Persistent endothelial activation and inflammation after

Plasmodium falciparum infection in Malawian children

Christopher A. Moxon1,2,3*, Ngawina V. Chisala1, Samuel C. Wassmer4, Terrie E. Taylor5,6, Karl B. Seydel5,6, Malcolm E. Molyneux2, Brian Faragher2, Neil Kennedy7, Cheng-Hock Toh3, Alister G. Craig2, Robert S. Heyderman1,2

1Malawi-Liverpool-Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi, 2Liverpool School of Tropical Medicine, Liverpool, United Kingdom, 3Institute of Infection and Global Health, Liverpool University, Liverpool, United Kingdom, 4New York University School of Medicine, New York, NY, United States, 4College of Osteopathic Medicine, Michigan State University, Michigan, East Lansing, MI, United States, 6Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi, Department of Paediatrics, Queen Elizabeth Hospital, University of Malawi College of Medicine, Blantyre, Malawi

*To whom correspondence should be addressed: Christopher Moxon, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA.
Email: cmoxon@liverpool.ac.uk Telephone: +44 (0)151 705 3100.

Running Head: Endothelial activation after malaria

Abstract: 98 words

Manuscript: 1994 words
ABSTRACT

Endothelial dysregulation is central to the pathogenesis of acute *Plasmodium falciparum* infection. It has been assumed that this dysregulation resolves rapidly after treatment but this return to normality has neither been demonstrated nor quantified. We therefore measured a panel of plasma endothelial markers acutely and in convalescence in Malawian children with uncomplicated or cerebral malaria. Evidence of persistent endothelial activation and inflammation, indicated by increased plasma levels of soluble intracellular adhesion molecule-1, angiopoietin-2 and C-reactive protein, were observed at one month follow-up visits. These vascular changes may represent a previously unrecognized contributor to ongoing malaria-associated morbidity and mortality.

Key Words: *Plasmodium falciparum*; pathogen burden; endothelial activation; endothelial dysfunction; inflammation; cardiovascular disease; stroke; persistent; children; pediatric

INTRODUCTION
Plasmodium falciparum causes approximately 300 million clinical episodes of malaria every year, mainly in sub-Saharan Africa\cite{1}. In hyperendemic regions children may receive more than one infective bite per day and experience repeated clinical episodes\cite{2}. While acute infection is directly responsible for 750,000 deaths\cite{3}, it is increasingly apparent that there is an additional indirect burden of mortality. Several studies have shown that reducing malaria transmission in a population may be followed by all-cause childhood mortality reductions as high as 70\%, a greater effect on mortality than can be attributed to reducing parasitemic febrile illness alone\cite{2,4,5}. The cause of this additional burden remains uncertain. Given the alteration in vascular endothelial function during acute malaria pathogenesis, one plausible mechanism is that endothelial dysfunction persists beyond the acute febrile episode and influences the risk or outcome of re-infection or other diseases.

We postulated that malaria infection induces persistent alteration in endothelial activation. We tested this using a panel of plasma endothelial markers, linked to key endothelial functions: soluble ICAM-1 (sICAM-1) and sE-selectin for endothelial activation; Angiopoetin 2 (Ang2) for angiogenesis and endothelial quiescence; C-reactive protein (CRP) – inflammation; prothrombin fragment F1+2 – a pro-coagulant state and soluble thrombomodulin (sTM) for endothelial damage.

METHODS

Recruitment took place at the Queen Elizabeth Central Hospital, Blantyre, Malawi between January 2010 and June 2011. Children aged 1 - 12 years were recruited into one of 4 clinical categories: 1) cerebral malaria (CM) cases, who fulfilled World
Health Organization (WHO) diagnostic criteria and had at least one feature of malarial retinopathy; 2) children with uncomplicated malaria (UM); 3) aperasitaemic mild febrile illness (MF) and 4) aperasitemic healthy controls (HC), recruited from well children attending elective surgery. Children were included in the UM and MF groups if they had an axillary temperature >37.5°C and no features of organ compromise as indicated by WHO criteria. Parasitemia was screened for on admission and in follow up visits using a combined P. falciparum Histidine Rich Protein and pan malarial LactateDehydrogenase rapid diagnostic test kit (First response, Premier medical, India) and in patients in whom both parameters were positive, parasitemia was confirmed on blood smear. In all patient groups, children were excluded if they had evidence of meningitis or severe malnutrition, had WHO stage 4 HIV infection or were on antiretroviral therapy. Informed consent was given by the parent or legal guardian of all children enrolled in the study. The study was approved by the College of Medicine Research Ethics Committee in Malawi (n. P.02/10/860) and by the Liverpool School of Tropical Medicine ethical board in the United Kingdom (number 09.74).

CM patients were managed on a pediatric high dependency unit according to established protocols. They were treated with intravenous quinine for a minimum of 3 doses, until either 2 consecutive negative malaria blood films or until they could tolerate oral medication. They were then given a 3-day course of oral lumefantrine-artemether according to national treatment guidelines. UM patients were treated with a 3-day course of oral lumefantrine- artemether and patients with MF were given treatment as deemed clinically appropriate by the local clinical team. Patients were excluded from further analysis if they had fever or were parasitemic on the day of follow up.
Citrated plasma samples were taken at presentation and at one week and one month follow up visits and plasma was stored at -80°C until required. sICAM-1, sE-Selectin, sTM, CRP and Ang2 concentrations were determined using commercial ELISA kits (DY720, DY724, DY3947 & DY1707 ; R&D) and F1+2 using the Enzygnost F1+2 micro kit (Dade Behring).

Statistical analysis was performed using Stata (Version 11) and Prism (Version 5.0;) software. Skewed data were log transformed and differences between groups were compared by one-way analysis of variance (ANOVA), with the Tukey Honestly Significant Difference (HSD) test to adjust for multiple comparisons. All tests were two tailed and significance was set at the 5% level.

RESULTS

88 children with MF, 84 children with UM, 18 children with CM and 36 HC children were recruited (see table 1). Approximately 50% of these were followed up to day 28 (supplemental figure 1).

At enrollment (day 0), sICAM-1, Ang2 and CRP and sE-selectin concentrations were significantly higher in all febrile groups when compared with HC, sTM was raised in UM and CM and F1+2 was raised in CM (table 1, figure 1 and supplemental figure 2).

At 7 days post-enrollment, CRP and Ang2 remained significantly raised in all groups when compared with HC. ICAM-1 remained raised in UM and CM and E-selectin and F1+2 remained raised in CM only.

At 28 days, ICAM-1 and Ang2 remained significantly raised in MF and UM. CRP was significantly raised in CM only.
DISCUSSION

The endothelial lining of blood vessels has a critical role in the regulation of blood flow, permeability, coagulation, inflammation, innate and adaptive immunity[8]. A key determinant of endothelial function is the repertoire of surface receptors expressed and these phenotypes are highly specific for the vascular beds of different organs[8]. Disruption of this surface receptor phenotype is critical in the pathogenesis of many diseases including bacterial sepsis, cardiovascular disease, inflammatory bowel disease and malaria[9][10]. In acute *P. falciparum* malaria, cytokine and parasite-mediated alteration of endothelial phenotype leads to endothelial dysfunction and a pro-coagulant state[10][11]. In turn, the up-regulation of several inducible endothelial surface receptors including E-selectin and ICAM-1 facilitates the cytoadherence of *P. falciparum*-infected red blood cells (iRBC)[10], a key component of the pathogenesis of CM[12]. It has been assumed that after each infection following iRBC elimination these perturbations resolve quickly and completely, with the endothelium rapidly returning to its pre-disease state. Here we show that endothelial activation and systemic inflammation persist after iRBC are cleared from the circulation. This was most pronounced in CM where CRP remained raised 22-fold higher at 28-day follow up when compared to HC. However significant inflammation and endothelial activation was also detectible in UM, with CRP remaining 13-fold above HC at 7-day follow up and ICAM-1 and Ang-2 remaining raised until 28 days. This persistence cannot be explained by the half-lives of these factors, as CRP and Ang2, for example, have a half-life of 19 hours[13] and 18 hours[14] respectively.
Persistent endothelial activation was not specific to malaria. In agreement with prior studies indicating persistent endothelial activation after other common infections there was also endothelial activation in the group with mild non-malarial infections. Nonetheless, the long-term effect of malaria might be anticipated to be particularly important in hyperendemic countries such Malawi, where the frequency of repeated malaria infections may be sufficient to prevent return to baseline before the next infection (malarial or otherwise). Thus children who live in areas of high malaria transmission may be in a constantly deregulated endothelial state. This may influence outcome for patients in several different ways. Firstly sub-acute impairment of endothelial barrier function, as indicated here by increased Ang2, may increase invasion of bacteria or viruses into the blood stream. This mechanism has been proposed to explain the causal association between incidence of malaria and bacteremia shown using epidemiological modeling in Kenya. Secondly, since endothelial activation is implicated in the pathogenesis of a number of infections, including malaria and bacterial sepsis, acquiring a subsequent infection while the endothelium remains activated may have an endothelial priming effect, increasing the vascular dysfunction and so the severity of disease. Specifically, since parasites that bind ICAM-1 have been shown to be associated with CM, the residual ICAM-1 upregulation, indicated by raised sICAM-1 here, may select for parasite variants associated with higher incidence of CM. Finally, in the long-term, chronic endothelial activation and inflammation may contribute to the endothelial changes that cause cardiovascular disease. In industrialized countries the number of infectious episodes of common infections a person has accrued over their lifetime – their ‘pathogen burden’ – has been implicated in risk of myocardial infarction in a dose-response fashion and is a better predictor of cardiovascular risk than any particular
pathogen [15]. This indicates that while each individual infection may only cause a small residual insult to the vasculature, that over multiple infectious episodes this may accumulate to cause severe pathology. Given the very high frequency of new malaria infections in many parts of sub-Saharan Africa, malaria may contribute substantially to this pathogen burden - even if the effect from each infectious episode is small. While there is a paucity of epidemiological studies investigating the etiology of cardiovascular diseases in sub-Saharan Africa, these diseases are a significant cause of morbidity and mortality [17]. As a higher proportion of the population survives into and past middle age, their prevalence rates are likely to increase. Large epidemiological studies to identify the specific risk factors in Africans are needed and our data indicate that malaria should be considered within these future studies.

There are several limitations to this study. Firstly loss to follow up of 50% of the patients in each of the groups, may have led to bias. Children with UM who attended follow-up had a significantly higher CRP on admission than those who did not attend follow-up (Followed-up: mean=137mg/ml; 95% CI 107-166mg/ml. Not followed-up: mean= 71mg/ml; 95% CI 50-93mg/ml); P=<.01), which might indicate that sicker patients were more likely to return to follow up, leading to an overestimation of the strength of difference with the HC group. However, comparison of all clinical variables and all biomarkers amongst all patients who were followed-up until 28 days with those who were lost to follow up or excluded did not indicate a systematic bias (data not shown). Secondly although the panel of plasma markers used are well validated as indicators of endothelial activation [9] only Ang2 and E-selectin are exclusively produced by the endothelium. In Indonesian adults with malaria, high Ang2 levels predicted impaired endothelial function, measured by endothelial-dependent vasodilatation [18]. In that population these arterial tonometric
measurements improved to within normal range by 14 days. It would be interesting to
evaluate tonometry in African children to examine whether the raised Ang2 levels at
28 days here are associated with a persistently abnormal vasodilation response.
Thirdly since it was not possible to measure pre-infection levels of the biomarkers and
we were not able to follow-up this cohort long-term, we have not proven that malaria
causes the higher levels of biomarkers described at 28 day follow up. It is possible,
although we think unlikely, that instead patients in the febrile groups had pre-existing
higher baseline biomarker levels. Finally, because we studied children with
symptomatic disease it remains unclear whether or not there is endothelial activation
induced by parasitemia that is not associated with febrile illness, which would have
important implications given the frequency of asymptomatic malaria infections.

Further research is needed to clarify the extent and duration of the endothelial
perturbations described here, their relevance in other malaria prevalent countries and
to ascertain whether burden of malaria infection is independently associated with
adverse outcomes due to endothelial dysfunction in the short or long term. If such
studies confirm a chronic effect of repeated vascular insults by malaria infection it
would have important implications: influencing the priority of preventing malaria and
indicating a need to target interventions to older children and adults in addition to the
young children who die from acute illness. A further consideration is the use of
adjunctive therapies to prevent residual endothelial effects in individuals with severe
malaria or a high burden of infection. A candidate is statins, which have endothelial
protective, anti-inflammatory and anti-coagulant effects and prevent cardiovascular
disease even in those without hyperlipidemia [16]. In malaria statins reduce
endothelial activation in vitro and reduce neurodevelopmental sequelae after
experimental CM in mice[19]. Short courses of statins during acute illness and convalescence could be targeted to individuals with severe disease.

In conclusion, we demonstrate that in uncomplicated and severe malaria significant endothelial activation and inflammation persists for at least a month after elimination of iRBC. Given the huge burden of repeated infection with malaria, this endothelial activation may represent a significant and previously neglected contribution to long-term health that warrants further evaluation of treatment and prevention strategies.
Conflict of interest

All authors declare no conflicts of interest.

Funding

This work was supported by a Clinical PhD Fellowship from The Wellcome Trust, United Kingdom (to Dr. Moxon; 88758); and by a grant from the NIH (to Dr. Taylor: 5R01AI034969-14). The Malawi-Liverpool-Wellcome Clinical Research Programme is supported by core funding from The Wellcome Trust.

Meetings

This work was presented at the 30th Annual Meeting of the European Society For Paediatric Infectious Diseases, May 2012, Thessalonica, Greece; abstract number 581.

Acknowledgements

For assistance with the study we wish to thank Eric Borgstein (Queen Elizabeth Hospital, Blantyre, Malawi); Grace Matimati, Patricia Phula, Simon Ewing and the Paediatric Research Ward clinical team (Wellcome Trust Clinical Research Programme and Blantyre Malaria Project) and the Department of Paediatrics and Child Health (Queen Elizabeth Hospital, Blantyre, Malawi).
REFERENCES

Figure 1. Plasma markers at admission and at follow up in Malawian children with malaria, non-malarial febrile illness and cerebral malaria compared to healthy controls. Levels of soluble Intercellular Adhesion Molecule-1 (sICAM-1), C-reactive protein (CRP) and Angiopoetin-2 (Ang-2) were measured by enzyme linked immunosorbent assay (ELISA) at admission and at 7 day and 28 day follow up visits in 84 children.
with uncomplicated malaria (UM), 88 children with non-malarial febrile illness (MF) and 18 children with cerebral malaria (CM). Results are compared with 36 Malawian healthy controls (HC) who were well children at the hospital for elective surgical procedures. Horizontal lines indicate geometric means and bars 95% confidence intervals. Numbers below data labels of the X-axis are the number of children in each group at each time point. Comparison was performed with a one-way ANOVA with the Tukey HSD test to adjust for multiple comparisons. Asterisks (*) indicate a statistically significant difference in comparison with the HC and the number of stars the level of significance: * P = < .05; ** P = < .01 *** P = < .001.
Table 1. Clinical characteristics and soluble plasma markers in children with cerebral malaria, uncomplicated malaria, mild febrile illness and healthy controls

<table>
<thead>
<tr>
<th></th>
<th>Healthy controls (n=36)</th>
<th>Mild febrile illness (n=88)</th>
<th>Uncomplicated malaria (n=84)</th>
<th>Cerebral malaria (n=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age - years - mean (95% CI)</td>
<td>4.6 (3.7-5.7)</td>
<td>3.2 (2.8-3.6)*</td>
<td>4.7 (4.1-5.3)</td>
<td>4.1 (3.3-5.2)</td>
</tr>
<tr>
<td>Female sex - number (%)</td>
<td>13 (36)</td>
<td>35 (40)</td>
<td>47 (56)</td>
<td>8 (44)</td>
</tr>
</tbody>
</table>

Clinical parameters on day 0 - mean (95% CI):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Healthy controls mean (95% CI)</th>
<th>Mild febrile illness mean (95% CI)</th>
<th>Uncomplicated malaria mean (95% CI)</th>
<th>Cerebral malaria mean (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axillary temperature</td>
<td>36.6 (36.5-36.7)</td>
<td>38.4 (38.2-38.5)***</td>
<td>38.5 (38.4-38.7)***</td>
<td>39.0 (38.5-39.6)***</td>
</tr>
<tr>
<td>Heart rate - beats/ min</td>
<td>109 (104-114)</td>
<td>127 (119-135)***</td>
<td>130 (124-137)***</td>
<td>145 (129-163)***</td>
</tr>
<tr>
<td>Systolic blood pressure - mmHg</td>
<td>107 (101-113)</td>
<td>114 (110-117)*</td>
<td>113 (110-117)</td>
<td>97 (92-102)**</td>
</tr>
<tr>
<td>Respiratory rate - breaths/ min</td>
<td>28 (26-30)</td>
<td>30 (29-31)</td>
<td>28 (27-29)</td>
<td>46 (42-51)***</td>
</tr>
<tr>
<td>Glucose - mmol/ L</td>
<td>5.0 (4.8-5.2)</td>
<td>5.1 (4.9-5.3)</td>
<td>5.7 (5.4-6.0)**</td>
<td>5.6 (4.6-6.9)*</td>
</tr>
<tr>
<td>Lactate - mmol/ L</td>
<td>1.8 (1.7-2.0)</td>
<td>1.7 (1.6-1.9)</td>
<td>2.3 (2.1-2.5)</td>
<td>5.2 (3.9-6.9)***</td>
</tr>
<tr>
<td>Hemoglobin - g/ L</td>
<td>10.4 (9.9-11.0)</td>
<td>10.7 (10.3-11.1)</td>
<td>9.0 (8.6-9.4)**</td>
<td>6.1 (5.4-7.0)***</td>
</tr>
<tr>
<td>Platelets - x10^11/ L</td>
<td>380 (347-416)</td>
<td>300 (267-338)*</td>
<td>110 (93-131)***</td>
<td>31 (21-46)***</td>
</tr>
<tr>
<td>Parasitemia – parasites x10^9/ μl</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>20 (9.9-40)</td>
<td>68 (27-171)</td>
</tr>
<tr>
<td>HIV² positive - number (%)</td>
<td>0 (0)</td>
<td>4 (4.8)</td>
<td>3 (3.5)</td>
<td>2 (11.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soluble Plasma Markers</th>
<th>Healthy controls mean (95% CI)</th>
<th>Mild febrile illness mean (95% CI)</th>
<th>Uncomplicated malaria mean (95% CI)</th>
<th>Cerebral malaria mean (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sICAM-1 pg/ mL day 0</td>
<td>198 (160-247)</td>
<td>316 (295-339)***</td>
<td>464 (295-505)***</td>
<td>624 (377-1033)***</td>
</tr>
<tr>
<td>sICAM-1 pg/ mL day 7</td>
<td>-</td>
<td>258 (235-282)</td>
<td>343 (299-394)***</td>
<td>478 (364-626)***</td>
</tr>
<tr>
<td>sICAM-1 pg/ mL day 28</td>
<td>-</td>
<td>269 (242-299)*</td>
<td>277 (251-304)**</td>
<td>291 (201-421)</td>
</tr>
<tr>
<td>sE-selectin pg/ mL day 0</td>
<td>68 (57-82)</td>
<td>122 (105-142)***</td>
<td>147 (130-160)***</td>
<td>205 (158-266)***</td>
</tr>
<tr>
<td>sE-selectin pg/ mL day 7</td>
<td>-</td>
<td>76 (66-87)</td>
<td>79 (68-91)</td>
<td>109 (77-154)*</td>
</tr>
<tr>
<td>sE-selectin pg/ mL day 28</td>
<td>-</td>
<td>79 (68-92)</td>
<td>82 (74-91)</td>
<td>93 (64-135)</td>
</tr>
<tr>
<td>Ang-2 pg/ mL day 0</td>
<td>232 (207-261)</td>
<td>382 (339-431)***</td>
<td>579 (523-641)***</td>
<td>1536 (1190-1982)***</td>
</tr>
<tr>
<td>Ang-2 pg/ mL day 7</td>
<td>-</td>
<td>383 (333-440)***</td>
<td>442 (389-502)***</td>
<td>548 (401-749)***</td>
</tr>
<tr>
<td>Ang-2 pg/ mL day 28</td>
<td>-</td>
<td>311 (275-350)**</td>
<td>320 (285-359)**</td>
<td>307 (213-443)</td>
</tr>
<tr>
<td>sTM pg/ mL day 0</td>
<td>4.7 (4.2-5.2)</td>
<td>4.5 (4.2-4.9)</td>
<td>6.0 (5.4-6.5)*</td>
<td>9.1 (7.5-11.1)***</td>
</tr>
<tr>
<td>sTM pg/ mL day 7</td>
<td>-</td>
<td>4.7 (4.3-5.1)</td>
<td>5.0 (4.4-5.6)</td>
<td>5.6 (4.3-7.2)</td>
</tr>
<tr>
<td>sTM pg/ mL day 28</td>
<td>-</td>
<td>5.2 (4.8-5.6)</td>
<td>4.6 (4.1-5.3)</td>
<td>4.1 (3.4-5.1)</td>
</tr>
<tr>
<td>CRP mg/ mL enrolment</td>
<td>0.41 (0.23-0.74)</td>
<td>26.7 (20-35)***</td>
<td>75 (61-92)***</td>
<td>149 (111-199)***</td>
</tr>
<tr>
<td>CRP mg/ mL day 7</td>
<td>-</td>
<td>3.0 (2.0-4.4)***</td>
<td>5.3 (4.2-6.7)***</td>
<td>16.0 (8.3-32)***</td>
</tr>
<tr>
<td>CRP mg/ mL day 28</td>
<td>-</td>
<td>0.62 (0.37-1.0)</td>
<td>0.73 (0.48-1.1)</td>
<td>12.7 (3.1-52)**</td>
</tr>
<tr>
<td>F1+2 pg/ mL day 0</td>
<td>176 (140-220)</td>
<td>142 (120-167)</td>
<td>219 (180-268)</td>
<td>376 (245-577)*</td>
</tr>
<tr>
<td>F1+2 pg/ mL day 7</td>
<td>-</td>
<td>176 (135-229)</td>
<td>220 (186-260)</td>
<td>500 (279-898)***</td>
</tr>
<tr>
<td>F1+2 pg/ mL day 28</td>
<td>-</td>
<td>174 (138-221)</td>
<td>142 (111-162)</td>
<td>180 (105-310)</td>
</tr>
</tbody>
</table>
For each variable differences between healthy controls and other patient groups were examined using a Fisher’s exact test (categorical variables) or one way analysis of variance (continuous variables) with the Tukey Honestly significant difference test to adjust for multiple comparisons. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$. Comparisons were not made for parasitemia or HIV.

1 All mean values are geometric means and their 95% Confidence Intervals (CI).

2 HIV denotes Human Immunodeficiency virus, which was tested for using rapid testing (Determine, Inverness medical).
Figure

Click here to download Figure: Figure 1.eps
39 well children attending routine surgery aged 1-12 screened for enrollment

36 met all inclusion criteria and gave consent

36 in healthy controls group day 0

Not followed up

Uncomplicated febrile illness

224 fully conscious patients aged 1-12 with temperature >38.5 screened for enrollment

185 met all inclusion criteria and gave consent

94 had negative RDT

4 blood sample not collected
2 withdrew

88 in non-malarial febrile illness group at day 0

33 did not attend follow up
2 had parasitaemia or fever at follow up
6 blood sample not collected

47 patients followed up to 1 month

91 had positive RDT

3 blood sample not collected
4 had negative smears for malaria

84 in uncomplicated malaria group at day 0

30 patients did not attend follow up
2 died
5 had parasitaemia or fever at follow up
6 blood sample not collected

41 patients followed up to 1 month

Cerebral malaria

43 comatose children aged 1-12 with cerebral malaria screened

18 met all inclusion criteria and gave consent

18 in cerebral malaria group at day 0

4 patients did not attend follow up
1 died
1 had parasitaemia at follow up
3 blood samples not collected

10 patients followed up to 1 month

Healthy controls

39 well children attending routine surgery aged 1-12 screened for enrollment

36 met all inclusion criteria and gave consent

36 in healthy controls group day 0

Not followed up

Supplemental figure 1