Joint modelling of longitudinal outcomes and clinical endpoints

JoineR & JoineR-M

Graeme L. Hickey¹, Pete Philipson², Andrea Jorgensen¹, Robin Henderson³, Peter Diggle ⁴, Paula Williamson¹, Ruwanthi Kolamunnage-Dona ⁴

¹ Department of Biostatistics, University of Liverpool, UK
² Department of Mathematics and Information Sciences, Northumbria University, UK
³ School of Mathematics and Statistics, University of Newcastle, UK
⁴ Division of Medicine, Lancaster University, UK

Introduction
- In clinical trials or cohort studies, measurements are repeatedly measured over time (e.g. blood pressure), which we call **longitudinal data**
- In addition, the time to one or more clinical endpoints (e.g. death) is recorded, which we call **time-to-event data**
- Historically, these data have been **analysed separately**

Longitudinal outcomes

<table>
<thead>
<tr>
<th>Correlated?</th>
<th>Example</th>
<th>Time-to-event outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest = longitudinal data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard model: (generalised) linear mixed effects regression model</td>
<td>Why does it matter?</td>
<td>Interest = time-to-event data</td>
</tr>
<tr>
<td>Potential problems:</td>
<td>Ignoring the correlation between information from the same patient can result in incorrect conclusions about the new treatments and predictions of clinical endpoints</td>
<td>Standard model: Cox proportional hazards regression model</td>
</tr>
<tr>
<td>• Sickest patients more likely to drop out of study</td>
<td></td>
<td>Potential problems:</td>
</tr>
<tr>
<td>• We call this informative missingness</td>
<td></td>
<td>• Biomarkers measured with error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Time-varying covariates modelled as constant between measurement times</td>
</tr>
</tbody>
</table>

Why does it matter?

- **Correlated?**
- **Standard model:** Cox proportional hazards regression model
- **Potential problems:**
 - Biomarkers measured with error
 - Time-varying covariates modelled as constant between measurement times

Why does it matter?

- Ignoring the correlation between information from the same patient can result in **incorrect conclusions** about the new treatments and predictions of clinical endpoints

Proposed solution

Combined analysis of the outcomes (joint modelling) using some unknown variables to capture the association between the two types of outcome

Benefits of joint modelling

- **More efficient** estimates of treatment effects = **reduced number of patients required for studies and increased power**
- **Less biased** estimates of the treatment effects = **closer to ‘truth’**
- **More accurate** predictions of events = **better medical decision-making**

Extension to multivariate data (JoineR-M)

- Joint modelling methodology has been predominantly focused on univariate (single longitudinal and event outcome) data
- In practice, multiple longitudinal outcomes and event times will be recorded (multivariate data)
- Multivariate data greatly increases the complexity of model estimation:
 - **Computational time** grows with increasing number of outcomes
 - **Longitudinal outcomes** take different types (e.g. continuous, binary, ordinal)

Software development

- **joineR** is a freely available user-friendly software package, currently fit joint models for univariate data
- **JoineR** will be **expanded** over the next 2-years to:
 - Include multivariate longitudinal outcomes
 - Model competing risks outcomes
 - Provide model diagnostics to allow inspection of model fit
 - **Training workshops** for biomedical researchers to inform the joint modelling methods and software

Funding: Medical Research Council (MRC) UK Grant G0400615 (JoineR) & MR/M013227/1 (JoineR-M)