of these manifestations in JSLE, they are also found to 

be more aggressive and poor prognostic markers of SLE in general [53]. 

 

җ4 of the diagnostic criteria have to be met cumulatively for diagnosis 
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1.3.3 Immunopathology  

The underlying immunopathology in JSLE is characterised by an overwhelming dysfunction 

of the normal immune response. The complex pathology of this condition has recently 

begun to unravel with advances in our understanding of the normal immune response and 

observations of abnormal cell functions in JSLE. To date, T cell autoreactivity, B cell 

hyperactivity, dendritic cell dysfunction and altered complement and cytokine profiles have 

all been implicated in the disease process [55-56]. The serological hallmark of JSLE is the 

production of auto-antibodies, directed against nuclear auto-antigens which are thought to 

arise from the immune dysfunction. The most characteristic of these anti-nuclear 

antibodies (ANAs) is anti-dsDNA directed against self-dsDNA. The full significance of these 

auto-antibodies has yet to be completely determined but it is hypothesised that they lead 

to the formation of immune complexes (IC) with their auto-antigens and are spontaneously 

deposited in body tissues, leading to an inflammatory response, cytokine production, tissue 

damage and eventual necrosis. This is supported by the positive correlation between the 

presence of anti-dsDNA titres and lupus nephritis [57].  

1.3.3.1 Genetic Factors 

It is universally accepted that genetic predisposition is a key factor in the development of 

SLE. The children of parents with SLE are 20 times more likely to develop the condition than 

the general population [58]. Twin studies propose a 24% concordance rate in monozygous 

twins, reduced to 2% in heterozygous twins [59]. As well as providing evidence for a genetic 

link of inheritance these studies also highlight the importance of environmental factors on 

the development of JSLE. In two people with identical genes the only other factor that can 

influence their development is the environment in which they are exposed to. Therefore 

the condition is likely to develop where there is a genetic predisposition followed by an 

event or events that initiate and then maintain disease progression through an 

accumulation of risk factors which all must be present at the same time or exposed to over 



15 
 

time. The likelihood of developing JSLE is also increased with a positive family in first 

degree relatives, the risk increasing with the number of affected family members [60] .  

Interestingly, the strongest risk factor for developing SLE lies in the homozygous deficiency 

of any one of the early components of the classical complement pathway, important in the 

clearance of apoptotic cell debris [61-64]. Prevalence and severity of the condition can be 

ranked dependent upon the missing protein. There is an increased association and severity 

of condition with deletion of C1-complex or C4 molecules and a decreased prevalence and 

severity with C2 deletion, however a third of these patients will still go on to develop SLE   

[61-63, 65]. This is extremely interesting in the context of recent research investigating the 

role of apoptosis and defective cell clearance in the pathogenesis of adult and juvenile-

onset SLE [25, 44].  

Although important, this genetic deficiency is by no means the full story, with associations 

between variations in HLA type [65], cytokine associated genes [19]Σ CŎʴ ǊŜŎŜǇǘƻǊ ƎŜƴŜǎ 

[65], mannose binding lectin [66] and cell apoptosis controlling genes being shown to be 

strongly associated with disease development in humans. This array of άǎǳǎŎŜǇǘƛōƛƭƛǘȅ ƎŜƴŜέ 

alterations of different components of the immune response is an insight into the 

complexity of the immunopathology of this heterogeneous disease and allows a glimpse of 

the scale of the task of unravelling just this aspect of disease pathogenesis.  

Homozygous TREX1 mutation is most commonly known as the cause of Aicardi-Goutières 

Syndrome, whilst heterozygous mutations result in familial chilblain lupus [67-68]; of note 

up to 2% of adult SLE patients have mutations of this gene [69]. This association is 

important as deficiencies in this gene lead to defects in nucleic acid metabolism leading to 

high levels of IFN-ʰΣ a cytokine noted to be important in the pathogenesis of SLE [70].  
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Considering the highly heterogenic nature of this condition it is highly unlikely that there is 

one specific gene profile that could be used to identify those that have or are likely to 

develop SLE. However, investigating the genetic factors important in the development of 

the severe phenotype of the childhood form of SLE and their functional downstream 

consequences will provide important insights into the aetiology of this archetypal 

autoimmune disease. It is probable that there are a number of genetic permutations or 

susceptibility genes that result in the manifestation of this disease and it is these 

permutations that may explain discrepancies between disease manifestation in individual 

patients.  

1.3.3.2 Cytokines 

Recent advances in biotechnology have led to a renaissance into the study of the 

underlying mechanisms which may cause SLE. A result of this has been the discovery of a 

whole host of abnormal variations in cytokine-associated genes leading to a renewed 

interest into the role that cytokines have to play in SLE. It has been hypothesised that 

cytokines are not only important in the maintenance of disease but also may be critical in 

the initiation of autoimmunity [71]. 

Increased serum levels of cytokines have been demonstrated on numerous occasions in 

SLE. The most important set of cytokines in SLE are thought to be the IFNΩǎ. The IFN family 

consist of 13 IFN-ʰ ǎǳōǘȅǇŜǎΣ LCb-ʲ ŀƴŘ LCb-˖ [72].  High serum IFN-ʰ ƭŜǾŜƭǎ ŀǊŜ ŀ ŎƻƳƳƻƴ 

feature of SLE and have been shown to correlate well with disease activity and severity [73] 

and high serum levels are a heritable risk factor for disease [74]. Indeed IFN pathway 

activation has been shown to be associated with more severe disease [75]. This increased 

protein level of IFN-ʰ ǘǊŀƴǎƭŀǘŜǎ ǘƻ ŀ ƎŜƴŜǘƛŎ ΨLCb ǎƛƎƴŀǘǳǊŜΩ ǿƘŜǊŜ ƎŜƴŜǎ ƛƴǾƻƭǾŜŘ ƛƴ ǘƘŜ 

IFN-ʰ ǇŀǘƘǿŀȅ ŀǊŜ ǳǇ-regulated [76]. Interestingly, incubating cells with JSLE serum 

increases IFN-  hexpression, identifying a serum factor for this mechanism [24]. The main 
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source of IFN-ʰ ƛǎ ǘƘƻǳƎƘǘ ǘƻ ōŜ ǘƘǊƻǳƎƘ ǇƭŀǎƳŀŎȅǘƻƛŘ ŘŜƴŘǊƛǘƛŎ ŎŜƭƭ όǇ5/ǎύ ǎǘƛƳǳƭŀǘƛƻƴ ōȅ 

immune complexes containing SLE autoantibodies [77]. These immune complexes are 

thought to be internalised upon binding with pDCs at which point they can activate 

intracellular TLRs [15]. This  increased IFN-ʰ ƭŜǾŜƭ ǊŜǎǳƭǘǎ ƛƴ ǘƘŜ ǳƴǊŜƳƛǘǘƛƴƎ ŘƛŦŦŜǊŜƴǘƛŀǘƛƻƴ 

and activation of pDCs which present antigens from apoptotic cells  resulting in the 

activation of autoreactive T cells and in the loss of peripheral self-tolerance (Figure 4) [19]. 

IFN-ʰ ŀƭǎƻ Ƙŀǎ ǘƘŜ ŎŀǇŀŎƛǘȅ ǘƻ ŘƛǊŜŎǘƭȅ ǎǘƛƳǳƭŀǘŜ . ŎŜƭƭǎ ŜƴƘŀƴŎƛƴƎ ŀƴǘƛōƻŘȅ ŀƴŘ 

autoantibody production [19]. Its role in the aetiopathogenesis of lupus is further indicated 

by induction of a lupus-like syndrome upon commencement of recombinant IFN-ʰ ǘƘŜrapy 

and abation of these symptoms following withdrawal [78-79]. These data indicate a 

population of patients with a genetic background leading to susceptibility for lupus, and are 

further supported by the identification of SLE susceptibility genes linked to IFN cytokine 

production [80].  

Although IFN-ʰ ƛǎ ǘƘŜ ƳŀƧƻǊ cytokine commonly attributed to the pathogenesis of JSLE, 

patients also express other abnormal cytokine profiles. Levels of B-Lymphocyte stimulator 

(BLyS or BAFF), IL-6, IL-10 and IL-12 have also been found to be increased in SLE and to 

correlate with disease activity, while IL-2 has been reported to be low [18, 81-86]. IL-6 is 

responsible for the maturation of IFN-ʰ ƛƴŘǳŎŜŘΣ non-immunoglobulin (Ig) secreting 

plasmablasts into Ig-ǎŜŎǊŜǘƛƴƎ ǇƭŀǎƳŀ ŎŜƭƭǎ ŀƴŘ ǘƘŜǊŜŦƻǊŜ ƛǘΩǎ ǳǇ-regulation in SLE patients 

with high serum IFN-ʰ ƛǎ of note [87]. BAFF induces the proliferation of B cells and has been 

implicated in the expansion of autoreactive B cells. Serum levels of this cytokine have been 

shown to be increased in SLE [88]. This observation has led to clinical trials of anti-BAFF 

therapy which have shown therapeutic benefit [89].    

Although there are cytokines that may have a profound influence on the evolution and 

maintenance of disease, it is unlikely that targeting just one cytokine will induce disease 
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remission, as has been successfully implemented in inflammatory arthritis [90]. Cytokines 

rely on such a delicate intricate system of positive and negative feedback loops, and SLE is a 

disease of such complexity, that it is likely that only by targeting a host of cytokines, their 

receptors or the immune cells producing them, will result in a clinically significant remission 

of disease. Whether this clinical benefit comes with an acceptable safety profile is another 

important question. It therefore underlines the importance of determining the early 

triggers of subsequent downstream dysregulation of the immune pathway, and the 

interaction between the innate and adaptive immune system. 

Figure 4: The role of IFN-ʰ ƛƴ [ǳǇǳǎ [91-92] 

 

  

The central role of type I IFN in SLE pathogenesis. Several genetic alterations predispose to SLE. 

For example, genes involved in IFN production, B cell tolerance and clearance of cell debris. SLE 

flares are associated with environmental factors such as viral infections triggering the unabated 

production of IFNs. Type I IFN induces the generation of mature DCs, which expand autoreactive T 

lymphocytes that have escaped central tolerance. Autoreactive CD8
+
 T cells damage tissues 

releasing large numbers of nucleosomes, captured by mature DCs, amplifying the autoreactive 

process. IL-6 and IFN promote the proliferation of autoreactive plasma cells. Immune complexes 

activate B cells through the engagement of BCR and TLRs inducing pDC IFN-ʰ production. Red 

arrows indicate direct effects of type I IFN on DCs and B cells. Black arrows indicate indirect 

effects, either as a result of IFN-induced DC activation or through immune complex generation. 
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1.3.3.3 Dendritic Cells 

There has been much interest in the role of DCs in SLE. As with many cells of the immune 

system in JSLE, blood levels have been found to be significantly decreased [93-94]. 

However biopsies have revealed their presence in cutaneous lupus erythematosus lesions 

[95]. IFN-  h can induce the differentiation of immature DCs into active DCs. In a healthy 

model this would mean that when the body required to activate DCs it would produce 

increased levels of IFN- ,h which would be down-regulated once the desired response had 

been achieved. This is what is thought to maintain the peripheral tolerance to self-antigens 

in healthy subjects. However in JSLE there are high levels of IFN-  hwhich may lead to the 

persistent activation of DCs [24]. Interestingly it is thought that plasmacytoid DCs (pDCs) 

are the main source of IFN-ʰ ƛƴ {[9 [77]. This supports the hypothesis that pDCs may 

actively contribute to their own auto-reactivity. With persistently high levels of IFN-ʰΣ 

immature pDCs may be being stimulated to present autoantigen leading to the 

development of autoreactive T cells and the initiation of autoimmunity. As the pDCs are 

being stimulated they will simultaneously produce IFN-a thereby forming a feedback loop 

of autoantigen presentation and stimulation of autoreactive cells promoting the 

persistence of autoimmunity [44]. 

1.3.3.4 B cells and auto-antibody production  

The focus of interest in the role of B cells in the disease process in JSLE is clear. As the only 

cells capable of producing antibodies they are implicated in the disease pathophysiology; 

whether their role is secondary, being driven to produce auto-reactive antibodies by up-

stream signals, or whether they play a more primary role poses a more challenging 

question. Lymphopenia is a common problem in JSLE, however it has been found that the B 

cells that are present display abnormal phenotypes suggestive of activation [92]. The 

significance of the role of B cells in JSLE pathology has been heavily implied by case reports 

in SLE patients whose symptoms have abated with concomitant development of B cell 
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dysfunction [92]. Interestingly murine models have indicated that the role of the B cell in 

JSLE pathogenesis is not only in auto-antibody production but may also lie in their ability to 

stimulate other cells of the immune system including T cells and DCs. Lupus mice with B 

cells incapable of producing antibodies maintain symptoms of SLE, many of which are lost 

upon B cell depletion [96]. One theory is that as B cells are capable of acting as APCs; an 

autoreactive B cell could lead to the activation of an autoreactive TH cell which in turn could 

stimulate the proliferation of autoantibody producing plasma cells [92]. This evidence has 

led to the production of B cell targeted therapies which have been shown to have 

therapeutic advantages in a range of autoimmune conditions including JSLE [97-101].  

Studies into B cell function have found significant alterations in B cell compartments and 

phenotype [92]. Despite low levels of naïve and memory B cells there is a disproportional 

increase in antibody producing CD38+ plasma cells. Further to this, in health where there is 

a waxing and waning of plasma cell populations in response to pathogenic infection it has 

been found that there are persistently raised levels of this cell in SLE, indicating that 

antibody production is being driven by a factor other than host infection [77].  

As has previously been noted, raised levels of IFNs have the ability to induce B cell 

proliferation and are likely to be involved in the proliferation of autoreactive B cells [87]. 

Interestingly it has also been found that T and B cells increasingly express CD40 ligand 

(CD40L) in SLE. This protein is required for the activation of many antigen presenting cells 

including B cells and DCs and in vivo is usually provided by T lymphocytes [102]. This finding 

is further consolidated by the eradication of plasma cell types in adult SLE with the addition 

of anti-CD40L mAb [102]. These two processes may work independently or as part of a 

bigger mechanism in contributing to JSLE pathology.  

In health it has been shown that a significant proportion of immature B cells express mRNA 

for auto-antibodies, however these are removed from the mature B cell population [103]. 
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The VH4-34 gene has been found to encode for a variety of auto-antibodies, including anti-

dsDNA antibodies [104]. Interestingly SLE serum contains increased levels of 9G4, an 

idiotype encoded by the VH4-34 gene, and furthermore these titres appear to correlate 

with disease activity [105]. These data support the possibility that in SLE there is a defect in 

the mechanism that usually filters the auto-reactive B cells from the general B cell pool and 

this in turn is permitting the maturation of these auto-reactive immature B cells.  

Prospective studies have shown that auto-antibody production may precede diagnosis by 

many years [106]. The onset of overt clinical disease has been shown to be associated with 

the presence auto-antibodies to dsDNA, Smith antigen and nuclear ribonucleoproteins 

which, coincidentally, are the last of the auto-antibodies to appear in SLE [106]. This may 

have significant pathological consequences as immune complexes containing DNA are 

capable of stimulating auto-antibody secretion [107]. Furthermore anti-dsDNA and anti-

nRNPs antibodies can trigger the secretion of IFN-ʰ [108-109] from pDCs, which, as 

previously mentioned, can stimulate the development of mature plasma cells, creating a 

self-perpetuating cycle of inflammatory cytokine secretion and auto-antibody production 

[87].  

1.3.3.5 T Cells 

As with B cells, T cells of SLE patients have been found to have a lower threshold for 

antigenic response than healthy T cells [110]. These cells also seem to be able to resist 

deactivation and apoptosis through dampening down of the extrinsic apoptotic pathway 

[111]. Firstly the fact that these hyper-reactive T cells are present in the body is an 

indication of an irregular immune complexion; secondly the fact that these cells can persist 

beyond the normal life-span of T-lymphocytes indicates a set up primed for immune 

dysfunction, such as that seen in JSLE. The persistence of these cells may indeed contribute 
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the disease process in JSLE. Two T cell subtypes have received particular attention in 

regards to SLE in recent years. 

Type 17 helper (TH17) cells are CD4+ cells that have undergone antigen priming resulting in 

phenotypic differentiation into a cell capable of inducing intense inflammatory responses 

[112]. They owe this ability to the production of several potent cytokines, in particular IL-

17, which has an important role in neutrophil recruitment and also has the ability to 

stimulate antibody production [112]. Levels of this cell type and this cytokine have both 

been found to be increased in SLE suggesting they may have a function in the pathogenesis 

of SLE [113]. 

Regulatory T cells (TREG) persistently express CD4+ cells and are important in maintaining 

immunological tolerance [112]. Their significance is implied by the observation that 

absence of these cells leads to the development of fatal autoimmunity [112]. It has been 

found that these cells are depleted in SLE and to compound this the cells present function 

poorly [114-115]. The cytokine profile in SLE is thought to contribute to this abnormality.  

IL-2 reported to be low in SLE is vital for the maturation of this cell type and IL-6, capable of 

inhibiting these cells, is present in high levels [86, 116]. Dysfunction of this cell type could 

be a factor in and contribute to T cell dysregulation and auto-antibody production in JSLE 

1.3.3.6 Apoptosis 

The premise that apoptosis is essential in maintaining immune integrity allows for the 

suggestion that defects in this mechanism may lead to immune irregularities. This is 

certainly thought to be the case in SLE [117]. It is thought that failure of the body to clear 

apoptotic cells is allowing the exposure of antigenic cellular components leading to the 

abnormal presentation of host derived auto-antigens [44]. This is based on evidence 

showing increased rates of apoptosis in combination with defective clearance of apoptotic 

material resulting in increased levels of circulating apoptotic cells in SLE [4, 118-120].  
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Our laboratories have explored the specific role of apoptosis in JSLE and have recently 

demonstrated an increased rate of neutrophil apoptosis in JSLE when compared to control 

[24]. Furthermore this increased rate was shown to be positively correlated with disease 

activity, as measured by the British Isles Lupus Assessment Group (BILAG) index, and anti-

dsDNA titres [24, 121]. The cause of this increased apoptosis is thought to be due to the 

imbalance of the normal relationship between pro-apoptotic and anti-apoptotic factors in 

JSLE serum. Levels of granulocyte macrophage-colony stimulating factor (GM-CSF), cellular 

inhibitor of apoptosis (cIAP) 1, cIAP2 and X-linked inhibitor of apoptosis, all thought to be 

anti-apoptotic factors, are reduced in JSLE, whereas levels of TRAIL, FasL, Caspase 3, 

TRAILR-1, Fas and FADD, pro-apoptotic factors are increased. This hostile internal 

environment promoting neutrophil apoptosis is evident in clinical practice by marked 

neutropenia in JSLE patients. How this may be contributing to the disease process is 

unclear but the correlation between the level of neutrophil apoptosis, anti-dsDNA and 

disease activity implies that it may be a major contributor to the disease process. It is 

unclear whether the levels of apoptosis are a driving cause of pathology or a consequence. 

One hypothesis is that when these neutrophils undergo apoptosis, nuclear auto-antigens 

are being allowed to migrate to blebs on the cell surface and breach the cell membrane 

[122]. This allows the body to generate an immune response against these self-antigens 

ultimately resulting in anti-nuclear antibody production. Deficiencies in cell clearance, for 

example genetic deficiencies in complement components, may be compounding this 

problem[36].  

1.3.3.7 TLRs in SLE  

The last 10 years has seen much interest in the role of TLRs in autoimmune disease. The 

recent evidence base indicates that TLRs also have a role to play in the development of SLE. 

Although up-regulation of other intra-cellular TLRs has been detected, the main focus has 

been placed upon TLR 9, attributable to its ability to recognise self-dsDNA and the 
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invariable presence of anti-dsDNA in SLE. A recent case report has provoked further 

interest [123]. A lady with a 20 year history of severe SLE experienced spontaneous 

remission of clinical symptoms as well as eradication of anti-dsDNA titers with the 

simultaneous development of common variable immunodeficiency (CVID). Examination of 

the patients B cells revealed an acquired defect in the signalling pathway of TLRs 7 and 9. 

Although a unique case it highlights the possibility of the significance of TLRs in SLE. A 

number of studies have found increased expression of TLR 9 in SLE [32-33, 124-126]. 

Interestingly this increased expression has been found to be positively correlated with 

disease activity (SLEDAI), anti-dsDNA titers and cytokine production in the form of IFN-ʰ 

and IL-10 [32, 125]. These findings are highly suggestive of a pivotal role for TLRs in the 

pathogenesis of SLE. However genetic studies analysing the TLR gene in patients with SLE 

have shown no link predisposing genetic variations of the TLR gene to increased 

susceptibility to SLE [127-128]. In view of the key role TLRs have in linking the innate and 

adaptive immune system and the downstream consequences of this, it is therefore of great 

importance to investigate further the role of TLRs in the pathogenesis of lupus. 

1.3.4 Management  

Management of any severe, chronic disease is a challenging and complex task [36]. In JSLE 

this importance is amplified by the fact that having significant disease during a time of such 

crucial physical, educational and psychological development can have serious long-term 

implications on future health and well-being. The degree of challenge is further intensified 

by concordance issues particularly during adolescence at a time when body image is at its 

most fragile. The negative effects of the disease and treatment alike can lead to reduced 

compliance which in turn allows disease progression requiring further treatment, which 

may lead to increased frequency or intensity of the negative effects they were hoping to 

initially avoid. Concerns regarding long-term treatment effects can also lead to 

concordance issues with not only patients but parents alike. 
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The evidence base for treating JSLE is significant only in its absence. Despite a large body of 

studies assessing treatment of adult-onset SLE, there have been no clinical trials assessing 

the use of therapeutic medications in juvenile-onset. This is surprising and unfortunate 

given that JSLE has been found to be more severe than adult SLE and the emphasis on 

effective disease control should therefore be greater given its consequences on short and 

long-term morbidity [53]. Therefore, as with other areas of this condition, treatment is 

largely based upon observations from adult-onset SLE and applied without sufficient 

exploration of efficacy. Although increased recognition and new treatments are largely to 

account for increased survival in JSLE, much more work is required in this field if further 

advancements are to take place. 

Predictably in JSLE the mainstay of treatment is targeted towards a dampening down of the 

immune response. Mild disease can be sufficiently treated with non-steroidal anti-

inflammatory drugs and hydroxychloroquine [36-37]. Corticosteroids are almost universally 

employed and are very effective in regaining control of the disease. Due to the increased 

prevalence of aggressive disease in JSLE there is often a sustained demand for high dose 

steroids, which although providing amelioration of the disease bring their own health 

consequences. Problems such as weight gain, failure to thrive, delayed puberty and striae 

are just a few of the symptoms that can most distress patients provoking disconcordance. 

However there are more worrying consequences of prolonged steroid exposure such as 

osteoporosis and premature atherosclerosis which will have more serious implications on 

long-term morbidity and mortality. This has led to the dual use of immunosuppressive 

agents such as azathioprine to reduce the steroid burden. Mycophenolate mofetil is a drug 

initially developed for use as an immunosuppressant in organ transplantation. However its 

use in adults with lupus nephritis has shown it to be as effective but less toxic than 

cyclophosphamide when used in addition to steroids [129]. Rituximab is a monoclonal 

antibody directed at human CD20, present at all stages of B cell development excluding the 
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earliest and latest stages [130]. Its potential treatment effect in JSLE could be significant, 

considering the role of hyperactive B cells in JSLE. It has been shown to reduce disease 

activity, decrease anti-dsDNA titres and improve renal function in JSLE [131]. However the 

safety of the drug has been put into question, delaying its widespread employment [132]. 

Pulsed intravenous cyclophosphamide is considered the gold standard treatment for the 

most severe cases of JSLE [43]. However, as with steroids there are significant adverse 

short and long-term effects which may hinder its application. The advent of biologic 

therapies offers new and important therapeutic avenues for the treatment of JSLE. Current 

trials of some of these agents in adult-onset SLE demonstrate their potential therapeutic 

benefits but also the challenges of clinical trials in lupus, and especially JSLE [18, 112, 133]. 

1.3.5 Prognosis  

Advances in the management of JSLE have significantly decreased levels of mortality, but 

consequentially has led to a substantial increase in the recognition of risks for long-term 

morbidity [134]. This is in the main part due to extended disease sequelae and prolonged 

exposure to harmful adverse effects of therapeutics [135-136]. Health-related Quality of 

[ƛŦŜ όIwvh[ύ ƛǎ ŘŜŦƛƴŜŘ ŀǎ άƻǇǘƛƳǳƳ ƭŜǾŜƭǎ ƻŦ ƳŜƴǘŀƭΣ ǇƘȅǎƛŎŀƭΣ ǊƻƭŜ ŀƴŘ ǎƻŎƛŀƭ ŦǳƴŎǘƛƻƴƛƴƎΣ 

including relationships, and perceptions of health, fitness, life satisfaction and well-ōŜƛƴƎΣέ 

ƛƴŎƻǊǇƻǊŀǘƛƴƎ ǘƘŜ άŀǎǎŜǎǎƳŜƴǘ ƻŦ ǇŀǘƛŜƴǘΩǎ ǎŀǘƛǎŦŀŎǘƛƻƴ ǿƛǘƘ ǘǊŜŀǘƳŜƴǘΣ ƻǳǘŎƻƳŜ ŀƴŘ ƘŜŀƭǘƘ 

ǎǘŀǘǳǎ ŀƴŘ ŦǳǘǳǊŜ ǇǊƻǎǇŜŎǘǎέ [137]. Children with JSLE score poorly on HRQOL as compared 

to healthy children as well as those suffering from other chronic rheumatological 

conditions, in some domains of HRQOL [134]. Poor HRQOL has been found to positively 

correlate with JSLE disease activity and with accumulated irreversible organ system 

damage, with greater emphasis placed upon the physical than psychosocial domains [134]. 

Patients with active central nervous system (CNS), renal or musculoskeletal (MS) disease 

suffer from diminished HRQOL as compared to JSLE patients without [134]. These disease 

manifestations also offer a worse clinical prognosis. A previously un-noted but highly 
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significant finding was the effect of the disease process on family life, with increased 

disease activity and greater scores of accumulated irreversible damage having the most 

significant effect on family related domains [134]. 

Although many positive steps have been taken in improving the evidence base for the 

management of JSLE, much additional effort is needed. The recently developed advances in 

therapeutics are aimed at containment of the disease process but not cure. Although 

advancing life expectancy, the shortfalls of this approach are clear in the long-term 

morbidity faced by these patients. This highlights the need for more research into the 

aetiology of this chronic condition and a better understanding of the disease process. Once 

this occurs more effective targeted therapies can be engineered with the aim of curing the 

condition, or at least limiting the long-term morbidity that is currently a major issue in JSLE.   
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1.4 Summary  

JSLE is an inflammatory, multisystem autoimmune condition characterised by the 

production of autoantibodies directed against nuclear material. It is a more severe form of 

adult-onset SLE, with a more aggressive onset, clinical course and consequently has more 

severe implications for short and long-term morbidity and mortality. The condition is 

diagnosed according to the presence of at least 4 of 11 criteria under the age of 18, but 

typical onset is in females of adolescent age. It is thought to result from the overwhelming 

dysfunction of the immune system, resulting in immune cell hyper- and autoreactivity with 

abnormal complement and cytokine profiles thought to have a role. Dysregulated 

neutrophil apoptosis has also been implicated in the generation of nuclear auto-antigens in 

JSLE. Management is aimed at suppression of the immune system with steroids making up 

ǘƘŜ Ƴŀƛƴǎǘŀȅ ƻŦ ǘǊŜŀǘƳŜƴǘΣ ǎǳǇǇƭŜƳŜƴǘŜŘ ōȅ ƻǘƘŜǊ ƛƳƳǳƴƻǎǳǇǇǊŜǎǎŀƴǘΩǎ ŀƴŘ ƳƻǊŜ 

recently developed biologic drugs. With the recent discovery of the TLR family and their 

ability to detect autoantigen much focus has shifted to their role in the pathogenesis of 

general autoimmunity and more specifically SLE. It has been found that there is up-

regulation of these receptors in SLE which positively correlates with disease activity, anti-

dsDNA titers and cytokine production. Despite these findings there are currently no studies 

assessing the role of TLRs in JSLE. 
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1.5 Hypothesis  

As well as recognising non-self nucleic antigens, some TLRs are also able to bind and be 

activated by endogenous nucleic autoantigens. Neutrophils may be a source of endogenous 

nucleic acid autoantigen due to increased apoptosis in JSLE.  

The hypothesis is therefore that apoptotic neutrophils in JSLE are providing a source 

nuclear autoantigen(s), which are being detected through the innate immune system by 

the TLR pathway, resulting in an inflammatory response through activation of an adaptive 

autoimmune response. 
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2 Methods  

2.1 Patients  

Written informed consent was obtained from all participating subjects or their 

parent/guardian. JSLE patients fulfilled the revised American College of Rheumatology 

criteria before the age of 17 years [51]. Juvenile Idiopathic Arthritis (JIA) patients acted as 

inflammatory controls and met the modified International League of Associations for 

Rheumatology (ILAR) classification criteria [138]. Paediatric non-inflammatory controls 

were children attending for day case procedures or those suffering from non-inflammatory 

musculoskeletal symptoms or attending for routine elective operations in who a history of 

autoimmunity and infection were excludedΦ tŀǘƛŜƴǘǎ ǿŜǊŜ ŀǘǘŜƴŘƛƴƎ !ƭŘŜǊ IŜȅ /ƘƛƭŘǊŜƴΩǎ 

National Health Service Foundation Trust. All patients were taking part in the άUK JSLE 

Cohort Study & Repository: Clinical characteristics and immunopathology of juvenile-onset 

systemic lupus erythematosus" for which full ethical (Research Ethics Committee number: 

06/Q1502/77) and Research & Development Departmental approvals were already 

granted. 

Samples were collected at the time of routine phlebotomy for clinical monitoring of disease 

activity. Between 5-10ml of blood was collected and transferred immediately to the 

laboratory according to the Cohort Study protocol. All study samples were anonymized 

following collection. 
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2.2 Cell Preparation  

2.2.1 Peripheral Blood Mononuclear Cell (PBM C) Isolation  

Each 5ml heparinised blood sample collected from participants was processed within two 

hours. The sample was added to an equal volume of Histopaque (Sigma-Aldrich, UK) and 

centrifuged (Thermo Electron, UK) at 1800rpm for 30 minutes without brake. This 

produced a clear band of PBMCs which were isolated manually using a pipette. The PBMCs 

were transferred to a 15ml tube to which 10ml of RPMI and glutamine (Sigma-Aldrich, UK) 

was added. This mixture was then centrifuged at 2000rpm for 10 minutes with brake, 

producing a pellet. The supernatant was poured off in a quick action and PBMCs were re-

suspended in the remaining RPMI residue. Either 1ml RPMI medium was added ready for 

TLR analysis or 250µl using 2% foetal calf serum (FCS) in 1xphosphate saline buffer solution 

(PBS) ready for B cell isolation. 

2.2.2 B Cell Isolation  

CD19+ B cell populations were separated using a negative selection immunomagnetic cell 

selection procedure using Easysep mAb magnetic nanoparticles and magnet (Stemcell 

Technologies Inc).  B cells were isolated from PBMCs (Section 2.2.1). All 250µl of sample 

was transferred to a 5ml polystyrene tube and 15µl of enrichment cocktail was added and 

incubated for 10 minutes at room temperature (RT). Secondly, 15µl of magnetic 

nanoparticles were added to the mixture and incubated for a further 10 minutes at RT. 

Finally the mixture was made up to 2.5ml using 2% FCS in PBS and placed in the magnet for 

5 minutes at RT. The B cells were then decanted into a fresh tube leaving the magnetised 

unwanted cells in the tube in the magnet. This method ensures the isolation of an 

unstimulated pure B cell population. 
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2.2.3 Neutrophil Isolation  

Neutrophils were also isolated from heparinised whole blood and samples were processed 

within two hours. The sample was added to an equal volume of Polymorph Prep (Axis 

Shield, Norway) and centrifuged at 1800rpm for 30 minutes without break. This produced 

two clear bands of cells (Figure 5). The uppermost band consisted of PBMCS and could be 

isolated using the same protocol as neutrophil isolation if required. The lower band was a 

neutrophil layer which was isolated manually using a plastic pipette. The neutrophils were 

transferred to a 15ml tube to which 10ml of RPMI and glutamine (Sigma-Aldrich, UK) was 

added and spun at 2000rpm for 10 minutes with brake producing a pellet. The supernatant 

was poured off in a quick action and neutrophils were re-suspended in the remaining RPMI 

residue. Contaminating erythrocytes were removed by hypotonic lysis using a 1 part RPMI 

medium, 9parts 1x ammonium chloride solution in which the PBMCs were incubated for 3 

minutes and centrifuged at 2000rpm for 5 minutes with brake. The supernatant was 

poured off in a quick action and neutrophils were re-suspended in the residue and made up 

to a total volume of 1ml using RPMI. Neutrophils were counted using a haemocytometer.   

Figure 5: Neutrophil isolation 

 

Before: Whole blood is layered on top of Polymorph Prep. After: Separation of PBMCs and 
neutrophils from whole blood by one step centrifugation 
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2.3 RNA Extraction  

RNA was extracted using the RNeasy miniprep kit (Qiagen, UK) following the 

ƳŀƴǳŦŀŎǘǳǊŜǊΩǎ ƛƴǎǘǊǳŎǘƛƻƴǎΦ .ǊƛŜŦƭȅΣ ǘƘŜ ǎŀƳǇƭŜ ǿŀǎ ǘǊŀƴǎŦŜǊǊŜŘ ƛƴǘƻ ŀ мΦрƳƭ 

microcentrifuge tube and centrifuged at 8000rpm, 4°C for 10 minutes with brake, 

producing a cell pellet. All supernatant was removed leaving a dry pellet to which 350µl of 

RLT buffer + 0.м҈ ʲ-mercaptoethanol was added. The mixture was vortexed before being 

transferred to a QIAshredder (QIAGEN) and centrifuged at >10,000rpm for 2 minutes. The 

filtrate was mixed with 70% ethanol and transferred to an RNeasy mini column (QIAGEN) 

and centrifuged for 15 seconds (s) at >10,000rpm. The filtrate was then discarded and the 

mini column was added to a fresh collection tube to which 700µl of RW1 buffer was added 

and centrifuged for 15s at >10,000rpm. The filtrate was discarded and mini column added 

to a fresh collection tube and 500µl of RPE buffer was added and centrifuged at 

>10,000rpm for 15s. This step was repeated but for a duration of 2 minutes. Finally the 

mini column was placed into a 1.5ml microcentrifuge tube, 40µl of RNase and DNase 

treated water was added and spun for 1 minute at >10,000rpm to elute the RNA. 

2.4 RNA Quantification  

Quality and concentration of RNA was determined by spectrophotometery using a Nano 

Drop 1000 spectrophotometer and software (Thermo Scientific, UK). The machine was 

blanked using 1µl of RNase-free water. Samples of RNA (1µl) were loaded and used to 

analyse the amount and quality of RNA present. Quantity was measured in ng/µl. Quality is 

expressed as the 260/280 ratio. This is a measurement of the value obtained at 260nm 

divided by the measurement taken at 280nm; a ratio below 1.7 suggests contamination 

while above 2.1 is indicative of degradation. If an acceptable reading was obtained the 

volume of RNA required to obtain a standardised concentration for all samples was 

calculated. After quantification RNA was stored at-80°C.  
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2.5 Reverse Transcription  

This process is implemented to synthesise a complementary strand of DNA (cDNA). 

Depending upon the quantity of the RNA, varying volumes of the sample were used to 

obtain a final concentration of 0.05µg of cDNA. To synthesise cDNA the calculated volume 

of RNA was added to 1µl of random primers (Promega, USA) and a volume of RNase free 

water was added to constitute a total volume of 15µl. The mixture was then placed in an 

AccuBlockTM (heatblock) digital dry bath (Labnet International, Inc; Rutland) preheated to 

70°C for 5 minutes. This process allowed random primers to anneal to random sequences 

of the RNA. Once this step was completed 5µl MMLV buffer (PromegŀΣ ¦YύΤ мΦнрҡƭ Řb¢tΩǎ 

at a concentration 10mM (Promega, UK); 0.5µl RNase inhibitor (Promega, USA); 1µl reverse 

transcriptase (Promega, USA) and 2.25µl of RNase free water was added to each sample 

and placed on the heatblock at 42°C for 1 hour. Once complete 75µl of RNase free water 

was added and the cDNA was immediately transferred into a -20°C freezer to prevent 

degradation. 

2.6 Quantitative Polymerase Chain Reaction  

¢ƘŜ tƻƭȅƳŜǊŀǎŜ /Ƙŀƛƴ wŜŀŎǘƛƻƴ όt/wύ ƛǎ ŘŜŦƛƴŜŘ ŀǎ άΧǘƘŜ ƛƴ ǾƛǘǊƻ ŜƴȊȅƳŀǘƛŎ ǎȅƴǘƘŜǎƛǎ ŀƴŘ 

ŀƳǇƭƛŦƛŎŀǘƛƻƴ ƻŦ ǎǇŜŎƛŦƛŎ 5b! ǎŜǉǳŜƴŎŜǎέ [139]. It is an experimental method which allows 

the amplification and detection of a specific region of DNA from a single molecule of DNA. 

2.6.1 Theory  

From a single molecule of DNA it is possible to amplify over 1 billion copies of the target 

sequence. This is done using a pair of oligonucleotide primers which are complementary to 

opposite ends of the target sequence. The primers anneal to the target sequence and are 

extended by DNA polymerase, reproducing the target gene. This process is carried out in a 

3 step reaction cycle of denaturation, primer annealing, and polymerization.   
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2.6.1.1 Primers  

A primer is a DNA or RNA segment that is complementary to a specific DNA sequence and 

required to initiate replication by DNA polymerase. They are short oligonucleotide strands 

of between 18-30 nucleotides in length, which are designed to anneal to the flanking 

sequence of opposite strands of the target sequence. DNA polymerase then replicates the 

ǘŀǊƎŜǘ ǎŜǉǳŜƴŎŜ ƛƴ ǘƘŜ рΩ ǘƻ оΩ ŘƛǊŜŎǘƛƻƴ ǇǊƻŘǳŎƛƴƎ ŎƻƳǇƭŜƳŜƴǘŀǊȅ ǎǘǊands of the 

nucleotide sequence. These newly synthesised strands then act as templates for replication 

in later amplification cycles. 

2.6.1.2 PCR Cycle 

The basic PCR cycle consists of a 3 step cycle of denaturation, primer annealing and 

polymerization (Figure 6).  

Figure 6: The PCR Cycle 

 

Thermal profile and stages of the PCR cycle. Hot start is required to activate DNA polymerase. 

Amplification consists of a denaturation, primer annealing and polymerization stage. The last 

stage of the cycle generates a dissociation curve. 
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The PCR cycle begins with a 10 minute hot start at 95°C. This process is required to activate 

DNA polymerase which is chemically modified to ensure that the enzyme does not undergo 

activity prior to PCR. Once completed PCR amplification begins. This consists of a 3 step 

procedure, repeated over 40 cycles. Firstly the denaturation stage heats the DNA to 95°C 

for 15s, breaking the bonds maintaining helical structure, allowing the complementary 

strands to separate and the target sequence to become exposed [140]. Secondly the 

sample is heated to 60°C for 1 minute, allowing the primers to anneal to their flanking 

sequence, providing an attachment point for DNA polymerase [141]. Thirdly the sample is 

kept at 72°C for 30s during which DNA polymerase inserts nucleotides into the growing 

polymer chain until the complementary strand of the target sequence has been duplicated 

[141]. This 3 step cycle is repeated 40 times resulting in an exponential amplification of the 

target sequence in which the total amount of DNA is doubled per cycle. Once the PCR 

amplification stage is complete, the samples are heated to 90°C for 1 minute, 55°C for 30s 

and finally 95°C for 30s. This last stage generates a dissociation curve which is explained in 

greater detail in section 2.6.1.4.  

2.6.1.3 Detection 

Quantification of DNA is achieved by measuring the level of fluorescence of a given sample 

of DNA, with fluorescence increasing proportionally with quantity of DNA. SYBR Green is a 

dsDNA-binding dye which becomes incorporated into the amplified dsDNA during the 

polymerization (extension) phase of the PCR cycle (Figure 7) [142]. It has an undetectable 

fluorescence when unbound, but strongly emits its fluorescence when bound. Fluorescence 

is measured at the end of each of the 40 cycles and used to quantify the amount of dsDNA 

present. However as this dye lacks specificity it is crucial that the PCR reaction only 

contains the target amplicon, or that further analyses are employed, for example melting 

point analysis, to discriminate between products (Section 2.6.1.4) [143].  
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Figure 7: Mechanism of SYBR Green 

 

 

 

 

 

Denaturation exposes dsDNA allowing annealing of SYBR Green [144] 

 

2.6.1.4 Interpretation  

A standard curve is generated to measure the efficiency of the reaction. In theory each 

time an amplification cycle is completed the quantity of amplicon increases, therefore the 

level of fluorescence increases and is therefore detected sooner. If this occurs effectively 

the reaction is said to have 100% efficiency, for this study a range of 90-110% was 

considered acceptable. The standard curve is generated by plotting the points when 

fluorescence is detected in р ΨǎǘŀƴŘŀǊŘǎΩΣ ŎƻƴǎƛǎǘƛƴƎ ƻŦ ǎŜǊƛŀƭƭȅ ŘƛƭǳǘŜŘ ǎŀƳǇƭŜǎΣ ŀƎŀƛƴǎǘ the 

relative concentrations of those standards, using an arbitrary start point (Figure 8). With 

100% efficiency all values will fall on the line of correlation. 

This text box is where the unabridged thesis included the following 

third party copyrighted material: 

SYBR Green during PCR amplification 
 

Fraga D, M.T., Fenster S, Real-Time PCR, in Current Protocols  
Essential Laboratory Techniques. 2008, Wiley. 
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Figure 8: qPCR Standard Curve 

 

Standard curves are used to measure the efficiency of the reaction. 100% efficiency represents a 

perfect reaction 

Amplification plots are generated by plotting the fluorescence of the sample against the 

number of cycles (Figure 9). An arbitrary level of background fluorescence is set during 

cycles 3-15, usually determined as 10 times the standard deviation of the baseline and is 

known Ct [142]. The cycle number at which the reporter dye emission intensity rises above 

background fluorescence is called the Ct, this cycle number is recorded for each sample. As 

fluorescence is determined by quantity of dsDNA and each amplification doubles the 

amount of dsDNA in each sample, Ct value is dependent upon the initial quantity of 

material in the sample, therefore those containing greater quantities of dsDNA will have 

lower Ct values. An experiment consisting of identical samples of the same concentration 

should theoretically have identical Ct values. If a reaction is 100% efficient then this would 

be the case. 
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Figure 9: qPCR Amplification Plot 

 

Amplification increases dsDNA quantity and therefore fluorescence. Cycle threshold (Ct) value is 

measured as the cycle upon which fluorescence exceeds background fluorescence. 

The last cycle of the PCR process denatures the DNA double helix generating a dissociation 

curve (Figure 10). This step is carried out to ensure confidence that the fluorescence being 

detected is due solely to detection of the target sequence. The melting profile of a DNA 

duplex is dependent upon the surrounding buffer, the guanine-cytosine content, the length 

and the configuration of the nucleotide sequence [145]. As the SYBR green mastermix has 

been utilised in our protocol this nullifies the buffer variable as this will be standard across 

all of our samples therefore variables to take into account for the melting point will be 

specific to the properties of the target sequence. As we are assessing for just one target 

sequence the dissociation curve would be expected to have one clear peak as all of the 

dsDNA in the sample are exact replicas of the target sequence. If this is the case then the 

results obtained are reliable. However if there is more than one peak this indicates either 

contamination of sample, therefore the SYBR Green is detecting other dsDNA, or 

Baseline 

Threshold 

Ct value 
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alternatively dimerisation of the primers used (Figure 11). There are several techniques 

used to combat this problem for example setting the PCR software to detect fluorescence 

ŀōƻǾŜ ǘƘŜ ǇǊƛƳŜǊ ŘƛƳŜǊΩǎ ƳŜƭǘƛƴƎ ǘŜƳǇŜǊŀǘǳǊŜ ōǳǘ ōŜƭƻǿ ǘƘŀǘ ƻŦ ǘƘŜ ǇǊƻŘǳŎǘ and good 

design of primers. 

Figure 10: qPCR Dissociation Curve 

 

Figure 11: Minor peak demonstrating primer dimerization 

 

There are many variables that must be controlled when utilising quantitative PCR as a 

reliable measurement of mRNA expression. Included in this list of variables are initial 

sample amount, RNA quality and concentration, efficiency of cDNA synthesis and 

fundamental differences in the biological activity of the target tissue [146]. To neutralize 

these confounders an internal control gene is used to normalize these variables. A good 

Primer Dimerization 
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ƛƴǘŜǊƴŀƭ ŎƻƴǘǊƻƭ ƻǊ έƘƻǳǎŜƪŜŜǇƛƴƎέ ƎŜƴŜ Ƴǳǎǘ ōŜ ǳƴƛǾŜǊǎŀƭƭȅ ŜȄǇǊŜǎǎŜŘ ŀǘ ŀ Ŏƻƴǎǘŀƴǘ ƭŜǾŜƭ 

in the tissue of interest and should not vary in expression between stages of development 

or be affected by experimental conditions [142]. The level of the target mRNA is then 

compared to the level of the housekeeping gene to provide a reliable normalised 

quantification of mRNA expression. 

¢ǿƻ ƛƴǘŜǊƴŀƭ ŎƻƴǘǊƻƭ ƎŜƴŜǎΣ муǎ ŀƴŘ ʲ-actin, were tested for reliability. 18s is a ribosomal 

RNA subunit and is recommended as an internal standard for mRNA quantification [147]Φ ʲ-

actin is a gene that is vital in maintaining and regulating the structure and kinetics of the 

cytoskeleton and is a popular housekeeping gene [147]. Our optimisation showed 18s to 

provide the most reproducible results and on this basis was selected as the internal control 

for our experiments. 

qPCR values were calculated by dividing the copy number of the target gene by the copy 

number of the internal standard (18s).  These figures represent individual sample data 

points. If an average was required an average copy number for each group eg. JSLE and 

control was calculated from the individual sample data points. Error bars represented the 

standard error of the mean and were generated by dividing the standard deviation of the 

group by the square root of the sample number.  
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2.7 Measuring TLR and IFN-  hmRNA Expression 

Quantitative Real-Time Polymerase Chain Reaction (qPCR) was carried out using Stratagene 

MX3005PTM qPCR machine and MXPRO-MX3005PTM software (Agilent Technologies, UK 

Ltd). A plate template was first devised, consisting of a non-template control, standards 1-5 

and samples, all were tested in duplicate. RNase free water acted as the non-template 

control (NTC). Following optimisation to determine the concentration of template required 

it was determined that cDNA samples would be diluted (1:5) with RNase free water. 

Standards were pooled from samples, consisting of an equal aliquot of cDNA from each. 

Serial dilutions of the pooled standard were made to make 5 standards of varying 

concentrations (neat, 1:2, 1:5, 1:10 and 1:20) using nuclease free water as the diluent. 

Once prepared, 0.75µl of each reverse and forward primers (Table 2 for primer sequences 

(MWG- Biotech, Germany)), 12.5µl SYBR Green Mastermix (Stratagene, USA) and 6µl of 

RNase free water was added to each well. To this 5µl of the appropriate NTC, standard or 

sample was added. The plate was sealed and pulsed for 5 seconds and then set to run on 

the aforementioned qPCR program (Section 2.6.1.2). 

Table 2: Primer sequences for qPCR 

Primer 
Set 

Forward Sequence Reverse Sequence 

18s рΩ-TCCGATAACGAACGAGACTC-оΩ рΩ-CAGGGACTTAATCAACGCAA-оΩ  

TLR3 рΩ-CCTGGTTTGTTAATTGGATTAACGA-оΩ рΩ-TGAGGTGGAGTGTTGCAAAGG-оΩ 

TLR7 рΩ-TTACCTGGATGGAAACCAGCTACT-оΩ рΩ-TCAAGGCTGAGAAGCTGTAAGCTA-
оΩ 

TLR8 рΩ-CAGAATAGCAGGCGTAACACATCA-оΩ рΩ-TGTCAAGGCGATTGCCACTGA-оΩ 

TLR9 рΩ-TGAAGACTTCAGGCCCAACTG-оΩ рΩ-TGCACGGTCACCAGGTTGT-оΩ 

IFN-  h рΩ-GGAGTTTGATGGCAACCAGT-оΩ рΩ-CTCTCCTCCTGCATCACACA-оΩ 
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2.8 Flow Cytometry  

This is a quantitative analytical technique based on the principle that individual particles 

can be differentiated based on their size, intracellular composition, surface properties and 

structure. This is possible via an intricate system of light detectors and a laser. 

2.8.1 Background  

Upon examination of a sample by flow cytometry cells are channelled into a narrow 

specimen stream with each cell passing through the laser beam individually. The cell 

crossing the ƭŀǎŜǊΩǎ ǇŀǘƘ ŎŀǳǎŜǎ ŘƛǎōǳǊǎŜƳŜƴǘ ƻŦ ƭƛƎƘǘ ǿƘƛŎƘ ƛǎ ŘŜǇŜƴŘŜƴǘ ǳǇƻƴ ǘƘŜ ǎƛȊŜ ŀƴŘ 

granularity of the individual cell. The size of the cell is calculated by measuring the amount 

of that light continues forward once the cell has come into contact with the laser beam, 

this measurement is called the forward scatter (FSC) (Figure 12). The granularity of the cell 

is determined by the amount of light diverted at a 90° angle, termed side scatter (SSC) 

(Figure 12).  

2.8.2 Fluorescences    

Although information about the size and granularity of a cell is useful the scope of 

applications of flow cytometry is much broader than this due to the use of fluorescences. 

Fluorescent dyes are coupled with antibodies directed against a target protein to allow 

differentiation of particles by factors other than size and granularity. One of the most 

commonly used fluorochromes is fluorescein isothiocyanate (FITC) which when excited by 

light emits a wavelength of around 519nm. Using this information it is possible to 

manipulate a light detector to detect emissions of only this wavelength, therefore it can be 

confidently assumed that any fluorescence detected in this channel is due to antibody 

specific binding to the target protein (Figure 12). CD19 is a well known marker of B 

lymphocytes, therefore by conjugating FITC with a CD19 antibody and staining a sample of 

cells you will be able to determine which cells within the sample are B lymphocytes through 
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analysis of their size, granularity and fluorescence. This same principle is applied using 

different fluorochromes and light detectors set to different wavelength emissions. It is 

possible that by using fluorochromes with different wavelength emissions to dual stain 

cells.  

Figure 12: Theory of Flow Cytometry 

 

 

 

 

 

 

 

 

 

 

Light from a laser hits the cell. Beams of light that continue forward are detected and used to 
determine cell size (Forward Scatter). Beams of light that are disbursed by cell contents at a 90° 
angle are used to assess granularity (Side Scatter). Beams that hit fluorescent-conjugated 
antibodies excite the fluorochrome resulting in emission of light of a particular wavelength. Light 
detectors sensitive to this wavelength detect these emissions and can be used to quantify the 
level of the protein of interest (Adapted from Luttmann W [21]).  

2.8.3 Staining  

Staining of extracellular antigens is a simple process by which cells are incubated with the 

appropriate fluorescence-conjugated antibody, washed to remove any free antibody which 

would produce false positive background activity and then run through the flow cytometer. 

However intracellular staining is more complicated in that the cell must become porous 

enough to allow the antibody to bind to the antigen but not too porous as to become 

unstable. Although each individual protocol is different they are all based on 3 essential 

steps: fixation, permeabilization and antibody staining. Fixation is required to render the 

This text box is where the unabridged thesis included the following 

third party copyrighted material: 

Flow Cytometery 
 
Luttman W, B.K., Kupper M, Myrtek D, Immunology.  
The Experimenter Series. 2006, London: Elsevier. 
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cell structure and its contents stable enough to allow permeabilization and maintain the 

structure of the target antigen so that the antibody can bind to its epitope. 

Permeabilization of the cell is necessary to perforate the cell membrane creating passages 

for the antibody to migrate to its target epitope. The sample is now stained with the 

appropriate antibody and is ready for testing. 

2.8.4 Measurement  

Once cells, stained or un-stained, have been prepared they will be run through the flow 

cytometer, the read out from the flow can be represented in many ways. Only methods 

relevant to this project will be discussed. A FSC/SSC dot plot can be used to determine 

different cell types by size and granularity (Figure 13A). Once the population of interest has 

been identified for example neutrophils it can be selected by gating the area on the graph 

and further analysed by comparing levels of fluorescence. Staining with a FITC-conjugated 

Annexin V antibody would allow the quantification of apoptosis in that group of 

neutrophils, by measurement of mean fluorescence intensity (MFI), as only those stained 

would appear in the relevant region of the graph (Figure 13B).   

Figure 13: Flow Cytometry Dot-plot 

 

Figure A. Flow cytometry dot-plot showing differentiation of cells from whole blood based on size 
and granularity [148]. Figure B. Demonstrates identification of apoptotic neutrophils by Annexin V 
staining. 

 

A B 

Neutrophils 
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2.9 Measuring TLR Protein Expression  

PBMCs were isolated from healthy controls (n=5) (Section 2.2.1). Each sample was split into 

5. The conditions measured were an unstained control; TLR3 expression; TLR8 expression; 

TLR9 expression and a FITC conjugated anti-mouse secondary antibody (R&D Systems, UK). 

FITC labelled anti-mouse IgG1 acted as the isotype control for TLR3, 8 and 9.The 1ml 

samples were transferred to a 5ml polystyrene tube and spun down at 1100rpm for 5 

minutes pelleting the PBMCs. Cell supernatant was poured off and the tube blotted in one 

smooth action and cells resuspended in the residue. 1ml of ice cold PBS with Bovine Serum 

Albumin (PBA) (PBS with 0.1% Bovine Serum Albumin and 0.05% Sodium Azide) was added 

to the suspension and spun for 5 minutes at 1300rpm, supernatant poured off and pellet 

resuspended. PBMCs were fixed with 4% formaldehyde in 1ml PBA for 15 minutes. A 

further 1 ml of PBA was added and the sample was spun down, supernatant poured off and 

tube blotted. Cells were resuspended and 0.5% Tween in 1ml of PBA was added and spun 

down, poured off and blotted. Cells were resuspended in residue and stained with 4µl of 

primary antibody and conjugated in the dark for 30 minutes at room temperature.  After 

this 0.5% Tween in 1 ml of PBA was added and sample was spun, supernatant poured off 

and tube blotted. If required, cells were now incubated with a fluorescent-conjugated 

secondary antibody and washed under the same conditions as the primary antibody.  Cells 

were then washed twice with PBA-0.5% Tween and suspended in 0.5% formaldehyde and 

MFI was analysed immediately by flow cytometry. Values were obtained by calculating the 

average MFI for Control, JSLE and JIA groups. Error bars represented the standard error of 

the mean and were generated by dividing the standard deviation of the group by the 

square root of the sample number. 
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2.10 EnzymeɀLinked Immunosorbent Assay 

Enzyme-Linked Immunosorbent Assay (ELISA) is a quantitative assay with many 

applications. The theory is that by using enzyme-conjugated antibodies it is possible to 

quantify the amount of a given molecule within a sample. The general concept is that the 

molecule of interest is immobilized on a plate surface then incubated with an enzyme-

conjugated antibody specific to that molecule. A substrate is then added resulting in a 

colour change which when exposed to a light of a particular wavelength will fluoresce. The 

degree of fluorescence is proportional to the amount of molecule fixed to the plate which 

is in turn determined by the concentration of that molecule in the sample This fluorescence 

is referenced against the level of fluorescence of a given set of standards to produce a 

quantifiable measurement of the molecule of interest.  

2.10.1 Sandwich ELISA 

Although there are many variations of the ELISA method the Sandwich ELISA is generally 

regarded as the most sensitive (Figure 14) [21]. This involves the adsorption of an antibody 

or antigen to a high protein binding capacity plate, usually done by incubating the 

detection antibody overnight at approximately 2-8°C.  Once this has been completed free 

protein sites are blocked with a blocking reagent, for example Bovine Serum Albumin, to 

prevent non-specific binding which would result in potentially problematic background 

activity. The plate is then washed to remove any surplus or unwanted material. The 

standards, controls and samples are added to allow binding of the desired molecule and 

washed again to remove any unwanted material. An enzyme-conjugated detection 

antibody, with a separate target epitope to the capture antibody, is then bound to the 

capture antibody-antigen complex. The most popular conjugated enzyme is horseradish 

peroxidise due to its stability and reliability in obtaining reproducible results. The plate is 

washed for a final time and then substrate solution, for example tetramethylbenzidine 
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(TMB), is added resulting in a colour change. After a varying amount of time, dependent on 

the substrate employed, a stop solution such as H2SO4 is added to halt the reaction.  The 

ELISA should be measured as soon as possible within the following 30 minutes at the 

recommended wavelength with a photometer. 
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Figure 14: Sandwich ELISA 

 

  Capture antibody adheres to plate overnight. Free protein binding sites are blocked and 

standards, controls and samples, are added to plate. Once bound an enzyme-conjugated 

detection antibody is incubated and binds to the the complex. Addition of substrate leads to a 

colour change proportional to the original concentration. This colour changed is then 

measured using a photometer.  
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2.10.2 Analysing ELISAs 

The serially diluted standards are included in an ELISA to generate a standard curve (Figure 

15) as a measure of the efficiency of the reaction taking place. By adding standards of 

known concentrations you are able to anticipate the results you are going to obtain, for 

example increasing fluorescence with increasing concentration of standard. If this result is 

not obtained it can be assumed that another unknown variable has influenced the reaction 

therefore your readings for samples of unknown concentrations cannot be relied upon. The 

efficiency of reaction is expressed as the R2 value with 1.0 ± 0.1 representing the optimal 

efficiency. If the result is outside of this range then the experiment is not valid. 

Figure 15: ELISA standard curve generated from serially diluted standards 
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2.11 Measuring TLR Ligand Induced IFN -ɻ %ØÐÒÅÓÓÉÏÎ 

PBMCs were isolated from healthy controls (n=3) (Section 2.2.1). PBMCs were suspended in 

1ml of culture medium (RPMI + 10%FCS + 0.05% penicillin and streptomycin) and counted 

using a haemocytometer. Once counted each sample was made up into a dilution of 

500,00cells/ml of which 200µl of sample was added per well to a 96-well plate (Corning, 

NY, USA). For each sample there were 5 conditions consisting of TLR 3, 7, 8 and 9 ligand 

(Invivogen, San Diego) stimulated cells and a control condition comprising of 200µl of 

unstimulated PBMCs. All ligands were commercially bought and added at a dose within the 

manufacturers recommended reference range (Table 3). Cells and ligands were incubated 

for 6 hours at 37°C, after which all samples were transferred from their respective wells 

into microcentrifuge tubes and spun at 10,000rpm for 5 minutes at 4°C. This deposits the 

PBMCs at the bottom of the tube allowing the cell pellet and supernatant to be separated 

by pipetting. Cell supernatants were stored at -20°C. RNA was extracted (Section 2.3) from 

cell pellets, reverse transcription (Section 2.5) performed, synthesising cDNA.  

Table 3: TLR Ligand Doses 

Agonist Concentration 

3 (Poly I:C) 10µg/ml 

7 (Imiquimod) 1µg/ml 

8 (ssRNA) 1µg/ml 

9 (ODN 2216) 1.5µM 

 

2.11.1 Protein Expression  

IFN-ʰ ǇǊƻǘŜƛƴ ŜȄǇǊŜǎǎƛƻƴ ǿŀǎ ƳŜŀǎǳǊŜŘ ōȅ 9[L{! όŜ.ƛƻǎŎƛŜƴŎŜΣ ¦{!ύΦ ! фс-well microtiter 

plate (Nunc, Denmark) was incubated with 100µl/well of capture antibody at a 1/250 

dilution in coating buffer overnight at 4°C. The plate was sealed. The plate was washed 5 

times (as are all washes from this point unless stated) in 1xPBS, 0.05% Tween-20 and 

blocked with 200µl/well of 1x assay diluent for 1 hour at room temperature. After washing, 
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100µl/well of NTC, standard or sample is added. 1x assay diluent acts as the NTC and 

standards are serially diluted 2-fold 7 times in 1x assay diluent; both are added to the plate 

in duplicate. After optimization it was decided that cell supernatants were to be diluted 1:5 

in assay diluent and are also added in duplicate. NTC, standards and samples were 

incubated at room temperature for 2 hours. The plate was washed and 100µl/well of 

detection antibody at a 1/250 dilution was added and incubated at room temperature. 

After 1 hour the plate was washed and 100µl/well of Avidin-Horseradish Peroxidase was 

added at a 1/250 dilution and incubated at room temperature for 30 minutes.  The final 

wash was carried out 7 times and 100µl/well of TMB was added and incubated at room 

temperature. After 15 minutes 50µl/well of stop solution (2N H2so4) was added and the 

plate read by a photometer at 450nm (BioTek®, ELx800 Absorbance Microplate Reader).  
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2.12 Measuring IFN-  h Expression of PBMCs Incubated with 

Neutrophils that have undergone Apoptosis in JSLE and Control 

Serum 

PBMCs and neutrophils were isolated from healthy controls (n=4) (Section 2.2.3). 

Neutrophils were counted and diluted in culture medium to a concentration of 

5x105cells/ml. The sample was then divided into two with half of the neutrophils incubated 

with 10% paediatric control serum and the other half incubated with 10% JSLE serum. All 

samples were incubated at 37°C. After 2 hours apoptosis was measured by flow cytometry 

using annexin V staining (Section 2.12.1). PBMCs were counted and diluted as neutrophils. 

Per well 100µl of PBMCs were incubated with 100µl of control serum induced apoptotic 

neutrophils or JSLE serum induced apoptotic neutrophils for 6 hours at 37°C. This 

incubation period proved to be optimal after testing of 6, 12 and 24 hour periods.  After 

this incubation period well contents were transferred into microcentrifuge tubes and spun 

at 10,000rpm for 5 minutes at 4°C. This allowed the separation of cells and supernatant. 

Cell RNA was extracted and reverse transcribed (Section 2.3 and 2.5). IFN-ʰ Ƴwb! 

expression was measured by qPCR normalised to18s mRNA expression (Section 2.7). 

2.12.1 Annexin V Staining  

A 400µl sample of neutrophils was transferred to a 5ml polystyrene tube and 1ml of HBSS 

(Invitrogen, UK) was added and spun at 1800rpm for 5 minutes. Supernatant was poured 

off and cell pellet resuspended to which 100µl of HBSS and 1µl of Annexin V (Sigma-Aldrich, 

UK) was added and incubated at 4°C in the dark for 15 minutes. Following this incubation 

1ml of HBSS was added to the sample and spun. Supernatant was poured off and cell pellet 

re-suspended, 600µl of HBSS was added to the sample and % apoptosis read immediately 

by flow cytometry. 

 



54 
 

2.13 Measuring whether PBMCs express a dose-response 

relationship to apoptotic neutrophils  

PBMCs and neutrophils were isolated from healthy controls (n=3) (Sections 2.2.1 and 

2.2.3). Cells were counted and diluted to a concentration of 5x105cells/ml. Neutrophils 

were incubated with 10% paediatric control serum or JSLE serum for 2 hours and apoptosis 

was measured (Section 2.12.1). The experiment consisted of 200µl of unstimulated PBMCs; 

200µl of control serum induced apoptotic neutrophils; 200µl of JSLE serum induced 

apoptotic neutrophils; 100µl PBMCs incubated with 50µl of control serum induced 

apoptotic neutrophils; 100µl PBMCs incubated with 50µl of JSLE serum induced apoptotic 

neutrophils; 100µl of PBMCs with 100µl of control serum induced apoptotic neutrophils; 

100µl of PBMCs with 100µl of JSLE serum induced apoptotic neutrophils; 100µl PBMCs 

incubated with 200µl of control serum induced apoptotic neutrophils and 100µl of PBMCs 

incubated with 200µl of JSLE induced apoptotic neutrophils, per sample. After a 6 hour 

incubation at 37°C cells were isolated (Section 2.11 and 2.3). IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ ǿŀǎ 

measured by qPCR (Section 2.7). 

2.14 Measuring whether PBMC TLR Expression Correlates with 

Increasi ng Apoptosis  

PBMCs and neutrophils were isolated from healthy controls (n=4) (Sections 2.2.1 and 

2.2.3). Cells were counted and diluted to a concentration of 500,000cells/ml. Neutrophils 

were incubated with 10% JSLE serum at 37°C for 30 minutes, 1 hour and 2 hours, apoptosis 

was measured at each time point (Section 2.12.1).  100µl of PBMCs were incubated with 

200µl of apoptotic neutrophils from each time point for 6 hours. After incubation cells were 

isolated (Sections 2.11 and 2.3) and IFN-ʰ Ƴwb! ŜȄǇǊession was measured by qPCR 

(Section 2.7). Fold change in apoptosis from 30mins was compared against TLR mRNA 

expression. 
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2.15 TLR Inhibition Optimisation  

PBMCs were isolated from healthy controls (n=2), counted and diluted to a concentration 

of 500,000cells/ml. PBMCs (200µl) were incubated with a TLR agonist (Invivogen, San 

diego), TLR specific antibody (Invivogen, San Diego), TLR agonist + TLR specific antibody or 

TLR agonist + chloroquine on a 96 well plate (Corning, NY, USA).  TLR agonists (Section 2.11) 

and specific antibodies (Table 4) were added at doses within the recommended reference 

ranges. This was with the exception of a TLR8 specific antibody which was not available in 

the lab at the time. The experimental control consisted of 200µl of unstimulated PBMCs. 

Samples were incubated at 37°C for 6 hours, after which they were transferred to a 

microcentrifuge tube and spun at 10,00rpm for 5 minutes at 4°C. Supernatant and PBMCs 

were separated by pipetting. IFN-ʰ ŜȄǇǊŜǎǎƛƻƴ ǿŀǎ ŎƻƳǇŀǊŜŘ ōŜǘǿŜŜƴ ŎƻƴŘƛǘƛƻƴǎ ŀǎ ŀ 

marker of TLR activation.  cDNA was formed from cell pellets (Section 2.3 and 2.5) and IFN-

ʰ Ƴwb! ŜȄpression was measured by qPCR (Section 2.7). IFN-ʰ ǇǊƻǘŜƛƴ ŜȄǇression was 

measured by ELISA (Section 2.11) using cell supernatants at a 1:5 dilution. 

Table 4: TLR Specific Antibody Doses 

TLR  Antibody Concentration 

3 10µg/ml 

7 7.5µg/ml 

9 10µg/ml 
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2.16 Measuring  TLR Inhibited  IFN-ɻ %ØÐÒÅÓÓÉÏÎ in TLR9 and 

Apoptotic Neutrophil Stimulated PBMCs  

MyD88 is a common TLR adapter protein and is vital to the pathway of TLR 7, 8-9. PBMCs 

were isolated from healthy controls (n=5) (Section 2.2.1) counted and made into a 

concentration of 500,000cells/ml in culture medium (Section 2.11). Each sample was split 

into 5 conditions; 200µl of unstimulated PBMCs; 200µl of MyD88 inhibited PBMCs 

stimulated with TLR9 ligand; 200µl PBMCs stimulated with TLR9 ligand; 100µl of MyD88 

inhibited PBMCs incubated with 200µl of apoptotic neutrophils and 100µl of PBMCs 

incubated with 200µl of apoptotic neutrophils. TLR inhibition was obtained by incubating 

PBMCs with MyD88 inhibitory peptide at 100µM for 12 hours. Neutrophils were isolated 

counted and diluted to a concentration of 500,00cells/ml as PBMCs and incubated in 10% 

JSLE serum for 2 hours to induce apoptosis. After 2 hours neutrophil apoptosis was 

measured by flow cytometry using Annexin V staining (Section 2.12.1). Apoptotic 

neutrophils and TLR9 ligand (Section 2.10) were added to the appropriate wells and 

incubated for 6 hours. After this incubation the well contents were pipetted into individual 

microcentrifuge tubes and spun at 10,000rpm for 5 minutes at 4°C pelletting the cells and 

allowing the separation of cells and supernatant. RNA was extracted from the cells (Section 

2.3) and IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎion was measured by qPCR and normalised to 18s mRNA 

expression (Section 2.7).  
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2.17 Statistical Analysis  

All statistical analyses were carried out by the author using standard statistical tests using 

SPSS Version 18.01. Two-tailed tests were carried out in all analyses with significance set at 

the p<0.05 level. For analyses of experiments carried out on all three patient groups (JSLE, 

JIA and healthy controls), once raw data was obtained, the Kruskal Wallis non-parametric 

test was employed to detect any significant differences within the data between groups. If 

a significant value was obtained (p<0.05) the non-parametric Mann-Whitney U test was 

used to analyse for statistically significant differences between study groups/non-paired 

groups/samples. Regression analyses were used to identify any significant associations in 

trends. 
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3 Results 

3.1 Demographics  

The study involved 32 patients with JSLE and 17 patients each for both the JIA 

inflammatory control group and paediatric healthy control group, mean age was 11.8 

(range 3-17.4), 10.7 (3.1-17.6) and 12.3 (6.1-16.4) years, respectively. Groups contained a 

similar male:female ratio (JSLE 38% male, JIA 41%, healthy controls 47%) and were made 

up of predominantly white British patients (exceptions: JSLE 7 Indian, 2 white other, 2 

Bangladeshi, 2 Pakistani and 1 not stated; Healthy controls 2 Chinese and  1 white other).  

Table 5 summarises clinical biomarker data of disease activity for the JSLE patients, 

indicating mild to moderate/severe activity at time of sampling. Table 6 shows data on the 

medications used in our JSLE study population at time of sampling. 

Of the 17 JIA patients studied 7 (41%) had systemic-onset; 4 (24%) had polyarticular 

disease; 4 (24%) had oligoarticular disease; 1 psoriatic (6%) and no details of specific sub-

class of JIA was available for 1. JIA core set criteria for disease activity [149] were as 

follows: mean number of joints with reduced range of motion was 1.2 (range 0-6) and 

mean number of swollen joints was 2.5 (0-18) across all JIA subtypes; mean scores for 

erythrocyte sedimentation rate ESR was 14.82 (1-55); Childhood Health Assessment 

Questionnaire (C-HAQ) score was 0.96 (0-нΦмнрύ ŀƴŘ ǘƘŜ ǇŀǘƛŜƴǘǎκǇŀǊŜƴǘΩǎ ŀǎǎŜǎǎƳŜƴǘ ƻŦ 

pain was 26.1 (0-80) using a 0-100m visual analogue scale. Data on medications used in our 

JIA study population at time of sampling is shown in Table 6. 
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Table 5: JSLE Disease Activity Data 

Biomarker/disease activity parameter 

(Normal range) 

Juvenile-onset SLE 

patients* 

(n=32) 

 ESR, mm/hour  

(normal 2-8mm/hour) 

17.5 (1-87) 

CRP, mg/litre            

(normal 0-8mg/litre) 

9.3 (4-71) 

Total WBC count, x109/litre  8.6 (2.5-26.3) 

Neutrophil count, x109/litre  5 (1.31-15.57) 

Lymphocyte count, x109/litre  2.7 (0.09-13.68) 

     Complement, gm/litre  

 C3  

(normal 1.10-1.98) 

1.1 (0.68-1.51) 

 C4 

 (normal 0.19-0.56) 

0.2 (0.12-0.38) 

Anti-dsDNA titre, IU/ml   

     (<7) 

21.8 (0-280) 

IgG, gm/litre  

(normal 7.39-13.9) 

12.5 (3.4-21.29) 

Global BILAG-2004 Score 2.9 (0-17) 

 

 

 

  

*Mean (Range); ESR = Erythrocyte Sedimentation Rate; CRP = C-reactive Protein; WBC = 

White Blood Cell; Anti-dsDNA = anti-double stranded DNA; BILAG = British Isles Lupus 

Assessment Group 
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Table 6: JSLE and JIA Medication 

Current medications, no. of patients* (%) JSLE JIA 

     Hydroxychloroquine 21 0 

     Methotrexate 3 6 

     Azathioprine/Cyclosporin 5 0 

     Mycophenolate mofetil 7 0 

     Prednisolone 19 9 

     Prednisolone dosage, mean   

     (range) mg/day 

19.3 (5-60) NA 

     Previous cyclophosphamide 5 0 

     Intravenous immunoglobulin 3 2 

     Biologics 0 12 

     NSAIDs 0 6 

     Other 0 5 

 

 

 

 

  

*Patients may be on >1 medication; JSLE = Juvenile Systemic Lupus Erythematosus;           

JIA = Juvenile Idiopathic Arthritis; NA = Not available 
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3.2 TLR Expression in JSLE 

3.2.1 TLR mRNA Expression in PBMCs 

PBMCs were isolated from whole blood from JSLE (n=7) and JIA (n=7) patients and healthy 

controls (HC) (n=6). TLR mRNA expression was measured by qPCR, normalised to 18s mRNA 

expression (Figure 16). There was a statistically significant increase in TLR 3 (HC p=0.001), 8 

(HC p<0.001) and 9 (HC p=0.003; JIA p=0.036) mRNA expression in JSLE compared to 

controls. TLR 7 mRNA expression was higher in JSLE than controls but was not statistically 

significant (p=0.974). 

3.2.2 TLR Protein Expression in PBMCs 

PBMCs were isolated from whole blood from JSLE (n=5) and JIA (n=5) patients and healthy 

controls (n=5). TLR protein expression was determined by FITC labelled TLR specific 

antibody detection via flow cytometry (Figure 17 & 18). Isotype control MFI was 

comparable to unstained PBMCs.  It was found that TLR 3 protein expression was 

significantly increased in JSLE compared to HC (p=0.009) and JIA (p=0.016) patients, as was 

TLR 8 (HC p=0.009; JIA p=0.009) and TLR 9 (HC p=0.009; JIA p=0.009) protein expression 

(Figure 19). Interestingly TLR 3 (p=0.009) and TLR8 (p=0.028) protein expression was 

significantly increased in JIA as compared to healthy controls. 

3.2.3 TLR mRNA Expression in B Cells 

B cells were isolated from JSLE (n=7) and JIA (n=7) and healthy controls (n=4). TLR mRNA 

expression was measured by qPCR and normalised to 18s mRNA expression (Figure 20). It 

was found that TLR 7 (p=0.038) and 9 (p=0.038) mRNA expression was significantly higher 

in JSLE compared to healthy controls. TLR 3 and 8 mRNA expression was higher in JSLE 

compared to healthy controls but this difference was not significant (p=0.097 and p=0.073 

respectively). 
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Figure 16: PBMC TLR mRNA Expression 

   

   

PBMC TLR mRNA expression normalised to 18s mRNA expression in JSLE (n=7), JIA (n=7) 
and healthy controls (HC) (n=6). PBMCs were isolated from whole blood and mRNA 
expression was measured by qPCR. A TLR 3 mRNA expression was statistically significantly 
higher in JSLE compared to controls (HC p=0.001); B TLR7 mRNA was higher in JSLE 
compared to controls (p=0.974); C TLR8 mRNA expression was statistically significantly 
higher in JSLE compared to controls (HC p<0.001); D TLR9 mRNA expression was statistically 
significantly higher in JSLE compared to controls (p=0.003) and JIA (p=0.036). Values are the 
mean ± Standard Error of the Mean (SEM). 
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TLR Protein Detection  

Figure 17: PBMC Scatter Profile 

 

Flow cytometry scatter profile showing the PBMC cell population (A) gated for analysis.  

Figure 18: Identification of TLR Protein Expression 

 

A Unstained cells acted as the experimental control. Analysis of these cells by flow 

cytometry demonstrated them to not emit auto-fluorescence  B FITC-labelled TLR 3 stained 

PBMCs were shown to emit significantly more fluorescence than unstained cells 

(MFI=81.48). Measurements for TLR 7 and 9 were assessed and analysed in an identical 

manner. 

  

A B 
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Figure 19: PBMC TLR Protein Expression 

 

 

 

Analysis of MFI by flow cytometry of PBMC TLR protein expression in JSLE (n=5), JIA (n=5) 
and healthy controls (n=5), following staining with TLR 3, 8 & 9 fluorescent antibodies.  A 
TLR3 protein expression was statistically significantly increased in JSLE compared to control 
(p=0.009) and JIA (p=0.016). B TLR8 protein expression was statistically significantly 
increased in JSLE compared to control (p=0.009) and JIA (p=0.009). C TLR9 protein 
expression was statistically significantly increased in JSLE compared to control (p=0.009) 
and JIA (p=0.009). Values are the mean ± Standard Error of the Mean (SEM). 
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Figure 20: TLR mRNA Expression in B Cells 

   

   

B cell TLR mRNA expression normalised to 18s mRNA expression in JSLE (n=7), JIA (n=7) and 
healthy controls (n=4). B cells were isolated from whole blood and mRNA expression was 
measured by qPCR. A TLR 3 mRNA expression was higher in JSLE compared to controls 
(p=0.097); B TLR7 mRNA was statistically significantly higher in JSLE compared to controls 
(p=0.038); C TLR8 mRNA expression was higher in JSLE compared to controls (p=0.073); D 
TLR9 mRNA expression was statistically significantly higher in JSLE compared to controls 
(p=0.038). Values are the mean ± Standard Error of the Mean (SEM). 
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3.3 TLR Stimulation  

3.3.1 TLR Ligand induced IFN-ɻ Í2.! %ØÐÒÅÓÓÉÏÎ 

Control PBMCs were stimulated with commercially available specific TLR 3, 7, 8 and 9 

ligands. After 6 hours PBMCs were harvested and TLR mRNA expression was measured and 

normalised to 18s. TLR 3 (x1.4 fold), 7 (x1.2), 8 (x2.4) and 9 (x3.78) induced IFN-ʰ mRNA 

expression was increased compared to unstimulated PBMCs (control) (Figure 21A).  

3.3.2 TLR ligand induced IFN -ɻ 0ÒÏÔÅÉÎ %ØÐÒÅÓÓÉÏÎ 

PBMCs were isolated from healthy controls (n=4) and stimulated with specific TLR 3, 7, 8 

and 9 ligands. After 6 hours cell supernatant was collected and IFN-ʰ ǇǊƻǘŜƛƴ ŜȄǇǊŜǎǎƛƻƴ 

was measured by ELISA. IFN-ʰ ǇǊƻǘŜƛƴ ŜȄǇǊŜssion under TLR 3 (x1.2 fold), 8 (x1.2) and 9 

(x1.9) stimulation was increased compared to control (unstimulated PBMCs) (Figure 21B). 

3.3.3 Assay Limitations  

When measuring IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ ǘƘŜǊŜ ǿŀǎ ŎƻƴǎƛŘŜǊŀōƭŜ individual sample 

variation (Figure 22). This was not the case with measuring protein expression. It was 

thought that increasing the sample size would be an effective strategy in overcoming this 

biological variation. However this was found to be impossible due to problems with the 

efficiency of reaction of the subsequent qPCRs.  
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Figure 21: TLR Ligand Induced IFN-  hmRNA Expression 

 

 

Control PBMCs (n=4) were stimulated with specific TLR agonists for 6 hours. A. RNA was 

extracted and IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ ǿŀǎ ƳŜŀǎǳǊŜŘ ōȅ ǉt/wΦ LCb-ʰ ŜȄǇǊŜǎǎƛƻƴ ǿŀǎ ƘƛƎher 

in TLR 3 (x1.4 fold), 7 (x1.2) 8 (x2.4) & 9 (x3.78) stimulated compared to unstimulated 

PBMCs. B. Supernatant was isolated and IFN-ʰ ǇǊƻǘŜƛƴ ŜȄǇǊŜǎǎƛƻƴ ǿŀǎ ƳŜŀǎǳǊŜŘ ōȅ 9[L{!Φ  

IFN-ʰ ŜȄǇǊŜǎǎƛƻƴ ǿŀǎ ƘƛƎƘŜǊ ƛƴ ¢[w 3 (x1.2 fold), 8 (x1.2) & 9 (x1.9) stimulated cells 

compared to unstimulated PBMCs. Values are the mean ± Standard Error of the Mean 

(SEM).  
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3.3.3.1 Assay Limitations  

Figure 22: Individual variation between samples 

 

 

Graphs displaying individual variation TLR induced IFN-  hmRNA response within samples.    

PBMCs (n=4) were stimulated with each TLR 3, 7, 8 and 9 ligands for 6 hours. After 

incubation RNA was extracted and qPCR was used to determine IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴΦ 

The graphs above show that there was considerable individual variation with each TLR 

ligand.  
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3.4 Apoptotic Neutrophils Induce IFN -ɻ 

3.4.1 JSLE serum induces increased apoptosis compared to control  

Neutrophils were isolated from whole blood and incubated with 10% JSLE or control serum 

for 2 hours. Apoptosis was measured using FITC conjugated Annexin-V staining (Figure 23). 

Figure 23: Dot plot showing % apoptosis of samples 

 

 

Percentage apoptosis was measured by flow cytometry following incubation of PBMCs with 

JSLE or control serum for 2 hours and staining with FITC-labelled annexin V. Incubation of 

control neutrophils with JSLE serum (B) results in increased apoptosis (17.7%) compared to 

control (A) (4.3%).  
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3.4.2 Neutrophils that undergo apoptosis in JSLE seru m induce a greater IFN -ɻ 

response from PBMCs than neutrophils incubated in control serum  

PBMCs and neutrophils were isolated from healthy controls (n=5). Neutrophils were 

incubated with either control or JSLE serum to induce apoptosis. After 2 hours apoptotic 

neutrophils were incubated with PBMCs. After 6 hours PBMCs were harvested and IFN-ʰ 

mRNA expression was measured, normalised to 18s. Neutrophils that had undergone 

apoptosis in JSLE serum induced a greater IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ ƛƴ t.a/ǎ όȄпΦу ŦƻƭŘύ 

than those incubated in control serum (Figure 24). 
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Figure 24: Neutrophils that undergo apoptosis in JSLE serum induce a greater IFN-ʰ 
response from PBMCs than neutrophils incubated in control serum 

 

Control neutrophils (n=5) were incubated with control serum or JSLE serum for 2 hours. 

These apoptotic neutrophils were incubated with control PBMCs for 2 hours. Cell RNA was 

extracted and IFN-ʰ Ƴwb! ƳŜŀǎǳǊŜŘ ōȅ ǉt/wΦ PBMCs incubated with neutrophils that had 

undergone apoptosis in JSLE serum induced a greater IFN-ʰ Ƴwb! (x4.8 fold) response 

than those incubated in control serum. 
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3.4.3 Dose Response Relationship 

PBMCs and neutrophils were isolated from healthy controls (n=3). PBMCs were incubated 

with neutrophils that had undergone apoptosis in JSLE serum and control serum at varying 

concentrations. PBMCs and neutrophils were incubated at a concentration ratio of 1x105 

PBMCs: 5x104 neutrophils (2:1 ratio), 1x105 PBMCs: 1x105 neutrophils (1:1) and 1x105 

PBMCs: 2x105 neutrophils (1:2) respectively. 200µl of unstimulated PBMCs acted as the 

experimental control. After 6 hours PBMCs were harvested and IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ 

was measured by qPCR. All groups expressed a significantly higher IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ 

as compared to un-stimulated PBMCs (2:1, p=0.02; 1:1, p=0.02; 1:2, p=0.02). It was found 

that IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ ƻŎŎǳǊǊŜŘ ƛƴ ŀ ŘƻǎŜ ǊŜǎǇƻƴǎŜ ƳŀƴƴŜǊ ǘƻ ǘƘŜ ŎƻƴŎŜƴǘǊŀǘƛƻƴ ƻŦ 

apoptotic neutrophils. IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ ǿŀǎ ǎƛƎƴƛŦƛŎŀƴǘƭȅ ƘƛƎƘŜǊ ƛƴ ǘƘŜ мΥн ƎǊƻǳǇ ŀǎ 

compared to the 2:1 group (p=0.035) (Figure 25). Neutrophils incubated in control serum 

and neutrophils incubated in JSLE serum express very little IFN-ʰ Ƴwb!Φ 
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Figure 25: Dose Response Relationship 

 

Control PBMCS (n=3) were incubated with varying concentrations of neutrophils that had 

undergone apoptosis in JSLE serum or control serum (2:1=1x105 PBMCs: 5x104 neutrophils; 

1:1 =1x105 PBMCs: 1x105 neutrophils; 1:2=1x105 PBMCs: 2x105 neutrophils). After 6 hours 

PBMCs were isolated and IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ ǿŀǎ ƳŜŀǎǳǊŜŘ ōȅ ǉt/wΦ PBMC IFN-ʰ 

mRNA expression occurs in a dose-response manner to apoptotic neutrophil concentration. 

IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ ǿŀǎ ǎƛƎƴƛŦƛŎŀƴǘƭȅ ƘƛƎƘŜǊ ƛƴ ǘƘŜ мΥн ƎǊƻǳǇ ŀǎ ŎƻƳǇŀǊŜŘ ǘƻ ǘƘŜ 2:1 

group (p=0.035). Neutrophils incubated in control serum (Control npl) and neutrophils 

incubated in JSLE serum (JSLE npl) express little IFN-ʰ Ƴwb!Φ 
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3.5 % Apoptosis correlates with TLR mRNA Expression  

PBMCs and neutrophils were isolated from healthy controls (n=4). Neutrophils were 

incubated with 10% JSLE serum for 30 minutes, 1 hour and 2 hours and % apoptosis 

measured by flow cytometry. PBMCs were incubated with neutrophils at different % 

apoptosis. After 6 hours cell RNA was extracted and TLR 3, 7, 8 and 9 mRNA expression was 

measured by qPCR. It was found that there was a statistically significant positive correlation 

between increasing apoptosis and TLR 3 (p=0.004), 7 (p=0.006), 8 (p=0.14) and 9 (p=0.003) 

mRNA expression (Figure 26).  
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Figure 26: % Apoptosis correlates with TLR mRNA expression 

   

   

Control PBMCs and neutrophils were isolated for healthy controls (n=4). Neutrophils were 

incubated in 10% JSLE serum to induce apoptosis. After 30 minutes, 1hour and 2 hours % 

apoptosis was measured by annexin V staining through flow cytometry. PBMCs were 

incubated with neutrophils of varying % apoptosis for 6 hours. Post incubation TLR 3, 7, 8 

and 9 mRNA expression was measured by qPCR. PBMC TLR 3 (p=0.004), 7 (p=0.006), 8 

(p=0.014) and 9 (p=0.003) mRNA expression increases as apoptosis of neutrophil incubated 

with increases. 
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3.6 TLR Inhibition  

3.6.1 Optimization  

PBMCs were isolated from healthy controls (n=2). TLR specific inhibition was attempted 

using specific TLR antibodies, in the hope that this would inhibit activation, and 

chloroquine, a pan-inhibitor of TLRs. PBMCs were cultured with a specific TLR agonist, the 

specific TLR antibody, TLR agonist + specific TLR antibody or TLR agonist + chloroquine. It 

was found that there was considerable variation in response to ligand and specific 

antibodies between individuals (Figure 27). In some cases addition of antibody caused a 

greater IFN-ʰ ǊŜǎǇƻƴǎŜ ǘƘŀƴ ǎǘƛƳǳƭŀǘƛƻƴ ǿƛǘƘ ǘƘŜ ƴŀǘǳǊŀƭ ƭƛƎŀƴŘ itself. Equally, addition of 

chloroquine gave variable results, possibly due to need to further determine optimal 

concentrations of chloroquine and / or inability to inhibit commercial ligands used. 

Significant time and energy was spent trying to optimise these assays. However, mixed and 

at times conflicting responses indicate additional experiments are still needed to determine 

the appropriate inhibitors for these assays and concentrations of them. These further 

experiments unfortunately went beyond the time limits of this thesis. It was decided that 

as such, it was inappropriate to use these methods of TLR blocking for future experiments 

for the time being.  
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Figure 27: TLR Inhibition Optimization 

 

 

 

PBMCs (n=2) were incubated with TLR ± TLR specific antibody or Chloroquine for 6 hours, 

after which supernatant was isolated and IFN-ʰ ǇǊƻǘŜƛƴ ǿŀǎ ƳŜŀǎǳǊŜŘ ōȅ 9[L{!Φ Graphs 

demonstrate ineffectiveness of TLR antibody and chloroquine. On all accounts addition of 

TLR antibody failed to reduce IFN-ʰ ǇǊƻŘǳŎǘƛƻƴ ǎƛƎƴƛŦƛŎŀƴǘƭȅ ƻǊ ǘƻ ǘƘŜ ƭŜǾŜƭ ƻŦ ŎƻƴǘǊƻƭΦ 

Addition of chloroquine also failed to reduce IFN-ʰ ǇǊƻŘǳŎǘƛƻƴΦ ¢ƘŜǎŜ ǊŜǎǳƭǘǎ ƛƴŘƛŎŀǘŜŘ ǘƘŀǘ 

this method of TLR inhibition would be unsatisfactory for future inhibition assays. 
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3.6.2 MyD88 TLR inhibition decreases TLR induced IFN -  hproduction  n PBMCs 

PBMCs and neutrophils were isolated from healthy controls (n=5). PBMCs were stimulated 

with TLR9 ligand ± MyD88 inhibitor or apoptotic neutrophils ± MyD88 inhibitor or left 

unstimulated. MyD88 is a TLR adapter protein vital to the pathway of TLRs 7-9, therefore 

blockade of this pathway should inhibit their function. It was found that incubation with 

TLR9 ligand (p=0.009) or apoptotic neutrophils (p=0.009) significantly increased IFN-ʰ 

mRNA expression in PBMCs compared to unstimulated PBMCs. Concomitant stimulation 

with MyD88 inhibitor and TLR9 ligand (x2.77 fold reduction; p=0.047) or MyD88 inhibitor 

and apoptotic neutrophils (x4.5 fold reduction; p=0.076) resulted in a decreased IFN-ʰ 

mRNA expression than PBMCs stimulated with TLR9 or apoptotic neutrophils alone (Figures 

28 & 29).  
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Figure 28: MyD88 TLR Inhibition Decreases TLR 9 Induced IFN-ʰ ǇǊƻŘǳŎǘƛƻƴ ƛƴ t.a/ǎ 

 

Control PBMCs (n=5) were incubated with TLR9 agonist ± MyD88 inhibitor. PBMCs were 

incubated for 12 hours with MyD88 inhibitor prior to 6 hour exposure to TLR9 agonist. 

After incubation PBMCs were isolated and RNA extracted. IFN-ʰ Ƴwb! ǿŀǎ ƳŜŀǎǳǊŜŘ ōȅ 

qPCR and normalised to 18s mRNA. It was found that incubation with TLR9 agonist 

(p=0.009) alone resulted in a significantly increased IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ ŎƻƳǇŀǊŜŘ ǘƻ 

unstimulated cells. MyD88 inhibitor directed TLR blockade resulted in a significantly 

decreased IFN-ʰ Ƴwb! ŜȄǇǊŜǎǎƛƻƴ ƛƴ t.a/ǎ ƛƴŎǳōŀǘŜŘ ǿƛǘƘ ¢[wф ƭƛƎŀƴŘ όȄнΦтт ŦƻƭŘ 

decrease; p=0.047) as compared to those not incubated with the MyD88 inhibitor. Markers 

are individual data points, black bar represents the mean. 
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Figure 29: MyD88 TLR Inhibition decreases IFN-  hproduction in PBMCs incubated with 
Apoptotic Neutrophils 

 

Control PBMCs (n=5) were incubated with apoptotic neutrophils (AN) ± MyD88 inhibitor or 

left unstimulated. PBMCs were incubated for 12 hours with MyD88 inhibitor prior to 6 hour 

exposure to AN. After incubation PBMCs were isolated and RNA extracted. IFN-ʰ Ƴwb! 

was measured by qPCR and normalised to 18s mRNA. It was found that incubation with AN 

(p=0.009) alone resulted in a significantly increased IFN-ʰ Ƴwb! expression compared to 

unstimulated cells. MyD88 directed TLR inhibition resulted in decreased IFN-ʰ Ƴwb! 

expression in PBMCs incubated with AN (x4.5 fold; p=0.074) as compared to those not 

incubated with the MyD88 inhibitor. Markers are individual data points, black bar 

represents the mean. 
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4 Discussion  

4.1.1 Rationale for the study and its aims  

With the discovery of the TLR family and subsequent realisation of their fundamental 

importance to the immune response they have attracted much interest in their possible 

role in the development of disease, particularly autoimmune disease. The rationale behind 

this is that as they are responsible for the detection and propagation of a normal immune 

response against exogenous antigen, they may also be responsible for the detection of 

endogenous antigen resulting in a misguided immune reaction against host tissues. This 

theory is particularly relevant in those autoimmune conditions in which autoantibodies 

play a dominant role.  

TLRs are part of a larger family of pattern recognition receptors (PRR) whose specific role is 

as the first line of defence against invading pathogen. Once an antigen is detected its 

antigenic epitope is internalised and then displayed on the cell surface to cells of the 

adaptive immune system which mount an antigen specific response. Therefore it is 

plausible that if PRRs were mistakenly detecting autoantigen subsequently leading to its 

presentation as pathogenic, then an adaptive immune response could be mounted against 

this autoantigen, resulting in autoimmunity. This specific autoimmune response would 

include the production of autoantibodies targeted towards the offending autoantigen.  This 

theory has been supported by work showing synovial TLR mRNA expression in rheumatoid 

arthritis and monocyte TLR protein expression in anti-phospholipid syndrome to be 

increased [150-151]. These data support the hypothesis proposing their role in autoantigen 

detection in these diseases.  

The interest in the role of TLRs, particularly 3, 7, 8 and 9, in JSLE comes from the 

identification of their natural ligands [32]. These receptors are responsible for the 

detection of nucleic acid derived material, including for example dsDNA. JSLE is the 
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archetypal autoimmune condition with autoantibodies directed towards nuclear material. 

It is characterised by autoantibody production including anti-nuclear antibodies and 

autoantibodies directed against other encapsulated nuclear antigens such as anti-Ro, anti-

La, anti-RNP, and anti-Sm antibodies, but most importantly anti-dsDNA antibodies, whose 

titres have been shown to correlate well with disease activity and TLR expression [32, 125]. 

The data appears especially notable for TLR9 for which dsDNA is its natural ligand. There is 

some evidence in adult-onset SLE that TLRs may have a role in the pathogenesis of this 

condition [32-33, 124-126]. However to date there has been no exploration of their role in 

JSLE despite its more severe disease presentation and phenotype. Increased and 

dysregulated neutrophil apoptosis noted in JSLE may offer a potential source of increased 

endogenous nucleic acid autoantigen in JSLE.  

The role of TLRs in JSLE may therefore offer unique insight into the aetiopathogenesis of 

lupus.  

The hypothesis therefore to be studied was that apoptotic neutrophils in JSLE are providing 

a source of nuclear auto-antigen(s), which are being detected through the innate immune 

system by the TLR pathway leading to the induction of an inflammatory response through 

activation of an adaptive autoimmune response. 

The aim of this project was to assess their role by primarily analysing their expression and 

further to this examine whether they are capable of detecting a potential source of auto-

antigen in JSLE. 

The steps to explore this initially involved measuring TLR mRNA and protein expression in 

JSLE PBMCs and B cells, and comparing them to another paediatric autoimmune 

inflammatory rheumatological condition, JIA, and healthy paediatric controls.  
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Once dysregulated homeostasis was established, their potential role in the pathogenesis of 

the condition was investigated. TLR activation was assessed in response to their natural 

ligands. This same method of measurement was used to assess their activation in response 

to a potential source of JSLE autoantigen, namely the apoptotic neutrophil. Finally, TLR 

inhibition in the presence of the potential autoantigen was carried out to further validate 

their role in detection and response to apoptotic material in JSLE.   

4.1.2 Summary of Findings  

Examination of TLR expression in JSLE demonstrated significantly increased expression of 

TLRs 3, 8 & 9 at both the mRNA (Section 3.2.1) and protein (3.2.2) level in JSLE PBMCs 

compared to controls (JIA and healthy controls). Further to this it was found that B cells, 

capable of antigen presentation, also displayed significantly increased mRNA expression of 

TLRs 7 and 9 (Section 3.2.3). These findings confirmed an irregularity in TLR homeostasis in 

JSLE in those TLRs which are characterised by their ability to detect nuclear autoantigens. 

The hypothesis proposed that apoptotic neutrophils may act as a potential source of ligand 

for these TLRs, leading to downstream upregulation of signalling. Therefore, measuring 

IFN-ʰ expression from PBMCs exposed to TLR ligands (naturally occurring) and following 

co-culture with apoptosing neutrophils (potential source of nucleic autoantigens) was used 

to determine whether TLR activation was taking place. Incubation of PBMCs with their 

natural ligands (commercially available) did stimulate increased production of IFN-  h

(Section 3.3). Importantly, apoptotic neutrophils also increased PBMC IFN-ʰ Ƴwb! ŀƴŘ 

protein expression (Section 3.4.2). This was found to occur in a dose-response manner with 

IFN-ʰ ǇǊƻŘǳŎǘƛƻƴ ƛƴŎǊŜŀǎƛƴƎ ŀǎ ǊŜƭŀǘƛǾŜ ŎƻƴŎŜƴǘǊŀǘƛƻƴ ƻŦ ŀǇƻǇǘƻǘƛŎ ƴŜǳǘǊƻǇƘƛƭǎ ƛƴŎǊŜŀǎŜd 

(Section 3.4.3). These findings strongly supported the hypothesis that apoptosing 

neutrophils may be triggering TLR stimulation through presentation of autoantigens. 
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Further evidence to support the role of TLRs in inducing this IFN-ʰ ǇǊƻŘǳŎǘƛƻƴ ƛƴ ǊŜǎǇƻƴǎŜ 

to apoptotic material was the observation that TLR mRNA showed significant positive 

correlation with increasing neutrophil apoptosis (Section 3.5). From this it could be 

hypothesised that this increase in TLR expression is due to increasing availability and 

therefore access to nuclear autoantigens leading to greater activation of TLRs.   

Finally, the specific role of TLR activation by apoptotic neutrophils leading to the increase of 

IFN-  hmRNA was demonstrated by a marked decrease in IFN-ʰ ǊŜǎǇƻƴǎŜ ŀŦǘŜǊ ƛƴƘƛōƛǘƛƻƴ ƻŦ 

TLRs 7, 8 and 9 through the blocking of MyD88 (Section 3.6.2), a downstream adapter 

protein vital to these TLRs.     

4.1.3 Integration of study findings with existing evidence base in lupus  

The findings of this study are consistent with prior studies and strengthen the evidence 

base for demonstrating the role of TLRs in the pathogenesis of JSLE. In addition, it has 

added important new data on the mechanistic pathway leading to TLR activation. Devising 

new strategies for exploring the role of TLRs in autoantigen detection, the study has 

provided new evidence for a potential source of auto-antigen exposure in JSLE through 

dysregulated neutrophil apoptosis. 

The study demonstrated significant up-regulation of TLRs 3, 8 and 9 in PBMCs in JSLE. This 

is in concordance with work focusing on adult SLE which have shown significantly increased 

expression of these same TLRs at the protein and mRNA level [34, 124-125]. This present 

study also demonstrated increased TLRs 7 and 9 mRNA expression in JSLE B cells, consistent 

with a number of studies in adult-onset SLE [32-34, 124].  

The hypothesis that TLR activation leads to downstream effects important in the 

generation of the disease phenotype of lupus is supported by a case report describing the 

remission of long-standing SLE post development of an acquired deficiency of the TLR7 and 

9 signalling pathway in peripheral B cells [123]. The same acquired immunodeficiency has 



85 
 

been documented in 18 SLE patients with clinical improvement occurring in 12 of these 

[152]. Dual inhibition of these pathways has also been shown to block an inflammatory 

response in pDCs and autoantibody production in lupus prone mice [153-154]. The 

increased TLR expression in SLE PBMCs and B cells has been shown to correlate well with 

parameters of disease activity including the SLEDAI score and more specifically anti-dsDNA 

titres, with stimulation of TLR9 being shown to directly lead to anti-dsDNA production [33, 

125]. This evidence strongly suggests causality between increased TLR9 activation in vivo 

and anti-dsDNA production, which is thought to cause tissue damage in SLE through 

formation and deposition of immune complexes. A possible mechanism for this has been 

provided by Barrat et al who have demonstrated decreased levels of DNA methylation in 

SLE [155]. The significance of this is that methylation of human DNA is one of the 

mechanisms TLRs use to discriminate between host and foreign tissue. Therefore if the 

situation arose whereby human DNA failed to undergo methylation leading to the presence 

of hypomethylated DNA, this host DNA would have the ability to bind to and stimulate 

TLR9 leading to auto-antibody production. The correlation of the presence of this auto-

antibody with the increased expression of its receptor supports this thinking. The 

pathological link between increased endosomal TLR (3, 7, 8 & 9) expression and JSLE is a 

realistic pathway for autoimmune development with each receptor capable of detecting 

JSLE autoantigens leading to downstream stimulation of an autoimmune response against 

them. Our data support this hypothesis in JSLE. 

Many authors point to apoptosis as a mechanism for autoantigen exposure in SLE. The 

direct evidence behind this in terms of mechanistic pathway is however scarce. It is 

believed that increased apoptosis coupled with a decreased ability to clear apoptotic cells is 

resulting in the accumulation of late apoptotic and secondary necrotic cells leading to the 

exposure of host nuclear antigen [25]. This study clearly demonstrates that TLR activation 

leads to the production of IFN-ʰΣ ǘƘought to be a key player in the pathogenesis of JSLE. 
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Increased serum levels of IFN-ʰ and the IFN-ʰ ƎŜƴŜ ǎƛƎƴŀǘǳǊŜ ŜȄƘƛōƛǘŜŘ ōȅ JSLE patients are 

thought to significantly contribute to the development and maintenance of autoimmunity 

through the chronic activation of autoreactive T and B cells [19]. However, data 

demonstrating the direct link between apoptosis, TLR activation and IFN-ʰ ŀǊŜ ŦŜǿ ǳƴǘƛƭ 

now.  

Immune complexes of SLE IgG and nucleic acid derived from necrotic and late apoptotic 

cells have been shown to induce IFN-ʰ ǇǊƻŘǳŎǘƛƻƴ ǘƘǊƻǳƎƘ ǘƘŜ ¢[w ǇŀǘƘǿŀȅ [77, 107]. 

However this was carried out by inducing apoptosis through UV light exposure. Although 

useful in demonstrating the ability of apoptotic material to stimulate an autoimmune 

reaction it failed to shed any light on a potential source of this autoantigen in vivo. 

Neutropenia is a frequent occurrence in SLE and increased rates of apoptosis are thought 

to contribute to this [156]. Neutrophils account for up to 70% of the leukocyte population 

ŀƴŘ ŜȄŎŜǎǎƛǾŜ ŀǇƻǇǘƻǎƛǎ ƻŦ ǘƘƛǎ ŎŜƭƭ ŎƻǳƭŘ ƭŜŀŘ ǘƻ ŀ ǎŀǘǳǊŀǘƛƻƴ ƻŦ ǘƘŜ ōƻŘȅΩǎ ŀōƛƭƛǘȅ ǘƻ ŎƭŜŀǊ 

the apoptotic cell debris. It has been found that there are increased levels of circulating 

apoptotic neutrophils in SLE which positively correlate with SLEDAI and dsDNA titres 

suggesting a tentative link between their presence and disease pathology [157-158]. These 

findings have been further validated in JSLE showing serum from JSLE patients to increase 

neutrophil apoptosis and this increased apoptosis was shown to positively correlate with 

disease activity and dsDNA concentration [24]. Not only this but it was found that there 

was in imbalance in the normal levels of pro-apoptotic and anti-apoptotic factors leaning 

towards increased neutrophil apoptosis [24]. The fact that apoptotic material has been 

shown to be capable of initiating an immune response and that neutrophils, the most 

abundant leukocyte, have been demonstrated to be present in high concentrations in an 

apoptotic state promotes them as an ideal candidate for the source of autoantigen in JSLE.  
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This present study strongly supports this theory, showing neutrophils that have undergone 

apoptosis in JSLE serum to be potent stimulators of IFN-ʰ ǘƘǊƻǳƎƘ ŀŎǘƛǾŀǘƛƻƴ ƻŦ ¢[wǎ оΣ тΣ у 

and 9. Confirmation that this stimulation is due to the presence of apoptotic neutrophils 

was demonstrated by a dose-response relationship to the concentration of incubated 

apoptotic neutrophil. This is believed to be through the detection of nucleic acids derived 

from the apoptotic neutrophils.  

To determine which TLRs played a dominant role, TLR expression of PBMCs incubated with 

apoptotic neutrophils was measured. It was found that TLRs 3, 7, 8 and 9 were all up-

regulated in these PBMCs, which had been obtained from control patients. This 

demonstrates that, even if not wholly responsible for the IFN-ʰ ǇǊƻŘǳŎǘƛƻƴ ƛƴ ǊŜǎǇƻƴǎŜ to 

apoptotic neutrophils, TLR up-regulation and stimulation are at least significantly 

associated with and therefore a likely contributor to this inflammatory response. As the 

experiment was carried out under controlled conditions the only influential variable on TLR 

expression was the presence of apoptotic neutrophils. As these particular TLRs are up-

regulated it can be indirectly postulated that nuclear proteins, such as that seen in JSLE, 

derived from apoptotic neutrophils, were again, at the very least, partially responsible for 

the inflammatory IFN-  hresponse seen.  

The theory that IFN-ʰ ǇǊƻŘǳŎǘƛƻƴ ƛǎ ŘǳŜ ǘƻ ¢[w ŀŎǘƛǾŀǘƛƻƴ by apoptosing neutrophils is 

further supported by our observation that TLR expression positively correlates with 

increasing apoptosis. This strengthens the association between the presence of apoptotic 

material and TLR activation. This study has shown that TLRs are capable of responding to 

nucleic acids derived from apoptotic neutrophils (as this was the only source) and that 

apoptotic neutrophils have the ability to increase TLR expression. This is directly relevant to 

JSLE in vivo linking the presence of apoptotic neutrophils to increased TLR expression and 

gives an explanation for the positive correlation seen with apoptotic neutrophil levels, TLR 
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expression and anti-dsDNA titres in JSLE [24, 32, 125]. The fact that all of these factors have 

been shown to be positively correlated with disease activity [24, 32, 125] suggests a 

pathway for inflammatory cytokine and auto-antibody production and more importantly a 

pathogenic mechanism for disease in JSLE.  

Hydroxychloroquine is a drug initially developed for malaria which was found to have an 

application in SLE. Its effect is thought to be due to its ability to prevent endosomal 

acidification and therefore inhibit the activation of TLRs 3, 7, 8 and 9. The effects of this 

drug have been mimicked in vivo in patients with SLE that have developed de novo 

signalling defects in the downstream signalling pathway for TLRs 7, 8 and 9 and have 

simultaneously entered clinical remission from SLE. It was found that the acquired 

signalling defect was present in the MyD88-dependent pathway [123]. In this present 

study, replication of this condition took place through an experiment using MyD88-

inihibition of TLR 7, 8 and 9 function. The data showed that blockage of these TLR pathway 

results in a decreased inflammatory response in TLR9-ligand stimulated PBMCs (x2.77 fold 

decrease) and importantly in PBMCs incubated with apoptotic neutrophils (x4.5 fold 

decrease). This provides solid evidence that TLRs 7, 8 and 9 are capable of inducing a 

downstream auto-inflammatory response in JSLE through activation by apoptosing 

neutrophils (as a source of nucleic autoantigens). 

The fact that IFN-ʰ ǇǊƻŘǳŎǘƛƻƴ ǿŀǎ ƴƻǘ ǊŜŘǳŎŜŘ ǘƻ ŎƻƴǘǊƻƭ ƭŜǾŜƭǎ ǎǳƎƎŜǎǘǎ ǘƘŀǘ ǘƘŜǊŜ Ƴŀȅ 

be other pathways involved. One explanation of this is that the IFN-ʰ production could also 

be a result of TLR3 stimulation as this is a MyD88-independent pathway and therefore the 

actions of this receptor were not blocked in this assay. TRIF is an adapter protein specific to 

the downstream signalling pathway of TLR3, therefore performance of a TRIF inhibition 

assay could clarify this issue. It is also a possibility that IFN-ʰ ǇǊƻŘǳŎǘƛƻƴ ƛǎ ǎƛƳǳƭǘŀƴŜƻǳǎƭȅ 

being driven through TLR-independent DNA-reactive signalling pathways. For example, 
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retinoic acid-induced gene 1 (RIG-1) is a cytoplasmic protein capable of recognising dsRNA 

and stimulating an IFN-  h response against it [159]. It is possible that this receptor and 

others like it may also play a role in the autoimmune response in JSLE. However, the 

significant reduction seen upon inhibition of MyD88 has identified another target protein 

for future therapies in SLE and JSLE and more work in this area is warranted. 

Given the evidence that TLR dysfunction has a pathological role in the autoimmune 

response in JSLE, it is thought that inhibition of their activity may confer therapeutic 

benefit. This led to a whole host of groups developing synthetic inhibitors of TLR activation 

[160-163]. Barrat et al found that by blocking TLR9 they could effectively block IFN-ʰ 

production by pDCs, however stated that this may not be an effective therapeutic agent 

due to the TLR7 pathway remaining functional [164]. Through TLR inhibition they attributed 

IFN-ʰ ǇǊƻŘǳŎǘƛƻƴ ƛƴ ǊŜǎǇƻƴǎŜ to anti-dsDNA to TLR9 and IFN-ʰ ǇǊƻŘǳŎǘƛƻƴ ƛƴ ǊŜǎǇƻƴǎŜ ǘƻ 

RNA-containing immune complexes to TLR7. Another rationale for the blockage of TLR7 

comes from the clinical observation of SLE flares to be associated with intercurrent 

infection [44]. TLR7 is responsible for the detection of virally derived ssRNA and is a potent 

inhibitor of IFN- .h Therefore, not targeting this pathway may still leave the patient open to 

disease relapse due to intercurrent viral infection.  

A dual inhibitor of both TLR7 and 9 has recently been developed which potently inhibits 

IFN-ʰ ǇǊƻŘǳŎŜŘ ōȅ Ǉ5/ǎ ƛƴ ǊŜǎǇƻƴǎŜ ǘƻ 5b! ŀƴŘ wb! ŎƻƴǘŀƛƴƛƴƎ ǇŀǘƘƻƎŜƴǎ ŀƴŘ ƛƳƳǳƴŜ 

complexes proven to promote serum IFN-ʰ ƭŜǾŜƭǎ ƛƴ {[9 [77]. This agent is effective in 

mouse models of SLE with its use resulting in the suppression of autoantibody production, 

proteinuria and end organ pathology [164]. The present study demonstrating increased 

TLR7 expression in B cells suggests another, synergistic, therapeutic mechanism of this 

compound in JSLE through inhibition of antigen presentation of TLR7 ligands and further 

inhibition of autoantibodies produced through stimulation of this pathway in these cells, in 
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addition to pDCs. The specific mechanism of action for this inhibitory compound is 

unknown but it is likely that due to its dual effect that it blocks a common signalling 

pathway for the two receptors, for example MyD88. An application for this compound has 

been promoted by Guiducci et al who have performed a study assessing the effects of TLR 

activation of glucocorticod efficacy in SLE [165]. Glucocorticoids exhibit their anti-

inflammatory effects through inhibition of NF-Ƭ. ǿƘƛŎƘ ƭŜŀŘǎ ǘƻ ƛƴƘƛōƛǘƛƻƴ ƻŦ ƛƴŦƭŀƳƳŀǘƻǊȅ 

cytokine production, including IFN-ʰΣ ŀƴŘ ŜǾŜƴǘǳŀƭ ŎŜƭƭ ŘŜŀǘƘΦ ¢ƘŜƛǊ ǎǘǳŘȅ ŦƻǳƴŘ ǘƘŀǘ ¢[w 

activation of pDCs conferred protection against glucocorticoid-induced cell death and IFN-ʰ 

inhibition. Using the TLR7 and 9 dual inhibitor developed by Barrat et al they demonstrated 

that inhibition of these TLRs increases the sensitivity of pDCs to glucocorticoid induced cell 

death [153]. This has major implications for SLE as a whole but is of particular importance 

to JSLE. The fact that the use of TLR inhibitors may be employed to increase sensitivity of 

lupus patients to glucocorticoids means that these particularly harmful medications will be 

more effective at lower doses therefore the steroid burden suffered by these patients may 

be significantly reduced. This is particularly relevant to JSLE patients who suffer more 

severe illness and therefore require proportionally higher doses of steroids over a longer 

disease duration consequently suffering the more severe treatment related morbidity. A 

notable benefit of this will be the positive effects decreased steroid burden could have on 

normal pubertal development, through a dual effect of decreased steroids and improved 

disease status. This work is extremely encouraging and our work confirming that TLR 

inhibition does have an anti-inflammatory effect in JSLE suggests practical applications for 

this therapy in JSLE.  

Hydroxychloroquine is a drug initially developed as an anti-parasitic for the treatment of 

malaria. However an observation was made that anti-malarials improved rheumatic 

symptoms in those with rheumatoid arthritis or SLE [166]. One theory for this outcome is 

that it works by reducing endosomal pH, inhibiting innate immune activation through 
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inhibition of the endosomal TLRs 3, 7-9 [167]. It has since been shown to be effective in 

SLE, reducing disease severity, increasing time between relapse and decreasing risk of 

complications [168-172]. This supports our theory showing TLRs to be important in 

promoting and maintaining disease in lupus and that inhibition of their effect may reduce 

disease severity. Hydroxychloroquine also confers benefits outside of the effects of TLR 

inhibition, strengthening its case. The major benefit being a reduced risk of cardiovascular 

events, the leading cause of fatality in lupus [169]. This is thought to contribute to the 50% 

increased survival of those that have been treated with hydroxychloroquine [169, 173]. 

Despite this only 40-50% of patients receive hydroxychloroquine [167]. It has been 

proposed that due to the cost-efficiency and favourable safety profile that all patients 

should receive this therapy despite disease severity or additional medications [174]. The 

irony of focusing on advancing therapies is that sometimes old therapies, proven to be 

effective, can be forgotten about or perceived as inferior due to their heritage. With 

current research focusing on TLRs and the effects that inhibiting them can have, the very 

first TLR inhibitor seems to have been lost in history. Recent evidence, including ours 

showing TLR blockade to be effective in inhibiting an inflammatory response, suggest that 

this old drug still has a therapeutic role in lupus and its application should be promoted 

among clinicians [168-173]. 

Our work has confirmed some of the findings in adult-onset SLE in the juvenile population 

and have identified apoptotic neutrophils as a likely source of nuclear autoantigen. It is 

thought that adult and juvenile-onset disease share a similar aetiopathology and our 

findings confirm this, however there are clear differences in clinical manifestation with JSLE 

patients suffering more severe illness. Despite this, significant paucity of studies 

investigating the immunopathology of JSLE underline the pressing need for research in 

JSLE. Immunological dysregulation is likely to be more obvious in those with more 
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pronounced disease and severe phenotype. Therefore by studying JSLE patients it may be 

easier to unpick the complexities of the disease hastening therapeutics advancements.    

4.1.4 Limitations  of Study 

This study aimed at undertaking a robust investigation of the role of TLRs in JSLE. Some 

important limitations of the study methodology and project, however, need to be noted.  

JSLE and JIA patients studied had a range of disease activity and were all being treated with 

different therapeutic agents at varying doses. As we have shown that TLR expression may 

be influenced by the concentration of autoantigen available it is believed that disease 

activity may have an influence on the analysis of TLR expression. Therapeutics are 

specifically deployed to manipulate the immune system and it would be unwise to assume 

that this would not affect any analysis of these patients. The number of patients in this 

study precluded a formal analysis investigating the affect of disease activity and treatment 

on TLR expression/activation. This would be prudent for future studies. However as both 

groups were receiving therapy we believe this will not have had a significant effect on the 

results obtained. 

The most significant challenge to the study of the immunopathogenesis of JSLE lies innately 

with condition itself. Its complexity, diversity, and rarity make it difficult to secure samples 

sizes sufficient enough for statistical power. In addition to this, diversity of phenotype and 

treatment course can act as confounders in the data presented and conclusions drawn 

from this and other studies. However, this obstacle lends itself to the need of collaboration 

in studying JSLE, which if significant progression in the understanding JSLE is going to be 

made, is required.  
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4.1.5 Strengths  of the Study 

This study has generated important data on the role of TLRs in the aetiopathogenesis of 

JSLE, and especially the importance of apoptotic neutrophils as a likely source of nuclear 

autoantigens in triggering the immune response. Importantly, this study: 

 Has successfully undertaken a robust and competent piece of hypothesis-led basic 

science research in a rare and complex, archetypal systemic autoimmune disorder of 

childhood 

 It demonstrates consistency with the latest scientific evidence base in this field, as well 

as adding significantly to this growing body of evidence supporting the role of TLRs in 

detecting SLE autoantigens  

 It provides important supportive evidence for the use of TLR inhibitors in the treatment 

of lupus 

 It is unique in being the first study to demonstrate increased TLR expression in JSLE  

 It provides important data in support of a mechanistic pathway of how apoptotic 

neutrophils are likely to act as source of nucleic autoantigen in JSLE 

Published data studying the immunopathogenesis of JSLE is scarce, and to date, published 

data on TLR expression in JSLE does not exist. This study is the first description of abnormal 

TLR homeostasis and the significant role they play in the recognition of likely autoantigens 

in JSLE. Research in JSLE is lagging far behind those working in the adult field, for a 

condition with no cure, limited treatment options and a more severe disease phenotype 

over a longer disease duration. There is therefore a pressing need for research in children. 

This thesis therefore aims to go some way in contributing to this challenge, although much 

more work is required.  
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4.1.6 Further Work  

Having identified some of the limitations of the study, and significant benefits, what is clear 

is that the data generated, and the methodology used raises many exciting avenues ahead 

for future research in this field. These include: 

 Measuring TLR protein expression in B cells ς This was tried repeatedly using flow 

cytometry in detail, refining assays and experimental techniques. Problems arose due 

to the use of unconjugated B cell and TLR antibodies. This necessitated the 

performance of numerous washing and conjugating steps which were thought to be 

the reason for the failure of this assay. The purchase of fluorochrome conjugated B cell 

and TLR antibodies may have allowed the analysis of TLR protein expression in B cells 

and this would be a useful step to re-affirm our findings.  

 The TLR inhibitor employed in our inhibition assay was specific for a downstream 

signaller common to TLRs 7, 8 and 9. Although this had a clear benefit of blocking all 

three of these TLRs as a proof-of-concept study, it did not allow the attribution of 

responsibility between these TLRs. It may be the case, for example, that TLR8 is not a 

significant player in this autoimmune response in JSLE, as suggested by Guiducci et al in 

adult-onset SLE [165]. However we cannot make this assumption in JSLE and would like 

to test this hypothesis. By deducing the significance of each TLR in this auto-immune 

response we could ascertain the ideal combination of TLR inhibition in preventing or 

reducing this auto-inflammatory response in JSLE. The use of a TRIF-inhibitory peptide 

would be one method of doing this by blocking TLR3 activation. 

 The residual IFN-ʰ ǇǊƻŘǳŎǘƛƻƴ ǎŜŜƴ ŀŦǘŜǊ aȅ5уу ƛƴƘƛōƛǘƛƻƴ ƻŦ ¢[w ǎǘƛƳǳƭŀǘŜŘ ŎŜƭƭǎ Ƴŀȅ 

be due to TLR3 stimulation, aǎ ǘƘƛǎ ǇŀǘƘǿŀȅ ǿŀǎƴΩǘ ōƭƻŎƪŜŘ using MyD88. At the same 

time, TLR-independent pathways may also be responsible. For example, the RIG-1 

pathway, mentioned earlier, has been identified as being capable of producing IFN-ʰ ƛƴ 

response to DNA binding. It would be interesting to ascertain, through inhibition 
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assays, whether this pathway has a role in the residual IFN-ʰ ǇǊƻŘǳŎŜŘ Ǉƻǎǘ ¢[w 

blockade and may identify another target for therapy in SLE.  

 A longitudinal assessment of TLR expression in a cohort of JSLE patients would provide 

important and more detailed assessment of the association between TLR expression 

and disease flare. The present study is cross sectional using data taken from different 

ǇŀǘƛŜƴǘǎ ŀǘ ŀ ǎƛƴƎƭŜ Ǉƻƛƴǘ ƛƴ ǘƛƳŜΦ ¢Ƙƛǎ ǘȅǇŜ ƻŦ ƳŜŀǎǳǊŜƳŜƴǘ ŘƻŜǎƴΩt take into account 

difference of baseline TLR expression between patients, and effects of disease course, 

activity and treatment on these parameters. Therefore studying a group of the same 

patients over time will provide a more accurate assessment of this association.   

 Guiducci et al made the interesting observation that activation of NF-Ƭ. ƛǎ ǊŜǎǇƻƴǎƛōƭŜ 

for the protection afforded to TLR-activated pDCs against glucocorticoid-induced cell 

death [165]. They demonstrated that inhibition of this protein achieved the same 

benefits as blockage of the TLR7 and 9 pathways. Research into cancer has identified 

dysregulated NF-Ƭ. ŀŎǘƛǾƛǘȅ ŀǎ ŀ ǇƻǎǎƛōƭŜ ŎŀǳǎŜ ǿƛǘƘ ǇŜǊǎƛǎǘŜƴǘ ŀŎǘƛǾŀǘƛƻƴ ǎƘƻǿƴ ǘƻ 

have unfavourable effects on cell proliferation, migration and apoptosis [175]. 

Genistein is a natural compound found to be a highly effective NF-Ƭ. ƛƴƘƛōƛǘƻǊ ŀƴŘ 

clinical trials have shown it to be of benefit in haematological malignancies as well as 

breast, prostate, pancreatic, melanoma and kidney cancers. The activity of NF-Ƭ. also 

seems to have a significant effect in the pathogenesis of SLE. Therefore it seems likely 

that there may be potential scope for use of this inhibitor in SLE. Research with these 

as yet unused drugs in SLE may prove fruitful.   
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5 Conclusions  

To conclude, this study has demonstrated increased expression of TLRs 3, 8 and 9 in JSLE 

PBMCs and TLR 7 and 9 in B cells, consistent with findings in adult-onset SLE and have 

alluded to the future benefit this may infer on recently developed therapeutic TLR 

inhibitors. We have demonstrated IFN-ʰ ǇǊƻŘǳŎǘƛƻƴ ƛƴ ǊŜǎǇƻƴǎŜ ǘƻ ¢[w ǎǘƛƳǳƭŀǘƛƻƴ ŀƴŘ 

using this criteria have been the first to reveal apoptotic neutrophils as potent stimulators 

of TLRs and therefore a likely source of nucleic autoantigens in JSLE. The expression of TLRs 

was found to be dependent upon both the dose of apoptotic neutrophil and the 

percentage apoptosis of neutrophil provided. Finally we found that inhibition of TLRs 7, 8 

and 9 led to a decrease in an IFN-ʰ ƛƴŦƭŀƳƳŀǘƻǊȅ ǊŜǎǇƻƴǎŜ in the presence of TLR9 

stimulation and an auto-inflammatory response in the presence of apoptotic neutrophils.  

In a time with exciting new prospects for potential new therapeutics in adult-onset SLE we 

are the first to report any evidence supporting the role of TLRs in JSLE. By doing this we 

have made a case for utilising TLR inhibition therapy in JSLE and hope to see the application 

of this if found to be of clinical benefit.   
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Appendix 1: PBMC TLR Expression 

Group 

TLR3 Protein 

Expression 

TLR8 Protein 

Expression 

TLR9 Protein 

Expression 

Control 1 22.7 11.5 14.1 

Control 2 14.5 7.52 10.5 

Control 3 16.2 16.3 7.61 

Control 4 14.5 18.1 5.48 

Control 5 18.3 13.3 16.9 

JSLE 1 52.1 55.1 59.7 

JSLE 2 91.2 61.1 35.6 

JSLE 3 123 73.9 93.4 

JSLE 4 83.1 73.4 57.3 

JSLE 5 58 51.7 101 

JIA 1 40.8 24.9 14.4 

JIA 2 36.9 29.1 9.05 

JIA 3 34.2 27.3 26.4 

JIA 4 26.8 33.1 12.8 

JIA 5 53.3 15.8 9.54 

 

Raw data shown from Figure 19 

Control = Paediatric Control Group 

JSLE = Juvenile-onset Systemic Lupus Erythematosus Group 

JIA = Juvenile Idiopathic Arthritis Group 

1-5 denotes sample number   
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Appendix 2: B Cell TLR mRNA Expression  
 

Group 

TLR3 mRNA 

Expression 

TLR7 mRNA 

Expression 

TLR8 mRNA 

Expression 

TLR9 mRNA 

Expression 

Control 1 0.797087 2.410194 0.215858 1.268608 

Control 2 0.433247 0.774719 0.866667 0.535152 

Control 3 3.942119 3.66073 8.663402 4.449688 

Control 4 0.818511 1.020048 1.058034 1.15315 

JIA 1 0.592613 0.622381 0.861632 0.84344 

JIA 2 0.881454 0.926062 0.944699 0.780629 

JIA 3 0.96339 0.516048 0.640421 0.863089 

JIA 4 0.802806 0.737518 0.365066 0.920236 

JIA 5 0.991693 1.119936 2.023213 1.712563 

JIA 6 0.490006 0.465022 0.551843 0.590256 

JIA 7 0.151112 0.403848 0.244799 0.411064 

JSLE 1 0.381954 0.653887 0.869116 1.16209 

JSLE 2 0.632261 1.022084 0.68987 0.577532 

JSLE 3 1.786284 2.40312 2.954282 1.838171 

JSLE 4 15.91362 17.49169 17.39203 20.01661 

JSLE 5 1.595034 0.809503 0.575856 1.214041 

JSLE 6 0.569133 0.708229 0.733167 0.768634 

JSLE 7 1.65056 1.42443 2.153073 2.03131 

 

Raw data shown from Figure 20 

Control = Paediatric Control Group 

JSLE = Juvenile-onset Systemic Lupus Erythematosus Group 

JIA = Juvenile Idiopathic Arthritis Group 

Number following group denotes sample number 
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Appendix 3: IFN-ɻ 0Òotein Expression in TLR Agonist 

Stimulated PBMCs 
 

Sample IFN-ʰ tǊƻǘŜƛƴ 9ȄǇǊŜǎǎƛƻƴ 

Unstimulated PBMCs 1 176.8182 

Unstimulated PBMCs 2 158.6364 

Unstimulated PBMCs 3 133.6364 

Unstimulated PBMCs 4 142.7273 

TLR3 1 260.9091 

TLR3 2 199.5455 

TLR3 3 138.1818 

TLR3 4 158.6364 

TLR7 1 133.6364 

TLR7 2 158.6364 

TLR7 3 197.2727 

TLR7 4 145 

TLR8 1 215.4545 

TLR8 2 172.2727 

TLR8 3 188.1818 

TLR8 4 163.1818 

TLR9 1 151.8182 

TLR9 2 160.9091 

TLR9 3 185.9091 

TLR9 4 267.7273 

 

Raw data shown from Figure 21 B 

Unstimulated PBMCs = PBMCs with no TLR agonist added 

TLR3 = PBMCs incubated with TLR3 agonist 

TLR7 = PBMCs incubated with TLR7 agonist  

TLR8 = PBMCs incubated with TLR8 agonist  

TLR9 = PBMCs incubated with TLR9 agonist  

Number after condition denotes sample number 
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Appendix 4: MyD88 TLR Inhibition Decreases TLR Induced IFN -

ɻ 0ÒÏÄÕÃÔÉÏÎ ÉÎ 0"-#Ó 
 

Group IFN-ʰ Ƴwb! 9ȄǇǊŜǎǎƛƻƴ 

Unstimulated PBMCs 1 0.082165 

Unstimulated PBMCs 2 0.030211 

Unstimulated PBMCs 3 0.033126 

Unstimulated PBMCs 4 0.079353 

Unstimulated PBMCs 5 0.058853 

TLR9-MyD88 1 2.290263 

TLR9-MyD88 2 0.595437 

TLR9-MyD88 3 0.272631 

TLR9-MyD88 4 0.732064 

TLR9-MyD88 5 0.557341 

TLR9+ MyD88 1 0.701947 

TLR9+ MyD88 2 0.166522 

TLR9+ MyD88 3 0.042891 

TLR9+ MyD88 4 0.187589 

TLR9+ MyD88 5 0.201109 

AN-MyD88 1 1.165025 

AN-MyD88 2 1.603865 

AN-MyD88 3 75.46326 

AN-MyD88 4 7.943016 

AN-MyD88 5 0.789189 

AN+MyD88 1 0.354161 

AN+MyD88 2 0.346981 

AN+MyD88 3 17.87349 

AN+MyD88 4 0.382292 

AN+MyD88 5 0.383664 

 

Raw data shown from Figure 28 & 29 

Unstimulated PBMCs = PBMCs with no TLR agonist added 

TLR3 = PBMCs incubated with TLR3 agonist 

TLR7 = PBMCs incubated with TLR7 agonist  

TLR8 = PBMCs incubated with TLR8 agonist  

TLR9 = PBMCs incubated with TLR9 agonist  

Number after condition denotes sample number 


