Modelling particle residence times in agricultural river basins using a sediment budget model and fallout radionuclide tracers

Hugh G. Smith,1* William H. Blake2 and Alex Taylor2
1 School of Environmental Sciences, University of Liverpool, Liverpool, L697ZT, UK
2 School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL48AA, UK

ABSTRACT: Contemporary patterns in river basin sediment dynamics have been widely investigated but the timescales associated with current sediment delivery processes have received much less attention. Furthermore, no studies have quantified the effect of recent land use change on the residence or travel times of sediment transported through river basins. Such information is crucial for understanding contemporary river basin function and responses to natural and anthropogenic disturbances or management interventions. To address this need, we adopt a process-based modelling approach to quantify changes in spatial patterns and residence times of suspended sediment in response to recent agricultural land cover change. The sediment budget model SedNet was coupled with a mass balance model of particle residence times based on atmospheric and fluvial fluxes of three fallout radionuclide tracers (7Be, excess 210Pb and 137Cs). Mean annual fluxes of suspended sediment were simulated in seven river basins (38–920 km²) in south-west England for three land cover surveys (1990, 2000 and 2007). Suspended sediment flux increased across the basins from 0.5–15 to 1.4–37 kt y⁻¹ in response to increasing arable land area between consecutive surveys. The residence time model divided basins into slow (upper surface soil) and rapid (river channel and connected hillslope sediment source area) transport compartments. Estimated theoretical residence times in the slow compartment decreased from 13–48 to 5.6–14 ky with the increase in basin sediment exports. In contrast, the short residence times for the rapid compartment increased from 185–256 to 260–368 d as the modelled connected source area expanded with increasing sediment supply from more arable land. The increase in sediment residence time was considered to correspond to longer sediment travel distances linked to larger connected source areas. This novel coupled modelling approach provides unique insight into river basin responses to recent environmental change not otherwise available from conventional measurement techniques. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

KEYWORDS: sediment budgets; sediment residence time; connectivity; fallout radionuclides; river basins

Introduction

Quantifying the timescales of sediment transfer through river systems is fundamental for understanding river basin sediment and associated contaminant dynamics. This timescale is represented by the period of sediment residence or transit within a river basin that may encompass soil formation from bedrock, hillslope erosion and delivery to streams, storage and remobilization in channels and floodplains, and export from the basin outlet. Alternatively, sediment residence time may be determined for a subset of these components of the fluvial sediment cascade (Fryirs, 2013). Information on the residence time of sediment for different parts of a river basin is required to address research and river management questions of global importance. It has been used as a basis for interpreting the sedimentary response of river basins to changes in land cover and climate over the past 100 ky (Dosseto et al., 2010). It can also be used to project timeframes for the removal of sediment-associated contaminants stored in river basins (Coulthard and Macklin, 2003; Malmon et al., 2005), thereby providing valuable information to river managers.

Investigations of sediment residence time in river basins can be broadly divided into two categories, namely studies quantifying long-term weathering and denudation rates versus those focused on sediment dynamics in river channels and basins under recent environmental conditions. The first set of studies use cosmogenic or U-series isotopes to measure rates of sediment production from bedrock (Heimsath et al., 2001; Fifield et al., 2010) or sediment transit times through river basins over 1 to several 100 ky timescales (von Blanckenburg, 2005; Granet et al., 2010). Studies in the second category quantify sediment transit over short hydrological timescales of more relevance to management. Such studies have used the fallout radionuclides 7Be and excess 210Pb (210Pbex) to estimate fine sediment residence times or changes in sediment source in river channels spanning days to months (Bonniwell et al., 1999; Matisoff et al., 2005) and over decades (Wallbrink et al., 1998, 2002; Gartner et al., 2012). Fallout radionuclide tracers have also been used to estimate sediment residence times at the river basin scale (Dominik et al., 1987; Le Cloarec et al., 2007; Evrard et al., 2010). Alternatively, the residence times of...
sediment stored in floodplains have been estimated probabilistically from computations of sediment mass balances for reach-scale storage units (Dietrich and Dunne, 1978; Kelsey et al., 1987; Malmon et al., 2003).

The present study focuses on quantifying fine sediment residence times in river basins under recent environmental conditions. The objective was to model changes in spatial patterns and residence times of suspended sediment in response to contemporary agricultural land cover change. No studies have examined the effect of changes in land use on sediment residence time. While many previous studies have quantified the impact of land use change on the magnitude of sediment flux from catchments, changes to the timescales of sediment delivery in contemporary landscapes have been neglected. However, such information is crucial to the fundamental understanding of contemporary river basin sediment dynamics and the longer-term benefits, or otherwise, or sediment management measures. In this context, it also has important implications for residence times of sediment-associated contaminants. For example, changes to the duration of sediment storage in particular landscape compartments could affect the level of contaminant mobility with negative environmental consequences. Therefore, a new research focus is required to address this important knowledge gap.

Changes in sediment residence times in response to land cover change were, for the first time, modelled by combining a sediment budget model, SedNet, with a mass balance model of particle residence times based on three fallout radionuclide tracers, namely 7Be, 210Pb$_{ex}$ and 137Cs. SedNet is a spatially-distributed model that represents erosion, sediment transfer and storage in steady state over a multi-decadal timescale (Prosser et al., 2001a; Wilkinson et al., 2004). It was developed in Australia and has been applied there to large river basins in tropical and temperate environments (McKergow et al., 2005; Wilkinson et al., 2009; Hughes and Croke, 2011). There have been no previous applications of SedNet to river basins in Europe or the UK.

Particle residence times were modelled using a mass balance approach based on atmospheric and fluvial fluxes of the fallout radionuclide tracers. The model was first proposed by Dominik et al. (1987) using only 7Be and 210Pb$_{ex}$. Subsequently, Le Cloarec et al. (2007) revised the model by including the 137Cs soil inventory as an additional constraint. The model has been applied by Evrard et al. (2010) to investigate sediment dynamics in several small catchments in the tropical highlands of Mexico. In contrast, the present study differs from previous applications of the residence time model by employing multi-decadal estimates of fallout and fluvial export. Previous applications were based on short-term monitoring (1–2 years) that is highly dependent on the specific hydroclimatic conditions during measurement periods. Furthermore, these studies did not address changes in residence times in response to land cover change, which requires a dedicated model-based approach. The present study focuses on simulating residence times in seven river basins (38–920 km2) situated in south-west England for land covers corresponding to three surveys produced from satellite imagery between 1990 and 2007.

Methods

River basins

Modelling and field measurements were undertaken in seven agricultural river basins located in south-west England (Figure 1). Six of the basins are nested within the River Tamar basin upstream of the village of Gunnislake (920 km2) and include the Rivers Carey (67 km2), Inny (97 km2), Kensey (38 km2), Lyd (219 km2), Ottery (124 km2), and a second measurement site on the main channel of the Tamar in the upper basin (Tamar Upper; 238 km2). The River Tamar forms the main boundary between the counties of Devon and Cornwall and drains south into the Tamar Estuary at Plymouth. All measurements and modelling...
were undertaken upstream of the tidal limit. The topography is characterized by short, steep hillslopes in the lower and mid Tamar basin, with lower relief terrain in the upper basin. Maximum elevations (up to 581 m) occur in the small areas of granitic moorland to the east and west.

Most of the basins are underlain by fine sedimentary rocks (mudstones, shales and sandstones). Soils are predominantly loamy, with some peaty soils in upland areas. The extent of floodplain is limited and confined by narrow steep-sided valleys and shallow bedrock. The largest floodplain area is located in the middle of the main Tamar basin. The section of main channel between the Inny and the basin outlet at Gunnislake is extensively bedrock confined. Land cover is mostly agricultural (grassland and arable) with a small area of woodland (<16%). Surveys of land cover based on satellite imagery were completed in 1990, 2000 and 2007 (Morton et al., 2011).

Precipitation across the study basins falls predominantly as rain and exhibits pronounced spatial variability with the highest annual totals occurring over the upland areas to the east and west. Across the Tamar basin, mean annual precipitation was 1284 mm based on 1 × 1 km gridded data for 1971 to 2000. The mean daily river flow measured at Gunnislake was 22.4 m3 s$^{-1}$ and ranged between 0.58 and 482 m3 s$^{-1}$ for the period from 1956 to 2012. There is also pronounced seasonality in rainfall and river flows, with the highest discharge generally occurring from November to March in association with Atlantic cold fronts.

Field measurements and laboratory analysis

Suspended sediment samples were collected continuously at the outlets of each river basin over a 12 month period. In situ time-integrated samplers based on the design by Phillips et al. (2000) were deployed in pairs at riffles. The samplers were made from polyvinylchloride (PVC) tubes 1 m in length and 0.11 m in diameter with sealed caps at both ends that contained 3 mm diameter inlet and outlet tubes. Water and suspended sediment pass through the narrow inlet tube and enter the PVC tube where the change in cross-sectional area promotes a reduction in flow velocity and sedimentation (Phillips et al., 2000). Under some conditions, these samplers may under-sample the very fine fraction (<2 μm) of suspended material, although Phillips et al. (2000) noted that the transport of very fine particles as aggregates should reduce the level of under-sampling that was observed during laboratory experiments. Samples were collected at approximately monthly intervals from September 2011 to October 2012. During this time the mean daily flow for the River Tamar at Gunnislake was slightly above average at 23.9 m3 s$^{-1}$ and ranged between 4.5 and 155 m3 s$^{-1}$.

All sediment samples were analysed for the three fallout radionuclides following freeze-drying and gentle disaggregation. Samples were sealed for 21 days in either 50 mm Petri dishes or 4 mm vials for some low mass samples to allow equilibration between 214Pb and its parent 226Ra. Activity concentrations of 7Be were determined by interpolation between the efficiency values of 137Cs (662 keV) and 113Sn (392 keV). Count times were typically 86 ks, although some low mass sediment samples were counted for 172 ks. Sample calibration was carried out using standards of the same geometry and matrix as the experimental samples. Standards were prepared using a mixed standard solution (GE Healthcare, Amersham, UK) which was distributed in a sediment matrix. Sample counts were corrected for background emission, geometry efficiency and decay. All values were decay corrected to the time of sampling and reported as activity concentration (Bq kg$^{-1}$).

Sediment budget model

SedNet derives a river network from a Digital Elevation Model (DEM). This network is divided into river links that are formed between adjacent stream junctions and includes the internal contributing area draining into each link. The mean annual suspended sediment mass balance (t y$^{-1}$) is computed for each river link from internal hillslope, gully and riverbank erosion and upstream tributary inputs less floodplain and reservoir deposition losses. The net flux of suspended sediment is passed to the next downstream link. Transient storage of suspended sediment within the channel network is neglected because this is considered small relative to total yields over multi-decadal timescales (Wilkinson et al., 2009).

Hillslope soil erosion is modelled using a spatially-distributed version of the Revised Universal Soil Loss Equation (RUSLE, Renard et al., 1997). RUSLE is used to predict mean annual soil loss (A, t ha$^{-1}$ y$^{-1}$) from rill and interrill erosion based on the product of six empirically-derived factors:

$$A = RKLSCP$$ \hspace{1cm} (1)

These are rainfall erosivity (R), soil erodibility (K), slope length (L) and steepness (S), cover (C) and management practice (P). The procedures for calculating each RUSLE factor are outlined in Table I. In the absence of specific information about management practices across the study basins, P was not explicitly included in the computation of A (i.e. it was set to 1). SedNet does not include representation of small-scale features such as road ditches or rills which may either generate sediment or act as transport pathways. The RUSLE factors were produced as a set of raster grids with three grids for C factors corresponding to the 1990, 2000 and 2007 land cover surveys.

The proportion of sediment from hillslope erosion delivered to the river network was represented using a hillslope sediment delivery ratio (HSDR). This is designed to account for the discrepancy between plot-scale erosion rates and small basin sediment yields, reflecting short sediment travel distances on hillslopes (Parsons et al., 2006) and storage opportunities (e.g. farm dams, contour banks) between slopes and the channel network (Prosser et al., 2001b; Slattery et al., 2002). At larger basin scales, it is not practical to capture the small scale variability in HSDR. Therefore, the HSDR was set to 0.15 in the present study in accordance with field measurements made by Walling et al. (2002) in small agricultural basins (<4 km2) in central England. The mean annual supply of hillslope-derived sediment (H_{S}, t y$^{-1}$) to the modelled channel network in each river link is determined by

$$H_{S} = HSDR \sum_{j=1}^{n} A_{j}$$

where A_{j} is the mean annual RUSLE erosion rate calculated for each grid cell j in the internal drainage area containing n cells for each river link x.

Gully erosion was not observed in the study basins and this component of SedNet was not used. Riverbank erosion for each
Table 1. Summary of data inputs and processing for calculation of the RUSLE factors for use in the SedNet model

<table>
<thead>
<tr>
<th>RUSLE factor</th>
<th>Data input and source</th>
<th>Data processing</th>
</tr>
</thead>
</table>
| Rainfall erosivity (R) | Plymouth University, Princetown and St Mawgan (12–15 years) sub-hourly rainfall records; British Atmospheric Data Centre, Plymouth University and the UK Met Office | Rainfall erosivity (R, MJ mm ha⁻¹ h⁻¹ y⁻¹) was calculated using the kinetic energy relationship of Marshall and Palmer (1948) recommended for the UK by Morgan (2001):
\[
KE = 0.0895 + 0.0844 \log_{10}(I)
\]
where KE is kinetic energy per unit rainfall (MJ ha⁻¹ mm⁻¹) and I is rainfall intensity (mm h⁻¹). Bₐ₀ was calculated for each event as the product of total kinetic energy (E, MJ ha⁻¹) and the maximum 30-min rainfall intensity (Iₐ₀, mm h⁻¹). The linear regression
\[
R = 1.3723A - 551.27 \quad (R^2 = 0.95)
\]
between the annual sum of EIₐ₀ (R) and annual rainfall (A, mm y⁻¹) for data from the three rain gauges was used to calculate gridded R values using the 1 x 1 km grid of 30-year mean annual precipitation (1971–2000) for the river basins. |
| Soil erodibility (K) | Digital soil vector map and soil attribute data; National Soil Resources Institute, Cranfield University | Soil erodibility (K, t ha⁻¹ h⁻¹ ha⁻¹ MJ⁻¹ mm⁻¹) was calculated according to Wischmeier and Smith (1978):
\[
K = \frac{2.1 \times 10^{-4}(22-0.0896[3.0\sin(\theta)+0.56]) \times \left(1 - \frac{\%OM}{100}\right)^{12+3.25(S-2)+2.5(P-3)} \times \%	ext{silt + %very fine sand}\times (100 - %\text{clay})}{\%\text{clay}}
\]
where OM is soil organic matter content (%), M= (%silt + %very fine sand) x (100 - %clay), S is the soil structure class and P is the permeability class. |
| Slope length (L) | 10 m DEM UK Ordnance Survey | Slope length (L) was calculated on the basis of contributing areas according to Desmet and Govers (1996):
\[
L_{ij} = \frac{A_{i,j,n}-D_{i,j,m}^{1/2}}{\frac{\text{M}^{1/2}}{\text{E}^{1/2}}(213^{1/2})}
\]
where Aᵢ,ⱼ,n is the contributing area (m²) to the grid cell with coordinates (i,j), D is the grid cell size (10 m), xᵢ = sin αᵢ, yᵢ = cos αᵢ, where αᵢ,j is the aspect direction for the grid cell with coordinates (i,j), m is a variable slope length exponent related to the ratio ε of rill to interrill erosion by m = [1 + ε] in which ε is calculated for soil that is moderately susceptible to both rill and interrill erosion by
\[
ε = \sin(\theta/0.0896[3.0\sin(\theta)+0.56])
\]
where θ is the slope angle (Renard et al., 1997). In the present study, the maximum slope length was limited to 300 m to reduce the likelihood of channel formation with increasing contributing area (Renard et al., 1997). |
| Slope steepness (S) | 10 m DEM UK Ordnance Survey | Slope steepness (S) was calculated using the equation recommended by McCool et al. (1987) where θ is slope angle:
\[
S = \begin{cases} 10.8 \sin(\theta) + 0.03, & s < 9 \% \\ 16.8 \sin(\theta) - 0.50, & s \geq 9 \% \end{cases}
\]

*Soils data © Cranfield University (NSRI) and for the Controller of HMSO 2012
river link \((BE_v \text{ t} \text{ y}^{-1}) \) is modelled by relating link stream power \((pgQbfSx)\) to bank erodibility \((\text{Wilkinson et al.}, 2005)\), which is represented as a function of riparian vegetation and floodplain width, as in the following equation:

\[
BE_v = cpQ_{bf} S_x (1 - PR_x) \left[1 - e^{-0.0085} \right] (L_x p_s \rho_s)
\]

where \(c \) is a coefficient that is set to limit the maximum bank retreat rate \((c = 0.0001)\), \(p \) is the density of water, \(g \) is acceleration due to gravity, \(Q_{bf} \) is bankfull discharge \((ext{m}^3 \text{ s}^{-1})\), \(S_x \) is the energy slope approximated by channel gradient, \(PR \) is the proportion of intact riparian vegetation along a river link (defined here as forest or woodland cover in a 1 \text{ m}^2 \text{ cell either side of the modelled channel network}), \(F_x \) is floodplain width (calculated as floodplain area divided by river link length), \(L_x \) is the link length \((\text{m})\), \(h \) is mean bank height \((0.93 \text{ m})\), \(\rho_s \) is soil bulk density \((1.5 \text{ t} \text{ m}^{-3} \text{ for the full bank profile})\) and \(p_s \) is the proportional bank contribution of fine sediment to suspended load \((\text{Table II})\). Bankfull discharge was defined as the flow with a recurrence interval of 1.5 years on the annual series based on a survey of UK rivers \((\text{Davidson and Hey, 2011})\). The increasing proportion of riparian forest or woodland along a river link was considered to reduce bank erodibility through the effect of tree root reinforcement increasing bank stability \((\text{Thorne, 1990; Abernethy and Rutherfurd, 2001})\). Floodplain width was used as a surrogate for exposure to bedrock such that there was an exponential decline in bank erodibility with decreasing floodplain width corresponding to increased bedrock exposure \((\text{Wilkinson et al., 2005})\).

Floodplain deposition \((FD_v \text{ t} \text{ y}^{-1})\) is computed as a function of floodplain area and the median value of daily overbank flow \((\text{Prosser et al., 2001b})\):

\[
FD_v = \frac{Q_{bf}}{Q} \left(1 - e^{-\frac{Q_{bf}}{Q_s}} \right)
\]

where \(Q_v \) is the median of the set of daily overbank discharges determined from the amount by which total daily discharge \((Q)\) exceeds bankfull discharge \((Q_{bf})\), \(L_x \) is the total suspended sediment supply to the link \(x \), \(A_x \) is the floodplain area and \(v \) is the particle settling velocity \((1 \times 10^{-6} \text{ m} \text{ s}^{-1})\) based on Stokes Law for particles with diameters \(1 \mu \text{m} \) such that that larger particles can be expected to have settled during the period of overbank flow \((\text{Wilkinson et al., 2009})\). It is assumed that the proportion of sediment delivered to the floodplain equates to the proportion of discharge that goes overbank relative to total discharge. The floodplain extent was defined by the Multi-Resolution Valley Bottom Flatness \((\text{MRVBF})\) terrain index developed by Gallant and Dowling \((2003)\). Reservoir deposition is calculated as a function of the mean annual reservoir inflow and its total storage capacity based on a revised version of the Brune Rule that is used to determine sediment trapping efficiency \((\text{Brune, 1953; Heinemann, 1981})\).

Hydrological regionalization is required to provide estimates of mean annual discharge \((\text{MAD})\), bankfull discharge \((Q_{bf})\), and median overbank discharge \((Q_f)\) for each river link for use in erosion and deposition modelling. This is based on long-term gauge records of unregulated discharge \((\text{Table II})\) for which \(\text{MAD}, Q_{bf} \) and \(Q_f \) were calculated. The runoff coefficient \((R_x)\) is estimated by combining a simplified water balance where \(R_x = (P - E)/P \) with a rational function relating mean annual precipitation \((P)\), evapotranspiration \((E)\) and potential evaporation \((E_p)\) \((\text{Zhang et al., 2004})\), to give Equation (4) \((\text{Wilkinson et al., 2006})\):

\[
BE_x = cpQ_{bf} S_x (1 - PR_x) \left[1 - e^{-0.0085} \right] (L_x p_s \rho_s)
\]
Radionuclide residence time model

The residence time model computes radionuclide mass balances using basin inputs and fluvial export of 7Be, 210Pb$_{ex}$, and 137Cs for river basins divided into slow and rapid transport compartments. The compartments are defined according to transport velocity (Dominik et al., 1987). The slow compartment represents the upper soil profile containing the fallout radionuclide inventories (<0.30 m soil depth). It is characterized by long residence times that correspond to the period of storage and transfer of radionuclides from the upper soil profile to the rapid compartment. The rapid compartment represents river and reservoir surfaces as well as the immediate surroundings that have much shorter radionuclide residence times. This includes runoff and sediment-generating areas on hillslopes that are connected to the river network. Rapid compartment residence times were considered to represent the mobilization and transfer of radionuclides from connected source areas to the basin outlets over approximately seasonal to annual timescales. Model estimates of residence times should be interpreted as mean values under steady state conditions for each land cover.

The fallout radionuclides employed here have been widely used as soil erosion and sediment source tracers (see reviews by Wallbrink and Murray, 1993; Walling, 2003; Mabit et al., 2008; Taylor et al., 2013). 7Be ($t_{1/2}=53$ days) is a naturally occurring radionuclide produced by cosmic ray spallation of nitrogen and oxygen in the upper atmosphere. Fallout occurs predominantly in association with precipitation (Wallbrink and Murray, 1994). 210Pb$_{ex}$ ($t_{1/2}=22$ years) refers to the amount of 210Pb derived from atmospheric fallout that exceeds that supported by decay of its lithogenic parent 226Ra in situ. 137Cs ($t_{1/2}=30$ years) was produced by atmospheric nuclear weapons testing during the 1950–1960s and dispersed globally, with subsequent less extensive releases from the Chernobyl and Fukushima nuclear power plant accidents. The main basis for use of these fallout radionuclides as sediment tracers is their tendency to strongly adsorb to fine particles (Cremers et al., 1988; He and Walling, 1996). This is reflected in the high partition coefficients (K_d). In the present study, K_d values of 1.0×10^{-5}, 1.0×10^{-6}, and 8.4×10^{-4} L kg$^{-1}$ for freshwater conditions were used for 7Be, 210Pb$_{ex}$, and 137Cs, respectively, based on the summary of values presented by Le Cloué et al. (2007). Use of these values assumes that environmental conditions which may affect radionuclide mobility between the particulate and dissolved phases remain unchanged across the study basins (Taylor et al., 2012).

The model requires estimates for the atmospheric input of 7Be and 210Pb$_{ex}$, the soil inventory of 137Cs (since fallout is now negligible) and fluvial export of particulate and dissolved fractions. Atmospheric fallout was estimated using mean annual rainwater concentrations for 7Be and 210Pb$_{ex}$ of 1.97 ± 0.3 Bq L$^{-1}$ (Taylor, 2012) and 0.1 ± 0.008 Bq L$^{-1}$ (Peirson et al., 1966), respectively. 7Be in rainwater was measured south of the Tamar basin at Plymouth during 2009-2010, while 210Pb$_{ex}$ was measured between 1962 and 1964 at Milford Haven in south Wales. Mean annual rainwater concentrations were combined with 1×1 km gridded data for 1971–2000 mean annual precipitation to compute mean annual fallout for each river basin (Table III). The 137Cs soil inventory (I_{cs}, Bq m$^{-2}$) was estimated using the regression relationship $I_{cs}=4.16R+1400$, where R is mean annual rainfall. This was derived by Appleby et al. (2003) using soil inventory data (to 0.3 m depth) from locations across Great Britain that were sampled in 1977 (Cawse, 1983). This relationship was applied to the gridded mean annual precipitation data to estimate the 137Cs inventory for each river basin, which was corrected for radioactive decay to 2012. There was negligible fallout from the 1986 Chernobyl nuclear accident in south-west England (Walling et al., 1989).

The proportional contribution of sediment from hillslope surface and channel bank erosion affects the activity concentrations of fallout radionuclides in suspended sediment (Wallbrink et al., 2003). This reflects the soil profile distribution of the radionuclides, where maximum concentrations occur at or near the surface and decrease exponentially with depth to negligible levels (Wallbrink et al., 1999). Therefore, the effect of changes in modelled hillslope and channel bank sediment contributions on radionuclide activity concentrations required consideration. The measured activity concentrations (Table III) were considered closest to values for suspended sediment exported under 2007 land cover because of a consistent trend of increasing arable land from 1990 to 2007 that increased modelled hillslope sediment contributions. Suspended sediment activity concentrations for the 1990 and 2000 simulations were scaled by the modelled proportion of hillslope sediment supply (HS) relative to total supply (TS) for each river basin. This ratio was then divided by the equivalent ratio for 2007 and multiplied by the measured activity concentrations for each radionuclide (C_{0}) to give the estimated concentrations (C_{es}) for survey years t (1990, 2000):

$$C_{es} = C_{0}\left(\frac{HS}{TS}\right)_{2007}\left(\frac{HS}{TS}\right)_{07}$$

Fluvial export of radionuclides associated with suspended sediment was calculated by multiplying the estimated (1990, 2000) or measured (approximating 2007) concentrations with the respective modelled mean annual suspended sediment output for each river basin. The factor changes in estimated activity concentrations for 1990 and 2000 compared with measured values equated to 0.62–0.78 and 0.91–0.98, respectively. The effect of earlier radionuclide activity concentrations on subsequent estimates for suspended sediment were considered minimal because of the frequency of higher magnitude flows that could be expected to remove fine sediment from storage within the channel network over approximately seasonal to annual timescales. The dissolved radionuclide flux (F_{d}) was determined using the literature-based K_d values for fresh water with activity concentrations for suspended sediment (C) and regionalized mean annual discharge (MAD) for each river basin (where $F_{d} = C/K_d\times MAD$).

The residence time model requires solutions to four Equations (6)-(9). The fraction of the basin area represented...
Study basin characteristics, estimated fallout and mean activity concentrations obtained from time-integrated suspended sediment sampling

<table>
<thead>
<tr>
<th>Basin</th>
<th>Mean annual precipitation (mm)</th>
<th>Mean suspended sediment activity concentration ± SE (Bq kg⁻¹)</th>
<th>MAD (mm)</th>
<th>Relief ratio, RR</th>
<th>Normalised MAD, RR</th>
<th>Mean suspended sediment activity concentration ± SE (Bq kg⁻¹)</th>
<th>Modelled mean 210Pbex (× 10⁵)</th>
<th>137Cs, MAD (MBq y⁻¹)</th>
<th>MAD.RRb 7Be (× 10⁵)</th>
<th>210Pbex (× 10⁵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamar Upper</td>
<td>1321</td>
<td>1214</td>
<td>6.9</td>
<td>0.09</td>
<td>0.006</td>
<td>7.7</td>
<td>0.12</td>
<td>0.006</td>
<td>0.12</td>
<td>0.006</td>
</tr>
<tr>
<td>Carey</td>
<td>1349</td>
<td>670</td>
<td>1.6</td>
<td>0.99</td>
<td>0.011</td>
<td>0.9</td>
<td>0.024</td>
<td>0.011</td>
<td>0.024</td>
<td>0.024</td>
</tr>
<tr>
<td>Ottery</td>
<td>1374</td>
<td>669</td>
<td>0.09</td>
<td>6.8</td>
<td>0.014</td>
<td>0.9</td>
<td>0.05</td>
<td>0.014</td>
<td>0.05</td>
<td>0.014</td>
</tr>
<tr>
<td>Carey</td>
<td>1313</td>
<td>812</td>
<td>0.039</td>
<td>0.99</td>
<td>0.014</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
</tr>
<tr>
<td>Kensey</td>
<td>1325</td>
<td>733</td>
<td>0.029</td>
<td>0.99</td>
<td>0.014</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
</tr>
<tr>
<td>Lyd</td>
<td>1488</td>
<td>1070</td>
<td>0.41</td>
<td>3.3</td>
<td>0.012</td>
<td>1.2</td>
<td>0.14</td>
<td>0.012</td>
<td>1.2</td>
<td>0.14</td>
</tr>
<tr>
<td>Inny</td>
<td>1252</td>
<td>2070</td>
<td>0.11</td>
<td>28</td>
<td>0.012</td>
<td>1.2</td>
<td>0.14</td>
<td>0.012</td>
<td>1.2</td>
<td>0.14</td>
</tr>
<tr>
<td>Tamar Gunnislake</td>
<td>1664</td>
<td>1523</td>
<td>0.029</td>
<td>4.8</td>
<td>0.012</td>
<td>23</td>
<td>0.14</td>
<td>0.012</td>
<td>23</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Notes:
- Relief ratio is a measure of basin slope and is defined as the maximum basin relief divided by the maximum horizontal length measured parallel to the main river channel.
- MAD and RR were normalised by dividing by their respective maximum values and then multiplying (range 0–1).
- Mean suspended sediment activity concentrations were calculated from measurements of 12 monthly time-integrated suspended sediment samples (with 10 monthly samples for the River Carey).
- Mean monthly measured 7Be activity concentrations were decay-corrected by apportioning activity according to the daily proportional flow during each month and then correcting for the number of days until the sampling date. 210Pbex and 137Cs were decay-corrected to the sampling date.
- For 137Cs, the estimated total fallout inventory (M) for each basin was based on a relationship between soil inventory and mean annual rainfall (Appleby et al., 2003).
- Mean suspended sediment activity concentrations were calculated from measurements of 12 monthly time-integrated suspended sediment samples (with 10 monthly samples for the River Carey).

Equations:
1. \(S_i + S_r = 1 \)
2. \(F_s S_r + l_i k_i = l_i (k_r + \lambda) \)
3. \(F_r = l_i k_r \)

Solutions to Equations (6–9) for the unknown variables \(S_p \), \(k_o \), \(l_i \) and \(l_r \) can be obtained using estimates of atmospheric fallout, soil inventory \(^{137}\text{Cs} \) only and fluvial export for all three fall-out radionuclides (Dominik et al., 1987; Le Cloarec et al., 2007). However, these solutions require several assumptions. The first is that most 7Be in the slow compartment will be lost to radioactive decay rather than be exported from this compartment given its short half-life of 53 days (i.e., \(k_r \ll k_o \)). Export from the slow to the rapid compartment is considered negligible compared to atmospheric fallout to the rapid compartment (i.e., \(k_d l_0 < 1/F_s P_{0R} \)). It is also assumed that the duration of sediment storage in the rapid compartment does not result in net decay of 7Be to levels below the limit of detection. Furthermore, the decay rate of 210Pbex is considered negligible compared to the export rate from the rapid compartment (i.e., \(\lambda_{210Pb} < k_r \)).

The rapid compartment area \(S_o \) can be determined by combining Equations (8) and (9) based on the first assumption such that \(S_o \) is a function of the ratio \(F_s/F_r \) for 7Be and the export rate \((k_r = 1/\tau_r) \): \(S_r = F_s/F_o \left(\frac{\lambda_{Be}}{k_r} + 1 \right) \) (10)

The slow compartment residence time \((\tau_s) \) is then computed by solving Equations (6–9) for \(210Pb_{0R} \) with the assumption that \(\lambda_{210Pb} \ll k_r \) and combining this with Equation (10): \(\tau_r = \left(\frac{1}{\lambda_{Be}} \right) \left(\frac{1 - \left(F_s/F_o \right) \tau_r}{\left(F_s/F_o \right) \lambda_{210Pb} + \tau_r} \right) \) (11)

where \(R_s = (F_s P_{0R}/F_o P_{0R}) \) and \(R_r = (F_s P_{0R}/F_o P_{0R}) \). Slow compartment residence time can also be calculated using the mass balance equations for \(^{137}\text{Cs} \) with basin-scale inventory \((M) \) rather than fallout (Le Cloarec et al., 2007) to give: \(\tau_s = \frac{M - (F_s C_{0R} \tau_r)}{(F_s C_{0R} (\lambda_{210Pb} \tau_r + 1))} \) (12)

where \(M = (\lambda_{137Cs} + \lambda_{210Pb}) \).

The rapid compartment residence time \((\tau_r) \) may then be obtained by combining Equations (11) and (12) and finding a
solution to the equation:

\[a(\tau) + b(\tau) + c = 0 \] \hspace{1cm} (13)

where

\[
a = -(F_r)_{C_4} \left(\frac{R_c}{R_d} \right) \lambda_{Be} \frac{M}{R_d}
\]

\[
b = M \left(\frac{R_c}{R_d} \right) \lambda_{Be} \lambda_{Pb} \left(\frac{R_c}{R_d} - 1 \right) - \left((F_r)_{C_4} \lambda_{Pb} R_c \lambda_{Cs} \right)
\]

\[
c = \lambda_{Pb} \lambda_{M} \left(\frac{R_c}{R_d} - 1 \right) - A (F_r)_{C_4}
\]

in which

\[A = 1 - \left(\frac{F_r}{F_r} \right) _{Pb} \]

A sensitivity analysis similar to that employed by Le Cloarec et al. (2007) was used to determine the effect of changes in input parameter values on \(\tau_3 \) and \(\tau_4 \). Factor changes of 0.5 and 1.5 were applied to suspended sediment flux (SS), \(F_a \) (\(^{210}\)Pb), \(F_a \) (\(^{7}\)Be) and \(M \) (\(^{137}\)Cs) for the Tamar basin upstream of Gunnislake under 2007 land cover. Changes in model outputs that resulted from effectively ignoring \(K_d \) (set to 1 \(\times \) 10\(^{-12}\) L kg\(^{-1}\)) as well as varying radionuclide activity concentrations by \(\pm 2 \) standard errors were also examined. Factor changes in model outputs were determined by the equation:

\[FC = 1 + \left(\frac{O_v - O_i}{O_i} \right) \] \hspace{1cm} (14)

where \(FC \) is the factor change in model outputs \(O_i \) resulting from the relative difference between outputs based on varied parameter values \(O_v \) and initial parameter values \(O_i \).

Results and Discussion

Sediment budgets and land cover change

Suspended sediment budgets were modelled for the entire Tamar River basin for land covers corresponding to the 1990, 2000 and 2007 surveys. These basin-wide budgets show a large increase in hillslope sediment contributions between 1990 and 2007 in response to an increasing proportion of arable land (Table IV). The mean annual hillslope sediment contribution range for 1990–2007 was 8.8–32 kt y\(^{-1}\) with an HSDR of 0.15. The bank erosion contribution to suspended sediment was between 7.7 and 8.4 kt y\(^{-1}\). Total sediment storage in reservoirs and floodplains was minor (1.3–3.6 kt y\(^{-1}\)) resulting in mean annual basin suspended sediment exports of 15–37 kt y\(^{-1}\), which equated to a range in yields of 16–40 t km\(^{-2}\) y\(^{-1}\) based on the HSDR of 0.15. The increase in river link \((n=92)\) suspended sediment flux between consecutive land cover surveys was distributed across the Tamar basin (Figure 2).

Table IV. Summary of suspended sediment budgets for the River Tamar basin upstream of Gunnislake for three land covers and two HSDR values

<table>
<thead>
<tr>
<th>Land cover survey</th>
<th>Arable land area (%)</th>
<th>HSDR</th>
<th>Inputs (kt y(^{-1}))</th>
<th>Outputs (kt y(^{-1}))</th>
<th>Basin export (t km(^{-2}) y(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hillslope</td>
<td>Channel banks</td>
<td>Reservoir</td>
</tr>
<tr>
<td>1990</td>
<td>6.3</td>
<td>0.05</td>
<td>2.9</td>
<td>7.7</td>
<td>0.15</td>
</tr>
<tr>
<td>2000</td>
<td>22.0</td>
<td>0.05</td>
<td>7.8</td>
<td>7.7</td>
<td>0.23</td>
</tr>
<tr>
<td>2007</td>
<td>36.0</td>
<td>0.05</td>
<td>11.1</td>
<td>8.4</td>
<td>0.40</td>
</tr>
<tr>
<td>1990</td>
<td>6.3</td>
<td>0.15</td>
<td>8.8</td>
<td>7.7</td>
<td>0.42</td>
</tr>
<tr>
<td>2000</td>
<td>22.0</td>
<td>0.15</td>
<td>23.3</td>
<td>7.7</td>
<td>0.67</td>
</tr>
<tr>
<td>2007</td>
<td>36.0</td>
<td>0.15</td>
<td>32.4</td>
<td>8.4</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Figure 2. Modelled suspended sediment yields for each river link \((n=92)\) for the (a) 1990, (b) 2000 and (c) 2007 land covers with HSDR = 0.15 for the River Tamar basin upstream of Gunnislake. This figure is available in colour online at wileyonlinelibrary.com/journal/esp
The highest modelled fluxes occurred in the headwaters of the River Lyd sub-basin (Figure 1(a)), which was characterized by the highest rainfall erosivity, local slope gradients and basin relief ratio values.

Uncertainty in change detection between land cover surveys represents an important challenge in the use of remotely sensed datasets (Fuller et al., 2003). Accuracy in the detection of land cover changes is of less concern if the focus of modelling were to use only these data to characterize land cover scenarios for modelling. However, accurate detection of land cover changes during the survey period (1990–2007) is important if model outputs are to be interpreted as a meaningful representation of the effects of recent change. The large increase in arable land cover (6.3 to 36%) represented the main change during the survey period. It was mostly offset by a reduction in the areas classified as grassland. Other land uses such as forest/woodland (11–16%), urban (1–3%) and shrub/health/bog (all 1%) were reasonably consistent between surveys.

The trend of increasing arable land cover for the Tamar basin can be assessed by comparison with land use data from county-scale farm surveys for Devon and Cornwall (Department of Environment, Food and Rural Affairs (DEFRA), 2010). Between the 1995 and 2005 surveys, there was an 8% and 6% increase in cropped land area in Devon and Cornwall, respectively. Interpolating between farm survey years suggests an increase of 13% and 24% for Devon and Cornwall from 1990 to 2007 compared with 30% for the Tamar basin. There was also a consistent trend of increasing arable land area between consecutive farm surveys spanning the full land cover survey period (1985–2009). This provides increased confidence in the changes in arable land cover recorded in the Tamar basin by satellite imagery. It also indicates that model simulations are relevant for understanding the effect of recent land cover changes on erosion and sediment transfer.

Particle residence times

Modelled slow compartment residence times for the river basins were 13–48, 7.7–17 and 5.6–14 ky for the 1990, 2000 and 2007 land covers, respectively (Table V). The decline in the theoretical mean residence times of radionuclides in the upper soil profile was related to the increase in arable land area and associated increase in modelled suspended sediment exports with consecutive land cover surveys (Table V). Between 1990 and 2007, arable land cover in the river basins increased from 3.7–7.7 to 26–43% while modelled suspended sediment exports increased from 0.5–15 to 1.4–37 kt yr$^{-1}$. Slow compartment residence times decreased because there was negligible change to the modelled atmospheric flux (F_{atm}) or 137Cs inventory (M) and increased fluvial export associated with increased suspended sediment output. This corresponds to an increase in the radionuclide transport rate out of the slow compartment (k_s) that results in a decrease in the residence time (i.e. $\tau_s = 1/k_s$).

Slow compartment residence times cannot represent deeply eroded sediment from channel banks (i.e. sediment from below the depth of the 137Cs inventory). This is because the model is unable to estimate the residence time of sediment that contains negligible levels of the fallout radionuclide tracers. Such sediment may come from deep colluvial or floodplain deposits that have not been exposed to fallout for long periods and where initial radionuclide activity has decayed to negligible levels. Therefore, the residence time estimates do not apply to particles stored in and subsequently eroded from these deposits.

Combining the modelled hillslope erosion rates with the slow compartment residence times produced an estimate of soil denudation depths. This was calculated using the mean RUSLE-derived hillslope erosion rate for the entire Tamar basin with the estimated $HSDR$ of 0.15 to give net hillslope erosion rates for each land cover survey. The resulting range in mean denudation depths was 0.28–0.36 m, which equated to denudation rates of 11–39 mm ky$^{-1}$. These values were determined using a mean area-weighted soil bulk density of 0.9 t m$^{-3}$. This was calculated from spatially-distributed particle size and organic matter data for upper surface soils (mean maximum depth 0.23 m) in the Tamar basin using the method of Rawls (1983). The range in denudation depths was consistent with the depth of the upper soil profile containing the 137Cs inventory (~0.3 m).

The slow compartment residence times were related to a basin-scale index of sediment transport capacity to support a physical interpretation of model outputs. This index was based on the representation of sediment transport capacity (q_t) as a function of discharge per unit slope width (q) and surface gradient as an approximation for energy slope (S), where $q_t = k_q q^a S^b$, and k, β and γ are empirical or theoretically derived constants (Prosser and Rustomji, 2000). At the basin scale, modelled mean annual discharge per unit basin area was multiplied by the energy gradient approximated by basin slope using the relief ratio (RR), while the constants were set to 1.0. Both variables were normalized by their respective maximum values to produce a new index (MAD.RR) that varied between 0 and 1 (Table III).

Slow compartment residence time varied as a negative power function of MAD.RR for each land cover survey (Figure 3). The fitted power functions exhibited R^2 values ranging between 0.69 and 0.84 ($P < 0.05$). As sediment transport capacity (MAD.RR) approaches zero the slow compartment residence time goes to infinity, whereas at MAD.RR = 1 the coefficient equates to the minimum residence time associated with each land cover for the set of basins analysed. These minimum values were 13044, 6162 and 5392 years for the 1990, 2000 and 2007 land cover surveys, respectively. The decrease in the value of the coefficient and increase in the exponent captured the increase in basin-scale erodibility with increasing arable land area. With the increase in sediment available for transport, the range in slow compartment residence times associated with each function declined from 35 000 to 8400 years as sediment supply approaches basin-scale transport capacity. A theoretical minimum slow compartment residence time for each river basin would occur when sediment supply reaches transport capacity assuming steady state conditions.

Mean residence times for the rapid transport compartment were 185–256, 243–362 and 260–368 days for the 1990, 2000 and 2007 surveys, respectively (Table V). The modelled area of the rapid transport compartment (S) also increased from 0.2–6.0 to 1.0–2.5% between 1990 and 2007. The modelled rapid transport area is dependent on the river output of 7Be relative to atmospheric input to the rapid compartment (i.e. F_{atm}/F_{tot}) based on the assumption of negligible 7Be input from the slow compartment compared with direct atmospheric input to the rapid compartment. Hancock et al. (2013) estimated that direct fallout of 7Be onto wetted channels was insignificant compared with 7Be exported with suspended sediment during a flow event for two large catchments in north-east Australia. This suggests most 7Be associated with suspended sediment may be derived from connected source areas outside the channel network. Furthermore, the rapid transport compartment is unlikely to capture the contribution from channel bank erosion because sediment contributed by banks tends to contain negligible 7Be (Wallbrink and Murray, 1993; Hancock et al., 2013).

The increase in S related to the increase in F_{atm} with consecutive land covers equated to an effective increase in the atmospheric input (F_{atm}/S) to the rapid compartment, which was proportionally larger than the increase in modelled 7Be river.
Table V. Modelled suspended sediment and fallout radionuclide (FRN) export and associated residence times for the slow (upper surface soils) and rapid (river and connected hillslope source area) compartments for the seven river basins and three land cover surveys.

<table>
<thead>
<tr>
<th>River basin/ survey year</th>
<th>Arable land area (%)</th>
<th>Modelling suspended sediment export (kt y⁻¹)</th>
<th>Modelled FRN export, F_r (MBq y⁻¹)</th>
<th>Modelling particle residence times</th>
<th>Rapid compartment area, S. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Modelled suspended sediment export (kt y⁻¹)</td>
<td>7Be ($\times 10^3$)</td>
<td>210Pbex ($\times 10^2$)</td>
<td>137Cs ($\times 10^2$)</td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamar Upper</td>
<td>7.0</td>
<td>3.0</td>
<td>3.9</td>
<td>0.90</td>
<td>0.16</td>
</tr>
<tr>
<td>Ottery</td>
<td>6.1</td>
<td>1.5</td>
<td>2.0</td>
<td>0.48</td>
<td>0.08</td>
</tr>
<tr>
<td>Carey</td>
<td>6.6</td>
<td>0.9</td>
<td>1.0</td>
<td>0.30</td>
<td>0.06</td>
</tr>
<tr>
<td>Kensey</td>
<td>5.6</td>
<td>0.5</td>
<td>1.5</td>
<td>0.39</td>
<td>0.05</td>
</tr>
<tr>
<td>Lyd</td>
<td>7.7</td>
<td>4.7</td>
<td>7.4</td>
<td>2.3</td>
<td>0.52</td>
</tr>
<tr>
<td>Inny</td>
<td>3.7</td>
<td>1.2</td>
<td>2.8</td>
<td>0.75</td>
<td>0.13</td>
</tr>
<tr>
<td>Tamar Gunnislake</td>
<td>6.3</td>
<td>15</td>
<td>25</td>
<td>5.7</td>
<td>1.0</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamar Upper</td>
<td>25</td>
<td>5.6</td>
<td>8.4</td>
<td>2.2</td>
<td>0.33</td>
</tr>
<tr>
<td>Ottery</td>
<td>27</td>
<td>3.9</td>
<td>6.0</td>
<td>1.8</td>
<td>0.22</td>
</tr>
<tr>
<td>Carey</td>
<td>21</td>
<td>1.5</td>
<td>2.0</td>
<td>0.67</td>
<td>0.11</td>
</tr>
<tr>
<td>Kensey</td>
<td>22</td>
<td>1.3</td>
<td>3.9</td>
<td>1.3</td>
<td>0.13</td>
</tr>
<tr>
<td>Lyd</td>
<td>14</td>
<td>7.0</td>
<td>12</td>
<td>4.1</td>
<td>0.86</td>
</tr>
<tr>
<td>Inny</td>
<td>17</td>
<td>2.7</td>
<td>7.3</td>
<td>2.5</td>
<td>0.31</td>
</tr>
<tr>
<td>Tamar Gunnislake</td>
<td>22</td>
<td>29</td>
<td>56</td>
<td>15</td>
<td>2.3</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamar Upper</td>
<td>43</td>
<td>8.3</td>
<td>13</td>
<td>3.6</td>
<td>0.49</td>
</tr>
<tr>
<td>Ottery</td>
<td>43</td>
<td>5.2</td>
<td>8.1</td>
<td>2.5</td>
<td>0.29</td>
</tr>
<tr>
<td>Carey</td>
<td>37</td>
<td>2.1</td>
<td>2.9</td>
<td>1.0</td>
<td>0.15</td>
</tr>
<tr>
<td>Kensey</td>
<td>33</td>
<td>1.4</td>
<td>4.3</td>
<td>1.5</td>
<td>0.15</td>
</tr>
<tr>
<td>Lyd</td>
<td>29</td>
<td>9.7</td>
<td>17</td>
<td>6.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Inny</td>
<td>26</td>
<td>3.0</td>
<td>8.1</td>
<td>2.8</td>
<td>0.35</td>
</tr>
<tr>
<td>Tamar Gunnislake</td>
<td>36</td>
<td>37</td>
<td>73</td>
<td>20</td>
<td>3.0</td>
</tr>
</tbody>
</table>

*Modelled FRN export (F_r) combined suspended sediment-associated FRN export with the estimated dissolved flux calculated using regionalized annual flow and partition coefficients (K_d) for each radionuclide.
The increase in rapid compartment residence times may also be associated with the number of runoff events required to deliver a particle to the channel network and the duration of particle storage between runoff events within connected slope source areas. The increase in rapid compartment residence times related to the expansion of connected source areas is conceptually linked to the increase in near-channel arable land that generates more sediment for transport.

Model evaluation and sensitivity

Sediment budgets

Modelled sediment budget components were examined in relation to available regional datasets in the absence of basin-specific validation data. The components considered were divided according to budget inputs that included RUSLE hillslope erosion rates, the hillslope sediment delivery ratio (HSDR) and channel bank erosion, and budget outputs, namely floodplain storage and basin-scale suspended sediment exports.

Mean RUSLE hillslope erosion rates calculated at the grid scale for forest, arable areas and grassland were 0.05–0.07, 6.0–6.8 and 0.29–0.31 t ha\(^{-1}\) y\(^{-1}\), respectively. These erosion rates represent the range in mean values for each land cover recorded at the basin-scale for the three cover simulations. Combined, the three land cover types equate to 95–98% of the Tamar basin area. Therefore, the mean erosion rates capture the spatial variation in rainfall erosivity, soil erodibility, slope contributing area and gradient for the three land cover types across the basin. Model performance was assessed against regional datasets as well as a large-scale compilation of European erosion plots.

Modelled mean erosion rates were generally consistent with published data. At the local scale, monitoring (1 year) in a small first-order gravel bed stream (0.46 km\(^2\)) located in Devon produced an estimated net erosion rate between 0.5 and 1.2 t ha\(^{-1}\) y\(^{-1}\) for clayey soils (Bilotta et al., 2010). These rates exceed long-term (11 years) plot-scale measurements for sandy soils under grass cover in central England, which gave a mean of 0.23 and range 0.1–0.5 t ha\(^{-1}\) y\(^{-1}\) (Fullen, 1998). Measurements in cultivated and pasture fields with clay-loam soils in south Devon using \(^{137}\)Cs indicated erosion rates of 8.0 and 0.16 t ha\(^{-1}\) y\(^{-1}\), respectively (Owens et al., 1997). Furthermore, erosion rates estimated using \(^{137}\)Cs for arable and pasture fields were 1.2–8.5 and 0.2–5.3 t ha\(^{-1}\) y\(^{-1}\), respectively, in two small lowland basins (Walling et al., 2002). However, comparison between modelled erosion rates and those measured using \(^{137}\)Cs was limited by (i) difficulty in directly relating field-scale erosion measured using \(^{137}\)Cs to soil loss estimates for slope segments based on RUSLE and (ii) untested assumptions in the use of \(^{137}\)Cs to measure soil erosion that could produce erroneous results (Parsons and Foster, 2011).

Analysis of a compilation of erosion plot data from across Europe that excluded the Mediterranean zone produced mean forest, cultivated and grassland erosion rates of 0.003, 6.3 and 0.29 t ha\(^{-1}\) y\(^{-1}\), respectively (Cerdan et al., 2010). The modelled arable and grassland erosion rates are consistent with this plot data. The much lower forest erosion rate was based on only 60 plot-months of data compared with 6635 and 1535 plot-months for cultivated and grassland plots (Cerdan et al., 2010).

The modelled suspended sediment budgets were highly sensitive to change in the HSDR. An increase in HSDR from 0.05 to 0.15 corresponded to an approximately 3-fold increase in the basin-wide hillslope sediment contributions and a 1.5–2-

© 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.
fold increase in the basin suspended sediment exports (Table III). The HS DR of 0.15 was selected on the basis of the detailed sediment budgets developed by Walling et al. (2002) for two small basins in central England (<4 km²). These budgets measured in-field and field-to-channel deposition relative to gross erosion estimated using \(^{137}\text{Cs}\). While subject to the aforementioned uncertainties in the use of \(^{137}\text{Cs}\) to measure soil erosion, these HS DR values provide the only available estimates of hillslope-to-channel sediment delivery in comparable agricultural basins and at a spatial scale equivalent to that of the individual river link drainage areas (mean ± SD = 9.96 ± 7.7 km²) used in SedNet modelling of the Tamar basin. The HS DR of 0.15 was also chosen with reference to the resulting basin suspended sediment yields, which were consistent with regional yield estimates, as shown below.

Modelled link-average bank erosion rates ranged between 0 and 0.19 m y\(^{-1}\) (mean = 0.02 m y\(^{-1}\)) on a coefficient value set to 0.0001 (Equation (2)) to limit the maximum rate of bank retreat (Wilkinson et al., 2004). These bank retreat rates are in the low range of mean rates (0.03–1.18 m y\(^{-1}\)) from field measurements (1–3 yr) for streams and rivers with basin areas ranging from 4.8–620 km² in south-west England (Hooke, 1980; Murgatroyd and Ternan, 1983). Longer-term (1840–1975) bank retreat rates measured from historic maps ranged from 0.1–1.79 m y\(^{-1}\) (Hooke, 1980). However, the comparatively low modelled bank erosion rates may be reasonable for several reasons. First, bank monitoring in the study by Hooke (1980) were biased towards areas of likely maximum erosion, particularly open floodplain sites. In contrast, the modelled channels have mean riparian forest cover ranging over 26–33% of the length of river links, thereby reducing bank retreat rates. Second, channel network confinement by bedrock and steep hillslopes occurs in many locations across the Tamar basin and limits lateral channel change. Third, low bank retreat rates are consistent with the preservation of small areas of floodplain in the Tamar basin.

The modelled floodplain occupies 2.8% of the total basin area and has a mean width of only 70 ± 62 m. The largest area of floodplain occurs in the mid-basin where four tributaries join the main channel (Figure 1(b)). This represents productive agricultural land and hence bank stabilization measures have been adopted in some locations. It should be noted that modelled floodplain storage inputs do not offset channel bank losses (Table III). This should not be interpreted to imply a net loss from floodplain units. Channel bank erosion includes contributions from non-floodplain areas such as colluvial footslopes, while floodplains also receive inputs from adjacent hillslopes. No explicit calculation of hillslope-derived sediment inputs to floodplain storage units is made by the SedNet model.

Modelled floodplain deposition rates were low. Mean (and maximum) deposition rates for the 1990, 2000 and 2007 land covers were 0.04 (0.1), 0.08 (0.2) and 0.12 (0.3) mm y\(^{-1}\), respectively. Measurement of floodplain deposition rates using \(^{137}\text{Cs}\) in five river basins (276–3717 km²) in southern England yielded a range in mean reach-scale values of 0.7–1.6 mm y\(^{-1}\) since the mid-1950s (Walling and He, 1998). Inundation of these floodplain reaches was estimated to occur several times per year. In another study set in northern England, the mean sedimentation rates for floodplain transects extending from the channel margin to the outer floodplain were 0.07–3.7 and 0.1–1.5 mm y\(^{-1}\) for the River Ouse and River Tweed, respectively (Walling et al., 1999). These rates were converted from g cm\(^{-2}\) y\(^{-1}\) to mm y\(^{-1}\) using a sediment bulk density of 1.5 g cm\(^{-3}\). The lower modelled floodplain deposition rates probably result in part from the effect of averaging annual overbank sediment deposition across the entire modelled floodplain area for each river link. Floodplain deposition is not spatially uniform, as shown by declining sedimentation rates with distance from channels (Walling et al., 1999). The comparison with mean rates for transects spanning most of the floodplain reduces this disparity. Floodplain inundation frequency is also an important factor distinguishing sedimentation rates. SedNet simulations used a basin-wide bankfull discharge frequency of 1.5 years on the annual series to determine the proportion of overbank flow. Inundation frequency will be higher in some near-channel locations, as was the case for floodplain reaches measured by Walling and He (1998).

Modelled suspended sediment yields for the Tamar basin at Gunnislake were 16–40 t km\(^{-2}\) y\(^{-1}\) using an HS DR of 0.15 for the three land covers. This range in yields is comparable with suspended sediment yields obtained from longer-term (1994–2003) monitoring of three agricultural river basins (226–601 km²) in Devon (Harlow et al., 2006). These measured yields range from 24 to 45 t km\(^{-2}\) y\(^{-1}\), and provide a good comparison with modelled yields on the basis of general similarities in basin land use and hydroclimatic conditions. Such longer-term measurements of yield are preferable for use in assessing model performance given that SedNet computes mean annual budgets over a timescale of several decades. The modelled yields were also consistent with an earlier regional compilation of river basin suspended sediment yields from south-west England (Walling and Webb, 1987). In this compilation, the range in suspended sediment yields was 16–58 t km\(^{-2}\) y\(^{-1}\) for basins with areas ranging between 46 and 422 km², excluding the three basins with more recent data reported by Harlow et al. (2006) and those basins <10 km². This is also consistent with the modelled suspended sediment yields for the Tamar sub-basins (38–238 km²) which ranged from 12–21, 22–34 and 31–44 t km\(^{-2}\) y\(^{-1}\) for the 1990, 2000 and 2007 land covers, respectively. Notably, the range in modelled yields spanning the three land cover surveys is consistent with the range in measured yields. This indicates that the effect of land use change on modelled yields in the Tamar basin does not exceed regional variability in mean annual suspended sediment yields.

Particle residence times

The performance of the particle residence time model cannot be examined directly due to (i) the absence of independent validation datasets and (ii) the difficulty in validating estimates of slow compartment residence times for specific land covers that do not change through time. Instead we use a sensitivity analysis to identify those parameters which exert greater influence on model outputs and compare estimates of parameter values with available measurements. The sensitivity analysis showed that a factor change of 0.5 and 1.5 to individual model parameters could result in factor changes to slow and rapid compartment residence times ranging between 0.4 and 2.6 (Table VII). However, most changes in residence time estimates remained within the range 0.5–1.5. Slow compartment residence time was most sensitive to changes in suspended sediment flux and basin-scale \(^{137}\text{Cs}\) inventory (M), whereas the rapid compartment residence time and \(S_r\) were most sensitive to changes in \(F_{\text{be}}(^{210}\text{Pbex})\). Changes to \(F_{\text{be}}(^{7}\text{Be})\) affected only the rapid compartment residence time. Slow compartment residence times were unaffected by changes in \(F_{\text{be}}\) or \(F_{^{210}\text{Pbex}}\). Ignoring the partitioning of the radionuclides between the dissolved and particulate forms (i.e. \(K_{d_\text{D}}\rightarrow\infty\)) increased model estimates of \(S_r\), slow and rapid compartment residence times, by factors of 1.0–1.3 (Table VII). This was equivalent to the effect of increasing \(F_{\text{be}}(^{7}\text{Be})\) or \(M\), with a negligible effect for \(F_{^{210}\text{Pbex}}\) due to its already high \(K_{d_\text{D}}\) (Le Cloarec et al., 2007). The sensitivity analysis indicated that the estimates of suspended sediment flux, \(M\) and \(F_{\text{be}}\) for \(^{7}\text{Be}\) and \(^{210}\text{Pbex}\) exert an important control on model outputs. Modelled mean annual
suspended sediment yields were shown to be comparable with long-term measurements from agricultural river basins in the region. Uncertainty in the measured mean radionuclide activity concentrations (Table III) used in calculating \(F_p \) was constrained by the use of continuous time-integrated sampling that captured a range of flow conditions over a 12 month period. Varying these activity concentrations by ±2 standard errors had only a minor effect on model outputs (Table VI). However, the necessary scaling of activity concentrations to reflect changes in modelled hillslope and channel bank sediment contributions introduced additional uncertainty in residence time estimates. Decreasing the estimated suspended sediment activity concentrations for the 1990 and 2000 land cover simulations was consistent with lower modelled sediment contributions from hillslope surface erosion.

\(M \) was estimated for each river basin using the relationship between soil \(^{137}\text{Cs} \) inventory and mean annual rainfall derived by Appleby \textit{et al} (2003) with the 1 × 1 km gridded 1971–2000 precipitation data. This produced a range in areal \(^{137}\text{Cs} \) inventories of 2820–3390 Bq m\(^{-2} \). This approach captured the spatial variability associated with precipitation patterns. Higher inventories occurred across elevated areas of the Tamar basin in the east and west compared with lower inventories in the centre and northern part of the basin.

Possibly the largest source of uncertainty in model inputs relates to the estimates of \(F_p \) for \(^{7}\text{Be} \) and \(^{210}\text{Pb}_{\text{ex}} \). The range in areal fallout values used to derive \(F_p \) for \(^{7}\text{Be} \) was 2330–2930 Bq m\(^{-2} \) y\(^{-1} \) (mean precipitation = 1180–1488 mm y\(^{-1} \)). This was consistent with measurements of 2750 (Dominik \textit{et al}, 1987) and 2670 Bq m\(^{-2} \) y\(^{-1} \) (Schuler \textit{et al}, 1991) in Switzerland for precipitation of 1100–1200 mm y\(^{-1} \) which is comparable with the study basins. However, it is higher than 1618 Bq m\(^{-2} \) y\(^{-1} \) (precipitation = 1328 mm y\(^{-1} \)) at Milford Haven in south Wales (Peiron \textit{et al}, 1966) and 1200 Bq m\(^{-2} \) y\(^{-1} \) (precipitation not reported) for the Seine River basin (Le Cloarec \textit{et al}, 2007), but lower than 3912 ± 120 Bq m\(^{-2} \) y\(^{-1} \) (precipitation = 1884 mm y\(^{-1} \)) in Cumbria, northern England (Short \textit{et al}, 2007). In addition to annual rainfall amount and latitude, solar activity is an important control of \(^{7}\text{Be} \) production, which varies by ~25% with the 11 year solar cycle (Kaste \textit{et al}, 2002). Therefore, differences between studies may in part reflect solar variability. Variation in \(F_p \) (\(^{7}\text{Be} \)) affects only the rapid compartment residence times (Table VI). The large range in reported annual atmospheric fallout and the effect of solar variability indicates that rapid compartment residence times are probably subject to greater uncertainty than slow compartment residence times which are unaffected by variation in \(F_p \) (\(^{7}\text{Be} \)). However, it can be anticipated that this uncertainty was reduced to some extent by the use of 30 year mean annual precipitation data to compute \(^{7}\text{Be} \) fallout.

The range in estimated mean areal fallout values used to derive \(F_p \) for \(^{210}\text{Pb}_{\text{ex}} \) was 118–149 Bq m\(^{-2} \) y\(^{-1} \). These values were less than 165 ± 8 Bq m\(^{-2} \) y\(^{-1} \) based on measurements of \(^{210}\text{Pb}_{\text{ex}} \) concentration in rainwater for 1997–1998 in Cumbria (Short \textit{et al}, 2007). However, this is consistent with higher mean annual rainfall (1884 mm) for the Cumbrian site as well as the proximity of the Tamar study basin to the east coast of the Atlantic (i.e. air mass with reduced geogenic \(^{222}\text{Rn} \) activity). The range in \(^{210}\text{Pb}_{\text{ex}} \) atmospheric flux in the present study lies between the mean of 117 Bq m\(^{-2} \) y\(^{-1} \) estimated for the 30–60° N latitude zone based on a compilation of data (Preiss \textit{et al}, 1996) and 161 Bq m\(^{-2} \) y\(^{-1} \) from soil inventories in Devon (Walling and He, 1999). These comparisons suggest that estimates of \(F_p \) for \(^{210}\text{Pb}_{\text{ex}} \) were reasonable.

Conclusions

This is the first study to combine a sediment residence time model with multi-decadal estimates of mean annual discharge and suspended sediment export from river basins. In contrast, previous applications have been based on short-term monitoring (1–2 years) that is highly dependent on the specific hydroclimatic conditions during measurement periods. This may have an important effect on estimated residence times due to model sensitivity to suspended sediment exports. The novel combination of a river basin sediment budget model with a mass balance model of particle residence times that uses fallout radionuclide tracers identified changes in spatial patterns and timescales of suspended sediment transfer in response to recent agricultural land cover change. With increased pressure on soil systems to meet global food security targets, such information is highly valuable to catchment managers and policy makers who need to balance food production against protection of downstream water resources and aquatic ecosystems.

Table VI. Summary of factor changes in \(\tau_r \), \(\tau_s \), and \(S \) in response to changes in residence time model parameters for the Tamar basin upstream of Gunnislake under the 2007 land cover

<table>
<thead>
<tr>
<th>Model input</th>
<th>Factor change in parameter values</th>
<th>Factor changes in model outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slow compartment ((\tau_r))</td>
<td>Rapid compartment ((\tau_r))</td>
</tr>
<tr>
<td>Suspended sediment flux</td>
<td>1.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Radionuclide activity concentration*</td>
<td>0.5</td>
<td>Increase parameter</td>
</tr>
<tr>
<td>(+2\text{SE})</td>
<td>0.9</td>
<td>Increase</td>
</tr>
<tr>
<td>(-2\text{SE})</td>
<td>1.1</td>
<td>Decrease</td>
</tr>
<tr>
<td>(F_p) ((^{210}\text{Pb}_{\text{ex}}))</td>
<td>1.5</td>
<td>Increase parameter</td>
</tr>
<tr>
<td>(F_p) ((^{7}\text{Be}))</td>
<td>0.5</td>
<td>Increase parameter</td>
</tr>
<tr>
<td>(M) ((^{137}\text{Cs}))</td>
<td>1.5</td>
<td>Increase parameter</td>
</tr>
<tr>
<td>(M) ((^{137}\text{Cs}))</td>
<td>0.5</td>
<td>Increase parameter</td>
</tr>
<tr>
<td>Ignored (K_d)</td>
<td>Increase parameter</td>
<td>Negligible change</td>
</tr>
<tr>
<td>Most sensitive parameters</td>
<td>SS and (M)</td>
<td>(F_p) ((^{210}\text{Pb}_{\text{ex}}))</td>
</tr>
</tbody>
</table>

*Radionuclide activity concentrations were varied by ±2 standard errors (SE) reported in Table III.
The SedNet model was used to simulate mean annual suspended sediment fluxes for three land cover surveys spanning a period of recent change in agricultural land use in the study basin. Modelled basin-scale suspended sediment yields ranged between 16 and 40 t km\(^{-2}\) y\(^{-1}\) and were consistent with longer-term measurements from the region. Likewise, hillslope and channel bank erosion rates were comparable to available data suggesting that the SedNet model provided a reasonable representation of suspended sediment transfer. Comparison of modelled sediment budgets between land cover surveys showed a pronounced increase in suspended sediment yields in response to an increase in the area of arable land from 6.3 to 36% between 1990 and 2007.

Modeled particle residence times were estimated for seven sub-basins that were divided into slow (upper surface soil) and rapid (river and connected hillslope source areas) transport compartments. Modeled slow compartment residence times for the river basins were 13–48, 7.7–17 and 5.6–14 ky for the 1990, 2000 and 2007 land cover surveys, respectively. The residence times decreased in response to the increase in modelled suspended sediment exports with increasing arable land area. It was also shown that slow compartment residence times were related to a basin-scale index of sediment transport capacity by a negative power function for each land cover. Both the residence times and estimated source areas of the rapid transport compartment increased with consecutive land cover surveys. Conceptually, this was considered to reflect the expansion of connected hillslope source areas with increasing sediment supply from more arable land situated near the channel network. Larger source areas correspond to longer sediment travel distances and hence increased residence times.

The coupled sediment budget-residence time modelling approach provides unique insight into river basin responses to recent environmental change not otherwise available from conventional measurement techniques. Quantifying residence times of fine sediment and associated contaminants in degraded river basins may yield valuable information on potential recovery rates from pollution under current environmental conditions. Future environmental changes could also be modelled. For example, the use of a sediment budget model with hydrologic parameters such as SedNet would allow examination of the potential impact on sediment residence times of projected changes in precipitation and evaporation associated with future climate scenarios.

Acknowledgements—HGS acknowledges the support of a Marie Curie Fellowship (PIIF-GA-2010-273069) within the 7th European Community Framework Programme. This paper also represents a contribution to the International Atomic Energy Agency Coordinated Research Programme D1.20.11 under Research Agreement IAEA contract UK/15358 (WB). We thank staff from the Westcountry Rivers Trust for help with site selection and arranging access for river monitoring. We also acknowledge the contribution of Professor Geoff Millward to gamma spectrometry analysis and for lively discussion. We thank two anonymous reviewers whose comments helped improve the manuscript.

References

