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1. Subdiffusive Behaviour of Polymer Segments in the Rouse and Zimm Models 

In the Rouse1 and Zimm2 models, polymer dynamics  are simulated by approximating the polymer by 

N beads which are connected to their nearest neighbours by harmonic springs. In the “free-draining” 
Rouse model, each bead experiences solvent friction independent of the motion of the other beads, 
whereas the more realistic “non-draining” Zimm model also allows for hydrodynamic interactions 
between the beads. 

The simple Rouse model, using the normally applied “continuous” approximation, which is valid for 

long polymers, results in relaxation times of the internal modes which are given by3 
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where f is the segmental friction coefficient, a the size of a polymer segment (bead), kB the Boltzmann 
constant and T the temperature.  

With the Stokes-Einstein relation, D = kBT/f, and values of 10 Å2/ns for D (i.e., a typical value for the 
residue diffusion coefficient obtained for unstructured peptides, see main text) and 3.8 Å for a (the 

C-C-distance), the longest Rouse relaxation times can be estimated to be on the order of 15 ns for 

peptides 1 – 3 (N = 17) and 1.5 s for N-PGK (N = 174).  

The Rouse model results in subdiffusive motion of the polymer segments, with their mean square 

displacement (both in absolute terms and relative to the centre of mass) increasing with time, t, as 

<r2(t)>  t0.5 (or t0.54, if self-avoidance of the chain is included).3-7 However, this subdiffusive 

behaviour is found only for time scales shorter than that for full conformational equilibration, i.e. for 

times shorter than the longest relaxation time 
R
. After this time, the mean square displacement of a 

polymer segment relative to the centre of mass does not increase further, and its overall motion 

resembles that of the centre of mass, which follows normal diffusion, <r2(t)>  t. 

It has to be noted that this result is valid strictly only for the “continuous” Rouse model, i.e. for very 

long polymers which have an essentially infinite number of normal modes, and hence an extremely 
broad relaxation time spectrum, see Eq. (S1). Finite Rouse polymers have a finite number of internal 
modes and hence a limited relaxation time spectrum whose short-time edge is within the time range 
relevant here; although rarely investigated in detail, it has been mentioned previously that at times 
shorter than the shortest relaxation time, segmental motion also is governed by free diffusion.6,8,9  

For the proteins and peptides investigated here, consisting of only 17 residues (peptides 1-3) or 174 

residues (N-PGK), the continuous approximation is not justified any more. In the following, we show 
how the limited number of normal modes modifies the diffusional behaviour of polymer segments in 
such short polypeptides, using the finite (discrete) Rouse model,1,7,10 which – unlike the standard 

implementation of the Rouse model3 – does not use the simplifications achieved by assuming a 
continuous polymer backbone, but fully takes into account the limited number of internal modes. 
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The finite Rouse model yields relaxation times for the (N-1) internal modes which are slightly 

different to those obtained from the continuous Rouse model:1,10 
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with 
R
 given by Eq. (S2); note that these relaxation times are the same as those for the continuous 

Rouse model, Eq. (S1), for p << N, whereas for p → N, i.e. for the fast relaxing modes,  the discrete 

Rouse model yields relaxation times which are larger by a factor of (/2)
2 

= 2.5. 

The mean square displacement of the nth segment in the discrete Rouse model is given by:
7
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In Eq. (S4), the first term describes the centre of mass motion of the full polymer and the second term 

the internal motion of segment n relative to the centre of mass. 

Fig. S1 shows the mean square displacement of segments in the centre and at the ends of a polymer 

calculated from Eq. (S4) for polymers with 17 beads (corresponding to peptides 1 – 3) and 174 beads 
(comparable to fully unfolded N-PGK), respectively. For better comparability, these are shown on 

normalised time and length scales (normalised to R and a, respectively). These simulations confirm 

that subdiffusive behaviour of polymer segments, <r2(t)>  t0.5, also is observed in the finite Rouse 
model. However, subdiffusive behaviour is limited to the time scale between the shortest and the 
longest Rouse relaxation time given by Eq. (S3). At shorter times, polymer segments follow normal 

diffusion, whereas at longer times the mean square displacement of residues with respect to each other 
does not change any further, since full relaxation between all polymer conformations has taken place. 

The actual ranges of Rouse relaxation times can be estimated to be around 130 ps - 15 ns for peptides 

1 – 3 (N = 17) and 120 ps – 1.5 s for N-PGK (N = 174), respectively, from the values of R given 
above and Eq. (S3). Due to their limited polymer lengths, subdiffusive behaviour is expected to 
extend over not more than two orders of magnitude in time for peptides 1 – 3 and not more than four 
orders of magnitude for N-PGK. It should be noted that here we have assumed that each polypeptide 

residue corresponds to one Rouse bead, which is not quite correct since chain stiffness effects lead to 
neighbouring residues not being completely independent of each other. Thus, a somewhat smaller 
number of Rouse beads, and hence an even narrower relaxation time spectrum, could be expected. 
The inclusion of internal friction, which recently has been highlighted to be of significant importance 
for the dynamics of unfolded polypeptides, see main text, is expected to further reduce the (relative) 
width of the relaxation time spectrum of the Rouse model, particularly for relatively short polymers, 
such as the ones discussed here.11,12 It also should be noted that the N-PGK residues to which the thiyl 
radicals are tethered are separated by only 11 residues, so that their relative diffusion is expected to 

lead to equilibration on a significantly shorter time scale than that estimated from the Rouse relaxation 
time of the whole polypeptide.12,13 

The more realistic Zimm model also results in subdiffusive behaviour, although motion is not as 

strongly subdiffusive as that expected for the Rouse model (<r2(t)>  t0.67).14 Furthermore, the Zimm 
model has a weaker dependence of the relaxation times on the mode number: 
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where S is the viscosity of the solvent.3 This weaker power dependence on the mode number results 
in a narrower relaxation time spectrum; e.g., for a polymer with 174 beads, the ratio of the longest to 
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the shortest relaxation time in the finite Rouse model is ~12,000, whereas for the Zimm model, the 
ratio is only ~2,300. To the best of our knowledge, there is no theoretical treatment of the segmental 
mean square displacements in a finite Zimm polymer, but it is expected that this narrower relaxation 
time spectrum will result in a correspondingly narrower time range over which subdiffusive motion 

occurs. 

 

 

 

Fig. S1 Time dependence of the mean square displacement <r2(t)> of a polymer segment, normalised 

to the segment size, a, calculated from the finite Rouse model, Eq. (S4). Shown are the results for the 
overall displacement (dashed lines) and for diffusion relative to the centre of mass (solid lines) for a 
polymer with 17 residues (top) and for a polymer with 174 residues (bottom). The time axis is 

normalised to the maximum Rouse time, R, Eq. (S2) 
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2. Random Walk Simulations Comparing Normal and Subdiffusive Motion 

For a direct comparison of the behaviour of peptide segments undergoing normal and subdiffusive 
motion, we performed a series of random walk simulations, focussing on the time dependence of the 
mean square displacement, <r2(t)>, as well as the distribution of the displacements obtained after 
different times. These simulations confirm that a subdiffusively moving particle spends a larger 

fraction of time close to its initial position than a particle undergoing normal diffusion,15,16 which for 
(tethered) polypeptide segments leads to significantly slower equilibration over the accessible space. 
They also confirm quantitatively that it is reasonable to suggest that in the case of strong subdiffusion 
no full equilibration over all polypeptide conformations is achieved within the experimental time scale 
of the experiments shown in Figs. 4 and 5 (1 ms). 

The random-walk simulations employed here follow a non-reacting free (unbound) particle which 

starts at the origin at t = 0 and moves on a three-dimensional cubic lattice with a spacing b between 

neighbouring sites. For normal diffusion, each site is assumed to have the same jump rate  =  r. For 

simulating subdiffusion caused by inhomogeneous trapping, upon arrival at a site a trap energy E is 
randomly taken from an exponential distribution 
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where  corresponds to the subdiffusive parameter, kB is the Boltzmann constant and T  the 
temperature; a site with trap energy E is assumed to have a reduced (activated) jump rate 
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After arriving at a site, a jump to a randomly chosen neighbouring sites takes place after a waiting 

time twait which is determined randomly from an exponential distribution with an average value 1/ r or 

1/(E), respectively. This approach has been used previously for modelling subdiffusive motion due to 

inhomogeneous trapping17 and corresponds to the assumptions made in the simulations of subdiffu-
sive geminate recombination shown in Fig. 7.18 As has been reported previously,17 and is confirmed in 

Fig. S2, the random distribution g(E) given in Eq. (S7) yields subdiffusive behaviour, <r2(t)> ~ t. 

The numerical value for the free (or non-activated) diffusion jump rate,  r, was assumed to 

correspond to the Eyring frequency factor kBT/h = 6.2 10
12

 s
-1

, where h is Planck’s constant. The 

jump distance b was adjusted so that normal diffusion with a diffusion constant D = 4 Å2/ns is 
obtained, yielding a reasonable value of b = 0.062 Å.†  

Fig. S2 shows some of the results obtained from averaging over 1×10
4
 (free diffusion) or 5×10

6
 runs 

(subdiffusion). For free diffusion, the theoretically predicted time dependence, <r2(t)> = 6Dt, is 

found (Fig. S2 top), and the distribution of displacements at all times is given by a Gaussian radial 
distribution (in three dimensions), P(r) ~ r2 exp(-r2/4Dt) (Fig. S2, bottom left). These results confirm 

that polypeptide segments undergoing normal diffusion with D ~ 4 Å2/ns are expected to diffuse over 
a length scale comparable to the equilibrium distance between the thiol binding sites (35-45 Å, see 
main text; this region is indicated by the hatched area in Fig. S2, top) on the 10-100 ns time scale, so 
that full equilibrium between all conformations could be expected on this time scale.  

In contrast, much slower motion is found upon introducing traps with a distribution of trap energies, if 

those include a significant number of traps which are deeper than thermal energies (small ). Fig. 2 
                                                           

†
 Simulations with different values of  r yield identical results for free diffusion if the value of b is adjusted in 

the same manner, but yield faster or slower subdiffusive motion if  r is decreased or increased, respectively. 

However, even for an unrealistically low jump attempt rate,  r, of  2×10
9
 s

-1
 (corresponding to a jump size of 

3.5 Å, i.e. the full size of a single residue), subdiffusive motion with  = 0.3  leads to an average displacement 
of only 30 Å after 1 ms. Thus, even for these parameters, the main conclusion, namely that subdiffusive motion 

prevents full equilibration over all polypeptide conformations within the experimental time scale, is still valid. 
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(top) confirms that <r2(t)> ~ t for the trap energy distribution given by Eq. (S7). The distribution of 
displacements is quite different to that expected for free diffusion and cannot be fitted by a Gaussian 

distribution, see Fig. S2 (bottom right), in agreement with theoretical predictions.15,19 Most 
importantly, even after 1 ms, diffusion has only occurred on the length scale of a few Å, and thus has 
not progressed sufficiently to cause full equilibration over all conformations, which requires diffusion 
over a length scale given by the equilibrium distance between the thiol binding sites (35-45 Å). 

 

 

Fig. S2 Results of random-walk simulations of a particle following normal or subdiffusive motion. 

Shown are the time dependence of the mean square displacement <r2(t)> of a particle (top; normal 

diffusion, blue, and subdiffusive motion with  = 0.3, red; the hatched area indicates the region where  

<r2(t)> is between (35 Å)
2
 and (45 Å)

2
) and the distribution of distances over which the particle has 

moved in different runs after 16 ns (normal diffusion) or 1.6 ms (subdiffusion with  = 0.3), 

respectively (bottom). Values of  r = kBT/h and b = 0.062 Å were assumed, yielding a normal 

diffusion constant D = 4 Å2/ns, see text. The red lines in the bottom panels are the best fits to a 

Gaussian radial distribution of distances, P(r) ~ r2 exp(-r2/
2
), with   as a free fit parameter; for free 

diffusion (left panel), 
2
 is found to correspond to 4Dt. 



 

6 | P a g e  

3. Inhomogeneous Trap Model of Geminate Recombination 

In our experiments, we are observing the geminate recombination of thiyl radical pairs after disulfide 
bond photolysis and calculate the instantaneous rate constant  
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where t is the time after photolysis and c(t) is the surviving radical concentration, which is directly 
reflected in the measured transient absorbance A(t).  

We find an unusual power law for kinst(t)  ~ t -0.94 over nine orders of magnitude in time, from pico- to 
milliseconds, Fig. 5 of the main text. The wide range of rate constants observed in these experiments 

is a consequence of the various interactions caused by van-der-Waals interactions, - stacking, 
hydrogen bonds and salt bridges etc. between the various amino acids of the partly folded and 
unfolded protein, as well as other effects, such as dihedral rotational energies or the energetic cost of 
creating voids. Calculations and experiments on several proteins indicate that the magnitude of van-

der-Waals interactions,20 - stacking21 and aromatic/hydrophobic effects,22 hydrogen bonds23  or salt 

bridges24 is frequently of the order of at most a few kBT. This relatively small energy is controlled 
largely by the geometric constraints placed upon residues when a folded protein is in its native state. 

In a peptide chain or unfolded or partly folded protein, there is the possibility that this energy could be 
larger because the geometric constraints are not so severe and the molecules can approach one another 
in a more favourable way. Additionally, there is the possibility that several separate interactions can 
be present. With this in mind, we find that a simple kinetic model does describe the variation of kinst(t) 
vs. time surprisingly well. 

In this simple model, we assume that the radicals become trapped in close vicinity of each other 

immediately after bond photolysis and recombine directly upon escape from this trap. Trapping of the 
radicals occurs because the backbone becomes trapped in a local minimum of the rough energy 
landscape which is caused by the interactions just described. Escape from the trap thus has an 
activation energy that must be overcome before S - S recombination can occur. The rate constant for 

breaking the intermolecular interaction is described by the Arrhenius type equation  

  0    exp  /   n n Bk k E k T   (S10), 

where En is the energy of the nth interaction and k0 the maximum rate constant. Because of this 

exponential relationship, a relatively small range of En will lead to a huge variation in kn or, which is 
the same, a huge range of lifetimes over which the interaction between residues persists. Thus, if k0 = 
1012 s–1 (i.e. just slightly smaller than the maximum value predicted by Eyring theory), a change of  En 
from 0 to 60 kJ/mol ( ~25 kBT at room temperature) causes the lifetime of the interaction to change 
from 1 ps to ~4 ms. Therefore, motions like internal restricted rotation around single bonds with very 
small activation barriers will be responsible for the picosecond time scale behaviour, whereas the 

combined action of several interactions such as hydrogen bonds is required to trap a backbone 
conformation on the millisecond range.  

The probability that the nth interaction (with activation energy En) lasts up to time t is 
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Since there are different interaction energies, there will naturally be a distribution in their number. 

Because we do not know a priori what this will be, by appealing to the Central Limit Theorem of 

statistics it seems reasonable to let this be a Gaussian with a most likely energy E0, variance 
 and 

normalisation constant N, 
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When 00 E , the largest number of interactions occurs for small energies, and their number 

decreases as their energy increases, which is what one expects for the hierarchical protein energy 
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landscape. A similar model has been used recently for describing the motion of “sticky” particles over 
a surface, which is highly subdiffusive due to a wide distribution of traps.25  

The cumulative probability that interactions last up to time t thus gives the time-dependent 

concentration of surviving radicals: 

   nnn
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where the sum is over all interactions and can be replaced by an integral due to the large number of 

potential trap depths; strictly speaking, summation/integration should only be performed to a value 
Emax, corresponding to the maximum trap depth, which must be finite in a real system. However, this 
will only affect the dynamics at times outside the window of interest here, as long as Emax > 25 kBT, 
see above and also compare the discussion of maximum trap depths and equilibration in the main text. 

This yields the following expression for the instantaneous rate constant: 
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Fig. S3 shows results for kinst(t) obtained with this model. Most notably, for a distribution of trap 

depths with significant width (i.e.  ≥ 5 kBT), kinst(t) is found to follow a power law which closely 
resembles the experimental result kinst(t)  ~ t -0.94 over the whole time range of the experiment (1 ps - 1 

ms). This is more clearly shown in Fig. 8B, which presents the results of power law fits to the 

simulations on different time scales for trap depth distributions of different widths. For  ≥ 5 kBT, the 
power law found over the whole time range is very close to kinst(t)  ~ t -0.94.  

It should be noted that the deviations from this power law at shorter times, which are most pro-

nounced for narrow trap depth distributions, arise from the fact that the rate constant for trap escape 
has a maximum value k0 and kinst(t) obviously cannot exceed this value. The effect of this capping can 
be clearly seen by comparing the simulations for different values of k0 in Fig. S3 (solid and dashed 
lines). On the other hand, the larger value used there, k0 = 6 ps-1 is very close to the prefactor kBT/h in 

the Eyring equation, so it does not seem sensible to assume an even larger value, indicating that a trap 
depth distribution with a width of at least several kBT is required to rationalise the experimental 
observation that the power law behaviour of kinst(t) persists down to this short time scale. 
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Fig. S3 Time dependence of the instantaneous rate constant kinst(t), simulated with the simplified 

model of a single trapping site with a distribution of trap depths described here. Parameters: (solid 

lines) k0 = 1 ps-1, E0 = 0, /kBT = 0.2, 0.5, 2, 5, 7, 10; (dashed lines) k0 = 6 ps-1, E0= 0, /kBT = 0.2, 
0.5. The dotted lines show the power law ~ t-0.94 and the solid red line is a power law fit to the full 

curve for  = 5 kBT, yielding a power law ~ t-0.92. 
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