Decadal evolution of ocean thermal anomalies in the North Atlantic:

the effect of Ekman, overturning and horizontal transport

RICHARD G. WILLIAMS,1 † VASSIL ROUSSENOV,1

1. School of Environmental Sciences, University of Liverpool, Liverpool, UK

DOUG SMITH2 AND M. SUSAN LOZIER3.

2. Hadley Centre, Exeter, UK and 3. Duke University, North Carolina, USA

ABSTRACT

Basin-scale thermal anomalies in the North Atlantic, extending to depths of 1 to 2 kilometres, are more pronounced than the background warming over the last 60 years. A dynamical analysis based on reanalyses of historical data from 1965 to 2000 suggests that these thermal anomalies are formed by ocean heat convergences, augmented by the poorly known air-sea fluxes. The heat convergence is separated into contributions from the horizontal circulation and the meridional overturning circulation (MOC), the latter further separated into Ekman and MOC-Ekman cells. The subtropical thermal anomalies are mainly controlled by wind-induced changes in the Ekman heat convergence, while the subpolar thermal anomalies are controlled by the MOC-Ekman heat convergence; the horizontal heat convergence is generally weaker, only becoming significant within the subpolar gyre. These thermal anomalies often have an opposing sign between the subtropical and subpolar gyres, associated with opposing changes in the meridional volume transport driving the Ekman and MOC-Ekman heat convergences. These changes in gyre-scale convergences in heat transport are probably induced by the winds, as they correlate with the zonal wind stress at gyre boundaries.

† Corresponding author address: Richard G. Williams, Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK.

E-mail: ric@liv.ac.uk
1. Introduction

Over the last few decades, there has been a significant warming of the ocean over the globe, which is particularly pronounced over the North Atlantic (Levitus et al. 2012). Regional variability in heat storage, however, is more pronounced than the global signal and involves either an opposing pattern of warming and cooling between the subpolar and subtropical gyres, or the same signed response over the entire basin (Fig. 1). These thermal anomalies persist for several years to decades and extend over the thermocline (the upper 1 to 2 km of the ocean); deeper anomalies might have also occurred, but are not detectable in the sparser observations at depth.

In this study, we explore whether the decadal changes in ocean heat storage in the North Atlantic are controlled by changes in ocean heat convergence, rather than by air-sea heat fluxes. The heat convergence is achieved via a combination of vertical and horizontal cells (Bryden and Imawaki 2001): the vertical cell, referred to as the meridional overturning circulation (MOC), involves a northward transfer of warm upper waters and a southward return of cooler deeper waters, while the horizontal cell involves a northward transfer of warm waters and southward return of cooler waters at the same depth. To gain insight into how the thermal anomalies are formed, we identify the explicit wind-driven contribution, separating the heat transfer by the vertical cell into Ekman and MOC-Ekman components. This separation makes more explicit the subtropical overturning cell, as discussed by Talley (1999), Klinger and Marotzke (2000) and Czaja and Marshall (2006).

The paper is set out as follows: thermal anomalies over the subtropical and subpolar latitudes are diagnosed from historical data in the North Atlantic (Section 2); the link between the evolution of thermal anomalies and the meridional convergence of heat transport is assessed by dynamically assimilating analyses of temperature and salinity data into a circulation model from 1965 to 2010 (Section 3); the heat transport is partitioned into horizontal and vertical cells with the latter further separated into an Ekman cell and a MOC-Ekman cell (Section 4); the temporal and spatial character of the different heat transport components are identified, as well as the effect of heat convergence anomalies in the subtropical and subpolar gyres (Section 5); and finally, the wider implications of the study are discussed (Section 6).
2. Historical heat content changes

Historical temperature and salinity changes in the North Atlantic Ocean are examined using a global analysis of the available hydrographic data (Boyer et al. 2006) and recent Argo data from the Met Office from 1950 to 2010 (Ingleby and Huddleston 2007; Smith and Murphy 2007). The analysis fills in data sparse regions by extrapolating from the observational data using a covariance field from the Hadley Centre model, where the covariance is based on repeated model ensemble integrations with perturbed physical parameters to gain additional skill (Smith and Murphy 2007; Smith et al. 2010); for further details and sensitivity to Argo, see the Appendix. These temperature reconstructions are broadly similar, though smoother, to those constructed from the HYDROBASE data set based solely on hydrographic data, reported for two periods, 1950-1970 and 1980-2000, by Lozier et al. (2008).

Over the North Atlantic, basin-integrated thermal anomalies over the upper 3.5 km reverse in sign over the temporal record (Fig. 1a): cool anomalies occur from 1950 until the early 1960s and during the mid 1990s, separated by warm anomalies from the mid 1970s to 1990, and a warm anomaly from 1995 to 2010. These anomalies extend from the surface to depths of 1 to 2 km within the thermocline and are not a simple reflection of the sea surface temperature signal, suggesting that advection is playing a key role in determining their distribution.

While there are these decadal changes with opposing signs over the entire North Atlantic, there are also often opposing changes between the subtropical and subpolar gyres (Fig. 1b,c): there is a cool anomaly in the subtropical gyre and a slightly warm anomaly in the subpolar gyre from 1955 to 1970, which switches to a warm anomaly in the subtropical gyre and a cool anomaly in the subpolar gyre from 1985 to 1995. There are also periods where a single-signed anomaly extends over the entire basin, such as a warm anomaly spreading over the entire basin from 1995 to 2010. Our aim is now to assess how these thermal anomalies might be formed and address why there might be an opposing response in the subtropical and subpolar gyres.
3. Heat balance in the subtropical and subpolar North Atlantic

The mechanisms by which the thermal anomalies evolve, defined in terms of a depth and zonal integral and depicted in Fig. 2a, are now assessed in terms of their heat budget. Ignoring diffusive transfers and the benthic heat flux, there is a three-way balance between the tendency in the depth and zonally-integrated ocean heat content, the meridional convergence in ocean heat transport and the air-sea heat flux,

\[
\int_{-D}^{0} \frac{\partial \theta}{\partial t} \, dz + \int_{-D}^{0} \frac{\partial}{\partial y} v \theta \, dz = \frac{\mathcal{H}}{\rho_0 C_p},
\]

where \( \theta \) is the potential temperature, \( D \) is the depth of the ocean, \( v \) is the meridional velocity, \( \mathcal{H} \) is the surface heat flux, and \( \rho_0 \) and \( C_p \) are the reference density and heat capacity; subsequently, we refer to the depth and zonally-integrated heat content, \( Q \equiv \rho_0 C_p \int_{-D}^{0} \theta \, dz \), and the meridional divergence in heat transport, \( \nabla \cdot (VQ) \equiv \rho_0 C_p \int_{-D}^{0} \frac{\partial}{\partial y} v \theta \, dz \), and the overbar with superscript \( x \) represents a zonal integral.

In order to identify the relative importance of ocean heat transport for the evolution of thermal anomalies, we perform a dynamical assimilation of the gridded historical temperature and salinity data from the Met Office, similar in approach to previous diagnostic studies for the North Atlantic (Mellor et al. 1982; Greatbatch et al. 1991). A global version of the MIT circulation model (Marshall et al. 1997) is employed with a horizontal resolution of 1° with 23 levels in the vertical, spaced 10 m apart at the surface to 500 m at depth. For each separate year, the circulation model is initialised with the global analysis of temperature and salinity data from the Met Office, then integrated forward with monthly wind forcing from NCEP allowing a dynamically-adjusted velocity, temperature and salinity to form. There is only a slight offset between the zonally and depth-integrated heat content from this assimilation process and that from the original temperature analyses (Fig. 2a, dashed and full lines). The changes in heat transport are evaluated from the product of the dynamically-adjusted velocities and temperatures over an annual cycle and the changes in ocean heat content from changes in the dynamically-adjusted temperatures. This model assimilation includes an initial 1 month spin up and then a further 12 months integration to cover an annual cycle, so that diagnostics are applied for months 2 to 13; discussed further in the Appendix.

The dynamical adjustment does not include explicit surface heat or freshwater fluxes, but
includes a weak relaxation to the initial density on a timescale of 36 months throughout the water column. This relaxation minimises the model drift away from the initial state, but is sufficiently weak to avoid generating spurious depth-integrated circulation from bottom flows interacting with topography.

Our model assimilations include two approximations that merit further discussion. The model assimilation experiments are performed at a non-eddy permitting resolution of $1^\circ$, so that the representation of the Gulf Stream is relatively coarse and leads to horizontal errors in the distribution of the thermal anomaly. Our focus though is on the zonally and depth-integrated thermal anomaly across each of the gyres, which is probably less sensitive than the local anomalies to model resolution. The second approximation is that our model assimilation experiments are performed annually with the input data from annual averages of monthly reanalyses from the Met Office. Since our focus is on explaining the decadal evolution of the thermal anomalies, we believe that this annual resolution is sufficient.

a. Comparison of heat content tendency and convergence of heat transport

Returning to the depth and zonally-integrated heat balance (1), the tendency of the thermal anomalies and convergence of the meridional heat transport anomalies are separately evaluated over the subpolar latitudes, $45^\circ$N to $75^\circ$N, and the tropical and subtropical latitudes, $5^\circ$N to $45^\circ$N. The volume-integrated anomalies in the heat content tendency and convergence in heat transport typically range from $\pm 100$ TW over the subtropical and $\pm 50$ TW over the subpolar latitudes (Fig. 2b,c), which equate to equivalent surface heat fluxes per unit horizontal area of $\pm 10$ W m$^{-2}$ and $\pm 5$ W m$^{-2}$ respectively. In comparison, the model assimilation includes a relatively weak relaxation to the initial density, providing equivalent heat flux anomalies with a variability of $0.7$ W m$^{-2}$ (Fig. 2b,c dashed line), acting slightly to dampen the effect of the convergence in heat transport.

Over much of the record, there is reasonable agreement between the heat content tendency and heat transport convergence, particularly over the subtropics from 1965 to 1997 (Fig. 2b) and the subpolar latitudes from 1968 to 2005 (Fig. 2c). This agreement is supported by a positive
correlation between the tendency in heat content and the convergence in heat transport, reaching
0.35 over the subtropics and 0.59 over the subpolar latitudes, significant at 99% confidence limits
(Table 1). However, there are periods where there is a mismatch between these terms, after 2000
in the subtropics and close to 1965 in the subpolar latitudes (Fig. 2b,c) implying that air-sea fluxes
become important or there are errors in closing the heat budget (1).

The sensitivity in our analyses to the data inputs is assessed by repeating our dynamical as-
similations with perturbed temperature data. The perturbations are based on the standard errors
from the historical data, which are applied to five year periods centered on 1985 or 2000 for the
subtropics and subpolar domains (Appendix). These perturbation experiments reveal sensitivities
for the heat content tendency and heat convergence reaching typically ±10 TW (Table 2; Fig. 2b,c,
shading), which are significant when the heat convergences are small, such as close to 2000. There
are also additional systematic errors in our methodology and model circulation, not captured by
this sensitivity analysis.

b. Comparison of heat content tendency and air-sea heat fluxes

Reanalysis estimates of the net surface heat flux from ECMWF and NCEP vary by typically
±15 W m⁻² over the subtropical gyre and ±7 W m⁻² over the subpolar gyre (Fig. 3a,b). This
air-sea contribution is often much larger than the mismatch between the sum of the heat content
tendency, the heat transport convergence and interior density relaxation (Fig. 3, black and dashed
lines). The correlation between the heat content tendency and air-sea fluxes is always weaker than
that between the heat content tendency and heat convergence (Table 1), only becoming significant
over the subpolar gyre for the air-sea fluxes from ECMWF. The correlation between the heat content
tendency and the sum of the heat convergence and air-sea fluxes from ECMWF are significant for
both the subtropical and subpolar gyres (Table 1), at confidence levels of greater than 98% and
99% respectively.

Air-sea fluxes are probably much more important in forming thermal anomalies on shorter
timescales, such as in how seasonal changes in ocean heat content outside the tropics are explained
by air-sea fluxes (Gill and Niller 1973) and in how interannual changes in North Atlantic heat
storage are explained by a combination of advection and air-sea fluxes (Piecuch and Ponte 2012).

On decadal timescales, the air-sea fluxes are unable to explain the thermal anomalies for a variety of reasons: (i) air-sea fluxes contain significant errors in their components, for example, errors in latent heat flux alone over the Labrador Sea from ECMWF and NCEP reach 10% and 27% (Renfrew et al. 2010); (ii) there is often a significant mismatch between the ECMWF and NCEP reanalyses (Fig. 3, green and blue lines); and (iii) the air-sea flux signals are larger than the uncertainties arising from our model experiments with perturbed temperatures (Fig. 3, grey shade). Thus, while we cannot exclude the influence of air-sea fluxes on the formation of thermal anomalies, we subsequently focus on the role of ocean heat transport.

4. Mechanisms of heat transport

Given our view that the tendency in the thermal anomalies is broadly due to the convergence in ocean heat transport (Fig. 2b,c), we now consider the mechanisms by which these changes are achieved.

a. Separating the heat transport into different components

The meridional heat transport is accomplished via a vertical cell, referred to as the meridional overturning circulation (MOC), and a horizontal cell involving the horizontal departures in the flow,

\[
\rho_0 C_P \int_{-D}^{0} \overline{v' \theta^r} \, dz = \rho_0 C_P \int_{-D}^{0} \overline{v' \theta^r} \, dz + \rho_0 C_P \int_{-D}^{0} \overline{v' \theta^r} \, dz,
\]

where the product \( \rho_0 C_P \) is taken as a constant of \( 4.09 \times 10^6 \text{ J K}^{-1}\text{m}^{-3} \) from a basin average, the prime represents a horizontal deviation from the zonal integral across the basin, and the zonal integrals for \( \overline{v^r} \), \( \overline{\theta^r} \), and the horizontal heat flux, \( \overline{v' \theta^r} \), all vary with depth.

The MOC results from both Ekman and geostrophic flows (see later Fig. 5a). Here we choose to separate the direct effect of the winds on the MOC contribution by defining the Ekman meridional
heat transport as
\[ \rho_0 C_P \int_{-h_{ek}}^{0} \bar{v}_{ek} \bar{\theta}^z \, dz + \rho_0 C_P \int_{-D}^{-h_{ek}} \bar{v}^r \bar{\theta}^z \, dz, \] (3)

involving the heat transfer from the Ekman flow, \( v_{ek} \), in the surface Ekman layer of thickness \( h_{ek} \) and the deeper return flow, \( v_r \), varying with depth and extending to the sea floor, \( D \). The volume flux, \( V_{ek} \), carried in the surface Ekman layer is equal and opposite to the return volume flux below the Ekman layer, \( V_{ek} \equiv \int_{-h_{ek}}^{0} v_{ek} \, dz = - \int_{-D}^{-h_{ek}} v_r \, dz \), so that the Ekman meridional heat transport can be written more concisely as
\[ \rho_0 C_P \bar{v}_{ek}^z (\bar{\theta}_{ek}^z - \bar{\theta}_{r}^{z,z}), \] (4)

here \( \theta_{ek} \) and \( \theta_r \) are the potential temperatures of the Ekman layer and return flow, and \( \bar{\theta}_{r}^{z,z} \) includes averaging the temperature of the return flow both zonally and with depth below the Ekman layer, such that \( \bar{\theta}_{r}^{z,z} \equiv \int_{-h_{ek}}^{-D} v_{r} \bar{\theta}^z \, dz / \int_{-h_{ek}}^{-D} v_{r}^z \, dz \).

The total meridional heat transport can then be rewritten in terms of three contributions, combining (3) with the definition of the Ekman meridional heat transport (4), as
\[ \rho_0 C_P \int_{-D}^{0} v_{r} \bar{\theta}^z \, dz = \rho_0 C_P \left\{ \left( \int_{-D}^{0} \bar{v}^{r} \bar{\theta}^z \, dz - \bar{V}_{ek}^z (\bar{\theta}_{ek}^{z} - \bar{\theta}_{r}^{z,z}) \right) + \bar{V}_{ek}^{z}(\bar{\theta}_{ek}^{z} - \bar{\theta}_{r}^{z,z}) + \int_{-D}^{0} v_{r} \bar{\theta}^z \, dz \right\}. \] (5)

This decomposition of the meridional heat transport is attractive as each of the components are expected to vary in a different manner. The Ekman cell measures the direct effect of the winds, particularly varying over the gyre scale. Instead, the MOC-Ekman cell is associated with west-east contrasts in density across the basin (Marotzke et al. 1999), affected by basin-scale contrast in buoyancy forcing and indirectly by wind-driven changes in the circulation.

b. Different choices for the Ekman return cell

The separation of the heat transport (5) into MOC-Ekman, Ekman and horizontal components is handicapped by the ambiguity in determining the depth structure of the Ekman cell, expressed in terms of the temperature of the return flow, \( \theta_r \) in (4). If this term is ignored by setting \( \theta_r = 0 \), then the Ekman heat flux through the section has an associated mass flux and its value is sensitive to
the choice of the temperature units. Instead, we choose to separate the heat transport components and solve for the Ekman cell using a mass-conserving framework.

The appropriate choice for the Ekman return cell and associated temperature depends on the timescale of interest. Idealised wind-driven experiments suggest that a sudden increase in winds induces a rapid spin up of the entire water column, involving barotropic Rossby waves propagating westward across the basin on the timescale of several days, followed by slower, baroclinic Rossby waves crossing the basin on the timescale of several years (Anderson and Gill 1975).

Thus, there are two plausible limits to consider for the Ekman return flow. Firstly, on timescales of a few days or weeks, the Ekman flow can be assumed to be returned uniformly with depth given the spin up of the entire water column (Jayne and Marotzke 2001); this limit is applied in interpreting the observational records at the RAPID 26.5°N array (Cunningham et al. 2007; Kanzow et al. 2007). Secondly, on timescales of several decades, the Ekman flow over the subtropical gyre can be assumed to be returned within the upper thermocline along subducted isopycnals; this idealised thermocline view has been applied in diagnosing the subtropical overturning cell from observations (Talley 1999) and in providing a closure for its strength (Klinger and Marotzke 2000).

For our study, we are interested on timescales of several years to decades, so we choose to solve for the Ekman cell, rather than assume its depth structure. The Ekman circulation and its return flow are diagnosed in twin general circulation experiments involving an assimilation of the density data, either including or excluding wind forcing. In the experiment with wind forcing, the dynamical adjustment includes the surface Ekman response and a deeper return flow, whereas the accompanying experiment without winds automatically omits the Ekman cell.

An Ekman streamfunction is diagnosed from the difference in the zonal integral of the velocities between the wind and no wind experiments, revealing two overturning cells centered on the boundary of the subtropical gyre: surface flow directed northward at 15°N and southward at 45°N (Fig. 4). The southern Ekman cell becomes more surface intensified with time (Fig. 4a-c). In broad agreement, Klinger and Marotzke (2000), using a similar approach with model experiments integrated to a steady state, obtain similar Ekman cells that are more surface intensified, extending to depths of 200 m and the upper 1 km on the southern and northern flanks of the subtropical gyre respectively.
In our subsequent diagnostics for the heat transport and its components, the model experiments include an initial spin up of 1 month plus an annual cycle, so that the Ekman cell is estimated from an annual average of the zonal integral of the velocity differences from months 2 to 13 (Fig. 4d), since our interest ranges from interannual to decadal changes in heat transport.

5. Partitioning of heat transport

The heat transport is next partitioned into its separate components for a climate mean extending from 1965 to 2010, and then the effect of these components in forming the subtropical and subpolar thermal anomalies is assessed.

a. Climate mean

The MOC, defined by the meridional volume transport above 1300 m, is directed northward throughout the basin and reaches 17.5 Sv between 40°N and 50°N (Fig. 5a). The MOC includes a surface Ekman transport, from the zonal integral of $-\tau_x/(\rho f)$, and a geostrophic transport, where the surface Ekman transport is northward reaching 15 Sv at 15°N and southward reaching $-3$ Sv from 35°N to 55°N.

The total heat transport (3) from the MOC and horizontal transfer reaches 0.8 PW at 15°N and decreases to 0.7 PW at 40°N (Fig. 5b, black line). This estimate is relatively weak compared with observational estimates of 1.3±0.3 PW at 26°N from section data (Hall and Bryden 1982). Our underestimate of heat transport probably reflects the model horizontal resolution of 1°, which underestimates the strength of the Gulf Stream and its accompanying heat transport, rather than any missing mesoscale eddy transfer of heat; this view is supported by eddy-resolving model experiments at 1/12° that yield a poleward ocean heat transport of 1.2 PW of which the eddies only directly transfer $-0.1$ PW (Rhein et al. 2011).

The heat transport by the MOC provides the dominant contribution over most of the North Atlantic (Fig. 5b, blue line), while the heat transport by the horizontal cell only becomes important over the subpolar latitudes, reaching 0.35 PW at 55°N (Fig. 5b, red line).

The heat transport by the overturning cell (5) is further separated into contributions from the
Ekman cell and the MOC-Ekman cell: the Ekman heat transport (4) provides a large northward heat transport of 0.7 PW at 13°N and −0.3 PW at 37°N (Fig. 5c, green line), while the heat transport by the MOC-Ekman cell has a local maximum within the subtropical gyre reaching 0.95 PW at 37°N (Fig. 5c, blue line).

Hence, the meridional heat transport for the climate mean is achieved via three different components: the Ekman cell dominates in the tropics, the MOC-Ekman in the mid-latitudes and the horizontal cell in the high latitudes.

The relative importance of each heat transport component alters slightly when considering the temporal variability of these components. The standard deviation of the heat transport reaches 9% of the climate mean, 70 TW in the tropics (Fig. 5d, black line), and is mainly due to variations in the Ekman component. Piecuch and Ponte (2012) obtain broadly similar interannual variations in heat transport (10 to 20% of their climate mean).

b. Spatial pattern of the heat transport variability

The thermal anomalies change in sign over the North Atlantic between the subtropical and subpolar gyres from 1965 to 2010 (Figs. 1 and 6a). There is a cold anomaly over the subtropics and warm anomaly over the subpolar gyre up to 1975, then a weaker warm anomaly in the subtropics and a cold anomaly in the subpolar up to 2000. In turn, there is a broadly similar pattern in the northward Ekman heat transfer: a negative anomaly over the subtropics and positive anomaly over the subpolar gyre up to 1970, then a generally positive anomaly over the subtropics and more negative anomaly over the subpolar gyre (Fig. 6b).

In contrast, the MOC-Ekman heat transfer often has the opposing sign to that of the Ekman heat transfer, and is generally enhanced in the subtropics up to 1970 and then weakened up to 1995 (Fig. 6c). There are also periods when the MOC-Ekman heat transport anomaly extends over much of the basin, such as the negative anomaly from 1973 to 1980 and the positive anomalies from 1995 to 2000 and 2005 to 2010.

The horizontal heat transfer is much weaker than the Ekman and MOC-Ekman heat components over most of the basin, but provides a more significant contribution north of 60°N (Fig. 6d).
horizontal heat transfer changes sign frequently across the basin, particularly vanishing across 45°N (the subtropical-subpolar boundary), as well as within the gyre.

In summary, each of the heat transport components has a different character: the Ekman heat transport peaks at low latitudes and its anomaly changes sign across the subtropical-subpolar boundary; the MOC-Ekman heat transport peaks at the mid latitudes and its anomaly either has a basin-wide response or a gyre-response, the latter often in the opposite sense to the Ekman response; and the horizontal heat transport peaks at high latitudes and has an opposing pattern within and between the gyres.

The relationship between the Ekman and MOC-Ekman transfer is next addressed, their effect on the gyre-integrated thermal anomalies revisited, and then their connection to the large-scale winds discussed.

c. Variations in the Ekman and MOC-Ekman volume and heat transfer

Our analysis of the heat transports over the basin reveals the larger contributions of the Ekman and MOC-Ekman heat transfer, compared with the smaller contribution from horizontal transfer. While the Ekman and MOC-Ekman contributions are noisy, they often have a different response over each gyre.

To gain some insight into these gyre-scale variations, consider how the meridional volume transport varies for different depth ranges. Over the upper 100 m, there are interannual and decadal variations in the volume transport (Fig. 7a), which are much larger in magnitude at 5°N than at 45°N, broadly following that expected from the wind-driven Ekman response (Fig. 7a, dashed line).

The convergence in the volume transport over each gyre (Fig. 7b) is dominated by the transport on its equatorial side, so that the subtropical convergence broadly resembles the volume transport at 5°N and the subpolar convergence resembles that at 45°N. The convergence in Ekman heat transport (Fig. 7c) varies in a broadly similar manner to the convergence in volume transport over the upper 100 m. This Ekman heat convergence has opposing signs between the subtropical and subpolar gyres: providing a subtropical loss of heat in 1960 and a gain of heat in 1985, contrasting with a weaker subpolar gain in heat in 1970 and a loss in heat in 1990.
This gyre connection between convergences of volume and heat transport carries over into the thermocline. For example, over a depth range from 100 m to 1300 m, the volume transport anomalies at 5°N and 45°N are similar in magnitude and often of opposing sign (Fig. 8a), leading to the convergences in volume transport having opposing signs in the subtropics and subpolar gyres (Fig. 8b): in the subtropics, a positive anomaly in 1960 changing to a negative anomaly in 1995, and in the subpolar, a negative anomaly in 1970 changing to a positive anomaly in 1995. The resulting convergence in MOC-Ekman heat transport (Fig. 8c) closely follows the convergence in volume transport from 100 m to 1300 m: providing a subtropical gain in heat in 1965 and a loss of heat in 1995, contrasting with a subpolar loss of heat in 1965 and a gain in heat in 1995.

In summary, variations in volume convergence are driving the changes in heat convergence, which often have opposite signs in each gyre. Subtropical anomalies in Ekman heat convergence are typically a factor of 3 larger than the subpolar anomalies, while the anomalies in MOC-Ekman heat convergence are broadly comparable over the subtropical and subpolar gyres.

d. Thermal anomalies in the subtropical and subpolar gyres

The evolution of the depth and zonally-integrated thermal anomalies, \( Q'(y, t) \), over the subtropical and subpolar gyres (Fig. 9, black line) are now reconsidered in terms of the time integral of the air-sea fluxes and the different heat transport components. A long term heat balance is assumed to occur between the climate mean air-sea flux and the divergence of the climate mean heat transport,

\[
\overline{\mathcal{H}} = \rho_0 C_P \int_D \overline{\nabla \cdot (V \mathbf{Q})_t} \, dy, 
\]

where the overbar with \( t \) represents a time average. The thermal anomalies are controlled by departures from (6), such that long term thermal anomalies, \( Q'(y, t) \), from 1965 onwards are given by the time integral of the convergence of the heat transport anomalies and air-sea flux anomalies, defined by

\[
Q'(y, t) = Q'(y, 1965) - \int_{1965}^t \nabla \cdot (V \mathbf{Q})' \, dt + \int_{1965}^t \mathcal{H}' \, dt, 
\]

where the prime now denotes a departure from a time and zonal mean.

In the subtropics, there is a cool anomaly from 1965 to 1975, then changing to a warm anomaly.
that strengthens after 2000 (Fig. 9a, black line). The formation of the warm anomaly is not explained by the time integral of air-sea heat flux anomalies ($H'$ term in (7)) from NCEP, but is closer to that suggested from ECMWF (Fig. 9a, blue and green lines).

In the subpolar gyre, there is a warm anomaly up to 1973, changing to a cold anomaly and then returning to a warm anomaly after 2000 (Fig. 9c, black line). This warming trend is not explained by the time integral of the air-sea heat fluxes anomalies from either NCEP or ECMWF (Fig. 9c, blue and green lines).

Instead the formation of the thermal anomalies is more generally explained by the time integral of the convergence of heat transport anomalies ($-\nabla \cdot (VQ)'$ term in (7)) (Fig. 9b, d, red line). The time-integrated heat convergence is achieved primarily by the Ekman transfer in the subtropical gyre (Fig. 9b, green line), augmented by the air-sea heat fluxes from ECMWF, and the MOC-Ekman transfer in the subpolar gyre (Fig. 9d, blue line). Thus, the contrasting thermal anomalies in the subtropical and subpolar gyres are primarily induced by convergences of different heat transport components.

e. Correlations between the local heat content tendency and the heat convergences

To gain insight into the spatial pattern of how the thermal anomalies respond to heat transport, the detrended local heat content tendency is correlated with the detrended area-integrated heat convergence for each gyre; in interpreting these correlation maps, some caution is required over the extension of the Gulf Stream, where the reliability of the model assimilation is lacking due to the coarse resolution.

Over the central subtropical gyre (5°N to 45°N), there is a high correlation between the local heat content tendency and the heat convergence anomalies (Fig. 10a), the latter primarily created by Ekman heat convergence (Fig. 10b) augmented by the MOC-Ekman heat transport on the northern flank of the subtropical gyre (Fig. 10c). The contribution of the horizontal heat convergence is relatively unimportant over the subtropical gyre.

Over the subpolar gyre (45°N to 75°N), there is a high correlation between the detrended local heat content tendency along the northern rim of the subpolar gyre and the heat convergence over the
entire subpolar gyre (Fig. 10a). This correlation pattern reflects the contribution of the horizontal heat supply along the northern rim of the subpolar gyre (Fig. 10d) augmented by the Ekman transfer over the intergyre boundary and the MOC-Ekman heat convergence over the eastern side of the subpolar gyre (Fig. 10c).

In summary, the local heat content tendency has different correlation patterns with the separate components of the heat transport convergence, consistent with the view that each component has a particular spatial imprint: the wind-driven Ekman convergence particularly affecting the central part of the subtropical gyre and the MOC-Ekman and horizontal convergences affecting the eastern and northern sides of the subpolar gyre.

f. Correlations with atmospheric winds and atmospheric modes

The variability of the ocean heat content anomaly and its tendency, and convergence in heat transport anomalies are now connected to the large-scale wind forcing. For the subtropics, there is a negative correlation between the detrended anomalies in gyre-integrated heat content and wind forcing (Table 3), $-0.37$ for the area-integrated wind-stress curl and $-0.43$ for the zonally-integrated wind stress on the equatorial flank of the gyre (at $10^\circ$N to $20^\circ$N). Likewise there is a negative correlation between the tendency of the thermal anomaly and the wind stress on the equatorial flank of $-0.39$. This relationship is consistent with the large negative correlations between the subtropical heat convergence and wind forcing, $-0.60$ for wind-stress curl and $-0.79$ for the wind stress on the equatorial flank. This latter connection is mainly due to the automatic link between the wind stress and the convergences in the MOC and Ekman heat transport with correlations of $-0.76$ and $-0.74$, augmented by a negative correlation with the convergence in horizontal heat transport of $-0.44$. Hence, a strengthening in the easterly Trade winds (more negative) is associated with an enhanced Ekman convergence of heat over the subtropics, acting to increase the subtropical heat storage.

For the subpolar gyre, there are also negative correlations between the gyre-integrated heat content and wind forcing, $-0.54$ for wind-stress curl and $-0.78$ for the zonally-integrated wind stress on the subtropical/subpolar boundary (at $45^\circ$N to $55^\circ$N). Likewise there is a weaker negative cor-
relation between the tendency of the thermal anomaly and wind stress on the intergyre boundary of $-0.35$. This relationship is also consistent with the negative correlations between the subpolar heat convergence and wind forcing, $-0.55$ for wind-stress curl and $-0.69$ for the zonally-integrated wind stress on the intergyre boundary. Again, there is an automatic negative correlation between the wind stress and the convergence in Ekman heat transport of $-0.80$, which is enhanced by a negative correlation with the horizontal heat convergence of $-0.69$. Thus, an increase in the westerlies is associated with both reduced Ekman and horizontal heat convergences over the subpolar gyre, acting to reduce the subpolar heat storage.

The correlation with the atmosphere can also be viewed in terms of the two leading empirically orthogonal modes of variability over the basin, the North Atlantic Oscillation (NAO) (Hurrell 1995) and the East Atlantic (EA) pattern (Barnston and Livezey 1987); for winter, a positive NAO represents a larger pressure contrast between Iceland/Greenland and the Azores, and a positive EA represents a lower pressure over the central part of the North Atlantic (40°W, 50°N). For the subtropics, a more positive NAO is associated with increased Ekman, horizontal and MOC heat convergences (with correlations of 0.71, 0.68 and 0.63 respectively) and a similar signed, weaker response with the EA (with correlations of 0.49, 0.33 and 0.29) (Table 3). For the subpolar gyre, a more positive NAO is correlated with a decrease in the horizontal and Ekman heat convergences (with values of $-0.86$ and $-0.54$), as well as a more positive EA with a decrease in the Ekman heat convergence (with a value of $-0.52$); the MOC or MOC-Ekman does not significantly correlate with the NAO, and MOC only correlates weakly and negatively with the EA.

These correlations can be understood by a more positive NAO or EA being associated with a strengthening in the easterly Trade winds on the equatorial flank of the subtropical gyre and an increase in the northward Ekman heat transport, which then provides a greater heat convergence in the subtropical gyre. Conversely, a strengthening in the westerly winds on the subtropical/subpolar boundary leads to an increase in the southward Ekman transport and a decrease in the heat convergence in the subpolar gyre. This Ekman response is often reinforced by the changes in the horizontal heat convergence.

In summary, the subtropical and subpolar thermal anomalies both negatively correlate with the wind stress on their equatorial boundary: subtropical heat content increases with more easterly
Trade winds and subpolar heat content decreases with stronger westerlies.

6. Discussion

The North Atlantic experiences significant basin-wide changes in surface temperature which are generally viewed as being controlled by the meridional overturning circulation. Our diagnostics of ocean heat content over the last 60 years emphasise though how thermal anomalies often have an opposing sign in the subtropical and subpolar gyres. These thermal anomalies are not restricted to the sea surface and extend to depths of one to two kilometres into the thermocline, implying an advective origin. In order to understand how these thermal anomalies evolve on decadal timescales, historical annual temperature and salinity data from 1965 to 2010 are dynamically assimilated into a $1^\circ$ resolution MIT general circulation model. While this approach ignores seasonality and finer-scale circulations, our model diagnostics suggest that these thermal anomalies are controlled primarily by changes in ocean heat convergence, augmented by the poorly known air-sea fluxes.

At first sight, the gyre-scale contrast in the thermal anomalies appears at odds with the canonical view of the meridional overturning circulation providing a basin-wide response. To unravel this conundrum, we separate the meridional heat transport into different components in a mass-conserving framework: a wind-driven Ekman heat transport, a MOC-Ekman heat transport and a horizontal heat transport. Each component provides a dominant contribution over a different region to the meridional heat transport: for a climate mean, the Ekman response dominates at low latitudes, the MOC-Ekman response at mid latitudes and the horizontal transport at high latitudes. Wind-driven changes in the Ekman and horizontal heat transport are clearly expected to have a different response in the subtropical and subpolar gyres. Likewise temporal changes in the MOC often have a contrasting gyre response associated with the large-scale wind forcing, as previously diagnosed from density data for 1950-1970 and 1980-2000 (Lozier et al. 2010) and revealed in model circulation experiments on interannual and decadal timescales (Bingham et al. 2007; Biastoch et al. 2008).

For the subtropics, the sign of the thermal anomalies varies over several decades from cool in 1970 to warm in 2000. The cool anomaly corresponds to a reduction in Ekman heat convergence
and the warm anomaly to an increase in Ekman heat convergence. Thus, changes in atmospheric winds are central in altering the subtropical heat convergence and in controlling the sign of the decadal thermal anomalies; as previously argued for how subtropical heat content varies between two different periods of the NAO (Lozier et al. 2008). However, over the last 10 years, the subtropical warming is greater than that provided by the ocean heat convergence and needs to be augmented by an increase in heat input from the atmosphere, as suggested by ERA-Interim.

In the subpolar gyre, the sign of the thermal anomalies also varies, but with an opposing sign to the subtropics prior to 2000: varying from warm in 1970, changing to cool in 1990 and again warm in 2005. The change in sign of the thermal anomaly in the subpolar gyre reflects a change in the heat convergence, mainly due to the MOC-Ekman component, varying from a negative anomaly in 1975 to a positive anomaly in 1995. Taking that view further, Robson et al. (2012), employing a coupled atmosphere-ocean model, argue that a surge in the northward heat transport led to the rapid warming of the subpolar North Atlantic in the mid 1990s.

The gyre-scale contrasts in the sign of these thermal anomalies is probably a dynamical response to changes in the surface winds. Mechanistically, a general strengthening of the winds is expected to increase Ekman heat convergence and heat content for the subtropical gyre. At the same time, the increase in Ekman downwelling is likely to deepen the thermocline westward and lighten the density along the western boundary of the subtropical gyre. The resulting thermal-wind shear between the western and eastern sides of the basin then reduces the northward MOC-Ekman volume transport in the subtropical gyre. Conversely, for the subpolar gyre, an increase in the winds is expected to increase upwelling, reduce heat content and increase density along the western boundary. The resulting thermal-wind shear then increases the northward MOC-Ekman volume transport in the subpolar gyre. Hence, variations in the strength of the winds naturally lead to opposing signs in the thermal anomalies, Ekman heat convergence and MOC-Ekman volume transport in each gyre.

In conclusion, the imprint of changes in the surface winds leads to gyre-scale thermal anomalies with contrasting signs in the subtropical and subpolar gyres, which can often obscure any basin-wide warming response. This wind-driven control of the thermal anomalies is probably ultimately achieved by the position and strength of the jet stream and persistent atmospheric blocks (Woollings et al. 2010; Häkkinen et al. 2011).
Acknowledgments.

RGW and VR were supported by UK Natural Environment Research Council (NER/T/S/2002/00439), DS by the joint DECC/DEFRA Met Office Hadley Centre Programme (GA001101) and MSL by the US National Science Foundation. We are grateful to two referees for critical comments which strengthened the study, and to Justin Buck for advice on the Argo data. We also acknowledge use of ECMWF and NCEP reanalysis data, and comparison with ECCO inverse model analyses.

APPENDIX

Reconstructing the historical data and heat balance

Gridded analyses of historical temperature and salinity data

The global ocean temperature and salinity analyses were provided by the Met Office Hadley Centre. They were created by statistical interpolation of the available hydrographic observations and recent Argo data from the EN3 dataset (Ingleby and Huddleston 2007) using covariances to interpolate between observational data (Smith and Murphy 2007). This approach provides monthly mean fields since 1950, at a resolution of 1.25° and 20 vertical levels, 7 of which are in the upper 100 m. Smith and Murphy (2007) demonstrated in idealised tests that even with very sparse observations typical of the 1950s, it is potentially possible to create accurate analyses, with correlations of greater than 0.7 between analysed and true monthly fields. However, this method relies on accurate covariances. The analyses used here are an update to the original version (Smith and Murphy 2007) in that improved covariances were obtained using an iterative approach, as follows.

For the first iteration, covariances were computed from a nine member ensemble of HadCM3 simulations of the period 1950 to 1999. Each ensemble member used a different variant of HadCM3, created by perturbing poorly constrained parameters of the atmospheric physics schemes (Collins...
et al. 2010). The accuracy of model covariances cannot be assessed for sub-surface data because the observations are too sparse. However, sea surface temperature (SST) model covariances were evaluated and found to be in good agreement with a compilation of historical surface temperature data, HadISST. Furthermore, SST covariances from the nine member ensemble agreed better with HadISST than those computed from the model version with standard parameter settings.

For the second iteration, covariances were computed directly from the analyses of the period 1950 to 2006 obtained in the first iteration. These covariances are potentially more accurate than the model covariances used in the first iteration because they have been influenced by the real observations. This approach was tested by performing data withholding experiments for the data-rich period 2007 to 2010, in which analyses created using all available observations were taken as the truth and compared with analyses created using sub-sampled observations at locations typical of the 1960s. The sub-sampled analyses based on the covariances used in the second iteration were found to be more accurate than those based on the first iteration. One further iteration, using covariances computed from the second iteration analyses, was performed to create the final analyses used in this study.

For most of the historical period sub-surface observations were dominated by expendable bathythermographs (XBTs). Biases in these XBT data have recently been identified (Domingues et al. 2008; Levitus et al. 2009; Ishii and Kimoto 2009) and were corrected in the analyses used here. Since 2001 there has been an increasing contribution from Argo floats (Roemmich and Owens 2000); increasing from 2500 to 16000 profiles a year from 2001 to 2010 in the North Atlantic. It is possible that unknown biases or other problems with the Argo data might be present. We therefore repeated the analyses for the period 2000 to 2009, but exclude Argo data. The analyses with and without Argo data are remarkably similar (Figs. 1a and 11a). In both cases, the upper thermocline warms over this decade, although the analysis including Argo data is slightly warmer at depths of 1500 m (Fig. 11b).

While there are ongoing calibrations and corrections for any new measurement technique (Barker et al. 2011), the broad agreement between the analyses with and without Argo data suggest any errors associated with the Argo data are smaller than the thermal anomalies emerging on a decadal timescale.
Dynamical assimilation method

To obtain estimates of how the thermal anomalies are controlled and ocean heat transport is partitioned, we adopt the following procedure to assimilate the historical temperature and salinity data in a simple manner:

i. The MIT general circulation model (Marshall et al. 1997) is initialized with the Hadley Centre analyses of temperature and salinity data (Smith and Murphy 2007). The MIT model is on a 1° grid with 23 vertical levels over the globe, while the Hadley Centre analyses are on a slightly coarser 1.25° grid with 20 vertical levels, so that model data is linearly interpolated from the original analyses.

ii. The model is integrated forward in time with monthly forcing taken from monthly-mean wind stresses from NCEP for each year. The model includes a weak artificial relaxation of temperature and salinity to the initial annual-averaged temperature and salinity data on a 3-year timescale, which acts to minimise model drift.

iii. Our estimates of the heat transport and changes in heat transport are based on dynamically-adjusted model fields for velocity and temperature after an initial spin up of 1 month and then a further 12 months to cover a full annual cycle.

Our algorithm is tested by comparing our estimates of changes in the MOC between two periods, 2003 to 2007 minus 1993 to 1997. Our methodology is applied to estimate the MOC changes (Fig. 12a, lines) from synthetic density data taken from a global inverse model, ECCO-GODAE, and then compared with that diagnosed directly from the velocities (Fig. 12a, crosses) from ECCO-GODAE. The mismatch in the MOC anomalies and the truth is generally less than ±0.4 Sv, apart from around 40°N where the error reaches ±0.6 Sv. The error slightly increases with the length of the model integration, increasing with the choices from 1-12 months to 7-18 months. At the same time, the choice of model integration alters the heat transport. The total heat transport is less when the model integration is restricted to 12 months, but converges to a slightly higher estimate if there is an initial spin up of 1 month or longer and then followed by 12 months to evaluate the annual cycle (Fig. 12b); the lower initial estimate of the heat transport is associated with a lower heat transport by the vertical cell. As a compromise choice, we then choose to diagnose the heat
transport using an initial spin up of 1 month followed by an integration of 12 months.

In comparison, a longer initial adjustment timescale of 6 months, rather than 1 month, is chosen in Lozier et al. (2010) due to initialising the MIT general circulation model previously with noisier hydrographic data.

*Sensitivity in reconstructing the heat balance to temperature perturbations*

To obtain estimates of the sensitivity in the reconstruction of the heat balance (Figs. 2 and 3), thirty six ensemble calculations are performed using the global MIT circulation model initialised with perturbations in the historical temperature data from the Met Office. The standard errors for the annual temperature in 1985 typically reach 0.4°C at 5 m, decreasing to 0.25°C at 500 m, 0.15°C at 1000 m and 0.05°C at 2000 m. The corresponding standard errors for salinity typically reach 0.2 g kg\(^{-1}\) at 5 m, decreasing to 0.03 g kg\(^{-1}\) at 500 m, 0.02 g kg\(^{-1}\) at 1000 m and 0.005 g kg\(^{-1}\) at 2000 m. The circulation is sensitive to perturbations in density, but some of the temperature and salinity changes are likely to be partially compensating. Consequently, we choose to only include perturbations in temperature, as that directly affects heat content and probably provides an upper bound for the density changes. The reconstructions are performed for two periods centered either on 1985 or 2000. For each ensemble, the temperature data is perturbed over 5° squares based on its standard error from the original Met Office analysis (with the salinity data unaltered) multiplied by randomly generated numbers between 0.5 and 1 or between −0.5 and −1. The resulting heat content tendency, \(\partial Q'/\partial t\), is evaluated over a 5 year period by the difference between the two adjoining 5 year periods. The convergence of the heat transport anomalies, \(-\nabla \cdot (VQ)'\), is then evaluated from an average of these two 5 year periods.

This procedure for estimating the heat content tendency and convergence in heat transport anomaly are then applied for the two periods centred on 1985 and 2000 (Table 2). Including perturbations in the historical temperature data leads to the heat content tendency altering by up to ±7 TW for the subtropics and by ±3 TW in the subpolar gyre. There are larger changes in the convergence in the heat transport over the gyres, reaching ±12 TW for the subtropics and by ±8 TW over the subpolar gyre.
These estimates are only included as a guide to the temperature sensitivity based on the historical data. The actual error in our analyses will be even larger, increased by variations in the winds together with systematic errors and offsets in the reconstruction of the circulation using the model assimilation method.

REFERENCES


24


Correlations of the heat content tendency, $\partial Q'/\partial t$, with the temporal anomalies in heat convergence, $-\nabla \cdot (VQ)'$, and the temporal anomalies in air-sea heat fluxes from NCEP and ECMWF, evaluated over the tropics and sub-tropics ($5^\circ$N to $45^\circ$N) and sub-polar region ($45^\circ$N to $75^\circ$N). All fields are detrended and 5 year running means applied for the period 1965 to 2010. Correlations shown in italic if less than $\pm 0.34$ (98% confidence limit) and in bold if greater than $\pm 0.37$ (99% confidence limit); confidence limits are based upon each annual realisation being viewed as independent. The ECMWF fluxes are based upon ERA-40 (1958 to 2001) and ERA Interim (2002 to 2010).

Heat content tendency, $\partial Q'/\partial t$, and heat convergence, $-\nabla \cdot (VQ)'$, in TW integrated over the sub-tropics or sub-polar gyres estimated from 36 ensemble model integrations with temperature perturbations for 1985 and 2000: ensemble mean $\pm$ standard deviation.

Correlations of heat content anomaly, $Q'$, tendency, $\partial Q'/\partial t$, and anomalies in heat transport convergence, $-\nabla \cdot (VQ)'$, with time series for area integrated wind stress curl, $\nabla \times \tau$, zonally-integrated eastward wind stress, $\int \tau_x dx$, and atmospheric modes, the NAO and EA. Heat content anomalies are averaged over the tropics and sub-tropics ($5^\circ$N to $45^\circ$N) and sub-polar region ($45^\circ$N to $75^\circ$N), and the wind stress curl and heat transport convergences are evaluated for the same latitude ranges. Zonally-integrated wind stress is averaged over gyre boundaries, $10^\circ$N to $20^\circ$N when correlated with the sub-tropics and $45^\circ$N to $55^\circ$N for the sub-polar. All fields are detrended and 5 year running means applied, and the correlations are evaluated for the period 1965 to 2010. Correlations shown in italic if greater than $\pm 0.24$ (90% confidence limit), roman font if greater than $\pm 0.34$ (98% confidence limit) and in bold if greater than $\pm 0.37$ (99% confidence limit).
Table 1. Correlations of the heat content tendency, $\partial Q'/\partial t$, with the temporal anomalies in heat convergence, $-\nabla \cdot (VQ)'$, and the temporal anomalies in air-sea heat fluxes from NCEP and ECMWF, evaluated over the tropics and subtropics (5°N to 45°N) and subpolar region (45°N to 75°N). All fields are detrended and 5 year running means applied for the period 1965 to 2010. Correlations shown in italic if less than ±0.34 (98% confidence limit) and in bold if greater than ±0.37 (99% confidence limit); confidence limits are based upon each annual realisation being viewed as independent. The ECMWF fluxes are based upon ERA-40 (1958 to 2001) and ERA Interim (2002 to 2010).

<table>
<thead>
<tr>
<th></th>
<th>Subtropical $\partial Q'/\partial t$</th>
<th>Subpolar $\partial Q'/\partial t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\nabla \cdot (VQ)'$</td>
<td>0.35</td>
<td>0.59</td>
</tr>
<tr>
<td>$\mathcal{H}'_{NCEP}$</td>
<td>-0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>$\mathcal{H}'_{ECMWF}$</td>
<td>0.27</td>
<td>0.33</td>
</tr>
<tr>
<td>$-\nabla \cdot (VQ)' + \mathcal{H}'_{NCEP}$</td>
<td>-0.05</td>
<td>0.32</td>
</tr>
<tr>
<td>$-\nabla \cdot (VQ)' + \mathcal{H}'_{ECMWF}$</td>
<td>0.37</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Table 2. Heat content tendency, $\partial Q'/\partial t$, and heat convergence, $-\nabla \cdot (VQ)'$, in TW integrated over the subtropics or subpolar gyres estimated from 36 ensemble model integrations with temperature perturbations for 1985 and 2000: ensemble mean ± standard deviation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\partial Q'/\partial t$</td>
<td>31.8 ± 6.5</td>
<td>18.2 ± 6.4</td>
<td>-21.2 ± 2.7</td>
<td>55.2 ± 3.3</td>
</tr>
<tr>
<td>$-\nabla \cdot (VQ)'$</td>
<td>63.9 ± 11.4</td>
<td>-2.6 ± 10.7</td>
<td>13.9 ± 3.9</td>
<td>60.7 ± 4.3</td>
</tr>
<tr>
<td>$\partial Q'/\partial t + \nabla \cdot (VQ)'$</td>
<td>-32.1 ± 17.9</td>
<td>20.8 ± 17.1</td>
<td>-35.1 ± 6.6</td>
<td>-5.5 ± 7.6</td>
</tr>
</tbody>
</table>
Table 3. Correlations of heat content anomaly, $Q'$, tendency, $\partial Q'/\partial t$, and anomalies in heat transport convergence, $-\nabla \cdot (VQ')$, with time series for area integrated wind stress curl, $\nabla \times \tau$, zonally-integrated eastward wind stress, $\int \tau_x dx$, and atmospheric modes, the NAO and EA. Heat content anomalies are averaged over the tropics and subtropics ($5^\circ$N to $45^\circ$N) and subpolar region ($45^\circ$N to $75^\circ$N), and the wind stress curl and heat transport convergences are evaluated for the same latitude ranges. Zonally-integrated wind stress is averaged over gyre boundaries, $10^\circ$N to $20^\circ$N when correlated with the subtropics and $45^\circ$N to $55^\circ$N for the subpolar. All fields are detrended and 5 year running means applied, and the correlations are evaluated for the period 1965 to 2010. Correlations shown in italic if greater than ±0.24 (90% confidence limit), roman font if greater than ±0.34 (98% confidence limit) and in bold if greater than ±0.37 (99% confidence limit).

<table>
<thead>
<tr>
<th>Heat anomaly, heat transport convergence</th>
<th>Subtropical $\nabla \times \tau$</th>
<th>Subtropical $\int \tau_x dx$</th>
<th>NAO</th>
<th>EA</th>
<th>Subpolar $\nabla \times \tau$</th>
<th>Subpolar $\int \tau_x dx$</th>
<th>NAO</th>
<th>EA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q'$</td>
<td>-0.37</td>
<td>-0.43</td>
<td></td>
<td>0.30</td>
<td>-0.54</td>
<td>-0.78</td>
<td>-0.79</td>
<td>-0.57</td>
</tr>
<tr>
<td>$\partial Q'/\partial t$</td>
<td>-0.39</td>
<td></td>
<td></td>
<td></td>
<td>-0.35</td>
<td>-0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-\nabla \cdot (VQ')$</td>
<td>-0.60</td>
<td>-0.79</td>
<td>0.73</td>
<td>0.34</td>
<td>-0.55</td>
<td>-0.69</td>
<td>-0.57</td>
<td>-0.34</td>
</tr>
<tr>
<td>Total</td>
<td>-0.52</td>
<td>-0.76</td>
<td>0.63</td>
<td>0.29</td>
<td>-0.38</td>
<td>-0.36</td>
<td>-0.26</td>
<td></td>
</tr>
<tr>
<td>MOC</td>
<td>-0.66</td>
<td>-0.74</td>
<td>0.71</td>
<td>0.49</td>
<td>-0.84</td>
<td>-0.80</td>
<td>-0.54</td>
<td>-0.52</td>
</tr>
<tr>
<td>Ekman</td>
<td>0.67</td>
<td>0.50</td>
<td>-0.62</td>
<td>-0.64</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOC-Ekman</td>
<td>-0.54</td>
<td>-0.44</td>
<td>0.68</td>
<td>0.33</td>
<td>-0.41</td>
<td>-0.69</td>
<td>-0.86</td>
<td></td>
</tr>
</tbody>
</table>
List of Figures

1  Time series of North Atlantic ocean heat content anomaly integrated zonally across the basin and 1.25° of latitude (10^{18} J m^{-1}, red is warmer and blue is cooler) versus depth (m) from 1950 to 2010 for (a) the entire domain (0°N to 89°N), (b) tropics and subtropics (0°N to 45°N) and (c) subpolar (46°N to 89°N) derived from the Met Office hydrographic data set (Appendix). The anomaly is defined for each depth relative to a time mean from 1950 to 2010. Note that the thermal response of the tropics and subtropics in (b) dominates the response of the entire basin in (a) due to the greater volume weighting.

2  Time series for (a) full depth and zonally-integrated heat content anomaly, $Q'(t, y)$ (10^{21} J) for the tropics and subtropics (5°N to 45°N, red line) and subpolar (45°N to 75°N, black line) from 1965 to 2010 based on temperature analyses (full line) and after a model assimilation (dashed line); volume-integrated heat content tendency, $\partial Q'/\partial t$ (TW, black line), convergence in heat transport, $-\nabla \cdot (VQ)'$ (red line) and change due to thermal relaxation, $Q'_{\text{relax}}$ (red dashed line) for (b) tropics and subtropics, 5°N to 45°N, and (c) subpolar, 45°N to 75°N. In (b) and (c), the left-hand axis is the volume integrated heat uptake (10^{12} W, TW) and the right-hand axis is the equivalent heat flux per unit horizontal area (W m^{-2}). Diagnostics are based on 5 year running means. The tendency is evaluated from the difference between the average of $Q'$ over 5 year bins, so extends over a shorter time period. The sensitivity to perturbations in the temperature data (based on a 95% confidence interval from 2 standard errors in the historical data) is included by the grey and red shading for two 5 year periods at 1985 and 2000.

3  Time series of North Atlantic ocean heat balance comparing the sum of the depth and zonally-integrated heat content tendency and convergence in heat transport, $\partial Q'/\partial t+\nabla \cdot (VQ)'$ (black line), and minus the thermal relaxation (black dashed line), and air-sea fluxes from ECMWF (ERA40 and ERA Interim, green full and dashed lines respectively) and NCEP (blue line) for (a) tropics and subtropics (5°N to 45°N) and (b) subpolar (45°N to 75°N) from 1965 to 2010. The left-hand axis is the area integrated heat uptake (10^{12} W, TW) and the right-hand axis is the implied surface heat flux per unit horizontal area (W m^{-2}). The sensitivity to perturbations in the temperature data is included by the grey shading as in Fig. 2.
Diagnostics of the Ekman volume transport cell (Sv) from the zonally-integrated difference in velocity in a twin experiment with and without winds: (a) to (c) after 1, 2 and 13 months for constant climatological winds; (d) for 2 to 13 months for monthly varying climatological winds.

Climate mean diagnostics for 1965 to 2010 based on a dynamical assimilation of densities repeated for each year: (a) volume transport (Sv) separated into the vertical cell (MOC, black) integrated over the upper 1300 m and the surface Ekman transport over the upper 20 m (green); depth-integrated heat transport (10^{15} W, PW, black) separated into either (b) vertical (MOC) (blue) and horizontal (red) components or (c) Ekman (green), MOC-Ekman (blue) and horizontal (red) components, and (d) standard deviation of the heat transport (black) and its components for each year (TW).

Hovmöller plot of North Atlantic ocean anomalies for (a) depth and zonally-integrated heat content, \( Q'(t, y) \) (10^{21} J) and heat transport components, (b) Ekman, (c) MOC-Ekman and (d) horizontal, 5°N to 70°N, versus time, 1965 to 2008 (plotted with a smoothing of 3 year running mean); note the smaller scale in (d).

Time series related to anomalies in Ekman volume and heat transfer: (a) meridional volume transport (Sv, full line) over the upper 100 m, which is dominated by the zonal integral of the Ekman transfer, \(-\tau_x/(\rho f)\) (dashed line); (b) convergence in meridional volume transport (Sv) over the upper 100 m and (c) Ekman heat transport convergence (TW). The transports are evaluated at 5°N (red line) and 45°N (black line), the subtropical convergence is between 5°N and 45°N (red), and the subpolar convergence between 45°N and 75°N (black line). Note the different scales used to emphasize the contrast between the gyres in (c).

Time series related to anomalies in MOC-Ekman volume and heat transfer: (a) meridional volume transport (Sv) from 100 m to 1300 m; (b) convergence in meridional volume transport (Sv) from 100 m to 1300 m; and (c) convergence in MOC-Ekman heat transport (TW). The transports are evaluated at 5°N (red line) and 45°N (black line), the subtropical convergence is between 5°N and 45°N (red), and the subpolar convergence between 45°N and 75°N (black line).
Time series for depth and zonally-integrated heat content anomaly, \( Q'(t) \) (10^20 J, black line) firstly for the tropics and subtropics (5°N to 45°N) and secondly subpolar (45°N to 75°N) from 1965 to 2010: (a) and (c), versus time integral of the temporal anomalies in air-sea fluxes from NCEP (blue) and ECMWF (green); (b) and (d), the time integral of the temporal anomalies in heat convergence, \( Q'(1965) - \int_{1965}^{t} \nabla \cdot (VQ)' dt \), (red line) together with the contribution to the thermal anomaly from the Ekman (green dashed), MOC-Ekman (blue dashed) and horizontal (grey dashed) components based on annual anomalies (evaluated with a 5 year running mean).

Correlation plots between the time series for the local tendency in depth-integrated heat content and the anomalies in heat supply over the tropics and subtropics (5°N to 45°N, left column) and subpolar (45°N to 75°N, right column) based on annual anomalies from 1965 to 2010 (with 5 year running mean and detrended): for (a) total heat convergence, \( - \int_{1965}^{t} \nabla \cdot (VQ)' dt \); (b) Ekman heat convergence; (c) MOC-Ekman heat convergence; and (d) horizontal heat convergence. Full lines show correlations for ±0.3 (> 95% confidence limit).

Evolution of North Atlantic zonally-integrated heat content anomaly (10^{18} J m^{-1}) versus depth (m) from 2000 to 2009 (as in Fig. 1a): (a) omitting any Argo data and (b) the difference in the heat content anomaly between the assimilations including and excluding the Argo data.

Tests of the model adjustment: (a) MOC change between two 5 year periods, 2003 to 2007 minus 1993 to 1997, for a model truth (ECCO, crosses) and for different choices for the time span of model adjustment, 1 to 12 (black), 2 to 13 (red), 4 to 15 (blue), 7 to 18 (green) months; (b) heat transport for the climate mean (PW) for the total, vertical and horizontal for these different choices for the time span of model adjustment.
Fig. 1. Time series of North Atlantic ocean heat content anomaly integrated zonally across the basin and 1.25° of latitude (10^{18} J m^{-1}, red is warmer and blue is cooler) versus depth (m) from 1950 to 2010 for (a) the entire domain (0°N to 89°N), (b) tropics and subtropics (0°N to 45°N) and (c) subpolar (46°N to 89°N) derived from the Met Office hydrographic data set (Appendix). The anomaly is defined for each depth relative to a time mean from 1950 to 2010. Note that the thermal response of the tropics and subtropics in (b) dominates the response of the entire basin in (a) due to the greater volume weighting.
Fig. 2. Time series for (a) full depth and zonally-integrated heat content anomaly, $Q'(t, y)$ (10$^{21}$J) for the tropics and subtropics (5°N to 45°N, red line) and subpolar (45°N to 75°N, black line) from 1965 to 2010 based on temperature analyses (full line) and after a model assimilation (dashed line): volume-integrated heat content tendency, $\partial Q'/\partial t$ (TW, black line), convergence in heat transport, $-\nabla \cdot (VQ')$ (red line) and change due to thermal relaxation, $Q'_{\text{relax}}$ (red dashed line) for (b) tropics and subtropics, 5°N to 45°N, and (c) subpolar, 45°N to 75°N. In (b) and (c), the left-hand axis is the volume integrated heat uptake (10$^{12}$W, TW) and the right-hand axis is the equivalent heat flux per unit horizontal area (W m$^{-2}$). Diagnostics are based on 5 year running means. The tendency is evaluated from the difference between the average of $Q'$ over 5 year bins, so extends over a shorter time period. The sensitivity to perturbations in the temperature data (based on a 95% confidence interval from 2 standard errors in the historical data) is included by the grey and red shading for two 5 year periods at 1985 and 2000.
Fig. 3. Time series of North Atlantic ocean heat balance comparing the sum of the depth and zonally-integrated heat content tendency and convergence in heat transport, $\partial Q'/\partial t + \nabla \cdot (VQ)'$ (black line), and minus the thermal relaxation (black dashed line), and air-sea fluxes from ECMWF (ERA40 and ERA Interim, green full and dashed lines respectively) and NCEP (blue line) for (a) tropics and subtropics ($5^\circ$N to $45^\circ$N) and (b) subpolar ($45^\circ$N to $75^\circ$N) from 1965 to 2010. The left-hand axis is the area integrated heat uptake ($10^{12}$W, TW) and the right-hand axis is the implied surface heat flux per unit horizontal area (W m$^{-2}$). The sensitivity to perturbations in the temperature data is included by the grey shading as in Fig. 2.
Fig. 4. Diagnostics of the Ekman volume transport cell (Sv) from the zonally-integrated difference in velocity in a twin experiment with and without winds: (a) to (c) after 1, 2 and 13 months for constant climatological winds; (d) for 2 to 13 months for monthly varying climatological winds.
FIG. 5. Climate mean diagnostics for 1965 to 2010 based on a dynamical assimilation of densities repeated for each year: (a) volume transport (Sv) separated into the vertical cell (MOC, black) integrated over the upper 1300 m and the surface Ekman transport over the upper 20 m (green); depth-integrated heat transport ($10^{15}$W, PW, black) separated into either (b) vertical (MOC) (blue) and horizontal (red) components or (c) Ekman (green), MOC-Ekman (blue) and horizontal (red) components, and (d) standard deviation of the heat transport (black) and its components for each year (TW).
Fig. 6. Hovmöller plot of North Atlantic ocean anomalies for (a) depth and zonally-integrated heat content, $Q'(t, y)$ ($10^{21} \text{J}$) and heat transport components, (b) Ekman, (c) MOC-Ekman and (d) horizontal, 5°N to 70°N, versus time, 1965 to 2008 (plotted with a smoothing of 3 year running mean); note the smaller scale in (d).
Fig. 7. Time series related to anomalies in Ekman volume and heat transfer: (a) meridional volume transport (Sv, full line) over the upper 100 m, which is dominated by the zonal integral of the Ekman transfer, $-\tau_x/(\rho f)$ (dashed line); (b) convergence in meridional volume transport (Sv) over the upper 100 m and (c) Ekman heat transport convergence (TW). The transports are evaluated at 5°N (red line) and 45°N (black line), the subtropical convergence is between 5°N and 45°N (red), and the subpolar convergence between 45°N and 75°N (black line). Note the different scales used to emphasize the contrast between the gyres in (c).
Fig. 8. Time series related to anomalies in MOC-Ekman volume and heat transfer: (a) meridional volume transport (Sv) from 100 m to 1300 m; (b) convergence in meridional volume transport (Sv) from 100 m to 1300 m; and (c) convergence in MOC-Ekman heat transport (TW). The transports are evaluated at 5°N (red line) and 45°N (black line), the subtropical convergence is between 5°N and 45°N (red), and the subpolar convergence between 45°N and 75°N (black line).
Fig. 9. Time series for depth and zonally-integrated heat content anomaly, $Q'(t)$ ($10^{20}\text{J}$, black line) firstly for the tropics and subtropics ($5^\circ\text{N}$ to $45^\circ\text{N}$) and secondly subpolar ($45^\circ\text{N}$ to $75^\circ\text{N}$) from 1965 to 2010: (a) and (c), versus time integral of the temporal anomalies in air-sea fluxes from NCEP (blue) and ECMWF (green); (b) and (d), the time integral of the temporal anomalies in heat convergence, $Q'(1965) - \int_{1965}^{t} \nabla \cdot (VQ)' \, dt$, (red line) together with the contribution to the thermal anomaly from the Ekman (green dashed), MOC-Ekman (blue dashed) and horizontal (grey dashed) components based on annual anomalies (evaluated with a 5 year running mean).
Fig. 10. Correlation plots between the time series for the local tendency in depth-integrated heat content and the anomalies in heat supply over the tropics and subtropics (5°N to 45°N, left column) and subpolar (45°N to 75°N, right column) based on annual anomalies from 1965 to 2010 (with 5 year running mean and detrended): for (a) total heat convergence, $-\int_{1965}^{t} \nabla \cdot (VQ)' dt$; (b) Ekman heat convergence; (c) MOC-Ekman heat convergence; and (d) horizontal heat convergence. Full lines show correlations for $\pm0.3 (>95\%$ confidence limit).
Fig. 11. Evolution of North Atlantic zonally-integrated heat content anomaly ($10^{18}$ J m$^{-1}$) versus depth (m) from 2000 to 2009 (as in Fig. 1a): (a) omitting any Argo data and (b) the difference in the heat content anomaly between the assimilations including and excluding the Argo data.
Fig. 12. Tests of the model adjustment: (a) MOC change between two 5 year periods, 2003 to 2007 minus 1993 to 1997, for a model truth (ECCO, crosses) and for different choices for the time span of model adjustment, 1 to 12 (black), 2 to 13 (red), 4 to 15 (blue), 7 to 18 (green) months; (b) heat transport for the climate mean (PW) for the total, vertical and horizontal for these different choices for the time span of model adjustment.