Banks-Zaks fixed point analysis in momentum subtraction schemes



Gracey, JA ORCID: 0000-0002-9101-2853 and Simms, RM
(2015) Banks-Zaks fixed point analysis in momentum subtraction schemes. PHYSICAL REVIEW D, 91 (8). 085037-.

[thumbnail of qcdbzmom.pdf] Text
qcdbzmom.pdf - Unspecified

Download (285kB)

Abstract

We analyse the critical exponents relating to the quark mass anomalous dimension and beta-function at the Banks-Zaks fixed point in Quantum Chromodynamics (QCD) in a variety of representations for the quark in the momentum subtraction (MOM) schemes of Celmaster and Gonsalves. For a specific range of values of the number of quark flavours, estimates of the exponents appear to be scheme independent. Using the recent five loop modified minimal subtraction (MSbar) scheme quark mass anomalous dimension and estimates of the fixed point location we estimate the associated exponent as 0.263-0.268 for the SU(3) colour group and 12 flavours when the quarks are in the fundamental representation.

Item Type: Article
Additional Information: 33 latex pages, 25 tables, anc directory contains txt file with electronic version of renormalization group functions
Uncontrolled Keywords: hep-ph, hep-ph, hep-lat
Depositing User: Symplectic Admin
Date Deposited: 11 Apr 2016 12:13
Last Modified: 16 Dec 2022 14:44
DOI: 10.1103/PhysRevD.91.085037
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3000200