
Seminar

www.thelancet.com   Published online June 2, 2016   http://dx.doi.org/10.1016/S0140-6736(16)30654-7 1

Acute bacterial meningitis in adults
Fiona McGill, Robert S Heyderman, Stavros Panagiotou, Allan R Tunkel, Tom Solomon

Summary
Over the past several decades, the incidence of bacterial meningitis in children has decreased but there remains a 
signifi cant burden of disease in adults, with a mortality of up to 30%. Although the pathogenesis of bacterial 
meningitis is not completely understood, knowledge of bacterial invasion and entry into the CNS is improving. 
Clinical features alone cannot determine whether meningitis is present and analysis of cerebrospinal fl uid is essential 
for diagnosis. Newer technologies, such as multiplex PCR, and novel diagnostic platforms that incorporate proteomics 
and genetic sequencing, might help provide a quicker and more accurate diagnosis. Even with appropriate 
antimicrobial therapy, mortality is high and so attention has focused on adjunctive therapies; adjunctive corticosteroids 
are benefi cial in certain circumstances. Any further improvements in outcome are likely to come from either 
modulation of the host response or novel approaches to therapy, rather than new antibiotics. Ultimately, the best hope 
to reduce the disease burden is with broadly protective vaccines.

Burden of disease and epidemiology
The incidence of bacterial meningitis varies throughout 
the world. In the UK and western Europe, the incidence 
is 1–2 cases per 100 000 people per year, whereas it can 
reach 1000 cases per 100 000 people per year in the Sahel 
region of Africa (fi gure 1).1–3 A huge reduction in 
incidence has occurred over the past few decades, largely 
secondary to the introduction and widespread use of 
conjugate vaccines.1,3–6 Conjugate vaccines have a protein 
attached to purifi ed bacterial capsular polysaccharide. 
This elicits a more robust and sustained immune 
response, especially in young children. Table 1 gives an 
overview of vaccines currently available to prevent 
bacterial meningitis. Much of the reduction in incidence 
has been in children younger than 1 year.1,5 Similarly, the 
largest reductions in meningitis-associated mortality, 
globally, have occurred in children younger than 5 years 
of age, with a 43% decrease in neonates and a 54% 
reduction in children aged 1–59 months.7 For those older 
than 5 years, the number of deaths globally only reduced 
by 2·7%, from 165 900 to 161 500 between 1990 and 2013.7

Streptococcus pneumoniae
Pneumococcus is the commonest cause of bacterial 
meningitis in adults in much of the world.1,5,8,9 There are 
more than 90 antigenically diff erent serotypes of 
S pneumoniae as determined by the polysaccharide 
capsule; the target for all currently licensed vaccines.

Pneumococcal conjugate vaccines (PCV) have been 
used for the past 15 years. PCV7 targeted seven 
pneumococcal serotypes and more recently PCV10 and 
PCV13 (covering ten and 13 serotypes, respectively) were 
licensed in the USA and Europe. The polysaccharide 
vaccine PPV23 covers 23 serotypes. Until recently, 
conjugate vaccines were largely used only in children but 
a recent placebo-controlled trial10 in people aged 65 years 
and older has shown good effi  cacy of PCV13 in preventing 
vaccine-type pneumococcal pneumonia, non-bacteraemic 
pneumonia, and invasive pneumococcal disease, with 
vaccine effi  cacies of 46%, 45%, and 75%, respectively. 
Although most studies on the immunogenicity of 

pneumococcal vaccines are non-comparative, there is 
some evidence that PCV is more immunogenic than 
polysaccharide vaccine.11 The conjugate vaccines also 
produce substantial herd immunity, when vaccination of 
part of the population provides protection for 
non-vaccinated individuals. Large studies have shown 
substantial reductions of disease caused by vaccine 
serotypes in both vaccinated and unvaccinated 
populations.12–15

Since conjugate vaccines were fi rst introduced, 
serotype replacement has been reported. This is an 
increase in the incidence of disease or asymptomatic 
carriage caused by non-vaccine serotypes.16–19 However, 
the overall incidence of invasive pneumococcal disease 
has dropped. A meta-analysis from Europe, the Americas, 
and Australia showed a sustained reduction in the 
incidence of pneumococcal meningitis in children 
7 years after vaccination (risk ratio for meningitis was 
0·40, 95% CI 0·25–0·64). There was a similar, but 
smaller, reduction in adults with a relative risk of 
meningitis in 18–49-year-old people of 0·61 (95% CI 
0·40–0·95) 7 years after vaccination. For adults aged 
50–64 years, there was a decrease in meningitis caused 
by the vaccine serotypes but this was off set by a signifi cant 
increase in non-vaccine serotype disease (rate ratio 2·83, 
95% CI 1·46–5·47).20 Mathematical models have 
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Search strategy

We searched Scopus with the terms “meningitis”, 
“meningo*”, and “neurological infection” together with 
“aetiology”, “epidemiology”, “treatment”, “management”, 
“antibiotic”, “antimicrobial”, “investigation”, “therapy”, 
“prevention”, “vaccin*”, and “lumbar puncture” for articles 
published between Jan 1, 2010, and Dec 31, 2015. We also 
included any studies referenced within these articles if 
deemed relevant. In addition, any older references known to 
the authors were also included, as were abstracts of articles 
not written in English. Review articles are included to guide 
the reader to a more extensive reference list. 

http://crossmark.crossref.org/dialog/?doi=10.1016/S0140-6736(16)30654-7&domain=pdf
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predicted a substantial reduction in disease following the 
introduction of PCV13, even taking serotype replacement 
into account.21,22 Observational studies23 accord with these 
predictions, showing a 32% reduction in invasive 
pneumococcal disease following the introduction of 
PCV13, but a 25% increase in non-PCV13 serotypes.

Neisseria meningitidis
Meningococci are categorised into 13 serogroups; fi ve 
(A, B, C, W135, and Y) are responsible for most cases of 
invasive disease. Serogroup B is the commonest strain 
across Europe, including England and Wales where it is 
responsible for most cases.24,25 Serogroup Y is predominant 
in the USA26 and the second most common in parts of 
Europe.27 The prevalence of serogroup W135 is increasing 
in the UK, which has been linked with a South American 
clone. Disease caused by this clone is associated with a 
higher mortality because they are part of the more deadly 
ST11 clonal complex (or cc11).28 The same clonal complex 
is responsible for recent outbreaks of meningococcal C 
disease among men who have sex with men.29,30

Serogroup C was previously responsible for most 
meningococcal disease in western Europe but incidence 

has substantially declined since the introduction of the 
meningococcal C conjugate vaccine. In the Netherlands, 
incidence has declined from 4·5 cases per 100 000 people 
in 2001, to 0·6 cases per 100 000 people in 2012.27 Similar 
results have been seen in other countries.5,14 In 2015, 
serogroup C disease appeared for the fi rst time in the 
Sahel region of Africa.31 Serogroup A has been responsible 
for large outbreaks in the meningitis belt of Africa; 
however, massive reductions have occurred in recent 
years following widespread vaccination.32,33 The 
Meningitis Vaccine Project—a collaboration between 
WHO and the Programme for Applied Technology in 
Health—set out to vaccinate 250 million people in Africa 
with the new serogroup A conjugate vaccine. The project 
has been a massive public health triumph. In Burkina 
Faso, there was a risk reduction of 99·8% and similar 
results occurred in Niger, where serogroup A disease had 
virtually disappeared by 2011.33,34 Meningococcal A is also 
responsible for epidemics in parts of Asia, including 
India, Indonesia, Nepal, Mongolia, and Pakistan.35

Other bacteria
Haemophilus infl uenzae type b was a signifi cant cause of 
meningitis, especially in infants and young children, 
before the widespread use of conjugate vaccines.6 As with 
meningococcal disease, H infl uenzae type b has virtually 
disappeared in areas where immunisation has been 
implemented, but remains a problem where vaccination 
is not commonplace.36 The incidence of invasive 
haemophilus disease due to non-type b strains has, 
however, increased. Most of these cases are due to non-
typeable organisms but some due to other encapsulated 
forms of H infl uenzae, in particular types e and f.37–39

Streptococcus suis is a major cause of meningitis in some 
parts of Asia, especially Thailand and Vietnam. It is a 
pathogen of pigs, and close contact with pigs or pork is a 
signifi cant risk factor for disease. Although the case 
fatality rate is only 4%, some degree of hearing loss occurs 
in more than 50% of survivors.40 It has also been reported 
from many other parts of the world.41–43 Other causes 
of meningitis include the Enterobacteriaceae, 
Staphylococcus aureus,1,5 and Listeria monocytogenes which 
normally occurs in patients with risk factors such as older 
adults, alcoholics, diabetics, patients with malignancies, 
and those taking immunosuppressive drugs.4,44–47

Pathogenesis
Many aspects of the pathogenesis of bacterial meningitis 
have yet to be understood; however, there are four main 
processes: colonisation, invasion into the bloodstream, 
survival in the bloodstream, and entry into the 
subarachnoid space. The subsequent infl ammation and 
neurological damage is caused by a combination of 
bacterial and host factors. Figure 2 shows the pathogenesis 
of S pneumoniae and N meningitidis meningitis.

Many bacteria that cause meningitis initially colonise the 
mucous membranes of the upper respiratory tract. 

Figure 1: Areas at high risk of meningococcal meningitis, 2014
The risk diff ers among and within countries. Adapted with permission from WHO.
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Colonisation involves a combination of the bacteria 
adhering to the cell surfaces and avoidance of the host’s 
defence mechanisms. Many organisms have fi mbriae 
(a fringe) or pili (hair-like appendages) that assist in their 
attachment to the epithelium. The main requirement for 
meningococcal adhesion is the type IV pili (tfp). Tfp adhere 
via various receptors including PAFR, β2 adrenoceptor 
receptors, and CD147.48,49 The meningococcal outer 
membrane proteins including lipopolysaccharide and the 
opacity proteins (OpC and OpA) have also been proposed to 
contribute to the maintenance of adhesion.50,51 Three main 
receptors have been proposed for pneumococcal adhesion 
to epithelial surfaces: PAFR, laminin receptors, and PIgR.

Invasion into the bloodstream occurs either 
transcellularly (passing through the cells) or pericellularly 
(between cells).52 Pneumococci utilise both of these 
methods via receptors such as the PAFR or the 
pneumococcal choline binding receptor.53 Meningococci 
are transported across the epithelial cells in phagocytic 
vacuoles.54 Survival in the bloodstream requires evasion 
of the immune system. Meningococci utilise fHbp, a 
lipoprotein responsible for dysregulation of the 
complement pathway and PorA, an outer membrane 
protein, to evade complement.55,56

Most cases of meningitis probably occur following 
bacteraemia but the high incidence of pneumococcal 

meningitis in patients with sinusitis and otitis media 
suggest that direct spread to the CNS might also occur. 
This possibility is supported by mouse models showing 
pneumococcal meningitis after respiratory infection 
without bloodstream involvement.57 Direct entry from 
the nose through dural defects is also possible.

Because of a lack of host defences in the subarachnoid 
space, bacteria multiply there relatively unhindered. 
Bacterial components are recognised by pattern 
recognition receptors, present on microglia and other 
brain cells. A cascade of events is then triggered that 
ultimately leads to the release of pro-infl ammatory 
mediators such as TNFα, interleukin 6, and 
interleukin 1β. Many of these molecules are released in 
greater quantity in pneumococcal meningitis than in 
meningitis caused by other organisms and could account 
for the worse prognosis associated with pneumococcal 
meningitis.58 Following the release of the cytokines, 
granulocytes cross the blood–brain barrier and it 
becomes more permeable. Bacterial lysis occurs in 
response to antibiotics or, in the case of pneumococci, 
when the bacteria reach the stationary growth phase 
(autolysis). Lysis leads to the release of pro-infl ammatory 
agents, such as lipopolysaccharide, lipoteichoic acid, and 
peptidoglycans, from the cell wall of the bacterium and 
augments the infl ammatory process.59

Pathogen covered Serotypes or serogroups covered Type of vaccine Protein conjugate Vaccines available

Pneumococcal

PCV7 Streptococcus pneumoniae Serotypes 4, 6B, 9V, 14, 18C, 19F, 
and 23F

Conjugate 7 valent CRM197 Prevenar

PCV10 Streptococcus pneumoniae Serotypes 1*, 4*, 5*, 6B*, 7F*, 9V*, 
14*, 18C†, 19F‡, and 23F*

Conjugate 10 valent Protein D*, tetanus toxoid†, 
diphtheria toxoid‡

Synfl orix

PCV13 Streptococcus pneumoniae Serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 
14, 18C, 19A, 19F, and 23F

Conjugate 13 valent CRM197 Prevenar 13

PPV23 Streptococcus pneumoniae Serotypes 1, 2, 3, 4, 5, 6B, 7F 8, 9N, 
9V, 10A, 11A, 12F, 14, 15B, 17F, 
18C, 19A, 19F, 20, 22F, 23F, 33F,

Polysaccharide, 23 valent NA Pneumovax II

Meningococcal

MenACWY Neisseria meningitidis Serogroups A, C, W, Y Conjugate, quadrivalent CRM197§, diphtheria 
toxoid¶

Menveo§, Menactra¶,

MPSV4 Neisseria meningitidis Serogroups A, C, W, Y Polysaccharide, quadrivalent NA Menomune

Hib_MenCY-TT Neisseria meningitidis Serogroups C and Y Conjugate, bivalent Tetanus toxoid MenHibrix (also contains Haemophilus 
type b polysaccharide)

Men A conjugate 
vaccine

Neisseria meningitidis Serogroup A Conjugate, monovalent Tetanus toxoid MenAfriVac

Men C conjugate 
vaccine

Neisseria meningitidis Serogroup C Conjugate, monovalent CRM197|| or tetanus toxoid** Meningitec||, Menjugate||, NeisVac-C**, 
Menitorix** (also contains Haemophilus 
type b polysaccharide)

Multicomponent 
Men B vaccine 
(4CMenB)

Neisseria meningitidis Serogroup B Recombinant protein based 
with outer membrane 
vesicle

NA Bexsero

Men B bivalent 
vaccine

Neisseria meningitidis Serogroup B Recombinant protein based NA Trumenba

Haemophilus

HiB Haemophilus infl uenzae  Type b Conjugate, monovalent CRM197 Pediacel, Menitorix

CRM197 is inactive, non-toxic diphtheria toxin. Protein D is derived from non-typeable Haemophilus infl uenzae.

Table 1: Vaccines for bacterial meningitis
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Neutrophils have been implicated in much of the 
neurological damage that occurs in meningitis and 
MRP-14, a protein expressed in myeloid cells, has been 
found in the cerebrospinal fl uid of patients with 
pneumococcal meningitis; inhibition of MRP-14 reduced 
sequelae in a mouse model.60 Matrix metalloproteinases 
(MMPs) are released by white blood cells in the CSF. 
They are present very early in infection and aid the 
release and activation of pro-infl ammatory cytokines, the 
degradation of extracellular matrix components, and the 
recruitment of further leucocytes into the subarachnoid 
space. As with other infl ammatory mediators, the levels 
of MMP-9 are especially high in pneumococcal 
meningitis compared with meningitis caused by other 
organisms.58

Genetic predisposition
Several studies have suggested a genetic predisposition 
to bacterial meningitis, with most related to defi ciencies 

that aff ect the complement system. In particular, 
C2 defi ciency has been reported in 58% of patients 
with pneumococcal meningitis, factor D defi ciency 
predisposes to meningococcal disease, and sus-
ceptibility to meningococcal serogroups W135 and Y 
arises in people with properdin defi ciency.61 Case-
control studies61 showed that polymorphisms in 
mannose-binding lectin and cfh are associated with 
susceptibility to pneumococcal and meningococcal 
disease, respectively. Roughly a fi fth of patients with 
meningococcal disease were defi ned as having 
meningitis. Because of variations in defi nitions, no 
analysis could be done excluding patients who did not 
have meningitis. Genome wide association studies62,63 
have confi rmed that a polymorphism in cfh predisposes 
to meningococcal disease, just over a third of patients 
in these studies had meningitis, and a polymorphism 
in the C3 gene predisposed to pneumococcal 
meningitis.

Figure 2: Mechanistic pathways in the pathogenesis of bacterial meningitis
Colonisation by pneumococcus is achieved by various stepwise mechanisms. The opaque capsule of the bacteria prevents sIgA to remove the bacteria from the 
nasopharynx (1). Release of the PLY toxin from lysed bacteria reduces ciliary contractility of the upper airway (2), whereas deglycosylation of the mucus reduces 
further cilia activity (3). The negative charge surrounding the capsule, opposes the negative charge of the sialic acid in mucus (4). Additionally, the phase variation of 
the capsule from opaque to transparent enables adhesion molecules to bind to the epithelium (5). Invasion of pneumococci into the bloodstream is achieved by 
transcytotic or paracellular mechanisms (6) and degradation of the cells’ extracellular matrix (7). The pneumococci then enter the nervous system by following similar 
mechanistic pathways to the upper airway (8, 9, 10). For meningococcal meningitis, colonisation is achieved by inhibiting sIgA function similarly to the pneumococci 
(11). Secretion of endotoxins (12) and capsular saccharides (13) as well as the use of meningococcal pili (14), enables the bacteria to bind on the epithelial cells. 
Invasion into the bloodstream is achieved by the encapsulation of bacteria by phagocytes (15). The bacteria enter the bloodstream and further invade the nervous 
system transcellularly or paracellularly either binding to fi bronectin or laminin (16). For both pneumococcal and meningococcal meningitis, the blood–brain barrier 
breaks down and cytokines and white blood cells cross into the brain, initiating further infl ammatory responses. Intracranial pressure is increased and lysis of the 
bacteria promotes the creation of free radicals, which can lead to oxidative stress and neuronal damage.
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Diagnosis
Diagnosing bacterial meningitis clinically can be diffi  cult 
because many illnesses present with similar symptoms. 
The classical triad of neck stiff ness, fever, and altered 
consciousness occurs in less than 50% of patients with 
acute bacterial meningitis.8 However, any two of 
headache, fever, neck stiff ness, and altered consciousness 
are much more common, in up to 95% of patients.8 
Kernig’s and Brudzinski’s signs have been used in the 
clinical assessment of meningitis for many years, but 
their usefulness is doubtful. They have been reported to 
have high specifi city (up to 95%), although this is 
dependent on the clinician, but the sensitivity can be as 
low as 5%.64 They should not be relied on to exclude, or 
establish, a diagnosis of bacterial meningitis. Diff erential 
diagnoses include viral meningitis and other forms of 
infective meningitis, non-infectious causes of meningitis 
such as autoimmune conditions, medications such as 
trimethoprim and non-steroidal anti-infl ammatory 
drugs, and malignancy, as well as non-meningitic 
illnesses such as sub-arachnoid haemorrhage, migraine, 
and other simple viral illnesses.

The gold standard for diagnosing meningitis is 
examination of the cerebrospinal fl uid (table 2). 
Measuring the opening pressure at the time of lumbar 
puncture is useful and is often high in patients with 
bacterial meningitis. A high white blood cell count in the 
cerebrospinal fl uid can indicate infl ammation of the 
meninges, although some patients might have bacteria 
in their cerebrospinal fl uid without an elevated white 
blood cell count. These patients have a poor prognosis.

Cerebrospinal fl uid protein and glucose should also be 
measured. Patients with bacterial meningitis typically 
have high protein and low glucose. Cerebrospinal fl uid 
glucose is infl uenced by the serum glucose concentration 
and, therefore, a concurrent serum sample must also be 
taken. Cerebrospinal fl uid lactate may have advantages 
over glucose in that it is unaff ected by the serum 
concentration. Cerebrospinal fl uid lactate, if taken before 
antibiotic treatment, has a sensitivity of 0·93 (95% CI 
0·89–0·96) and specifi city of 0·96 (0·93–0·98) in 
diff erentiating bacterial from viral meningitis.66 Serum 

and cerebrospinal fl uid procalcitonin concentrations 
have also been suggested as useful tests to indicate a 
likely bacterial cause but well-designed diagnostic 
accuracy studies, including cost-eff ectiveness analyses, 
are needed before recommending the routine use of 
procalcitonin for diagnosis of bacterial meningitis.

Gram stain and culture of the cerebrospinal fl uid enable 
both the identifi cation of the causative pathogen and 
assessment of antimicrobial susceptibilities. If the lumbar 
puncture is delayed until after antibiotics have been given, 
the likelihood of identifying an organism might be 
reduced by up to 44%.48,67 Molecular methods are, 
therefore, becoming increasingly important for diagnosis. 
The most common of these is PCR, which can detect 
organisms in blood or cerebrospinal fl uid for several days 
after antibiotics have been given.49,68 It has high sensitivity 
(87–100%) and specifi city (98–100%).69–72 Dried spot 
cerebrospinal fl uid PCR tests, which could be useful in 
the absence of a laboratory, have shown a 90% sensitivity 
in diagnosing bacterial meningitis caused by S pneumoniae, 
S suis, and N meningitidis.73 In addition to cerebrospinal 
fl uid analysis, blood cultures might identify the cause and 
should be taken before antibiotics are given.

There has been interest in the ability to detect multiple 
pathogens with one platform, such as multiplex PCR, 
16S PCR, MALDI-TOF, and whole genome sequencing.74,75 
The 16S rRNA gene is present in almost all bacteria; one 
meta-analysis76 showed 16S rRNA PCR to be both 
sensitive and specifi c for the diagnosis of bacterial 
meningitis compared with standard culture (pooled 
sensitivity of 92% and specifi city of 94%). The commonest 
method for species identifi cation after 16S PCR was 
sequencing. MALDI-TOF is now commonplace in many 
clinical laboratories. It utilises the protein mass of the 
organism to identify the bacteria. This has revolutionised 
clinical microbiology by reducing the time to 
identifi cation of an organism; it normally requires a 
cultured organism but there are reports of success direct 
from cerebrospinal fl uid.77 Whole genome sequencing 
has been used to investigate outbreaks, but as it becomes 
faster and cheaper, it may be incorporated into routine 
surveillance and diagnosis.78,79

Appearance Opening 
pressure 
(cm CSF)

White blood cell 
concentration (cells per 
μL)

Predominant 
cell type

CSF protein (g/L) CSF glucose 
(mmol)

CSF:serum 
glucose ratio

Normal Clear 10–20 <5 NA <0·4 2·6–4·5 >0·66

Bacterial Turbid, cloudy, 
purulent

Raised Raised (normally >100) Neutrophils Raised (normally >1·0) Low Very low

Viral Clear Normal or mildly 
raised

Raised (normally <1000) Lymphocytes Mildly raised (normally 0·5–1) Normal or 
slightly low

Normal or 
slightly low

Tuberculous Clear, cloudy Raised Raised (normally <500) Lymphocytes Greatly raised Low Very low

Adapted from Solomon et al.65 A traumatic lumbar puncture will aff ect the results and a correction factor such as the following should be applied: adjusted white blood cells 
in CSF=measured white blood cells in CSF–([white blood cells in blood × red blood cells in CSF] / red blood cells in blood × 1 000 000). Local laboratory ranges for biochemical 
tests should be consulted and might vary from those here. CSF=cerebrospinal fl uid. 

Table 2: Classic features of cerebrospinal fl uid for the diff erent causes of meningitis
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Loop-mediated isothermal amplifi cation is another 
method of DNA amplifi cation and detection. The method 
is quick, with results in less than 2 h, and a positive result 
can be seen with the naked eye. This technique has shown 
good sensitivity for detection of N meningitidis, 
S pneumoniae, H infl uenzae, and Mycobacterium 
tuberculosis.80–83 It has also been assessed as a bedside test in 
the UK, for which it had a positive predictive value of 100% 
and a negative predictive value of 97%.84 The speed and 
ease of diagnosis makes this a very attractive diagnostic 
tool, especially in resource poor settings.

The use of neuroimaging before lumbar puncture has 
generated considerable debate with some recommending 
that cerebral imaging is done before lumbar puncture for 
all patients. However, this approach has been associated 
with delays in antibiotic administration, reduced 
likelihood of identifying a pathogen, and an increase in 
mortality.48,52,85,86 The reason for neuroimaging is to detect 
cerebral herniation syndromes, or shift of brain 
compartments. If these are present and a lumbar 
puncture is done, there is the theoretical concern that a 
reduction in pressure caused by the lumbar puncture can 
precipitate a further brain shift, which could lead to fatal 
herniation. Neuroimaging should therefore be done for 
patients who have clinical signs that might suggest brain 
shift and, if shift of brain compartments or herniation is 
found, lumbar puncture should be delayed. Indications 
that brain shift might be present include focal 
neurological signs and reduced level of consciousness. 
The exact level of consciousness at which a lumbar 
puncture is safe is debated and diff erent authorities 
recommend diff erent cutoff  points ranging between 8 
and 13 on the Glasgow coma scale.87–89

No study has identifi ed features associated with an 
increased risk of herniation after lumbar puncture. One 
study showed that certain features (age >60 years, 
immunocompromised, history of neurological disease, 
recent seizure, and some abnormal neurological 
examination fi ndings) were associated with abnormalities 
on imaging, but the risk of herniation or brain shift was 
not assessed.86 A retrospective study90 showed that 

removing impaired mental status as a contraindication 
for lumbar puncture was associated with signifi cantly 
earlier treatment and a favourable outcome; however, 
there are several limitations to this study and cause and 
eff ect cannot be attributed. Every patient with suspected 
bacterial meningitis should be carefully assessed to 
ascertain whether they have signs or symptoms 
consistent with brain shift. If they do not, lumbar 
puncture should be done as soon as possible without 
prior neuroimaging (appendix).

Treatment
Antibiotics should be given as soon as possible to patients 
with suspected bacterial meningitis, ideally after both 
blood and cerebrospinal fl uid have been obtained for 
culture. Early antibiotic treatment is associated with a 
lower mortality.85 If sampling is delayed, the priority is for 
treatment to be given. Many antibiotic regimens are based 
on data from animal models or clinical experience rather 
than randomised trials. The choice of antibiotic depends 
on the likely pathogen, local patterns of antibiotic 
resistance, and the cerebrospinal fl uid penetration of the 
drug (table 3). Penicillin and other β-lactams are eff ective 
against the commonest pathogens and the cerebrospinal 
fl uid concentration (even with uninfl amed meninges) 
tends to be close to the minimum inhibitory concentrations 
for moderately susceptible bacteria.91 The worldwide 
emergence of antimicrobial resistance, especially against 
S pneumoniae, aff ects the choice of empirical treatment in 
many countries. This is especially important in the poorer 
regions of the world, where newer antibiotics might not 
be available or aff ordable.

Penicillin-resistant pneumococci have been reported 
from all parts of the world92 and have been associated 
with an increase in mortality.93 Vancomycin is widely 
recommended when penicillin-resistant pneumococci 
might be present, but because it crosses the blood–brain 
barrier poorly it should be used in conjunction with 
another antimicrobial, often a cephalosporin.

Fluoroquinolones might be good alternatives in the 
era of penicillin-resistant pneumococci. Experimental 

Preferred choice Alternative if anaphylaxis to β lactams

Standard treatment Alternative in areas of high prevalence of penicillin 
resistance*

Standard therapy Alternative in areas of high prevalence of 
penicillin resistance*

Adults <60 years
of age†

Cefotaxime 2 g intravenously 
every 4–6 h or ceftriaxone 
2 g intravenously every 12 h

Cefotaxime 2 g intravenously every 4–6 h or ceftriaxone 
2 g intravenously every 12 h; plus vancomycin 
15–20 mg/kg intravenously every 8–12 h‡ with or without 
rifampicin 600 mg intravenous or orally every 24 h§

Chloramphenicol 25 mg/kg 
intravenously every 6 h

Vancomycin 15–20 mg/kg intravenously 
every 8–12 h‡ plus moxifl oxacin 400 mg 
intravenously every 24 h¶

Adults ≥60 years
of age

As above; plus amoxicillin or 
ampicillin 2 g intravenously 
every 4 h

As above; plus amoxicillin or ampicillin 2 g intravenously 
every 4 h

As above; plus co-trimoxazole 
5 mg/kg (of the trimethoprim 
component) intravenously 
every 6–12 h

As above; plus co-trimoxazole 5 mg/kg (of 
the trimethoprim component) intravenously 
every 6–12 h

Doses are given as a guide only and should not be relied on for prescribing purposes. They also refl ect the doses suitable for patients with normal renal and hepatic function. *Eg, USA, southern and eastern 
Europe, Asia. †Amoxicillin (or co-trimoxazole if allergic to penicillin) should be added in patients younger than 60 if listerial infection is suspected—eg, in immunocompromised patients. ‡Maintain serum trough 
concentrations of 15–20 mg/mL. §Some authorities would recommend either vancomycin or rifampicin. ¶No clinical data available on optimum dosage in patients with bacterial meningitis. 

Table 3: Suggested empirical antibiotic choices for patients with bacterial meningitis

See Online for appendix



Seminar

www.thelancet.com   Published online June 2, 2016   http://dx.doi.org/10.1016/S0140-6736(16)30654-7 7

mouse models have shown moxifl oxacin to be equivalent 
to cephalosporins for treatment of pneumococcal 
meningitis and cerebritis.94 Caution should be exercised 
in using fl uoroquinolones as single drugs because 
organisms might rapidly develop resistance and clinical 
data are lacking. There are several case reports and 
case series showing the effi  cacy of other antibiotics 
in meningitis, such as ceftaroline,95 linezolid,96,97 
daptomycin,98–100 and doripenem.101 Without evidence 
from comparative trials, these drugs should be used with 
caution and only when other better tested drugs cannot 
be used either because of resistance, patient intolerance, 
or allergy.

Eff orts should be made to identify local patterns of 
antibiotic resistance to determine the best empirical 
treatment for each geographical area. In the UK, where 
penicillin resistance is rare, third-generation cephalo-
sporins (cefotaxime or ceftriaxone) remain the empirical 
choice. However, many parts of the world have penicillin-
resistant pneumococci (minimum inhibitory con-
centration ≥0·12 μg/mL). It occurs in roughly 25% of 
cases in the USA and parts of Europe (eg, Spain, Croatia, 
Romania), and more than 50% in Asia; 100% of isolates 
have been reported to be penicillin resistant in Vietnam 
and Thailand but numbers were small (n=6 and n=1, 
respectively).102–104 In these areas, vancomycin (with or 
without rifampicin) should be given in addition to a 
third-generation cephalosporin (table 3).105

Antibiotic resistance in meningococci is rare,27 although 
decreased susceptibility to penicillin has been associated 
with some serogroups, especially C and W135.106–109

There is limited trial evidence to guide how long to 
treat adults with bacterial meningitis. Using shorter 
courses of antibiotics can reduce hospital stay and costs 
and might also reduce the risk of adverse events such as 
nosocomial infections. Studies in children have shown 
that shorter courses are safe and eff ective.110,111 A meta-
analysis112 of all causes of bacterial meningitis in children 
showed a short course (4–7 days) to be as effi  cacious as a 
long course (7–14 days) of antibiotics; we are unaware of 
any studies in adults. 3 days of intravenous 
benzylpenicillin has been shown to be suffi  cient for 
adults with meningococcal disease;113 there was no 
control group in this study, but the mortality of 9% is in 
keeping with other studies.8,25,114 During meningococcal 
epidemics, a single dose of ceftriaxone or chloramphenicol 
is eff ective.110

Although there are no randomised trials, current 
guidance in many rich nations is to give short courses of 
antibiotics for meningococcal disease (5–7 days), and a 
slightly longer course for pneumococcal meningitis 
(10–14 days).115,116 Listeria meningitis should be treated for 
a minimum of 21 days.

Even in the presence of a susceptible organism and 
appropriate antibiotics, mortality in bacterial meningitis 
is high, around 10–30% in high-income countries,4,8,114,117–120 
and nearer 50% in many poorer nations.121–123 The high 

number of deaths, despite apparently appropriate 
treatment, is thought to be due to infl ammatory 
processes. Therefore, eff orts have focused on identifying 
useful adjunctive treatments that might reduce 
infl ammation and brain oedema.

Following several studies of children,124 a large 
multicentre European randomised controlled trial in 
adults showed a signifi cant reduction of both an 
unfavourable outcome and death in patients who were 
treated with dexamethasone compared with placebo 
(relative risk 0·59 for unfavourable outcome and 0·48 for 
death), most striking for the subgroup of patients with 
pneumococcal meningitis.125 Subsequent studies of 
adults in Malawi and Vietnam did not reproduce the 
European fi ndings,123,126 although there was a better 
outcome (signifi cant reduction in the risk of death at 
1 month and risk for death or disability at 6 months) for 
patients in Vietnam with confi rmed bacterial meningitis. 
A meta-analysis of individual patient data (n=2029) 
suggested the diff erences were not due to the high rates 
of HIV and tuberculosis in these countries.127 This meta-
analysis concluded that there were no subgroups that 
might benefi t from adjunctive dexamethasone, although 
post-hoc analyses did suggest that there might be some 
benefi t in HIV-negative adults and a lower rate of hearing 
loss among all survivors.

Another meta-analysis of 25 studies,124 in both adults 
and children, showed a small reduction in hearing loss 
in adults treated with corticosteroids compared with 
placebo (16% vs 22%; risk ratio 0·74, 95% CI 0·56–0·98) 
but no diff erence in mortality. A subgroup analysis 
showed a slight decline in mortality in all patients with 
pneumococcal meningitis (risk ratio 0·84, 95% CI 
0·72–0·98) with no eff ect on H infl uenzae or 
meningococcal meningitis (although numbers in these 
groups were very small). This benefi t did not remain 
when a random-eff ects model was used (which may have 
been more appropriate given the heterogeneity of the 
studies: I² 47%).124

Both these meta-analyses compared very diverse 
studies and populations including children and adults, 
high and low socioeconomic status, and diff erences in 
comorbidities. This variation is refl ected in the 
heterogeneity of the analyses and possibly accounts for 
the confl icting conclusions. However, there should be a 
balance between the risks and potential benefi ts of 
corticosteroid use. Overall, corticosteroids seem to off er a 
small benefi t in adults with regard to reducing hearing 
loss and might slightly lower mortality in pneumococcal 
meningitis. In most studies, there is no increase in side-
eff ects when corticosteroids were given in comparison to 
placebo. Therefore, steroids are recommended for all 
adults with suspected bacterial meningitis in resource-
rich countries. Although the meta-analyses did not show 
a diff erence between countries of high and low income, 
there was considerable heterogeneity and in lower 
income countries the benefi ts are probably less 
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pronounced; therefore, corticosteroids are not recom-
mended in this group.

The dose of corticosteroids diff ers between trials, but 
the one that was used in the large European trial is 10 mg 
of dexamethasone given four times a day.125 The Cochrane 
review124 recommends administration with or just before 
the fi rst antimicrobial dose.124 Subgroup analyses in both 
meta-analyses showed no statistical diff erences in terms 
of mortality when corticosteroids were given before or 
with antibiotics compared with when they were given 
afterwards.124,127 There were diff erences when hearing loss 
was the outcome of interest and the eff ect size was bigger 
in the group who received corticosteroids after antibiotics 
compared with the group who received corticosteroids 
before or concurrently (risk ratio 0·62, 95% CI 0·43–0·89 
vs 0·8, 0·7–0·92).124

Glycerol and hypothermia have been trialled as potential 
adjunctive therapies in bacterial meningitis. Theoretically, 
osmotic substances such as glycerol can draw 
extravascular fl uid from the brain into the vascular space 
and reduce intracranial pressure. One clinical study in 
adults,121 done in a resource-limited setting with a high 
HIV prevalence, showed no benefi t. Induced hypothermia 
is used as a treatment for cerebral hypoxaemia following 
cardiac arrest and animal models have shown it to reduce 
intracranial hypertension in meningitis. Observational 
clinical studies128,129 also suggested it might be benefi cial. 
However, a randomised controlled trial130 was stopped 
early because of an increased risk of death in patients in 
the intervention group. It is unlikely that hypothermia or 
glycerol will be widely implemented without adaptation 
and further controlled trials.

Prognosis and sequelae
Features associated with a poor prognosis include older 
age, reduced conscious level, tachycardia, a cerebrospinal 
fl uid leucocyte count of less than 1000 × 10⁹ cells per mL, 
and reduced platelet count.8 Prognosis can be improved 
by instigating both antibiotic and steroid treatment early.3 
Sequelae are more common in pneumococcal meningitis 
than meningococcal meningitis. Hearing loss is one of 
the most common problems after meningitis, particularly 
pneumococcal meningitis, and a prompt hearing 
assessment with cochlear implants can be benefi cial for 
patients. Other sequelae include limb loss, especially if 
meningococcal sepsis occurs, subdural empyema, 
hydrocephalus, and seizures. Other less life-threatening 
sequelae include neurocognitive dysfunction such as 
sleep disorders.

The future
Many of the pneumococcal vaccines in development are 
protein based (rather than being based on the capsular 
polysaccharide), to be given either in addition or as an 
alternative to conjugate vaccines. This approach could 
provide pan-serotype protection and eliminate the 
problem of serotype replacement. Several early phase 
studies have been done, one of which (combining 
pneumolysin toxoid and histidine triad protein D, a 
pneumococcal surface protein thought to be involved in 
complement inhibition) has provided good evidence of 
immunogenicity with an acceptable safety profi le in both 
younger and older adults.131–133

The search for a widely eff ective vaccine against 
meningococcal serogroup B has been diffi  cult because of 

Figure 3: Major outer membrane components of Neisseria meningitidis and vaccine targets
The polysaccharide capsule determines the serogroup whereas the outer membrane proteins porA and porB determine the serosubtype and serotype, respectively.
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the poorly immunogenic capsule. Vaccines were 
developed that targeted subcapsular proteins (fi gure 3) 
and were used with some success in epidemics in 
Norway, Cuba, Brazil, New Zealand, and France.134–136 
However, they were poorly immunogenic in young 
children and strain specifi c, and so could not be rolled 
out on a larger scale. Using a novel genome sequencing 
method, a multicomponent serogroup B meningococcal 
vaccine has been produced. It contains four immunogenic 
components: three proteins (NadA, which is involved in 
the adhesion of Neisseria to the nasal epithelium; NHBA, 
thought to be involved in serum resistance; and fHbp) in 
combination with outer membrane vesicles from the 
New Zealand vaccine strain. The vaccine is immunogenic 
in young infants137,138 and older children.139 It might also 
reduce carriage of other meningococcal serogroups 
(because some of the subcapsular antigens in the vaccine 
are also present in non-B serogroups),140 indicating that it 
could aff ect transmission once fully implemented and 
have a signifi cant eff ect on disease in adults as well as 
children. The vaccine has been estimated to provide 
coverage against 88% of circulating serogroup B strains 
in England and Wales,141 and was permitted for 
investigational use in the USA in late 2013 and early 2014 
in two outbreaks. In September, 2015, the UK Department 
of Health incorporated it into their childhood 
immunisation schedule. The US Food and Drug 
Administration have also approved another serogroup B 
vaccine for adolescents and young adults. This vaccine is 
a bivalent vaccine that utilises two families of fHbp.

New treatments are needed. Research is focused on 
adjunctive therapy targeting the host infl ammatory 
response. Some areas of interest include MMP inhibitors 
and MRP-14 inhibitors such as paquinimod, which has 
anti-infl ammatory eff ects without aff ecting bacterial 
killing.60 Inhibitors of complement and other neurotoxic 
mediators are also being investigated as well as 
compounds that can modulate the leucocyte response 
(eg, G-CSF).142

Finally, surveillance around the world remains 
important. The global epidemiology of bacterial 
meningitis is continually changing, especially with the 
introduction of new vaccines, and surveillance is needed 
to determine the breadth of coverage, monitor for 
serotype replacement, and follow the emergence of new 
meningococcal serogroups. Robust epidemiological 
studies should document clearly the causative agents in 
low-resource settings, especially Asia, to determine what 
vaccination strategies are necessary. Surveillance for 
antimicrobial resistance is also of utmost importance. 
Epidemiological research into risk factors for disease in 
adults and preventive strategies is also needed.

Eff ective control of bacterial meningitis is still some way 
off . Because the disease is both rare and deadly, it requires 
the vigilance of the clinician to identify and treat it in a 
timely manner, and the continued support of research 
partners to develop new vaccines and treatments.
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