STATISTICAL DATA AND REPORTING GUIDELINES: IMPORTANT TO GET YOUR PAPER PUBLISHED

Graeme L. Hickey
University of Liverpool & EJCTS / ICVTS

graeme.hickey@liverpool.ac.uk
None to declare
Statistical and data reporting guidelines for the *European Journal of Cardio-Thoracic Surgery* and the *Interactive CardioVascular and Thoracic Surgery*

Graeme L. Hickey\(^a,b,c,*\), Joel Dunning\(^d\), Burkhardt Seifert\(^e\), Gottfried Sodeck\(^f\), Matthew J. Carr\(^g\), Hans Ulrich Burger\(^h\) and Friedhelm Beyersdorf\(^i\) on behalf of the *EJCTS* and *ICVTS* Editorial Committees

\(^a\) Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, The Farr Institute@HeRC, Liverpool, UK
\(^b\) National Institute for Cardiovascular Outcomes Research (NICOR), University College London, London, UK
\(^c\) Academic Surgery Unit, University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester, Manchester, UK
\(^d\) Department of Cardiothoracic Surgery, James Cook University Hospital, Middlesbrough, UK
\(^e\) Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
\(^f\) Department of Emergency Medicine, Medical University Vienna, Vienna, Austria
\(^g\) University of Manchester, Institute of Brain, Behaviour and Mental Health, Manchester, UK
\(^h\) Hoffmann-La Roche AG, Basel, Switzerland
\(^i\) Department of Cardiovascular Surgery, Freiburg University Heart Center, Freiburg, Germany

* Corresponding author. Department of Epidemiology and Population Health, University of Liverpool, Institute of Infection and Global Health, The Farr Institute@HeRC, Waterhouse Building (Block F), 1-5 Brownlow Street, Liverpool L69 3GL, UK. Tel: +44-151-7958306; e-mail: graemeleehickey@gmail.com (G. Hickey).

Received 27 March 2015; accepted 2 April 2015
SUMMARY

- Existing recommended guidelines [1] for data reporting were published in 1988!

Currently 5 statistical consultants on the editorial board

Guidelines developed based on experience of all consultants to make clear expectations to those submitting research, and highlight common errors

Approximately 1 in 4 manuscripts submitted to EJCTS are referred for statistical review

Areas considered:

1. Was there a clear study design and the objectives well formulated?
2. Were the statistical analysis methods clearly described?
3. Were the statistical methods appropriate for the study/data?
4. Were the data appropriately summarized?
5. Were the statistical results adequately reported and inferences justified?
1. EXISTING REPORTING GUIDELINES

EJCTS Guidelines **supplement** existing reporting statements—not replace them!
1. STUDY DESIGN: CORE REQUIREMENTS

- Objective / hypothesis and type of study
- Data acquisition methods (incl. post-discharge follow-up)
- Inclusion and exclusion criteria
- Sample size rationale – calculations should be reproducible
- Randomization and blinding (if relevant)
- Potential sources of bias → statistical adjustment methods used
1. STUDY DESIGN: DEFINITIONS

- Explicitly define outcomes, e.g.
 - ‘(Peri-)operative mortality’ – in-hospital or 30-day?
 - Time origin for time-to-event variables – surgery, randomisation, discharge, etc.?
 - All-cause or cause-specific mortality?

- Use accepted definitions where available

- Avoid ambiguous or undefined study variables
 - E.g. ‘normal’ vs. ‘abnormal’ white cell count

2. DESCRIPTION OF STATISTICAL ANALYSIS

- A description of statistical methods used, and when they were used
- Additional information request for advanced statistical methods
- Handling of missing data
- Phrasing and terminology, e.g. incidence vs. prevalence or multivariate vs. multivariable
2. DESCRIPTION OF STATISTICAL ANALYSIS: REGRESSION MODELS

- Inclusion of adjustment covariates
 - Univariable screening
 - Stepwise regression methods (details of algorithm required)
 - Covariates forced into model
 - All covariates included
 - Consideration to over-fitting and stability?
- Functional form of continuous covariates (e.g. transformations, dichotomization)
2. DESCRIPTION OF STATISTICAL ANALYSIS: PROPENSITY SCORE MATCHING

Limited guidance, but recommendations in literature [1] include:

- Evaluate balance between baseline variables using standardised difference, not just hypothesis tests

- Provide details of matching algorithms used (incl. caliper details, match ratio, with/without replacement) – not just software!

- Lack of balance requires further iterations of propensity score model building (e.g. interaction terms) – don’t stop at first attempt!

- Describe statistical methodology used to estimate treatment effects in the matched data

3. APPROPRIATE METHODS

- Regression models should have assumptions checked, and if necessary be assessed using suitable diagnostics and goodness-of-fit tests
 - E.g. Proportional hazards assumption for Cox regression models
- Correct statistical model / methodology for data
 - E.g. using logistic regression when a Cox model should have been used
 - E.g. independent samples test for paired data
- Multivariable models should have an adequate event-per-variable ratio
 - E.g. fitting a logistic regression model with 7 covariates to data with 20 events and 1000 subjects using maximum likelihood would be inappropriate
3. PRESENTING DATA GRAPHICALLY

Anscombe's quartet *

- Same number of points
- Same Pearson sample correlation coefficient
- Same linear regression line fit
- Same marginal means and standard deviations

Present appropriate plots of your data when possible

4. DATA REPORTING

- Include summary table of patient/surgical characteristics, stratified by treatment groups if a comparison study.
- Location statistics (e.g. mean, median) should always be reported with appropriate measure of variability (e.g. median, IQR).
- Always report what summary statistics are reported.
 - “average age was 65 years (41-79) years” – is it mean and range, median and (1st, 3rd) quartiles?
4. DATA REPORTING: AVOIDABLE ISSUES

Table 1. Patient and operative characteristics data by CPB technique with statistical comparison.

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>On-pump</th>
<th>Off-pump</th>
<th>Δ (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number</td>
<td>$n=3402$</td>
<td>$n=1173$</td>
<td>$n=2229$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistic EuroSCORE (%)</td>
<td>2.4 ± 2.5</td>
<td>2.4 ± 2.8</td>
<td>2.3 ± 2.3</td>
<td>1.8</td>
<td>0.965</td>
</tr>
<tr>
<td>Age (years)</td>
<td>61.7 ± 10.6</td>
<td>61.1 ± 10.3</td>
<td>61.9 ± 10.7</td>
<td>-8.1</td>
<td>0.026</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>28.5 ± 4.6</td>
<td>28.7 ± 4.7</td>
<td>28.4 ± 4.5</td>
<td>6.1</td>
<td>0.090</td>
</tr>
<tr>
<td>Female</td>
<td>880</td>
<td>325</td>
<td>555</td>
<td>6.4</td>
<td>0.083</td>
</tr>
<tr>
<td>Preoperative AF</td>
<td>69</td>
<td>28</td>
<td>41</td>
<td>2.8</td>
<td>0.242</td>
</tr>
<tr>
<td>Urgent</td>
<td>733</td>
<td>271</td>
<td>462</td>
<td>5.7</td>
<td>0.119</td>
</tr>
<tr>
<td>NYHA III/IV</td>
<td>645</td>
<td>225</td>
<td>420</td>
<td>0.9</td>
<td>0.846</td>
</tr>
<tr>
<td>History of neurological</td>
<td>53</td>
<td>25</td>
<td>28</td>
<td>6.8</td>
<td>0.070</td>
</tr>
<tr>
<td>dysfunctions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. DATA REPORTING: CHARTS

- Statistical figures are for summarizing complex data
- Readers will be drawn to them, so make them intuitive, sensible and clear

https://www.biostat.wisc.edu/~kbroman/topten_worstgraphs/
5. RESULTS

- P-values alone \neq results \rightarrow effect sizes and confidence intervals
- Full regression models should be reported – not just significant terms
- Details of any deviations from the planned study
- P-values and statistics reported to appropriate precision
5. RESULTS: PRESENTING PLOTS

An unacceptably presented Kaplan–Meier graph

An acceptably presented Kaplan–Meier graph

Log–rank test \(P = 0.001 \)
5. DISCUSSION & CONCLUSIONS

- Association ≠ causation
- \(P \)-values ≠ probability null hypothesis is true
- Absence of evidence ≠ evidence of absence, e.g. \(P=0.60 \) only tells us there is insufficient evidence for an effect, which might be due to:
 - No effect being present
 - Large variability
 - Insufficient information in the data due to small sample size
- Statistical significance ≠ clinical significance
- Study weaknesses should go beyond commenting on the sample size and observational data
CONCLUSIONS

- EJCTS & ICVTS Statistical and Data Reporting Guidelines inform authors on what statistical reviewers are looking for.
- A well analyzed study allows reviewers to focus on what is important—the science!
- It is advised that a biostatistician be involved in the analysis.
- Correct and well-reported (and correct) statistical analysis essential to getting your paper published!
ACKNOWLEDGEMENTS

Editorial Board
Friedhelm Beyersdorf (Editor-in-Chief)
Joel Dunning (Associate Editor)
Judy Gaillard (Managing Editor)
Franziska Lueder (Editorial Manager)

Assistant Editors
(Statistical Consultants)
Burkhardt Seifert
Gottfried Sodeck
Matthew J. Carr
Hans Ulrich Burger
Graeme L. Hickey

+ all other editorial members