H.R, Morton and H.B. Short

I. " Introduction

The recently developed 2-variable polynomial PK of an oriented
knot X (of one or more components), [FYHLMO], has widened the range of
invariants available which can be used to distinguish between knots, (closed
curves in space). In an attempt to investigate how far certain geomeiric
properties of K are mirrored in algebraic features of PK lwe were led to
fry to calculate P for some 48~crossing knots. The feature of
exponential growth with number of crossings of the mest direct algorithm
then led to the development of an algorithm which, for knots presented as
closed braids on at most 8 strings, grows only quadratically with the
number of crossings.

This algorithm has been implemented on the Liverpool University
IBM 3083 computer to allow interactive handling of braids on 7 strings, and
the program will deal with 8-string braids of up to 150 crossings using
less than 16 megabytes storage and under 200 seconds of computer time.

The limitation on the number of strings, although somewhat
restrictive, still allows a wide variety of interesting examples to be studied,
[m-s]. While extension to 9-string braids might be practicable, further
attempts to increase the string index of braids handled will run up against
the problem that storage requirements increase factorially with the number
of braid strings.

In this paper we describe the algorithm used for calculation, starting

with a development of the theory based on the approach of Ocneanu and




Jones [0], [J]. This is followed by an outline of the features in its
practical implementation. An annotated copy of the Pascal program is

available on request.

It should be possible to modify the approach so as to allow calculation
of Kauffman's new 2-variable polynomial FK with similar dependence on
crossing number for knots presented as closed braids with few strings, or

even in this case with a mixed braid and plat presentation.

17 Theoretical background

Computations are based on the approach of Ocneanu and Jones, o], to
the 2-variable polynomial, in which a braid f on n strings closing to
the given oriented knot K - is-represented-as pv(B) in an algebra H,

A linear trace function Tr : H + & can be found so that after
normalisation by a suitable constant p the number P(E) = _ﬁéf Tr(pv(B))
depends only on K, and not on the representing braid RB. This number

P(B) 1is a2 polynomial with integer coefficients, PK(V, z), in two parameters

+1 +1

v , 2 which are involved in the construction of H and the representation

Py, and provides the invariant of K which i=s to be calculated from a

given choice of B.

§1. The algebra H

The symmetric group Sn can be generated by the transpositions

Ti = (i, 1 +1), 1 £1i=<n-1, with relations

|1 - 5} > 1
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The braild group Bn of braids on n strings has a similar presentation,

with generators O 1<i=<n-1, represented by a braid
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l "‘[ ><:=|"'| which interchanges strings i and i + 1, and relatiomns,
id+l

2, diaj = Gjai s [i - j| > 1
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The natural homomorphism = : Bn - Sn defined by ﬂ(ci) = Ti takes a braid

B to the permutation m(R) induced on the ends of its strings.

Natural inclusions S < S B cB allow us to regard each as
n n+l, =n n+l

a subgroup of a group Scn or Bco generated by Ti or ai, 1 <1i,
respebtively, with relations as above.

We can construct, for each z ¢ @, an algebra H(z) with generators

c 1L £14, and relations

i’
1. c% =zc, + 1
i i
2. Cicj = cjci, li - j| > 1
3. = c 1 <1,

Ci+1% %41 T ©1%41%¢
a Hetke algebra, which becomes the group algebra G[Sw] when z = 0,

The subalgebra Hn' generated by ¢ - cn_l(and corresponding

17
to Sn) can be shown, following the exercises in Bourbaki, [Ba, p53-561, to
have dimension n!- as a vector space, provided that =z avoids certain
values. Choosing 2z to be transcendental (or reformulating with =z an
indeterminate) will guarantee this. In gection 4 we give an explicit

set of (n + 1)! generators for HE*l which correspond hijectively to the

elements of Sn

+1°
It follows from relation 1 that cs is invertible with 0;1 =c, -7
a linear combination of 1 and ci' Then Bn can be represented in Hn’
for any choice of v, by a homomorphism Py where pv(di) = ve,.
2, The trace function Tr.
Agsuming that dim(Hn) = n! ~ for almost all =z, [Bq], it is

then possible to construct, for any given T e &, a linear function




Tr : H + € with the following properties:
4, Tr(l) =1
5. Tr(ab) = Tr(ba)

. =TT 1 .
6 TT(W’Cn) ?(w) for al w € Hn—l

A brief sketch of the construction, given in detail by Jones in his

seminar notes [JJ, follows,

First use a dimension eount to observe that the subspace Hn—l C_Hn

has a complement Kn—l isomorphic to H with isomorphism o

2
defined by u(yl ® yz) = ylcnyz. The linear function Tr can then be

D
n-1 H Hn-l'
n—

defined inductively on Hn by its implicit definition on K as
Tr(a(yl ® yz)) = Tirr(ylyz), assuming that it is already defined on Hnél’
starting with Tr(1) = 1. Condition 6 1is then guaranteed.

Since Hn is generated as an algebra by Hn—l and c, condition 5

will follow in Hn once it is proved for b ¢ Hn—l and b = c - The

first follows readily from the definition, and the second is established by

showing that Tr(ylcnyzcn) = T;(cnylcnyz) for Y194 €'Hn—1' This in

turn follows from the decomposition H = H & K and the fact that
n-1 n-2 n-2

c and H commute.

h n-2

It follows from 4 and 6 that Tr(wy)= Tr(y)Tr(w) for all y in

the 2-dimensional subalgebra generated by cn and all w ¢ Hn—l'

Given v and =z we may choose T so that

-1 -1 -1 -1
Tr(pv(ci)) = vT = Tr(pv(ci J) = v Tr(ci ) =v (T - 2) =1u say, by taking
-1
P VB z
- - - 2
v 1—v 1-

+1 +1
For B ¢ Bn we then have Ty(pv(Bcn )) = Tr(pv(S))Tp(pv(cn )= uTr(pv(B))

§3, The polynomial PK'
We now define PK(V, z) for the oriented knot K by representing K
1-n

as the closure of an n-braid (B, n), and setting PK(v, z) = Tr(pv(B))- u

This is independent of the choice of representative B, since it is




invériént when £ is altered by any of the Markov moves
=1 . +1 . .
(B, n) ~ (viBy ~, n)y ~ (BGn ,.n+1) which generate the set of braids
. ‘ 1-
with the same closure K. The choice of normalising factor y n
guarantees independence of the second of these moves and ensures, with 4,

that PK = 1 when K 1s the unknot, while property 5 gives independence

under the first move, conjugacy in B .,
n

The Conway relation v PK+ - VPK_ = zPKo between the polynomials of
knots whose diagrams differ as shown, ‘542 : jNT ‘ 5 C ,
k¥ K x°

- . -1
then follows by presenting K+, K and Ko as the closures of Bci, Boi

-1
c, =z from 1, sco

and B respectively for some 8 ¢ Bn' Then -ci - i

-1 -
v pv(di) - vpv(oil) = g, Multiply by pV(B) to get a corresponding relation
+1
between pV(Boi } and pv(B) and hence
-1 -1
v Tr{p (Bo;)) - vTr(p (Bo, )) = zTr.(p (B)).

In later calculations we will suppose that B dis given as a word

1 +1

*1 + +
), so that p,(B) = w(e,~, ..., ¢ 1) and

1! Yy
k
DV(B) = v pl(B), where k = €(R) is the algebraic number of crossings in 8,

w(o

or equally the exponent sum of the generators in the monomial w. We can
then work almost entirely with pljB) in calculating PK.

£q, Generators of H

We shall 1list (n + 1)! generators of Hn+1 as bg, 1<g < (n+ 1)!.
Each one is pl(Bg) for some positive braid Bg’ whose corresponding

permutations ﬁ(Bg) range over all of Sn+1; in fact Bg will be the

unique positive braid of minimum length which realises the permutation w(Bg).

=1, ... = . k
For r y ++e, n put o(r, n) Gn—r+1 gn—r+2 Gn and take
¢(0, n) = 1, The braid o(r, n) then makes r crossings as illustrated in Fig. 1.
Figure 1
The braid ofr, n}
! |
{
]

Write c¢{(r, n) = pl(c(r, n)) ¢ Hn+1' { |

1 n-r+1 n+l




Now suppose that, starting with b1 =1, we have already constructed
generators bg, g < n!, for Hn' We extend this to a definitiom of bh,
h £ (n+ 1)! by writing h =g + r.(n!) with g <.n! and putting
bh = c¢(r, n) bg, The‘braids Bh can be defined similarly using o(r, n)
in place of c¢(r, n).

The fact that Hn+1 is generated by these elements bh can be seen

+1
from our subsequent calculations of bh c:,L as linear combinations of bh

and bg for some other g.

Given g 1t is easy to write down bg explicitly using the

'factorial expansion' of g. We may write g uniquely as
n :
g=1+ ). 8 (j1) where O <g <j. Then b_=-c(g, n ... clg, 1),
coRE J _ - -4 - : . g n i
j=1
n
having length 32(g) = z gj as a monomial in the algebra generators ci.
J=1
I1I The practical algorithm
When the knot K is presented as the closure of a braid B8 ¢ Bn+1
the procedure to calculate Tr(pl(B)), and hence very quickly to find
PK(V, z), has two stages, called 'multiply' and 'wrap-up’.
The braid B 1is given as a monomial w(cl, iy cn). The principal
procedure, 'multiply', expresses pl(B) = w(cl, “ ey cn), which is initially

+
a word in the algebra generators ¢ '1, as a linear combination

o
(n+1)!
= W f the vect ace generators b, f H.,. Th
o, (B L Wb, o© ctor space g g %% Far 77
g=1
d(g) -
coefficients W? = Z alg, 3j) zJ are integer polynomials, whose degree is
j=0

at most the length of the monomial w.

We could at this stage calculate Tr(pl(B)) from a list of Tr(bg)
for 1 £ g< (n+ 1)! However it proves very wasteful of space to store such
a list for n = 6, bearing in mind that 8! > 40,000, and that each Tr(bg)

requires storage of up to %nz integers. The 'wrap-up' procedure uses



instead the conjugacy property, 5, of Tr to find successively simpler
elements of H, and eventually a linear combination of =n + 1 basis elements,
with the same trace  as pl(B).

§1. 'Multiply' procedure

This procedure, to calculate a:monomial w(cl, veas cn) as a linear
combination of basis elements of H, is based on a simple calculation of
bgcril for each r. For a given choice of r the basis elements of H
can be paired so as to pair bg and bh whose permutations are related by
w(Bg)Tr = n(Bh). The elements bgci1 turn out to be always a linhear
combination of the pair bg and bh. The exact form of bgci1 can best
be described using the factorial coordinates (gl, cves gn) for g
mentioned earlier.

Lemma 1 if g then boc =b,, where b _, =g, h =g ,+ 1,

<
r gr—l
h, = otherwise. Then h_ > h and h > g.
i 8y o Pp-1 e
This lemma enables us to locate, for a given T, the elements bg
and b paired by 1., for if we find h with h_ > h then we can
h r r r-1
sod. . < = ) .
clearly find g with g, €. and bgcr bh Indeed if we work
through the basis elements in order we will always meet the element bg with

g = 8.1 before its pair.

From Lemma 1, when bg and b are paired by Tr with g < h then

h
bec =nh and b .c =Db c2 =zbec +b
gr h h™r gr g'r g
=z bh + bg.
If we are given w = whbh + wgbg with g, h as above then
we, = (wg + zwh)bh + whbg and similarly
-1
we =wb + (w - zw )b .
¥ ig b h E & (n+1)!
As a consequence, Wcr can be readily calculated from W = wgbg as a
g=1
linear combination of the basis elements, For each g simply

calculate enough factorial coordinates to decide if it is the first or second

in a pair, and then alter the coefficients of both elements of the pair as

dictated above when the first element is reached.




Given R = w(cl, caey On) € Bn+1 we can then express
(n+1)!
pl(B) = w(cl, Ve cn) € Hn+1:ﬂ1the form pl(B) = gzl wgbg by successive

+
multiplications by c“l, starting with 1 =b, ¢ H .,
r 1 n+l

The coefficients wg will be integer polynomials in =z of degree

at most the length of w. Initially take v, = 1, wg =0, g + 1. After

+
each successive multiplication by cr1 the current coefficients a(g, j) for

wg = Za(g,j)zj may be stored in an (n + 1)! x (length w) matrix, To avoid
J
repeated handling of many zero entries it is convenlent to store d(g), the

current degree of wg, which is easily estimated from the previous degree of

wg and wh. As a refinement, to save on storage in many cases, the

coefficients of each polynomial wg may be held as a linked list using only

the non-zero coefficients.

The quadratic growth of the algorithm with the length 4(w) in Bn+1'

for fixed n, can be seen from the number of operations, proportional to £(w),

needed to alter the matrix (a ,) of coefficients when w 1is altered to

gl

+1
w cC

r
Proof of Lemma 1.

Write bg =1 c(gr, r) c(gr_l, r=-1)J where J E‘Hr—l and I is the
product of c(gj jy> for j > r, Now cr commutes with J, so
]

b = - a
gcr I c(gr, r) c(gr_l, r=-1) cr J
It is then enough to show that
- = - <
cg,, r) c(g, 4, r-1)c =clg,_, +1, r) c(g, r-1) when g <g_ ..

T
Write p=1r - €., S=T = 1 - B..1° The condition g < g

r r-1
then becomes s <7p. Now for s < k £ r we have
ck. cs cs+1 e cr = cS cs+1 ‘e cr'ck—l from the relations in H.
Then c(gr, r) c(gr_l, r-1) cr = 9pcp+1 . cr.cscS+1 ‘e cr—l' cr
= CTSCS+1: e ‘Cr.cp_l e Cr_l

I

c(g,_y *.1, ¥) c(g,, r-1).




The corresponding braids are illustrated in fig. 2, showing the strings from s

to r + 1.

Figure 2

§2, 'Wrap-up' procedure

The inductive definition of the basis elements of R 1 allows them
n

to be described as c(r, n) bh’ 1 <h=nt, 0=r1r <n, When the element
(n+1)!
W= w b is rewritten by grouping together n + 1 successive blocks
g=1
of n! terms we have
n
W= I Yy .nl+h c(r, n} bh = z c(r, n) Wr
r,h r=
n!
where Wr = Z ¥ . nl+h bh € Hn-l'
h=1
For » > 2 we may write c(r, n) = cn-r+1 c(r=1, n), and use the
trace relation 5 to calculate Tr(c(r, n)wr) = Tr(c(r-1, n) Wrcn_r+1),
with W_ ¢ € H ., Then calculation of W_ ¢ by one application
r n-r+l n r n-r+l
of the multiplication proc¢edure to Wr € Hn’ whose coefficients we know
explicitly, gives an element of Hn'l' We may alter W by replacing Wr 1
b W = : : .
y r—-1 7 Wrcn~r+1 and setting Wr 0 (or in practice simply omitting Wr)

to find a new element of H having the same trace as W but using n! fewer
coefficients. Following this procedure successively from r = n down to r = 2

gives V = V0 + c(1, n)Vl with VO, Vl € Hn and TrV = TrW,; VO in fact
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remains as WO in this process.

The procedure is then repeated, with n - 1 in place of n, on VO and Vl,

) ~with the

to get U = ( te, n-1) U ) +e(d, n (Uo+ecd,n=~1)0U

UOO 11

same trace as before, and U, K6 € H .
ij n-}

S8ince c(l, r) = cr, the trace relation 6 shows that

TrU= Tr U + T{Tr U01 + Tr Ulo) + TB(Tr U..), and we can simplify the trace

00 11

calculation further by using

+ :
U00 + cn_l(U01 Ulo) + cncn_1 U11 in place of U,
Now replace each of the three elements of p. in a similar way;* ° <
n-1
and continue, to finish with an element x = Xy + CyXy F CuC X, oL cncn_1 <o CyE

with TrW = Tr x, and each xj € H1 being an integer polynomial in =z,
stored as the coefficient of bg for g=1+ 1! + 2! + ,,, + j!,

We then immediately have

Tr W =
i

Il t~7i3

x, (2) ™
0

§3. Polynomial calculations

The calculation of PK(v,z) where (B, m + 1) closes to K, then

follows readily from P (v, z) = vy

~ oy 1 .
=y BTy @™
i=0 *

i

- vc(B)—n :'L—n(1 _ V2)n— )

Z xi(z) Z

The table of PK is then calculated using the binomial expansion of (1. - vz)n_i,
which does not require large binomial coefficients, and the cecefficients of the
pelynomials xi(z), together with the algebraic crossing number E(B) which
is calculated from the initial presentation of the word B.

The Alexander and Jones polynomials are calculated from PK by the
substitution =z = vt —«;; and v = 1‘ or t respectively. Binomial
expansion of powers of =z up to the length of the initial word w are redquired

here, and can give errors where this length is > 100 arising from the
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calculation of large binomial coefficients, many of which may subsequently
cancel,

The size of the coefficients in the polynomials xi(z) themselves
becomes quite large, parficularly for positive braids, and may exceed the
largest integer permitted in the computer when the braid length is of the
order of 100, unless special arrangements are made._

§4 Reliability

A variety of calculations have been made, agreeing with independent
calculations by Thistlethwaite [T]. where these were available,

Examples with 8-string presentations have been looked at with several
properties in mind, [M-ST. Calculations using a braid B which are repeated‘
using a conjugate of £ have always given the same result (as they should),
although the route through the algorithm in the two cases will involve very
different intermediate calculations.

The most convincing evidence of the general reliability of the
implementation comes in one pair of complicated examples, also described in
[M-S], which give identical polynomials although the knots themselves differ
significantly. In this case at least the chances of a faulty implementation
producing by error the same peolynomials with over 100 non-zero coefficients
are extremely small, and our confidence in the other calculations is greatly
increased.

The only significant danger of miscalculation appears to come from
undetected integer overflow in the coefficients, and rounding error on the
large binomial coefficients needed for the Alexander and Jones polynomials.
These errors will almost inevitably show up in the Alexander polynomial
which can often be calculated quite readily by other means; a check on this
is a very good indicator that no overflow has happened in the earlier routines.

By way of illustration,

-1 -2
= [s) g o o ) a o
B.= (04 05 03 04) (95 0y 93 05) "o 0 0, 0. (04050,0) ¢ o g
-1 -1 .
o O_ O o g 0 i hown in figure 3.
(04 05 03 90 (9y Oy 93 09 ~ o5 0,0, 050, 18 show gure o




This is one of the pair referred to above, and its closure K is a

2-cable about Conway's eleven-crossing knot. In the accompanying table 1
we give the coefficients pij of the polynomial PK = I pijvlzj, with the
corresponding degrees in v and =z noted at the top and side. We also

give its Alexander and Jones polynomials in powers of V%, with negative powers
omitted in the case of the Alexander polynomial.
The other braid vy in thg-pair, which closes fo the same type of cable
about Kinoshita and Teresaka's mutant of Conway's knot is given by
= {0, 0, G, O )2 (6, o_ O )3 ¢, o, d_ o, (6, O_ 0, © -2 (o, 0, O, C ){L
Y= {0y 0y 03 9y 6 %5 97 %’ U4 93 95 94 (g 95 97 %) 2 93 91 92

¢, o, o. o, (0, G_ O O )-1 (g, 0o, 0o, ©C )_1 (o0, o, 0_ 0@ )_1 ag
4 "3 "5 4 6 5 7 6 23 1 "2 4 "3 5 4 7

This braid and £ give identical polynomials P,

Figure 3




Table 4
Braid representing a 2-cable about Conway's ll-crossing knot
A 4354435443542132-6-5-7-6-4-3-5-4-4-3—5—42132—4—3-5-42132-6-5-7—61 ek
Braid representing a similar 2-cable about Kinoshita-Teresaka knot

Wik 213221322132657665764354=6-5-7-6-2-1-3-2-2-1-3-24354-6-5-7-6
=2-1-3-2-4=3=5-4] ¥#%

The polynomial P for both of these knots

-2 0 2 4 6 8 10 12
15 -97 233 -252 101 33 -43 11 0
146 -861 1917- -1926 646 341 -344 82 2
688 -3533 7068 -6430 1815 1251 -1115 256 4
1831 -8531 15171  -12175 2879 2352 -1982 455 6
2921  -13081 20828  -14371 2800 2547 -2115 471 8
2870  -~13145 19014  -10997 1714 1656 -1389 277 | 10
1757 -8781 11703 -5514 656 651 -562 90 | 12
. 667 -3908 4850 -1790 151 151 -136 15 | 14
152 -1142 1330 -361 19 19 -18 1| 16
19 -210 231 -41 1 1 -1 18
1 -22 23 -2 20
-1 1 22
Conway Polynomial Alexander Polynomial Jones Polynomial
1¢ 0) -1( 0) 1( -24) 1( 12)
1C 2) 1( 2) -2( -22) 2( 14
2( -18) -6( 16)
-1( -16) 5( 18)
-2( -12) 3¢ 20)
1( -10) -8( 22)
5C -8) 3( 24)
-5( =6) 4( 26)
-2( -4) -3( 28)
70 -2) -1(  30)
-3C 0) 20 34)
-2(  2) -2( 38)
3C &) 1( &40)
-1(  8)

-1( 10)
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