First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer

Review information

Review type: Intervention
Authors
Janette Greenhalgh¹, Kerry Dwan², Angela Boland¹, Victoria Bates¹, Fabio Vecchio¹, Yenal Dundar¹, Pooja Jain³, John A Green⁴
¹Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
²Department of Biostatistics, University of Liverpool, Liverpool, UK
³Clatterbridge Cancer Centre, Bebington, UK
⁴Institute of Translational Medicine, University of Liverpool, Bebington, UK

Contact person
John A Green
Senior Lecturer in Medical Oncology
Institute of Translational Medicine
University of Liverpool
Clatterbridge Cancer Centre
Clatterbridge Road
Bebington
Merseyside
CH63 4JY
UK
E-mail: J.A.Green@liverpool.ac.uk

Dates
Assessed as Up-to-date: 1 June 2015
Date of Search: 1 June 2015
Next Stage Expected: 15 December 2016
Protocol First Published: Issue 2, 2013
Review First Published: Not specified
Last Citation Issue: Issue 2, 2013

What's new
Date	Event	Description

History
Date	Event	Description

Abstract
Background
Epidermal growth factor receptor (EGFR) mutation positive (M+) non-small cell lung cancer (NSCLC) is emerging as an important subtype of lung cancer comprising 15-20% of non-squamous tumours. This subtype is more common in women than men, is less associated with smoking and has an improved prognosis compared to the M- subtypes.

Objectives
To assess the clinical effectiveness of single or combination EGFR therapies used in the first-line treatment of patients with locally advanced or metastatic EGFR M+ NSCLC compared with other cytotoxic chemotherapy (CTX) agents, or best supportive care (BSC). The primary outcome is overall survival.

Search methods
We conducted electronic searches of the databases of The Cochrane Library (to 1st June 2015), MEDLINE (1946 to 1st June 2015), EMBASE (1980 to 1st June 2015), ISI Web of Science (1899 to 1st June 2015). In addition we searched the conference abstracts of ASCO and ESMO. Evidence Review Group submissions to NICE were also searched as were the
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer (NSCLC) is a common and challenging condition. The aim of this review was to assess whether treatments targeted at EGFR M+ NSCLC have any benefit in survival or quality of life compared to standard chemotherapy.

Selection criteria
Parallel randomised controlled trials comparing EGFR-targeted agents (alone or in combination with cytotoxic agents or BSC) with cytotoxic chemotherapy (single or doublet) or best supportive care (BSC) in chemotherapy-naive patients with locally advanced or metastatic (Stage IIIB or IV) EGFR M+ NSCLC unsuitable for treatment with curative intent.

Data collection and analysis
Two authors independently identified articles, extracted data and carried out risk of bias assessments. Meta-analyses were conducted using a fixed effect model unless there was substantial heterogeneity when a random effects analysis was also performed as a sensitivity analysis.

Main results
Nineteen trials met the inclusion criteria. Seven of these exclusively recruited patients with EGFR M+ NSCLC, the remainder recruited a mixed population and report results for patients with EGFR M+ NSCLC as subgroup analyses. The number of patients with EGFR M+ tumours totalled 2317 of whom 1700 were of Asian origin.

Erlotinib was the intervention treatment in 8 trials, gefitinib in 7 trials, afatinib in 2 trials and cetuximab in 2 trials. Overall survival (OS) data showed inconsistent results between the included trials that compared EGFR targeted treatments against CTX or placebo. The findings of one trial (FASTACT 2) did report a statistically significant OS gain for patients treated with erlotinib plus CTX when compared to CTX alone but this result was based on a small number of patients (n=97). For progression-free survival (PFS), a pooled analysis of three trials (n=378) demonstrated a statistically significant benefit for erlotinib compared with CTX (HR=0.30; 95% CI: 0.23 to 0.40).

In a pooled analysis with 491 patients with gefitinib, two trials (IPASS; NEJSG) demonstrated a statistically significant PFS benefit of gefitinib compared with CTX (HR=0.39; 95% CI:0.32 to 0.48).

Afatinib (n=709) showed a statistically significant benefit when compared with chemotherapy in a pooled analysis of two trials (HR= 0.42; 95% CI: 0.34 to 0.53). Commonly reported adverse events for afatinib, erlotinib and gefitinib monotherapy were rash and diarrhoea.

No statistically significant PFS benefit for cetuximab plus CTX (n=81) compared to chemotherapy alone was reported in either of the two trials.

Six trials reported on quality of life and symptom improvement using different methodologies. For each of erlotinib, gefitinib and afatinib, two trials showed improvement in one or more indices for the TKI compared to chemotherapy.

The risk of bias was mixed, with lack of blinding being the main reason the majority of trial were classified as at unclear risk of bias.

Authors' conclusions
Erlotinib, gefitinib or afatinib are all active agents in EGFR M+ NSCLC patients, and demonstrate an increased response rate and prolonged progression-free survival compared to cytotoxic chemotherapy. Cytotoxic chemotherapy is less effective in this subtype than erlotinib, gefitinib or afatinib and is associated with greater toxicity. There is no data supporting monoclonal antibody therapy.

Plain language summary
First-line treatment of advanced non-small cell lung cancer that is identified as being EGFR mutation positive.

Background
Lung cancer is the most common cancer in the world. It tends to be diagnosed in older people and because it is has few symptoms is usually diagnosed at a late stage of the disease.

The most common type of lung cancer is non-small cell lung (NSCLC) cancer which affects specific cells in the lungs. Around 15-20% of people with NSCLC will have a specific type of disease known as epidermal growth factor receptor positive (EGFR M+). People who have EGFR M+ NSCLC usually do not respond to standard treatment with chemotherapy. New treatments which can target EGFR M+ NSCLC have recently been developed and licensed and their efficacy is assessed in this review.

Objectives
The purpose of this review is to assess whether treatments targeted at EGFR M+ NSCLC have any benefit in survival or quality of life compared to standard chemotherapy.

Trial Characteristics
We identified 19 trials that investigated four different EGFR-targeted drugs, comprising the tyrosine kinase inhibitors afatinib, erlotinib and gefitinib, and the antibody cetuximab. Trials which presented results up to June 2015 are included in this review.

Results
This review demonstrates that treatment with erlotinib, gefitinib and afatinib leads to increased time until disease progression compared to conventional or combined chemotherapy. However, there is no increase in overall survival when compared with standard chemotherapy except for one preplanned subgroup analysis for afatinib in patients with the codon 19 deletion.
There was no increase in delayed disease progression or survival when cetuximab is compared with standard chemotherapy.

Conclusion

Treatment with erlotinib, gefitinib and afatinib confer delayed disease progression but do not extend life. The side effects associated with erlotinib, gefitinib and afatinib are more favourable than those associated with conventional chemotherapy. Treatment with cetuximab in combination with chemotherapy is of no benefit in controlling these tumours or extending life.

Background

Description of the condition

Lung cancer is the most common cancer in the world and the second most common cancer diagnosed in the UK (Cancer Research UK). Globally, in 2012, 1.8 million people were diagnosed with lung cancer, representing 12.9% of all cancers (GLOBOCAN 2012). In the UK in 2012 45,000 new cases of lung cancer were diagnosed, 13% of all new cancers (Cancer Research UK 2012b). Lung cancer is rarely diagnosed in people younger than 40 years of age and 90% of cases are identified in people over the age of 60 years (Cancer Research UK 2013). In both men and women, smoking is the primary cause of lung cancer (Cancer Research UK 2013). Prognosis is poor as early stage lung cancer is often asymptomatic, and the majority of patients are diagnosed at a late stage. (Cancer Research UK 2012b). In the UK in 2012, 35,000 people died of lung cancer, representing 22% of all deaths from cancer in the UK (Cancer Research UK 2012a).

Non-small cell lung cancer (NSCLC) accounts for approximately 84% of lung cancer cases and comprises two main histological subgroups, squamous cell carcinoma and non-squamous cell carcinoma (Schiller 2002). Squamous cell carcinoma accounts for 33% of all NSCLC cases whilst non-squamous cell carcinoma (including adenocarcinoma and large cell carcinoma) accounts for 29% of NSCLC cases. Approximately 16% of patients have NSCLC that is ‘not-otherwise specified’ with the diagnosis based on cytology alone (Schiller 2002). The prognosis for patients with metastatic NSCLC is poor, with a median survival of the order of 11 months (Schiller 2002).

Treatment for patients with NSCLC is dependent not only on the histological subtype and genetic subtype of the patient, but also on disease stage, co-morbidity, and performance status (PS). Chemotherapy for advanced disease can extend overall survival (OS) by several months compared to best supportive care (BSC) and may improve quality of life (QoL), but it may not be appropriate for many patients with poor PS (Spiro 2004; Brown 2013).

In recent years the clinical subtypes of NSCLC have become relevant to the selection of treatment regimens. Attention has been drawn to tumours that harbour the epidermal growth factor receptor mutation (EGFR M+). The EGFR, a protein located on the cell surface, binds to and activates epidermal growth factor. This binding induces receptor dimerization and tyrosine kinase autophosphorylation, leading through signal transduction to cell proliferation (NCBI: Han 2012). It is estimated that 10% to 15% of patients with non-squamous NSCLC have tumours that are EGFR M+ (Peters 2012; Rosell 2012). An EGFR mutation frequency of 21% was reported by Shigematsu 2005 and is more frequently observed in never smokers than ever smokers (51% vs 10%), in adenocarcinomas vs cancers of other histologies (40% vs 3%), in patients of East Asian ethnicity vs other ethnicities (30% vs 8%), and in females vs males (42% vs 14%). Other trials have reported EGFR mutations (exons 18 to 21) in 17% to 20% of samples of NSCLC (Rosell 2009; Ulivi 2012) and these more frequently occur in never smoking females (Scoccianti 2012).

The identification of patients with EGFR M+ tumours has led to the development of targeted therapies comprising small molecule tyrosine kinase inhibitors (TKIs) directed at the signal transduction pathway between the cell membrane and the nucleus, while monoclonal antibodies (MABs) bind to and inactivate the receptor on the cell membrane. The TKIs are orally administered agents while the MABs are given intravenously. Patients of interest to this review are chemotherapy-naive patients with locally advanced or metastatic (Stage IIIB or IV) EGFR M+ NSCLC who are not suitable for treatment with curative intent, such as surgery or radical radiotherapy.

Description of the intervention

In Europe, there are three licensed treatments that target EGFR M+ NSCLC, afatinib, erlotinib and gefitinib. These drugs are TKIs of EGFR and target proteins on the cancer cells related to activation of the signal transduction pathway. They are oral treatments (tablets) that are taken daily until the disease progresses. Other drugs, for example, the TKI dacomitinib and the MAB cetuximab, are therapies currently under clinical investigation but are not yet licensed for the first-line treatment of patients with EGFR M+ NSCLC.

In the UK, NICE has recommended the use of monotherapy erlotinib (NICE 2012), monotherapy gefitinib (NICE 2010) and more recently, monotherapy afatinib (NICE 2014) for the first-line treatment of EGFR M+ NSCLC. In Europe, European Society for Medical Oncology (ESMO) guidelines recommend first-line treatment with monotherapy afatinib, erlotinib or gefitinib (Peters 2012; Reck 2014). In the USA, the Food and Drug Administration (FDA) has approved the use of monotherapy erlotinib and monotherapy afatinib (FDA 2013; FDA 2014). Globally there is considerable variation in the use of each of these drugs to treat patients with NSCLC, and the availability and quality control of mutation testing which determines patient selection.

Why it is important to do this review

Treatments for patients with NSCLC are evolving rapidly. Up until early 2000, patients with NSCLC were offered standard cytotoxic chemotherapy treatments (for example, docetaxel, vinorelbine, paclitaxel and gemcitabine), and in many cases given in two-drug combinations (Brown 2013). However, in recent years patients have been treated with drugs according to their disease histology (for example, pemetrexed for non-squamous disease). Even more recently, as understanding of
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer (NSCLC) has evolved, targeted treatments have been developed (for example, TKIs and MABs) to treat specific groups of patients based on molecular criteria. It is estimated that around 10% (n = 4000 annually) of all lung cancer patients in the UK have locally advanced or metastatic EGFR M+ NSCLC (NICE 2010), but the prevalence is higher in Asian populations. It is, therefore, important to synthesise evidence for the clinical effectiveness and toxicity of these innovative treatments to ensure that patients are being treated with the most clinically effective drugs for their specific disease subtype.

Objectives

To assess the clinical effectiveness of single or combination EGFR therapies used in the first-line treatment of patients with locally advanced or metastatic EGFR M+ NSCLC compared with other cytotoxic chemotherapy (CTX) agents used alone or in combination, or best supportive care (BSC). The primary outcome is overall survival.

Methods

Criteria for considering studies for this review

Types of studies

Parallel randomised controlled trials (RCTs)

Types of participants

Chemotherapy-naive patients with locally advanced or metastatic (Stage IIIB or IV) EGFR M+ NSCLC unsuitable for treatment with curative intent, such as surgery or radical radiotherapy.

Types of interventions

EGFR M+ targeted agents, alone or in combination with cytotoxic agents, compared with cytotoxic agents used alone or in combination or BSC.

We excluded trials comparing single agents or combinations of cytotoxic chemotherapy without a targeted therapy in either arm, trials with targeted therapy in both arms and we did not evaluate maintenance or second-line strategies.

Types of outcome measures

Primary outcomes

Overall survival (OS)

Secondary outcomes

Progression-free survival (PFS)

Tumour response

Toxicity and adverse effects (AEs) of treatment

Quality of life (QoL) (e.g. Functional Assessment of Cancer Therapy - Lung (FACT-L) and Trial Outcome Index (TOI))

Symptom palliation

Search methods for identification of studies

Electronic searches

We searched the following electronic databases for relevant published literature up to June 2015. Searches were not restricted by language.

- CENTRAL (Cochrane Central Register of Controlled Trials) (The Cochrane Library). June 2015
- CDSR (Cochrane Database of Systematic Reviews). June 2015
- DARE (Database of Abstracts of Reviews of Effectiveness). June 2015
- EMBASE (OvidSP). June 2015
- Health Technology Assessment (HTA) database. June 2015
- ISI Web of Science - Science Citation Index Expanded. June 2015

We modified the search strategies over time. To ensure the integrity of the searches, the strategy outlined in Appendix 3 was re-run in PubMed from inception to June 2015 (overall) and we compared the results with the results of all other searches. Any non-duplicate articles were examined for possible inclusion in the review. The strategies used to explore MEDLINE (via Ovid) are outlined in Appendix 1; Appendix 2; Appendix 3 and we adapted these, as appropriate, for the remaining databases.

Searching other resources

Other resources we searched included: bibliographies of identified sources and use of Evidence Review Group (ERG) reports to the National Institute for Health and Care Excellence. We searched the proceedings of relevant conferences such as the American Society for Clinical Oncology (ASCO) and the European Society for Medical Oncology (ESMO) up to June 2015. If data were available, we considered including them in the review.

We developed a database of relevant references using EndNote X5 software.
Data collection and analysis

Selection of studies
Two review authors independently took part in all stages of trial selection (FV and VB Search 1; VB and JG Search 2, JAG and YD, JAG and JG Search 3). Firstly, review authors independently scanned the titles and abstracts of references identified by the search strategy. Full details of possibly relevant trials were obtained and assessed independently for inclusion in the review. If a disagreement occurred, the review authors attempted to reach a consensus by discussion, or by involving a third review author (AB and JG). Trials that did not meet all of the inclusion criteria were excluded and their bibliographic details listed with reasons for exclusion. Ongoing trials that did not report relevant data but met the inclusion criteria were listed for future use. If clear trials published in abstract form only, it was noted that a trial was eligible then it was included. If it was not clear, authors were contacted for further information and the trial was placed in ‘awaiting assessment’ until a reply was received.

Data extraction and management
Two review authors carried out the data extraction (FV and VB Search 1; VB and JG Search 2, JAG and KD Search 3) using pre-tested data extraction forms and a third review author (KD) independently checked for the extracted data for accuracy. We extracted data relating to the outcome measures as well as information on trial design and participants (for example, baseline characteristics). Where data from trials were presented in multiple publications we extracted and reported these as a single trial with all other relevant publications listed.

Assessment of risk of bias in included studies
We assessed each included trial for risk of bias using criteria outlined in Chapter 8 of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011) (see domains listed below) Two reviewers (FV and JG Search 1; JG and KD Search 2) independently carried out the assessments. Any disagreements were resolved through discussion.
1. Random sequence generation (selection bias).
3. Blinding of participants (performance bias).
5. Incomplete outcome data (attrition bias).
6. Selective outcome reporting (reporting bias).
7. Any other identified bias, including inappropriate influence of funders.
We report bias as either high, low or unclear (further details of reporting bias are outlined in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011). We assessed the domains of blinding and incomplete outcome data at the outcome level.

Summary of findings tables are presented with each outcome graded accordingly using the GRADE approach (GRADE Working Group 2004).

Measures of treatment effect
For binary outcomes, where sufficient data were available, we present relative treatment effects in the form of relative risks (RR) with 95% confidence intervals (CI). For continuous outcomes, we calculated mean differences (MD) and 95% CIs provided there was no evidence that the data were subject to skew. If statistical tests used in the original paper were for skewed data, or if median and interquartile ranges were reported, we assumed the data were skewed. Standardised mean differences (SMDs) were calculated for QoL variables where appropriate. For time to event outcomes, we extracted log hazard ratios (log HR) when available, with 95% CI. If the log HR was not reported, data were requested from authors.

All trials allowed patient crossover to another treatment after progression but there are no details regarding how this was dealt with in any of the analyses of OS.

We considered trials that: (1) provided only unplanned, interim findings, and (2) were continuing to recruit patients for inclusion in the review but we did not not include these in the meta-analysis.

Unit of analysis issues
We did not include cross-over trials in the review.

Dealing with missing data
We contacted authors (and sponsors) of trials for missing data.

Assessment of heterogeneity
We assessed statistical heterogeneity between trials visually by inspection of the forest plots and using the Chi² test (p < 0.1 was considered significant due to the low power of the test). We also calculated the I² statistic;, this describes the percentage of the variability in effect estimates that is due to heterogeneity rather than sampling error (chance). Values of I² range from 0 to 100, with 0 representing no heterogeneity and 100 representing considerable heterogeneity.
For this review:
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

- 0% to 40%, heterogeneity might not be important;
- 30% to 60% may represent moderate heterogeneity;
- 50% to 90% may represent substantial heterogeneity and
- 75% to 100%, considerable heterogeneity.

Assessment of reporting biases
If a sufficient number of trials are identified, a funnel plot can be constructed. If asymmetry is present in the funnel plot, possible causes of bias may be explored, such as heterogeneity or outcome reporting bias.

Data synthesis
We have summarised individual trial data in structured tables and as a narrative description. We combined data for time to event outcomes using the generic inverse variance method. We used the Mantel-Haenszel method for dichotomous outcomes. In future versions of this review where data are available, we may combine continuous outcomes using the inverse variance method.

We conducted meta-analyses using the fixed-effect model unless there was substantial heterogeneity ($I^2 > 50\%$) and used a random-effect model as a sensitivity analysis. In future versions of this review, if there is considerable heterogeneity ($I^2 > 75\%$) we may combine data but conclusions will highlight the amount of heterogeneity present.

Indirect comparisons and network meta-analysis
In future versions of this review, if trials are identified that compare different interventions which are sufficiently similar in terms of their populations and outcomes, we may make indirect comparisons for competing interventions that have not been compared directly. Do we not need to be more specific about why we didn't do this while others have! Multiple treatment meta-analysis (also referred to as network meta-analysis) may combine direct and indirect comparisons using multivariate meta-analysis as this will also take into account any multi-arm trials. We will use a random-effect model within STATA to conduct analyses using code from www.mtm.uoi.gr.

Transitivity (the trials making different direct comparisons must be sufficiently similar in all respects other than the treatments being compared) will be evaluated clinically. We will compare the distributions of possible effect modifiers (smoking status; age, gender, ethnicity and performance status) across comparisons using subgroup analysis. As the review is only considering first-line treatment, indications are similar.

Consistency will be evaluated using a loop specific approach ([Salanti 2009](#)) and design interaction consistency model ([Higgins 2012](#)) will also be used. If inconsistency is identified, the network meta-analysis will not be presented.

Estimates of treatment effect will be assessed by pairwise meta-analysis. Network meta-analysis will be conducted where appropriate.

Prior to analysis a diagram of the network for all relevant interventions will be drawn, indicating the number of trials per comparison. Ranking probabilities for each treatment will be derived and displayed using the Surface Under the Cumulative RAnking curve (SUCRA) plot and rankograms ([Salanti 2011](#)).

The possible effects of risk of bias on the clinical effectiveness data and review findings will be discussed.

Subgroup analysis and investigation of heterogeneity
In an update of this review, when sufficient trials are included and where data are available, subgroup analysis may be performed for the following subgroups:
- Smoking status: smoker, non-smoker;
- Age: < 65 years, age ≥ 65 years;
- Gender: male, female;
- Ethnicity: Asian, non-Asian;
- Performance status: 0/1, 2/3.

Sensitivity analysis
In an update of this review, when sufficient srials are included, we will conduct sensitivity analyses based on the overall risk of bias of the included trials. Overall risk of bias will be based on sequence generation, allocation concealment and blinding (for the specific outcome), and the summary assessment will be based on recommendations in Table 8.7a of the *Cochrane Handbook for Systematic Reviews of Interventions* ([Higgins 2011](#)).

Results

Description of studies

Results of the search
The database search strategy yielded 7674 non-duplicate papers. Of these we screened 336 full text records for inclusion in the review. We identified a further 7 records via hand-searching of reference lists and we found 2 other records from our search of conference abstracts. All of the potentially relevant references were screened and we included 19 eligible RCTs (reported in 55 publications) comparing EGFR targeted therapy to chemotherapy as first-line treatment in NSCLC patients in our review ([Figure 1](#)).
Three trials are classified as awaiting assessment (TALENT; TRIBUTE; INSPIRE) and are not yet included in the review. We contacted the authors of TALENT; TRIBUTE and asked them to provide data on the EGFR M+ population. We have not received a response. We await the publication of the outcomes for the EGFR M+ subgroup from INSPIRE. There is one ongoing trial (ARCHER).

Included studies

The 19 trials (Characteristics of included studies) which met the inclusion criteria (BMSO99; CHEN;ENSURE EURTAC; FASTACT 2; First-SIGNAL; FLEX; GTOWG; INTACT 1; INTACT 2; IPASS; LUX-Lung 3; LUX-Lung 6; NEJSG; OPTIMAL; TOPICAL; TORCH; WJTOG3405; Yu 2014) were published or updated between 2003 and 2015. With the exception of GTOWG, all trials were published as peer-reviewed papers. The overall number of patients recruited to the trials ranged between 113 (CHEN) and 1217 (IPASS) with an overall trial population of 9414. The median length of follow up (where reported) ranged from 15.9 months (INTACT 1) to 59 months (WJTOG3405).

EGFR mutation status - overall population versus subgroups

Seven trials included EGFR M+ patients only (EURTAC; ENSURE; LUX-Lung 3; LUX-Lung 6; NEJSG; OPTIMAL; WJTOG3405). The number of patients recruited to the EGFR M+ only trials ranged from 165 (OPTIMAL) to 364 (LUX-Lung 6) with a total population of 1672. The remaining 12 trials recruited a ‘mixed’ population of patients, that is patients were not selected for inclusion in the trial on the basis of their EGFR mutation status. These latter trials report results for the subgroup of patients with EGFR M+ mutation status only. The numbers of patients reported in these subgroups range from 10 (GTOWG) to 261 (IPASS) with a combined total of 645. The combined total of patients with EGFR M+ NSCLC is 2317.

Three trials were conducted exclusively in Europe (EURTAC; GTOWG; TOPICAL), 10 were conducted exclusively in Asia (CHEN; ENSURE; FASTACT 2; First-SIGNAL; IPASS; LUX-Lung 6 NEJSG; OPTIMAL; WJTOG3405; Yu 2014) and the remainder were conducted in America (BMSO99), Italy and Canada (TORCH), America and Europe (INTACT 2). LUX-Lung 3, INTACT 1 and FLEX were international trials. The seven trials that recruited exclusively EGFR M+ patients were conducted in Asia (ENSURE; LUX-Lung 6; NEJSG; OPTIMAL; WJTOG3405) and Europe (EURTAC) with one international trial (LUX-Lung 3).

Four of the trials were placebo controlled and double-blinded (FASTACT 2; INTACT 1; INTACT 2; TOPICAL) the remainder were specifically reported as being open-label or did not report blinding status. In the latter case, we assumed these to be open-label due to the nature of the interventions and comparator (i.e. oral vs i.v. treatments). Three of the 19 included trials were phase II (CHEN; GTOWG; Yu 2014) whilst the others were phase III. Fifteen of the 19 trials (BMSO99; CHEN; ENSURE; EURTAC; FASTACT 2; First-SIGNAL; FLEX; INTACT 1; INTACT 2; IPASS; OPTIMAL; TOPICAL; TORCH; LUX-Lung 6) were partially or totally funded by a pharmaceutical company; the NEJSG and WJTOG3405 trials were funded by scientific groups. The funding source for the GTOWG and Yu 2014 trials is not reported.

Population characteristics

Data for age, sex, performance status (PS) and smoking status were provided for all trials except for the INTACT 1, INTACT 2 and GTOWG trials (no details of smoking history). The median age of the overall population of all the patients in the included trials ranged from 56 to 77 years; the median age of patients in the EGFR M+ only trials ranged from 56 to 65 years. Two trials (CHEN and GTOWG) only included patients aged over 70 years and NEJSG and Yu 2014 only reported mean age. There was a greater proportion of females in 9 of the trials (ENSURE; First-SIGNAL; IPASS; LUX-Lung 3; LUX-Lung 6; NEJSG; OPTIMAL; WJTOG3405; EURTAC), and greater prevalence of males in 7 trials (TORCH; CHEN; BMSO99; GTOWG; INTACT 1; INTACT 2; FLEX). The majority of patients were of good PS (ECOG or WHO 0 or 1). The GTOWG abstract did not report PS. It is notable that in all of the trials that recruited EGFR M+ patients only, the proportion of females was greater than males.

Interventions

Erlotinib

Eight trials used erlotinib (n=754 EGFR M+) as the EGFR targeted therapy (CHEN; ENSURE; EURTAC; FASTACT 2; GTOWG; OPTIMAL; TOPICAL; TORCH). In FASTACT 2, erlotinib was used in combination with a platinum doublet containing gemcitabine.

Gefitinib

Seven trials used gefitinib (n=773 EGFR M+) as the EGFR targeted therapy (First-SIGNAL; INTACT 1; INTACT 2; IPASS; NEJSG; WJTOG3405; Yu 2014). In INTACT 1; INTACT 2; Yu 2014 gefitinib was used in combination with chemotherapy.

Afatinib

Two trials compared afatinib (n=709) with cytotoxic chemotherapy (LUX-Lung 3; LUX-Lung 6).

Cetuximab

Two trials (n=81) compared cetuximab plus chemotherapy with combination chemotherapy (FLEX; BMSO99).

Of the six trials that recruited only patients with EGFR M+ NSCLC, two trials used afatinib (LUX-Lung 3; LUX-Lung 6), two used erlotinib (EURTAC; OPTIMAL) and two used gefitinib (NEJSG; WJTOG3405). All six EGFR M+ only trials compared targeted treatment with cytotoxic chemotherapy (EURTAC; LUX-Lung 3; LUX-Lung 6; NEJSG; OPTIMAL; WJTOG3405).

Outcomes

7 / 73
The primary outcome for the majority of trials was progression-free survival (PFS) with secondary outcomes of overall survival (OS), tumour response rate, symptom palliation, quality of life (Qol) and safety. Overall survival was the primary outcome in 6 trials (First-SIGNAL; FLEX; INTACT 1; INTACT 2; TOPICAL; TORCH).

Excluded studies

We excluded 290 records after the selection procedure (Figure 1). The main reasons for exclusion were the use of non-randomised designs (including systematic reviews and reports from conferences), non-assessment of participants' EGFR mutation status and non-administration of treatments as first-line therapy. Other trials were excluded if they were designed to assess maintenance treatment or an EGFR- targeted therapy was used in by trial arms. We were not able to easily exclude articles at the screening stage as we could not be certain from the abstract whether subgroup analyses of outcomes of patients with EGFR M+ tumours were reported. In the Characteristics of excluded studies table we list trials that appear to meet the inclusion criteria, but on closer examination were not a complete match. Patients in 5 trials were not tested for EGFR mutations Crino 2008; ECOG 4508; Gatzeva 2003; Goss 2009; Lilenbaum 2008. Two trials tested for EGFR expression only Rosell 2008; Thatcher 2014. In 3 trials there were too few patients with EGFR M+ tumours to warrant analysis FASTACT; Heigener 2014; White and in 8 trials TKI treatment was included in both trial arms Hirsh 2011; Janne 2012; JO25567; Massuti 2014; NEJ005 2014; NEJ009; Xie 2015; Yang 2015. One trial assessed the outcomes only of patients who survived at 1 year Boutsikou 2013 and in another trial there were insufficient samples available for testing ECOG 4508.

Risk of bias in included studies

Allocation (selection bias)

Of the 19 included trials, 11 reported adequate information about the methods used to generate the randomisation sequence and the allocation concealment procedure and these trials were considered to be at low risk of bias (EURTAC; FASTACT 2; FLEX; IPASS; LUX-Lung 3; LUX-Lung 6; TOPICAL; NEJSG; OPTIMAL; TORCH; WJTOG3405). For the remaining 8 trials, the risk of bias was considered to be unclear due to the lack of reported information (BMS099; CHEN; ENSURE; First-SIGNAL; GTOWG; INTACT 1; INTACT 2; Yu 2014).

Blinding (performance bias and detection bias)

Performance bias

Only 4 of the 19 included trials reported employing blinding procedures (INTACT 1; INTACT 2; NEJSG; TOPICAL). The remainder were explicitly stated as being open-label or did not report blinding status. In the latter case, we assumed these trials were open-label due to the differences between interventions and comparator (i.e. oral vs intravenous).

Detection bias

Eleven of the trials were considered to be at low risk of detection bias for the outcome of PFS as they incorporated independent verification procedures (EURTAC; ENSURE; FASTACT 2 First-SIGNAL; NEJSG; BMS099; LUX-Lung 3; LUX-Lung 6) or blinded outcome assessment (INTACT 1; INTACT 2; TOPICAL). None of the remaining trials reported any independent assessment procedures and were considered to be at high risk of bias for the outcome of PFS.

Incomplete outcome data (attrition bias)

In all trials, all patients were accounted for in the analyses. There did not appear to be any major imbalances in drop-out rates between trial arms in any of the trials and therefore all trials were considered to be at low risk of bias.

Selective reporting (reporting bias)

Only one trial was considered to be at high risk of reporting bias (CHEN). The trial protocol stated time to progression as a primary outcome of the trial; however this outcome is not reported in the published paper. Two trials were considered to be at unclear risk of bias as there was insufficient information available to judge selective reporting (FLEX; GTOWG). All other trials were considered to be at a low risk of bias as either trial protocols were available or all outcomes stated in the methods section of the papers were reported.

Other potential sources of bias

Fifteen trials were sponsored fully or in part by pharmaceutical companies. One trial (TORCH) was terminated early as the non-inferiority of the intervention arm was demonstrated by the first planned interim analysis. Two trials were terminated early for benefit (ENSURE; EURTAC).

Effects of interventions

Pairwise meta-analysis

Erlotinib vs Control

Erlotinib vs gemcitabine plus carboplatin: One trial considered this comparison (OPTIMAL).

Erlotinib vs gemcitabine plus cisplatin: Two trials considered this comparison (ENSURE; TORCH).

Erlotinib vs docetaxel plus cisplatin or gemcitabine plus cisplatin: One trial considered this comparison (EURTAC).

Erlotinib vs carboplatin plus vinorelbine: One trial considered this comparison (GTOWG).

Erlotinib vs vinorelbine: One trial considered this comparison (CHEN).
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

Erlotinib plus gemcitabine plus carboplatin or cisplatin vs gemcitabine plus carboplatin or cisplatin plus placebo: One trial considered this comparison (FASTACT 2).

Erlotinib vs placebo: One trial considered this comparison (TOPICAL).

Primary outcome: Overall survival

Data from five trials were available for OS (EURTAC; TORCH; CHEN; FASTACT 2; ENSURE). Three trials presented limited data (OPTIMAL; TOPICAL) and in one trial no data were presented (GTOWG).

The pooled treatment effect estimate for three trials, (HR of 0.95 (95% CI: 0.65, 1.66, I²=0, 3 trials) indicated no significant difference in OS between the groups (EURTAC; TORCH; ENSURE), CHEN reported a HR of 2.16 (95% CI: 0.58, 8.10) for OS comparing erlotinib vs vinorelbine in elderly patients, indicating no significant difference in OS between the groups. FASTACT 2 reported a HR of 0.48 (95% CI: 0.27, 0.85) for OS indicating a significant difference in OS favouring erlotinib plus CTX in a trial of 91 patients (Analysis 1.1).

OPTIMAL reported that OS did not differ significantly between the two treatment arms (HR=1.065, p=0.6849). No standard error was reported so the results can not be entered into a meta-analysis one of the SRs has a correction for this using an assumption JAG.

The median overall survival was reported for TOPICAL which was 10.4 months (95% CI 5.5, 15.1) for erlotinib (n=17) vs 3.7 months (0.3, 49.3) for placebo (n=11).

Secondary outcomes:

1. Progression free survival

Six trials reported PFS (EURTAC; TORCH; CHEN; FASTACT 2; OPTIMAL; ENSURE). One trial did not report hazard ratios and only presented limited data (TOPICAL) and no data were reported in one trial (GTOWG).

The pooled treatment effect estimate for four trials (HR of 0.30 (95% CI: 0.24, 0.38, fixed effect, I²=74%, 4 trials) favoured erlotinib (OPTIMAL; EURTAC; TORCH; ENSURE). As there was a substantial amount of heterogeneity, a sensitivity analysis was performed using the random effect model and results were similar to the main analysis (HR 0.31 (95% CI: 0.20, 0.50). CHEN reported a HR of 0.55 (95% CI: 0.21, 1.46) for PFS indicating no significant difference between the groups. FASTACT 2 reported a significant difference in PFS favouring erlotinib plus CTX (HR of 0.25 (95% CI: 0.16, 0.39) (Analysis 1.2)

The median progression free survival was reported for TOPICAL which was 4.8 months (1.6, 8.8) for erlotinib (n=17) and 2.9 months (0.3, 10.1) for placebo (n=11).

2. Tumour response

The pooled treatment effect estimate for five trials (OPTIMAL; TORCH; EURTAC; GTOWG; ENSURE) favoured erlotinib (RR 2.26 (95% CI: 1.85, 2.76, I²=57%, 5 trials). As there was a substantial amount of heterogeneity a sensitivity analysis was performed using a random effect model and results were similar (RR 2.20 (95% CI: 1.53, 3.17), Analysis 1.3). CHEN reported a RR of 0.83 (95% CI: 0.19, 3.67) for tumour response, indicating no significant differences in tumour response between the groups in a trial of 24 patients.

FASTACT 2 observed an objective response in 41 (84%) of 49 patients with EGFR-activating mutations in the erlotinib plus CTX group and seven (15%) of 48 in the chemotherapy plus placebo group (RR 5.74 (95% CI: 2.86, 11.50).

TOPICAL did not report tumour response for EGFR M+ patients.

3. Toxicity and adverse effects of treatment b b

The most commonly reported AEs Table 1 in patients treated with erlotinib as a monotherapy (CHEN;ENSURE; EURTAC; GTOWG; OPTIMAL; TORCH) were rash, diarrhoea and fatigue. Other AEs included mouth ulcers, constitutional symptoms nausea, increased ALT, dyspnoea and pulmonary toxicities. Where erlotinib was administered in combination with cytotoxic chemotherapy (FASTACT 2), the commonly reported AEs were neutropenia, thrombocytopenia and anorexia.

4. Quality of life

Two trials reported on the QoL of EGFR M+ patients (TORCH; OPTIMAL). One trial used the Lung Cancer Symptom Scale (LCSS) to measure QoL, but compliance was so poor that the analysis was regarded as inconclusive by the authors (EURTAC).

QoL was measured but not reported in the trial reports in three trials (GTOWG; HIRSCH) and was not available for the EGFR M+ subgroup in three trials (FASTACT 2; CHEN; TOPICAL).

TORCH used the the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire - Core 30 (QLQ-C30) questionnaire and the lung cancer specific module (EORTC QLQ-LC13) to evaluate QoL. The number of patients improved/ stable/ worse is reported for selected and unselected patients receiving erlotinib and chemotherapy. In the small numbers of EGFR M+ patients (n=36/39 available for analysis) patients' improvement in terms of global QoL and physical functioning was particularly evident for erlotinib compared to CTX.

OPTIMAL used the FACT L, Lung cancer symptom score (LCSS) and trial outcome index (TOI) scales to assess QoL. The odds ratios (with co-variates EGFR mutation type, smoking history and histological type) were in favour of erlotinib and were 6.69 (95% CI: 3.01, 14.85; p=0.0001), 7.54 (95% CI: 3.38, 16.85; p= 0.0001), and 8.07 (95% CI: 3.57, 18.26; p=0.0001).

In the ENSURE trial deterioration in TOI was 11.4 months for erlotinib compared to 4.2 months for chemotherapy (HR 0.51
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer (NSCLC) has become increasingly important. EGFR mutations are common in East Asian patients and have been associated with improved outcomes after targeted treatment. The current treatment strategy for these patients is a combination of EGFR tyrosine kinase inhibitors (TKI) and chemotherapy. A recent study compared the toxicity and efficacy of gefitinib plus carboplatin/paclitaxel to chemotherapy alone in patients with NSCLC harboring EGFR mutations, and included a detailed analysis of quality of life (QoL) and symptom palliation.

Toxicity and adverse effects of treatment

The study reported on the toxicity of treatment, with gefitinib plus carboplatin/paclitaxel being compared to chemotherapy alone. The most commonly reported adverse events (AEs) were neutropenia, thrombocytopenia, rash, diarrhea, anorexia, and liver toxicity. The incidence of grade 3-4 neutropenia was higher in the chemotherapy group compared to the gefitinib plus carboplatin/paclitaxel group. Thrombocytopenia was also more common in the chemotherapy group. Rash and diarrhea were more frequent in the gefitinib plus carboplatin/paclitaxel group. Anorexia was reported more frequently in the chemotherapy group. Liver toxicity was reported only in the chemotherapy group, with elevated liver enzymes.

Quality of life

Quality of life was assessed using the FACT-L, TOI, and LCS questionnaires. The FACT-L questionnaire showed that patients treated with gefitinib plus carboplatin/paclitaxel had a significantly longer time to symptomatic progression than those treated with chemotherapy. The FACT-L questionnaire also showed a significant difference in QoL between the two treatment groups, with patients treated with gefitinib plus carboplatin/paclitaxel reporting better QoL than those treated with chemotherapy. The TOI and LCS questionnaires also showed a significant difference in QoL between the two treatment groups, with patients treated with gefitinib plus carboplatin/paclitaxel reporting better QoL than those treated with chemotherapy. The improvement in QoL was statistically significant, with a p-value of 0.001.

Conclusion

The study showed that gefitinib plus carboplatin/paclitaxel was associated with improved toxicity and efficacy compared to chemotherapy alone in patients with NSCLC harboring EGFR mutations. The improvement in QoL was statistically significant, with a p-value of 0.001. Therefore, gefitinib plus carboplatin/paclitaxel is a promising treatment option for patients with EGFR mutation positive NSCLC.
IPASS used the FACT-L and TOI symptom improvement by the lung cancer subscale (LCS), and achieved 89.5% compliance for CTX and 94.8% for the gefitinib patients. The proportion of patients showing improvement in FACT-L total score, TOI and LCS significantly favoured gefitinib over carboplatin plus paclitaxel (FACT-L total score 70.2% vs 44.5%; odds ratio (OR) 3.01 (95% CI: 1.79, 5.07), TOI 70.2% vs 38.3% OR 3.96 (95% CI: 2.33, 6.71), LCS 75.6% vs 53.9%, OR 2.70 (95% CI: 1.58, 4.62)). The time to deterioration data showed a median of 15.6 months for gefitinib compared to 3.0 months for CTX, 16.6 months compared to 2.9 months for TOI and 11.3 months compared to 2.9 months for LCS respectively. In the 131 patients who improved on the gefitinib arm, the median time to improvement in all three scores was either 8 or 11 days.

NEJSG assessed QoL weekly using the Care Notebook and achieved compliance in 72 patients (63%) on chemotherapy and 76 patients (69%) on gefitinib. They used three categories of physical, mental and 'life' wellbeing, each of which had three sub-categories. The number of patients improved/ stable/ worse is also reported and there was no difference between the treatment arms in mental wellbeing. However, the physical and life scales were all better for gefitinib than CTX. The data for daily functioning is quoted as HR 0.32 (95% CI: 0.17, 0.59; p=0.001).

5. Symptom palliation

In the **NEJSG** trial, patients who received gefitinib had a significantly longer time to deterioration up to 20 weeks than patients who received paclitaxel plus carboplatin using both 9.1% and 27.3% levels of deterioration. The data for 27.3% deterioration for pain and shortness of breath showed HR 0.28 (95% CI: 0.17, 0.46; p=0.0001).

Afatinib vs CTX

Afatinib vs pemetrexed plus cisplatin: One trial considered this comparison (**LUX-Lung 3**).

Afatinib vs gemcitabine plus cisplatin: One trial considered this comparison (**LUX-Lung 6**).

Primary outcome: Overall survival

The pooled treatment effect estimate indicated no significant difference in OS between the groups (HR 1.01 (95% CI: 0.78, 1.31), I²=0, n=2 trials, **Analysis 3.1**), although data for **LUX-Lung 6** are immature.

Secondary outcomes:

1. **Progression free survival**

The pooled treatment effect estimate showed a significant difference in PFS between the groups favouring afatinib (HR 0.42 (95% CI: 0.34, 0.53), I²=90%, n=2 trials, **Analysis 3.2**). As there was a substantial amount of heterogeneity, a sensitivity analysis was performed using a random effect model and results were similar (HR 0.41 (95% CI: 0.20, 0.83).

2. **Tumour response**

The pooled treatment effect estimate favoured afatinib (RR 2.71 (95% CI: 2.12, 3.46, I²=0%), n=2 trials, **Analysis 3.3**).

3. **Toxicity and adverse effects of treatment**

The most commonly reported AEs in the afatinib-treated patients (**LUX-Lung 3; LUX-Lung 6**) were rash and diarrhoea, paronychia and stomatitis/mucositis **Table 1**.

4. **Quality of life**

LUX-Lung 6 also used the QOL C-30 scale, improvement was noted in global health, overall health, physical, cognitive and role function in favour of afatinib plus pemetrexed chemotherapy.

LUX-Lung 6 trial the EORTC QLQ-C30 and the lung cancer specific module QLQ-LC13 were used and showed that compared to cisplatin/gemcitabine a greater percentage of patients showed improvement in global health scores/QoL scores (p<0.0001, physical (p<0.0001) and social function (p<0.0001) with afatinib. Subgroup analysis showed delay in time to deterioration in cough, dyspnoea and pain.

5. **Symptom palliation**

In the **LUX-Lung 3** trial time to deterioration curves for cough and dyspnoea showed a significant effect in favour of afatinib (HR 0.60 (95% CI: 0.41, 0.87) p=0.007 and HR 0.68 (95% CI: 0.50, 0.93 p=0.02) respectively. The HR for pain 0.83 (95% CI: 0.62, 1.10) was not statistically significant (p=0.19).

In the **LUX-Lung 6** trial time to deterioration for cough (HR 0.45;p=0.0003), dyspnoea (0.54: p<0.0001) and pain (HR 0.70;p=0.003) showed a significant effect in favour of afatinib (HR 0.56, 95% CI 0.41, 0.77, p=0.0002).

Cetuximab plus CTX vs CTX

Cetuximab plus paclitaxel or docetaxel plus carboplatin vs paclitaxel or docetaxel plus carboplatin: One trial considered this comparison (**BMSO99**).

Cetuximab plus vinorelbine plus cisplatin vs vinorelbine plus cisplatin: One trial considered this comparison (**FLEX**).

Primary outcome: Overall survival

Data could not be pooled for the two trials comparing cetuximab plus CTX to CTX as one trial only reported an adjusted analysis (**FLEX**).

BMSO99 reported a HR of 1.62 (95% CI: 0.54, 4.84) for OS indicating no significant difference in OS between the groups (11 / 73
Analysis 4.1). FLEX reported a HR of 1.48 (95% CI: 0.77, 2.82) for OS indicating no significant difference in OS between the groups (Analysis 4.1).

Secondary outcomes: 1. Progression free survival

Data could not be pooled for the two trials comparing cetuximab plus CTX to CTX as one trial only reported an adjusted analysis (FLEX).

BMS099 reported a HR of 1.17 (95% CI: 0.36, 3.80) for PFS indicating no significant difference in PFS between the groups (Analysis 4.2).

FLEX reported a HR of 0.92 (95% CI: 0.53, 1.60) for PFS indicating no significant difference in PFS between the groups (Analysis 4.2).

2. Tumour response

The pooled treatment effect estimate (RR 1.43 (95% CI: 0.83, 2.47, I²=40%), n=2 trials) indicated no significant difference between the groups (Analysis 4.3).

3. Toxicity and adverse effects of treatment

The most commonly reported AEs Table 1 in the cetuximab-treated patients (BMS099; FLEX) were neutopenia, leukopenia, febrile neutropenia and fatigue. It should be noted that cetuximab was administered in addition to cytotoxic chemotherapy and not as a monotherapy.

4. Quality of life

The cetuximab plus CTX trial (FLEX) used QOL C-30 and the LCSS and found no difference compared to CTX alone across all entered patients.

QoL was not available for the EGFR M+ subgroup in BMS099.

5. Symptom palliation

Neither trial reported specifically on symptom palliation.

Toxicity and adverse effects of treatment - general comments

The reporting of adverse events (AEs) differed across the 19 included trials. In Table 1 we describe the trial-defined reporting of AEs and tabulated the three most frequently occurring Grade 3 or 4 AE for both the intervention and comparator arms of each trial. The data reported are for overall trial populations and therefore include non-EGFR M patients in trials where patients were unselected. In Table 1 the trials are grouped according to the EGFR-targeted treatment employed (afatinib, erlotinib, gefitinib, cetuximab).

Pneumonia is often associated with lung cancer and can be difficult to distinguish from pneumonitis, a recognised adverse effect of the TKIs. The authors did not consider these reports as reliable, and have quoted a large meta-analysis of data from separate groups of patients treated with erlotinib and gefitinib in the Discussion. LUX lung 3 and LUX lung 6 reported 3 and 2 patients with interstitial lung disease respectively (1%) in the afatinib arms.

The AEs associated with cytoxic chemotherapy in all comparisons were neutropenia, fatigue, leukopenia, vomiting, anaemia, decreased appetite, diarrhoea, anorexia, thrombocytopenia, arthralgia, neuropathy and dyspnoea.

Assessment of reporting biases

Sufficient trials were not included in the meta-analyses in order to construct a funnel plot to assess publication bias. However, we devised and carried out a thorough search strategy to reduce the impact of publication bias.

Subgroup analyses

Sufficient trials were not included to allow subgroup analyses.

Sensitivity analyses

We were unable to include sufficient trials in any one meta-analysis that would allow the sensitivity analyses specified in the methods section to be undertaken. However, where we detected moderate heterogeneity we used a random effect model as a sensitivity analysis to compare results with the fixed effect model. These are reported in the effect of interventions section.

Network meta-analysis

We considered that network meta-analysis (NMA) was not appropriate due to the different populations across the included trials. We identified other barriers to conducting NMA: two trials reported adjusted analyses (IPASS; NEJSG) whereas all other trials reported unadjusted analyses; patients in all trials were allowed to switch treatment after progression and we had no information regarding how this was handled in the analysis for OS. Finally, the Kaplan-Meier plots shown in the trial reports crossed in four of the trials, indicating that using a Cox proportional hazards model may not be appropriate.

Summary of findings table

Summary of findings tables are presented for pooled analyses for the outcomes of OS and PFS.

Discussion
Summary of main results

This review includes 19 RCTs with a combined total of 2317 patients with EGFR M+ NSCLC. We identified four EGFR-targeted treatments: afatinib (2 trials); erlotinib (8 trials); gefitinib (6 trials); cetuximab (2 trials). We did not consider that NMA would be appropriate due to the different populations of included trials, the reporting of adjusted analyses vs unadjusted analyses and the inappropriate use of the Cox proportional hazards model in some trials.

Our primary endpoint was OS for which we found no evidence of any robust OS benefit for any of the EGFR-targeted treatments when compared with CTX or placebo. The findings of one trial (FASTACT 2) did report a statistically significant OS gain for patients treated with erlotinib plus CTX when compared to CTX alone; however, this was based on a small sample of 97 patients. The trial employed an intercalated approach to avoid potential antagonism from concomitant chemotherapy and TKI. The majority of the included trials of monotherapy allowed patients to switch treatments on disease progression and this will have a confounding effect on any OS analysis. No OS effect was demonstrated in exploratory analyses of erlotinib in OPTIMAL or EURTAC or gefitinib IPASS, WJTOG3405 or NEJSG. A recent paper reports a pre-specified analysis of the Del19 subgroup across a pooled analysis of both of the afatinib trials. The analysis demonstrates an OS advantage for afatinib compared to chemotherapy, while the L858R subgroup (codon 21 mutation) showed no OS benefit (Yang 2014). Notably, crossover to afatinib in the control arm was not available, whilst in the majority of comparisons of erlotinib and gefitinib with CTX, crossover to the corresponding TKI was allowed.

For the secondary endpoint of PFS, a pooled analysis of 4 trials of erlotinib (ENSURE; EURTAC; OPTIMAL; TORCH) demonstrated a statistically significant benefit compared with CTX (HR=0.31; 95% CI: 0.24 to 0.39) in 959 patients. Of the non-pooled trials, for erlotinib vs CTX, CHEN reported a non-significant effect of erlotinib (n=24) and FASTACT 2 (n=97) reported a significant PFS benefit for erlotinib (HR=0.25; 95% CI:0.16 to 0.39). In a pooled analysis of gefitinib trials (n= 491) IPASS and NEJSSG demonstrated a significant benefit of gefitinib compared with paclitaxel plus carboplatin (HR=0.39; 95% CI:0.32 to 0.48). A single trial WJTOG3405 also demonstrated a significant difference in PFS favouring gefitinib (HR=0.49; 95% CI: 0.34 to 0.71). One other trial (First-SIGNAL) demonstrated no statistically significant benefit of gefitinib compared with gemcitabine plus cisplatin (n=42). The remaining 2 trials that featured gefitinib (INTACT 1; INTACT 2) reported no difference between a regimen of gefitinib plus CTX compared with CTX plus placebo (n=32). Heterogeneity was high in the pooled analyses of both erlotinib and gefitinib. Five trials (LUX-Lung 3,EURTAC, OPTIMAL,NEJSSG,IPASS) all showed a significant improvement in PFS for the TKI in harbouring the Del19 mutation compared to chemotherapy. Meta-analysis of this mutation site-specific data has not been performed.

In a pooled analysis of afatinib (N=709) LUX-Lung 3; LUX-Lung 6 a statistically significant PFS benefit in favour of afatinib compared with chemotherapy was found (HR=0.42; 95% CI 0.34 to 0.53). It should be noted that the LUX-Lung 3 trial used cisplatin plus pemetrexed as the comparator, a chemotherapy combination demonstrated to have a superior OS benefit compared with cisplatin plus gemcitabine in non-squamous NSCLC (Brown 2013). No statistically significant PFS benefit for cetuximab plus CTX (n=81) was reported in either of the two trials (BMS099; FLEX). It is not possible to draw any conclusions as to the advantages of adding CTX to targeted therapy from these data.

In the analysis of tumour response, a pooled analysis of 4 trials of erlotinib (EURTAC; GTOWG; OPTIMAL; TORCH) favoured treatment with erlotinib (RR=2.57; 95% CI:1.97 to 3.34). One single trial of erlotinib plus CTX (n=97) also favoured treatment with erlotinib (FASTACT 2) whilst 1 other small trial of erlotinib vs CTX (CHEN) reported no benefit of erlotinib (n=24, respectively). For gefitinib, all 6 trials demonstrated a statistically significant benefit for gefitinib compared to CTX; a pooled analysis of 4 trials including 648 patients (First-SIGNAL; IPASS; NEJSSG; WJTOG3405) yielded a RR of 1.87 (95% CI:1.60 to 2.19). Both afatinib trials (n=709) reported a statistically significant benefit of afatinib compared with CTX (LUX-Lung 3; LUX-Lung 6) and the pooled analysis yielded an RR of 2.71 (95% CI:2.12 to 3.46). As for the PFS analyses, heterogeneity was high for the erlotinib and gefitinib pooled comparisons and low for the two afatinib trials. No benefit for cetuximab was reported for either trial (BMS099; FLEX).

The most commonly reported AEs for patients treated with TKI monotherapy were rash, diarrhoea, paronychia, stomatitis/mucositis (afatinib), rash, diarrhoea and fatigue (erlotinib and gefitinib). These are consistent with those listed in the Summary of Product Characteristics for these products which include diarrhoea, rash, interstitial lung disease, liver impairment and ocular disorders. Patients treated with cytotoxic CTX experienced the AEs usually associated with this treatment, e.g. neutropenia, febrile neutropenia, leukopenia and fatigue. It is however, difficult to accurately characterise and compare AEs across trials due the different methods of reporting (definitions used and styles of reporting). This is particularly relevant to the rare but serious AE of interstitial lung disease. A recent meta analysis (Shi 2014) of erlotinib and gefitinib trials reported an incidence of 1.2% for interstitial lung disease with a mortality rate of 22.8%. The data presented for afatinib suggests this rare but serious complication occurs as frequently with all three TKIs, although no data on duration of therapy was provided. In addition, it should be cautioned that the AEs reported are relevant to an overall trial population and in the 12 trials where EGFR M+ status was not an inclusion criterion, are drawn from a much larger population. However, our comparisons highlight the differences in the AEs associated with TKIs and cytotoxic CTX (Pilkington 2012).

Quality of life for patients with EGFR M+ tumours was measured by a number of different methods in six trials (2 comparing afatinib with CTX, 2 comparing erlotinib with CTX and 2 comparing gefitinib with CTX) and a beneficial effect of the TKI compared to CTX was reported in all six trials. Symptom palliation of cough, pain and dyspnoea was shown for all three TKIs although there was no standardisation of methodology used.

Any benefit in survival has to be weighed against increased toxicity. The median number of chemotherapy cycles given in the control arms was four out of a planned six 3-weekly cycles. The oral agents were generally given until progression and appeared to be better tolerated. The median duration of therapy was estimated to be around 9-12 months. In the 2 gefitinib trials where data were presented, the number of patients discontinuing therapy was similar to that for CTX, while in the
Overall completeness and applicability of evidence
The number of events remains small and the analyses remain preliminary in many trials (author calculated median follow-up of 28 months). We expect mature data in the next 2 years. Median survival of patients with advanced Stages III, IV NSCLC is of the order of 12 months, and of adenocarcinomas 18 months. At present, there is no indication that increases in PFS fully translate into OS benefit. This is consistent with the evidence in the current literature base (Booth 2012). However, there is wide variation in the selection criteria for these different trials, including age, sex, smoking and EGFR sequencing method based criteria. The later trials recruited patients only with proven EGFR mutations and longer survival times are seen. However, with the comparatively short survival in NSCLC, AEs and QoL for either first-line or second-line treatments are important. The interpretation of OS is limited by crossover in most trials. From the limited data available on crossover at disease progression, the targeted agents and cytotoxics would appear to act on different cell populations.

Mutations in EGFR can be assessed by several methods including direct sequencing of the tumours, circulating tumour cells (Maheswaran 2008) or cell-free DNA (Bai 2013). Heterogeneity in the proportion of malignant and normal/stromal cells in the tissues sampled may contribute to variation in the classification of tumours as EGFR M+ or EGFR wild type where a tissue biopsy is sampled as in the majority of trials in this review (Tsiatis 2010), and there is preliminary evidence of heterogeneity of mutation analysis with multiple tissue sampling (Bai et al 2013). Secondly, methodological issues in the assessment of EGFR mutations may contribute to false negative results (Vogelstein 2013). Immunohistochemical-only categorisation of mutation was excluded from this review.

There are limited data provided on the types of mutations in relation to their sensitivity to targeted therapy (EURTAC). Of the three common sites of mutation, there is some evidence that tumours with codon 20 mutations are more resistant than exon 19 or L858R codon 21 mutations (Yasuda 2011). A preliminary report of a pooled analysis of patients with an exon 19 deletions or L858R mutations showed improved survival of afatinib compared to CTX (HR 0.81 CI 0.66-0.99 p<0.037) (Yang 2014). Some trials did not include assessment of exons 18 and 20 mutations. Secondly K-RAS and HER-2 mutations may be associated with resistance to primary treatment (Linardou 2008), but in the cetuximab trials they were assessed and demonstrated no predictive effect of the biomarkers. Non-randomised trials have shown that some mutations, principally T90M in codon 20, may contribute to the development of acquired resistance to these agents (Kosaka 2006; Rosell 2011; Su 2012). Only two of the included trials excluded T90M mutations (NEJSG:FLEX).

With improving data on individualisation of treatment according to morphological and molecular criteria, patient choice may be a factor in the decision to accept significant toxicity (e.g. from CTX) at an earlier or later stage of NSCLC management. This review provides strong data supporting first-line EGFR TKI in patients where EGFR mutation status is known to be positive. As mutation testing is not universally available, or the response time of reporting is prolonged, chemotherapy may be an acceptable first-line option where histological subtype and smoking history are known in patients with good performance status. Quality control of mutation profiling methodology and international agreement on standardisation would improve confidence in the use of EGFR TKIs in EGFR M+ patients.

There is some published evidence of ethnic differences in platinum based haematological toxicity, with Asian patients having a higher incidence of Grade 3/4 neutropenia compared to non-Asian patients based on a pooled analysis of 11,271 patients in 50 phase II and III trials (Hasegawa 2011). It is less well established if there are ethnic differences in response to targeted therapies and the trials reported showed wide variation in the ethnic composition of the trials and the majority of the data comes from Asian patients.

Quality of the evidence
All the included trials were randomised and the overall numbers of patients (n=2317) in the 19 trials provides reasonable power to support the conclusions. The patients were spread across four different drug treatments (erlotinib, gefitinib, afatinib and cetuximab), reducing the number providing data for each treatment.

The Risk of Bias table (Figure 2; Figure 3) indicates a mixed risk of bias across the included trials for the majority of the assessment criteria, most trials are at an unclear or high risk of bias. The two items that were considered to be at high risk of bias across the trials were related to the double blinding of treatment allocation for patients and personnel and blinding of outcome assessment. In trials that compare oral therapy with intravenous chemotherapy treatments, blinding of participants and administrators is difficult to achieve and even if blinding procedures were implemented, the appearance of a rash (a common side-effect of treatment with a TKI) would indicate the treatment regime used. FASTACT 2 was blinded in both treatment allocation and imaging assessment. Blinding of outcome assessment is important when time to treatment failure outcomes, such as PFS, are the indicators of treatment efficacy and blinded outcome review or blinded review of assessment should be part of the trial protocol. Of the large industry funded trials, for erlotinib OPTIMAL did not report blinding of outcome assessment, neither did IPASS or WJTOG3405 for gefitinib. We acknowledge that some trials may have implemented such procedures but did not report on them.

The comparisons with CTX were in general direct, but there was wide variation in the choice of CTX in the comparator arm. This reflects variation in clinical practice and in particular performance status and co-morbidity of the NSCLC populations. For example, single agent vinorelbine, used as the comparator in two of the smaller erlotinib trials (CHENG TowG) is associated with lower toxicity than the more widely used doublet chemotherapy combinations utilised in the other trials, and patients for both these trials were selected on the basis of age (>70) and not primarily performance status. The trials also varied in the extent to which they included never or former smokers, and in the male/female ratio. The other major factors contributing to heterogeneity is ethnicity, as the 8 trials recruiting exclusively in Asia contributed 64% of the patients. All these factors may contribute to variation in drug handling of both CTX and targeted therapy. Heterogeneity was high for
assessments of PFS for erlotinib, gefitinib and afatinib comparisons in the pooled data.

A degree of caution should be taken in the interpretation of the results. Only 7 of the included trials recruited patients solely based on their EGFR mutation status (n=1672). This means that the data extracted from the remaining 12 trials (n=645) are derived from subgroups, with all the issues that the interpretation of subgroup data entails. It is worth noting however, that the subgroup of EGFR M+ patients in the iPASS trial, at 261, was larger than the total trial population of four of the EGFR M+ only trials (EURTAC; NEJSG; OPTIMAL; WJTOG3405). It should be further noted that for four trials, the tissue analyses were carried out retrospectively on a limited number of samples that were available at the end of the trial (BMS0999; FLEX; INTACT 1; INTACT 2). These four trials however provided data from only 113 patients, and 80 of these were participants in the cetuximab trials. We do not believe this factor has an impact on the conclusions in respect of the three TKIs.

The confidence limits of the PFS and OS plots are narrow, with the exception of the small trial with erlotinib (CHEN) and suggest the data are precise. Wider confidence limits are seen for response, which may reflect the subjective nature of the assessment, even with external review, and current concerns PFS is the better end-point for trial assessment where crossover is a factor (Booth 2012).

There is evidence that Asian patients have a different proportion of EGFR M+ and differing relationship to smoking which may imply these are biologically different diseases. Of the 2317 patients reported on in this review, 1591 were recruited exclusively in trials conducted in Asian countries. We can find no evidence there is a different set of mutations in Asian and Caucasian patients, or differences in their toxicity profiles for the targeted or chemotherapy arms of the included trials.

Potential biases in the review process

We excluded trials that utilised EGFR-targeted treatments but did not report any EGFR mutation testing of patients. However, inspection of review papers and reference lists indicated that in relation to four of these trials BMS0999; FLEX; INTACT 1; INTACT 2, retrospective analyses of tissue samples from patients had taken place, the results of which were reported in papers separate to the original trial publication. It is possible that there are other retrospective analyses that we did not identify; however, the patient population from any such analyses is likely to be small.

Agreements and disagreements with other studies or reviews

The results are in agreement with the meta-analysis of Ku 2011 which compared gefitinib with first-line chemotherapy. A more recent meta-analysis of 14,570 patients given TKIs in first-line, second-line and maintenance RCTs also supported gain in progression-free survival in EGFR M+ patients treated with erlotinib and gefitinib (Lee 2013). This analysis included data on subgroups of patients (n= 67) from TALENT, TRIBUTE and TOPICAL which were not available to us at the time of analysis. No data on patient characteristics, toxicity and quality of life were analysed in the Lee review. Their analysis combined the data from 10 first-line trials in a meta-analysis of OS and PFS and showed an overall HR of 0.43 CI 0.38-0.49 (p<0.001) for PFS and no effect on OS. As described above, we consider this pooling inappropriate on statistical grounds as adjusted and unadjusted data were combined. An updated meta-analysis by the same group focused on seven trials (ENSURE; EURTAC;LUX-Lung 3;LUX-Lung 6;NEJSG;OPTIMAL;WJTOG3405) and concluded that never-smokers, those with tumours with exon 19 deletions and women had a greater benefit from erlotinib than chemotherapy (Lee 2015). Other reviews have combined data from 7 Hasegawa 2015 and 8 phase III trials Haaland 2014 for first line chemotheraphy and confirmed the benefit in PFS and response. The data on benefit in non-smokers is difficult to interpret. Our review of patients across 19 trials includes additional trials and comparable data from the 2317 EGFR M+ patients on afatinib, erlotinib and gefitinib. A recent individual patient meta analysis (Pujol 2014) of four RCTs of cetuximab (including BMS0999 and FLEX) in NSCLC reported improved PFS in squamous cell cancers (based on a subgroup analysis) but not in non-squamous carcinomas, although these data were not analysed by mutation status.

Authors' conclusions

Implications for practice

Erlotinib, gefitinib and afatinib are effective in EGFR M+ NSCLC patients with acceptable toxicity. Quality of life and response are closely linked, and the available data would favour selection of TKIs over chemotherapy based on both these criteria, although only 6 trials reported on quality of life solely in the EGFR M+ population. The majority of trials included patients with a PS of 1 and 2, but the data on AEs suggest some PS 3 as well as elderly patients might tolerate the agents better than cytotoxic CTX (GTOWG-CHEN). They may also be an alternative to best supportive care in patients unsuitable for chemotherapy. Other reviews (Brown 2013) have concluded that the CTX standard for non-squamous NSCLC should now be cisplatin and pemetrexed, at least in patients of good PS. In locations where mutation testing is not available a decision may have to be made on the basis of histology, gender, smoking history and ethnicity about the selection of first-line TKI therapy or chemotherapy. In patients with good PS, the intercalated regimen of erlotinib and CTX is another option for this population in view of its OS benefit in one trial (FASTACT 2). Mature data on OS expected within 2 years should provide more definitive guidance.

The AEs summarised in this review have underlined the difference between the reduced toxicities experienced with TKI therapy and those associated with cytotoxic chemotherapy. This will have implications for care of patients and the costs of healthcare provision (Pilkington 2012).

Implications for research

Future trials of these agents should comprise patients with known EGFR mutations, and attempt to clarify the effectiveness in the individual mutant subtypes (codons 19,20 and 21) as well as the small numbers with multiple mutations and rare mutations. There is increasing evidence that patients with T90M mutations should be excluded from trials with afatinib,
erlotinib and gefitinib. Irreversible inhibitors of EGFR are under development along with monoclonal antibody therapies in addition to cetuximab. Biomarker trials may help to select patients in which optimal activity will be demonstrated - for example codon 19-21 mutations are more likely to be associated with receptor internal domain alterations which will not respond to the ligand binding action of cetuximab (Khambata-Ford 2010), and as the preliminary data presented here have shown, individual TKIs may prove more effective for specific codon alterations. One recent trial still in progress has shown a response rate of 64% in patient with tumours harbouring the T90M mutation (Janne 2014). It follows that stratification of NSCLC patients by an appropriate molecular profile will progressively evolve with the introduction of new agents.

The role of combination of EGFR targeted therapy and cytotoxic chemotherapy and the associated toxicity remains to be established, but the data from the BMSO99; FLEX; INTACT 1; INTACT 2 trials do not favour this approach, either in terms of efficacy or toxicity. The FASTACT 2 trial demonstrated positive outcomes from the combination of erlotinib with CTX given in an intercalated design; however, the number of EGFR M+ patients in these trials was small. Three randomised trials have addressed the issue of maintenance therapy after a response or stable disease to CTX, two with erlotinib (Capuzzo 2010; Perol 2012), the third with gefitinib (Zhang 2012). These trials showed an overall PFS gain for maintenance erlotinib or gefitinib respectively, and this effect was significant in the EGFR M+ subgroups in the Capuzzo 2010 and Zhang 2012 trials. There was no significant OS benefit in any of the maintenance trials.

Further comparative trials with cytotoxic chemotherapy would seem unlikely to be of value, and the focus should be on identifying the predictive value of specific mutations to optimise survival and minimise toxicity. Future trials should report in detail on the degree and duration of symptom control as well as quality of life scores.

Acknowledgements
We thank all authors authors who provided data - Chen, Di Maio (TORCH), Maemondo, Mitsudomi, Zhou (OPTIMAL) and Reck (GTOWG), members of the Cochrane Lung Cancer group and peer reviewers who provided helpful comments (Mia Schmidt-Hansen, Fergus Macbeth, Frederic Fiteni, Marta Roqué, Ivan Solaand and Ian Stubbin). Thanks to Coryyne Marchal for all her review and procedural advice and the Cochrane Lung Cancer Group who provided our searches. We also thank Marty Richardson for her help with data input and summary of findings tables and Gemma Cherry for her reviewing skills.

Contributions of authors
All review authors listed below contributed to the text or data section, or both, and analysis. All review authors took part in the editing and production of the review, including Fergus Macbeth, Ian Stubbin and Ivan Sola.

J A Green: input into all aspects of the review
VB: data extraction, entry and analysis
J Greenhalgh: project co-ordination, data extraction, report writing
AB: project management
PJ: clinical review
FV: searching, data extraction, entry and analysis
KD: statistical advisor
YD: searching, trial screening

Declarations of interest
Pooja Jain has had sponsorship from Eli Lilly, Roche Ltd, Pierre Fabre and Boehringer Ingelheim to attend conferences. She has also attended advisory boards for Eli Lilly, Roche and Boehringer Ingelheim.

Differences between protocol and review
Published notes
Characteristics of studies
Characteristics of included studies
BMSO99
Methods
Open-label, randomised, phase III, multicentre trial conducted in the USA.
Length of follow-up: not reported
The trial included a mixed patient population. The analysis of EGFR M+ data only (n=17) is retrospective and reported in a paper separate to the primary published paper.

Participants
676 patients with histologically or cytologically confirmed Stage IV, Stage IIIB (with malignant pleural effusion), or recurrent (after radiotherapy or surgery) NSCLC with bidimensionally measurable disease;
Inclusion criteria: >18 years; ECOG PS < 2. Patients with previously treated CNS metastases accepted, but patients with symptomatic, uncontrolled disease or requiring corticosteroids were not. Prior surgery (4 weeks) or chest radiation (12 weeks) but no prior chemotherapy for NSCLC or EGFR-targeted therapy.
Exclusion criteria: previous infusion reactions to chimerized/murine MABs; pregnant/nursing women; history of acute myocardial infarction (3 months prior); Grade 2 peripheral neuropathy; inadequate hematologic, hepatic, or renal function.
Median age: 64 years
Male: 57%
Ethnicity: 88% White

Interventions
Treatment arm (8/338 patients EGFR M+): cetuximab plus taxane/carboplatin
Comparator arm (9/338 patients EGFR M+): taxane/carboplatin
Cetuximab, the first dose was 400 mg/m^2^, 120-minute IV, with subsequent doses of 250 mg/m^2^, 60-minute IV, weekly until disease progression or intolerable toxicity, even after completion of chemotherapy.
Paclitaxel 225 mg/m^2^, 3-hour IV, or docetaxel 75 mg/m^2^, 1-hour IV) with carboplatin (area under the curve = 6, 30-minute IV) on day 1 every 3 weeks until disease progression or intolerable toxicity for six cycles.

Outcomes
Primary outcome: PFS (based on modified WHO criteria)
Secondary outcomes: ORR, OS, QoL, safety

Mutation Assessment Method
QiAamp

Exons assessed
18-21

Notes
The trial was originally designed as a randomised phase II trial to provide non-comparative data on the efficacy of cetuximab combined with standard chemotherapy (ORR as primary end point). Ten months after accrual initiation, the protocol was amended to be conducted as a phase III trial to evaluate the addition of cetuximab to taxane plus carboplatin, with a primary end point of PFS. Patient accrual was increased from 300 to 660 patients.
<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation</td>
<td>Unclear risk</td>
<td>No information provided on randomisation.</td>
</tr>
<tr>
<td>(selection bias)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocation concealment</td>
<td>Unclear risk</td>
<td>No information provided.</td>
</tr>
<tr>
<td>(selection bias)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blinding of participants and</td>
<td>High risk</td>
<td>This was an open-label trial.</td>
</tr>
<tr>
<td>personnel (performance bias)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blinding of outcome assessment</td>
<td>Low risk</td>
<td>Independent radiological assessment was undertaken.</td>
</tr>
<tr>
<td>(detection bias)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incomplete outcome data</td>
<td>Low risk</td>
<td>13 patients in cetuximab arm did not receive treatment; 18 patients in the taxane only</td>
</tr>
<tr>
<td>(attrition bias)</td>
<td></td>
<td>arm did not receive treatment. Reasons not given. However, ITT analysis was carried</td>
</tr>
<tr>
<td></td>
<td></td>
<td>out.</td>
</tr>
<tr>
<td>Selective reporting</td>
<td>Low risk</td>
<td>All stated outcomes reported.</td>
</tr>
<tr>
<td>(reporting bias)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Trial support from drug manufacturers.</td>
</tr>
</tbody>
</table>

CHEN
| **Methods** | Open-label, randomised, phase II trial conducted in Taiwan.
Length of follow up: not reported
The trial included a mixed patient population. The analysis of EGFR M+ data only (n=24) is presented as subgroup analysis in the primary published paper |
| **Participants** | 113 participants aged 70 years or older with histologic or cytologic diagnosis of inoperable NSCLC who had never received chemotherapy, targeted therapy, or hormonal therapy were entered into the trial after giving informed consent.
Inclusion Criteria: ECOG PS of 0–3; measurable lesion(s); no previous radiotherapy on measurable lesion(s); adequate bone marrow reserve with a granulocyte count more than or equal to 1500/mm3, platelets more than or equal to 100,000/mm3, and haemoglobin more than or equal to 10 g/dL.
Exclusion Criteria: Previous therapy, symptomatic or unstable brain metastases, inadequate liver or renal function, or uncontrolled systemic disease.
Median age: 77 years
Male: 81%
Ethnicity: 100% E.Asian |
| **Interventions** | Treatment arm (9/57 patients EGFR M+): erlotinib 150 mg/daily
Comparator arm (15/56 patients EGFR M+): vinorelbine 60 mg/m² days 1 and 8 of every 3-weekly cycle
Responding patients and those with stable disease continued treatment until disease progression or completion of six cycles. Patients could continue treatment beyond six cycles provided their disease was controlled |
| **Outcomes** | Primary Outcome:
ORR
Secondary Outcomes:
OS, PFS (RECIST version 1 criteria), Disease control rate, Tolerability, QOL (FACT-L)) |
| **Mutation Assessment Method** | VarientSEQr |
| **Exons assessed** | 18-21 |
| **Notes** | All participants were aged 70 years or older.
Vinorelbine dose increased to 80 mg/m² beginning from cycle 2 if no toxicity of Grade 2 or higher. |
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Paper states that patients were randomised with stratification. No other information given</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Insufficient information given.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>The trial was open-label.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>High risk</td>
<td>No evidence of independent assessment of PFS.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All patients were accounted for.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Unclear risk</td>
<td>The protocol states that Time to Progression is a primary outcome. This is not mentioned or reported in the published paper.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Trial partially sponsored by pharmaceutical company.</td>
</tr>
</tbody>
</table>

ENSURE

Methods
- Open-label, Phase III RCT conducted in Asia
- Length of follow up: 28.9 (erlotinib), 27.1 (CTX)

Participants
- 217 patients with stage IIIB/IV non-small cell lung cancer with EGFR mutations in their tumours

Interventions
- Erlotinib (n=110) 150 mg once daily until progression/unacceptable toxicity
- Gemcitabine plus cisplatin (n=117) gemcitabine 1250 mg/m² i.v. days 1 and 8 plus cisplatin 75 mg/m² i.v. day 1, every 3 weeks, for up to four cycles.

Outcomes
- Primary
 - PFS (RECIST)
- Secondary
 - ORR, DCR, OS, AEs, QoL

Mutation Assessment Method
- Cobas EGFR mutation test (Roche Molecular Systems)

Exons assessed
- 19, 21

Notes
- Estimated Primary Completion Date: December 2015. ClinicalTrials.gov Identifier:NCT01342965
- Trial ended early after interim analysis (73% of PFS events). PFS data cut-off July 2012 and OS data cut-off April 2014

Risk of bias table
<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>No description given</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>No description given</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>The trial was open label</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Independent radiological assessment used as a sensitivity analysis</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All patients accounted for in the analyses</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes measured were reported</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Trial stopped after interim analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trial sponsored by pharmaceutical company</td>
</tr>
</tbody>
</table>

EURTAC
| **Methods** | Open-label, randomised, phase III trial conducted in Spain, France and Italy
Length of follow-up (months): 41 (erlotinib) and 35 (CTX) |
|---|---|
| **Participants** | 173 patients with NSCLC and EGFR mutations.
Inclusion Criteria: Histological diagnosis of Stage IIIB (with pleural effusion) or Stage IV NSCLC (based on the sixth TNM staging system), measurable or evaluable disease. Activating EGFR mutations (exon 19 deletion or L858R mutation in exon 21), age older than 18 years, and no history of chemotherapy for metastatic disease (neo adjuvant or adjuvant chemotherapy was allowed if it ended ≥6 months before entry to trial)
Exclusion Criteria: Non-EGFR mutated patients, previous chemotherapy for metastatic disease
Median age: 65 years
Male: 28%
Ethnicity: 92% White |
| **Interventions** | Treatment arm (86/86 patients EGFR M+): erlotinib 150 mg/daily until disease progression, toxicity or withdrawal of consent
Comparator arm (87/87 patients EGFR M+): cisplatin 75 mg/m² on day 1, docetaxel 75 mg/m² on day 1 or gemcitabine 1250 mg/m² on day 1 and 8. Cycle of 3 weeks for up to 4 cycles
Patients who were ineligible for cisplatin treatment received intra venous carboplatin chemotherapy instead (3 week cycles of AUC 6 on day 1 with 75 mg/m² docetaxel on day 1, or AUC 5 on day 1 with 1000 mg/m² gemcitabine on days 1 and 8). |
| **Outcomes** | Primary Outcome:
PFS (RECIST version 1 criteria)
Secondary Outcomes:
OS, ORR |
Mutation Assessment Method	ABI Prism 3130 DNA Analyzer
Exons assessed	19, 21
Notes	EGFR mutation analysis defined as inclusion criteria, therefore all enrolled patients were EGFR positive. Trial enrolment was stopped at interim data analysis as trial had met primary endpoint
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Computer-generated randomisation, stratified by EGFR mutation type and ECOG performance status.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Centralised allocation system used.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>The trial was open-label.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>PFS and treatment responses were confirmed by an external review of CT scans by a central review board.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All patients were accounted for.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes reported (trial protocol available via NICE STA process)</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Trial sponsored in part by pharmaceutical company. Trial enrolment was stopped at interim data analysis as trial had met primary endpoint</td>
</tr>
</tbody>
</table>

FASTACT 2

Methods

Double-blind, placebo controlled, randomised Phase III trial conducted in Asia.

Length of follow-up (months): E=28; CTX=28

The trial included a mixed patient population. The analysis of EGFR M+ data only (n=97) is presented as subgroup analysis in the primary published paper.

Participants

451 patients with stage III/IV NSCLC.

Inclusion criteria: ECOG PS 0 or 1; measurable disease according RECIST version 3.0

Exclusion criteria: previous treatment with agents targeting the HER axis; previous systemic antitumour treatment; adjuvant or neoadjuvant treatment for non-metastatic disease within 6 months; surgery less than 4 weeks before the trial; and localised radiotherapy; brain metastasis; any unstable illness; patients known to be HIV positive

Median age: 58 years

Male: 60%

Ethnicity: 100% SE Asian

Interventions

Treatment arm (49/226 patients EGFR M+): erlotinib 150mg per day plus gemcitabine (1250 mg/m² on days 1 and 8 of a 4 week cycle, intravenously) plus platinum (carboplatin 5 × AUC or cisplatin 75 mg/m² on day 1 of a 4 week cycle)

Comparator arm (48/225 patients EGFR M+): placebo plus gemcitabine (1250 mg/m² on days 1 and 8 of a 4 week cycle, intravenously) plus platinum (carboplatin 5 × AUC or cisplatin 75 mg/m² on day 1 of a 4 week cycle) plus placebo

Outcomes

Primary outcome: PFS

Secondary outcomes: OS, ORR, duration of response, TTP, safety

Mutation Assessment Method

Cobas 4800 system

Exons assessed

19, G719X, L858R, or L861Q

Notes

Risk of bias table
<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Patients were randomly assigned in a 1:1 ratio by use of a central randomisation programme with a minimisation algorithm</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Central randomisation and drug-pack allocation were assigned by use of an interactive internet response system.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Everyone outside the company responsible for the interactive internet response system was masked to treatment allocation with the exception of a small independent group that was responsible for monitoring data and safety early in the trial.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>An independent review committee masked to treatment assignment reviewed all tumour images and determined tumour response and progression status.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All patients accounted for in final analysis. ITT analysis conducted. Equal numbers (n=4) in each arm did not receive allocated treatment.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes reported in protocol were assessed an presented in published paper</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Trial sponsored in part by pharmaceutical company.</td>
</tr>
</tbody>
</table>

First-SIGNAL
Methods

<table>
<thead>
<tr>
<th>Open-label, randomised, multi-centre phase III trial conducted in Korea.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of follow-up (months) = 35</td>
</tr>
<tr>
<td>The trial included a mixed patient population. The analysis of EGFR M+ data only (n=42) is presented as subgroup analysis in the primary published paper.</td>
</tr>
</tbody>
</table>

Participants

<table>
<thead>
<tr>
<th>313 Korean never-smokers patients with Stage IIIB or IV lung adenocarcinoma.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion Criteria: chemotherapy-naive never-smokers older than age 18 years with Stage IIIB (ineligible for curative radiotherapy) or IV adenocarcinoma of the lung with measurable or nonmeasurable disease, PS of 0 to 2, and adequate bone marrow, liver, and renal function.</td>
</tr>
<tr>
<td>Exclusion criteria: severe hypersensitivity to gefitinib or any constituents of this product; any evidence of clinically active interstitial lung disease; severe or uncontrolled systemic disease; concomitant use of phenytoin, carbamazepine, rifampin, barbiturate, or St John’s wort; and non-stable brain metastasis</td>
</tr>
<tr>
<td>Median age: 57 years</td>
</tr>
<tr>
<td>Male: 11%</td>
</tr>
<tr>
<td>Ethnicity: 100% E Asian</td>
</tr>
</tbody>
</table>

Interventions

| Treatment arm (26/159 patients): gefitinib 250 mg/daily until disease progression |
| Comparator arm (16/154 patients): cisplatin 75 mg/m² on day 1 and gemcitabine 1,250mg/m² on days 1 and 8. Cycle of 3 weeks for up to 9 cycles. |

Outcomes

| Primary Outcome: |
| OS |
| Secondary Outcomes: |
| PFS (WHO criteria), QoL (European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire C30 and the lung cancer–specific module LC13), ORR |

Mutation Assessment Method

| QiAamp |

Exons assessed

| 19 to 21 |

Notes

<p>| Risk of bias table |</p>
<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Patients were recruited to the trial by 1:1 random assignment and stratified by sex, PS and disease stage. No details of randomisation procedures reported.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Insufficient information given.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>The trial is open-label.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Independent blinded assessment of PFS is reported</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All patients accounted for (4 withdrew consent in gemcitabine arm prior to treatment).</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>No protocol available but all outcomes stated as measured in paper are reported.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Trial sponsored in part by a pharmaceutical company.</td>
</tr>
</tbody>
</table>
Methods
Open-label, randomised phase III trial conducted internationally.
Length of follow-up (months): Cetuximab = 24; CTX = 24
The trial included a mixed patient population. The analysis of EGFR M+ data only (n=64) is retrospective and reported in a paper published separately from the main analyses.

Participants
1125 chemotherapy-naive patients with histologically or cytologically proven Stage IIIB or IV NSCLC and IHC evidence of EGFR expression in at least one positively stained tumour cell.
Inclusion criteria: >18 years, ECOG PS 0-2, adequate organ function, at least one bidimensionally measurable tumour lesion.
Exclusion criteria: brain metastases, previous treatment with EGFR-targeted drugs or MABs, major surgery within previous 4 weeks, chest irradiation 12 weeks prior to trial entry, active infection, pregnancy, symptomatic peripheral neuropathy
Median age: 59 years
Male:70%
Ethnicity: 85% White

Interventions
Treatment arm (28/557 patients EGFR M+): cetuximab plus cisplatin and vinorelbine. Cetuximab starting dose of 400 mg/m² intravenous infusion over 2 hrs on day 1, and from day 8 onwards at 250 mg/m² over 1 hr per week. Cisplatin 80 mg/m² intravenous infusion on day 1, and vinorelbine 25 mg/m² intravenous infusion on days 1 and 8 of every 3-week cycle for up to 6 cycles.
Comparator arm (36/568 patients EGFR M+): cisplatin plus vinorelbine. Cetuximab was continued after the end of chemotherapy until disease progression or unacceptable toxicity occurred.

Outcomes
Primary outcome:
OS
Secondary outcomes:
PFS (modified WHO criteria), TTP, ORR, QoL, AEs

Mutation Assessment Method
DxS EGFR29 Mutation Test Kit

Exons assessed
19

Notes
Risk of bias table
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Computer generated randomisation schedule.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Centralised IVRS used.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>Open-label.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>High risk</td>
<td>Open-label. No evidence of independent assessment of radiological outcomes</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All patients accounted for. ITT analysis.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Unclear risk</td>
<td>All outcomes reported except disease control rate.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Trial supported by pharmaceutical company.</td>
</tr>
</tbody>
</table>

GTOWG

Methods

A randomised phase II trial conducted in Germany.

Length of follow-up (months): not reported

The trial included a mixed patient population. The analysis of data for patients with EGFR M+ tumours (n=10) is retrospective in the primary publication.

Participants

284 patients aged 70 years or older with Stage IIIB or IV NSCLC.

Interventions

Treatment arm (144 patients): erlotinib 150mg/daily

Comparator arm (140 patients): carboplatin AUC 5 d1 and vinorelbine 25mg/m² day 1, 8 every 21 days for up to 6 cycles

Outcomes

Primary outcome:

PFS (RECIST criteria)

Secondary outcomes:

OS, response, tolerability, quality of life

Mutation Assessment Method

Direct

Exons assessed

Not reported

Notes

The patient population was over 70 years old.

Only exons 17 and 19 were screened using the ABI 3500 Genetic analyser. Quality of life is not reported, nor is OS or PFS for EGFR M+ pts. Trial Information taken from poster provided by trial authors.
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Randomised. No information provided. Trial information taken from conference abstract</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>No information. Trial information taken from conference abstract</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Unclear risk</td>
<td>No information. No information provided. Trial information taken from conference abstract</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>No information</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Unclear risk</td>
<td>Nine patients did not receive treatment but reasons not reported.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>High risk</td>
<td>Quality of life not reported</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Pharmaceutical company support not clear</td>
</tr>
</tbody>
</table>

INTACT 1
Methods

Double-blind, randomised, placebo-controlled, phase III trial conducted internationally.

Length of follow-up (months): 15.9

Combined retrospective molecular analysis of INTACT 1 and 2 patients (combined total of 32) is reported in a publication separate to the main trial publication.

Participants

1093 patients histologically/cytologically confirmed NSCLC, locally advanced Stage III disease not curable with surgery or radiotherapy or Stage IV disease

Inclusion criteria: aged 18 years or older and WHO PS of 0 to 2.

Exclusion criteria (main): previous chemotherapy (prior surgery or localized radiation were allowed); hypersensitivity to mannitol, corticosteroids, H2-antagonists, antihistamines or agents formulated with polyoxyethylated castor oil; radiotherapy within the last 2 weeks; unresolved toxicity from previous radiation therapy or incomplete healing from previous surgery; pre-existing motor or sensory neurotoxicity, severe or uncontrolled systemic disease; recent conditions requiring medication or uncontrolled significant active infections; pregnant or breast-feeding; coexisting malignancies or malignancies diagnosed within the last 5 years with the exception of basal-cell carcinoma or cervical cancer in situ; mixed NSCLC plus small-cell lung cancer

Median age: 60 years

Male: 74%

Ethnicity: 90% White

Interventions

Treatment arm A (365 patients): gefitinib 500mg/daily plus gemcitabine 1,250 mg/m² IV 30 minutes on days 1 and 8 and cisplatin 80 mg/m² after gemcitabine administration on day 1 only.

Treatment arm B (365 patients): gefitinib 250mg/daily plus gemcitabine and cisplatin

Comparator arm (363 patients): Placebo plus gemcitabine and cisplatin

Chemotherapy was administered in 3-week cycles for a total of six cycles: Subsequently, patients continued on gefitinib or placebo until disease progression.

Outcomes

Primary outcome: OS

Secondary outcomes: TTP (RECIST), response rate and safety

Mutation Assessment Method

Big dye terminator

Exons assessed

18 to 21

Notes

Number of EGFR M+ patients unclear

R risk of bias table
<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Randomly assigned. No information given.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Insufficient information given.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Double blind placebo controlled design.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>No independent review but outcome assessors were blind.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Unclear risk</td>
<td>No information.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>No protocol available but all outcomes stated as measured in paper are reported.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Supported by a grant from AstraZeneca, Wilmington, DE.</td>
</tr>
</tbody>
</table>

INTACT 2
Methods

Double-blind, randomised, placebo-controlled, phase III trial conducted mainly in the USA.

Length of follow-up (months): not reported

Combined retrospective molecular analysis of INTACT 1 and 2 patients (combined total of 32) is reported in a publication separate to the main trial publication.

Participants

1037 patients with histologically confirmed NSCLC, unresectable Stage III or IV disease

Inclusion criteria: no prior chemotherapy, aged 18 years or older, and WHO PS 0 to 2

Exclusion criteria (main): mixed NSCLC or small-cell lung cancer, brain metastases that were newly diagnosed or had not been treated with surgery or radiation, previously treated CNS metastases or spinal-cord compression in the absence of clinically stable disease, less than 2 weeks since radiotherapy, unresolved toxicity from prior radiotherapy or incomplete healing from surgery, severe systemic disease, pregnancy or breast-feeding, and hypersensitivity to mannitol, corticosteroids, H2-antagonists, antihistamines, or agents formulated with polyoxyethylated castor oil

Median age: 62 years

Male: 59%

Ethnicity: 90% White

Interventions

- **Treatment arm A (347 patients):** gefitinib 500mg/daily plus intravenous paclitaxel 225 mg/m\(^2\) over 3 hours on day 1 of a 3-week cycle immediately followed by intravenous carboplatin area under concentration/time curve of 6 mg/min/mL over 15 to 30 minutes on day 1.

- **Treatment arm B (345 patients):** gefitinib 250mg/daily plus intravenous paclitaxel 225 mg/m\(^2\) over 3 hours on day 1 of a 3-week cycle immediately followed by intravenous carboplatin area under concentration/time curve of 6 mg/min/mL over 15 to 30 minutes on day 1

- **Comparator arm (345 patients):** Placebo plus intravenous paclitaxel 225 mg/m\(^2\) over 3 hours on day 1 of a 3-week cycle immediately followed by intravenous carboplatin area under concentration/time curve of 6 mg/min/mL over 15 to 30 minutes on day 1

Chemotherapy was continued for six cycles in the absence of disease progression. Thereafter, patients were maintained on gefitinib or placebo (control arm) until disease progression or drug intolerance.

Outcomes

- **Primary outcome:** OS

- **Secondary Outcomes:** TTP (RECIST criteria), ORR, symptom control, QoL, AEs

Mutation Assessment Method

Big dye terminator

Exons assessed

18 to 21

Notes

Number of EGFR M+ patients unclear

Risk of bias table
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Randomised</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Insufficient information given.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>Double blind placebo controlled design.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>No independent review. But outcome assessors were blinded</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Unclear risk</td>
<td>No information.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>No protocol available but all outcomes stated as measured in paper are reported.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Supported by a grant from AstraZeneca, Wilmington, DE.</td>
</tr>
</tbody>
</table>

IPASS
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

| **Methods** | Open-label, randomised, phase III trial conducted in East Asia.
Length of follow-up (months): 1
The trial included a mixed patient population. The analysis of EGFR M+ data only (n=261) is retrospective and reported in a paper published separately from the main analyses. |
|---|---|
| **Participants** | 1217 patients who had advanced pulmonary adenocarcinoma and who were non-smokers or former light smokers
Inclusion Criteria: 18 years of age or older, histologically or cytologically confirmed Stage IIIB or IV NSCLC with histologic features of adenocarcinoma (including bronchoalveolar carcinoma), were non-smokers (patients who had smoked <100 cigarettes in their lifetime) or former light smokers (those who had stopped smoking at least 15 years previously and had a total of ≤10 pack-years of smoking), and had had no previous chemotherapy or biologic or immunologic therapy.
Median age: 57 years
Male: 20%
Ethnicity: 99% E Asian |
| **Interventions** | Treatment arm (132/609 patients EGFR M+): gefitinib 250 mg/daily
Comparator arm (129/608 patients EGFR M+): carboplatin at a dose calculated to produce an area under the concentration–time curve of 5.0 or 6.0 mg per milliliter per minute, administered intravenously over a period of 15 to 60 minutes) in cycles of once every 3 weeks for up to 6 cycles and paclitaxel (200 mg/m^2), administered intravenously over a 3-hour period on the first day of the cycle in cycles of once every 3 weeks for up to 6 cycles |
| **Outcomes** | Primary Outcome:
PFS, (RECIST criteria)
Secondary Outcomes:
OS, ORR, QoL (FACT–L questionnaire, Trial Outcome Index and Reduction in symptoms, assessed with LCS score), Safety, and adverse-event profile |
Mutation Assessment Method	DxS EGFR29 mutation test kit
Exons assessed	18 to 21
Notes	

Risk of bias table
<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Use of dynamic balancing randomisation procedure. Assume computer program used.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Although not reported in paper, interactive voice response system system was used (source Astra Zeneca evidence submission to NICE).</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>Open-label.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>High risk</td>
<td>PFS was assessed according to RECIST criteria. However, no independent verification of assessments was reported.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All patients accounted for.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>No selective reporting occurred.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Trial sponsored by pharmaceutical company.</td>
</tr>
</tbody>
</table>

LUX-Lung 3

Methods
- Open-label, phase III, international trial
- Length of follow-up (months): 16.4

Participants
- 345 patients with adenocarcinoma, Stage IIIb or IV, EGFR M+ and ECOG PS of 0 to 1
- Inclusion criteria: activating mutation in EGFR treatment-naive advanced lung adenocarcinoma; good performance status (ECOG 0 or 1); adequate end-organ function; and measurable disease using RECIST version 1.1.
- Median age: 61 years
- Male: 34.5%
- Ethnicity: 71% E Asian

Interventions
- Treatment arm (345/345 patients EGFR M+): afatinib 40mg/day, escalated to 50mg if limited adverse events observed in cycle 1 until progression
- Comparator arm (115/115 patients EGFR M+): cisplatin 75mg/m² and pemetrexed every 21 days for up to 6 cycles

Outcomes
- Primary Outcome:
 - PFS
- Secondary Outcome:
 - OS, ORR, Disease Control Rate, tumour shrinkage, QoL (EORTC QLQ C30 and LC 13), AEs

Mutation Assessment Method
- Therascreen EGFR29

Exons assessed
- 18 to 21

Notes
- Risk of bias table
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer (NSCLC) with afatinib: A phase III randomised study (LUX-Lung 6).

Risk of bias table

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>BI’s standard validated random number generating system was used to generate the randomisation schedules, verified by a trial-independent statistician.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Randomisation was performed centrally using IVRS/IWRS.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>Open-label trial.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Open-label trial but with independent review.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All patients accounted for.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Unclear risk</td>
<td>Protocol not available. Outcomes measured unclear from slides.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Trial sponsored in part by pharmaceutical company.</td>
</tr>
</tbody>
</table>

LUX-Lung 6

Methods

Open label Phase III randomised trial
Length of follow-up (months): 16.6

Participants

364 Asian patients all with Therascreen positive EGFR M+ NSCLC
Inclusion criteria: pathologically confirmed and previously untreated stage IIIB or IV lung adenocarcinoma ECOG PS 0 or 1; measurable disease according to RECIST version 1.1; adequate organ function. Tumour tissue had to be EGFR mutation-positive at the screening stage.
Median age: 58 years
Male:34.8%
Ethnicity: 90% Chinese

Interventions

Treatment arm (242/242 patients EGFR M+) afatinib 40mg/day
Comparator arm (122/122 patients EGFR M+) gemcitabine 1000mg/m2 d 1 and 8 and cisplatin 75mg/m2 for up to 6 cycles

Outcomes

Primary outcome:
PFS by central independent review
Secondary outcomes:
Overall response rate, disease control rate, OS, safety, QoL

Mutation Assessment Method

Therascreen EGFR29

Exons assessed

19 to 21

Notes

HR 0.26 p<0.0001 in favour of afatinib. Patient reported outcomes: pain, cough and dyspnea all significantly improved.
<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Randomisation was done centrally with a random number-generating system and an interactive internet and voice-response system</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>As above</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>Open-label trial. Clinicians and patients were not masked to treatment assignment,</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>The trial investigators who did assessments of patient-reported outcomes and safety, along with supportive assessments of tumour response (used for sensitivity analyses), were not masked to treatment assignment but the independent central imaging review group were.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All patients accounted for. ITT analysis conducted</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes reported</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Trial sponsored in part by pharmaceutical company.</td>
</tr>
</tbody>
</table>
Methods

Open-label, randomised, phase III trial conducted in Asia
Length of follow-up (months): 24

Participants

230 patients with metastatic, non–small cell lung cancer and EGFR mutations
Inclusion Criteria: NSCLC with EGFR mutations, chemo-naive patients aged < 75 years
Exclusion Criteria: Previous chemotherapy/targeted therapy, presence of resistant EGFR mutation T790M
Mean age: 62 years
Male: 36.6%
Ethnicity: 100% Chinese

Interventions

- Treatment arm (114/114 patients EGFR M+): gefitinib 250 mg daily until disease progression, toxicity or withdrawal of consent.
- Comparator arm (114/114 patients EGFR M+): carboplatin, dose equivalent to an area under the concentration–time curve (AUC) of 6, given intravenously over a 1-hour period on day one every 3 weeks and paclitaxel 200 mg per m^2, given intravenously over a 3-hour period every 3 weeks. Treatment was given for at least 3 cycles until unacceptable toxicity or withdrawal of consent.

Outcomes

- **Primary Outcome:** PFS (RECIST Version 1 criteria)
- **Secondary Outcomes:** OS, ORR, Time to the deterioration of performance status, AEs

Mutation Assessment Method

- PNA-LNA

Exons assessed

- 19 to 21 (Excluding T90M)

Notes

- EGFR mutation analysis defined as inclusion criteria, therefore all enrolled patients were EGFR positive

Risk of bias table
<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Block randomisation with block size of 2. Stratification factors of mutation type, histology and smoking status (source: company submission to NICE erlotinib 1st line). Assume computer program used.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Centralised allocation.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>The trial was open-label.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Independent radiological review conducted</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All patients accounted for</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes were reported.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>None identified</td>
</tr>
</tbody>
</table>

OPTIMAL
Methods | Open-label, randomised, phase III multicentre trial conducted in China
| Length of follow-up (months): not reported

Participants | 165 patients with NSCLC
| Inclusion Criteria: Confirmed EGFR mutations in exon 19 or exon 21 more than 18 years of age and histologically confirmed advanced or recurrent Stage IIIB or IV NSCLC measurable disease ECOG PS 0–2, adequate haematological, biochemical, and organ function
| Exclusion Criteria: Uncontrolled brain metastases or had received previous systemic anticancer therapy for advanced disease
| Median age: 58 years
| Male: 40.5%
| Ethnicity: 100% Chinese

Interventions | Treatment arm (83/83 patients EGFR M+): erlotinib 150 mg/daily until disease progression
| Comparator arm (82/82 patients EGFR M+): carboplatin (area under the curve=5) on day 1 of a 3 weeks cycle and gemcitabine 1000 mg/m² on days 1 and 8 for up to 4 cycles.

Outcomes | Primary Outcome:
| PFS (RECIST version 1 criteria)
| Secondary Outcomes:
| OS
| ORR
| TTP
| Duration of response
| Safety
| QoL, (FACT-L questionnaire and the Lung Cancer Subscale)

Mutation Assessment Method | Direct

Exons assessed | 19 to 21

Notes | EGFR mutation analysis defined as inclusion criteria, therefore all enrolled patients were EGFR M+

Risk of bias table
<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Patients were assigned (1:1) to either erlotinib or chemotherapy by dynamic minimisation procedure with Mini Randomisation software. Central randomisation was done by a clinical research organisation.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Centralised allocation by e-mail and telephone</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>Open-label</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>High risk</td>
<td>No independent review of radiological outcomes</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All patients accounted for</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes reported</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Trial sponsored by pharmaceutical company.</td>
</tr>
</tbody>
</table>

TOPICAL
Methods

Double-blind, placebo-controlled, randomised, phase III multicentre trial conducted in the UK.

Length of follow-up (months): not reported

The trial included a mixed patient population. The analysis of EGFR M+ data only (n=28) is reported in the main paper.

Participants

670 patients with newly diagnosed, pathologically confirmed NSCLC; Stage IIIb or IV disease; chemotherapy naive; no symptomatic brain metastases; deemed unsuitable for chemotherapy because of poor ECOG PS (PS ≥2) or presence of several comorbidities.

Inclusion criteria: newly diagnosed, pathologically confirmed NSCLC; stage IIIb or IV disease; chemotherapy naive; no symptomatic brain metastases; deemed unsuitable for chemotherapy because of poor ECOG PS (≥2) or presence of several comorbidities (including impaired renal function with creatinine clearance <60 mL/min), or both; estimated life expectancy of at least 8 weeks; older than 18 years, diagnosis

Exclusion criteria: previous treatment with any biological anticancer therapy; previous palliative radiotherapy (except to bone metastases, within the previous 2 weeks); pregnant or lactating women; evidence of significant laboratory finding or concurrent uncontrolled medical illness judged to potentially interfere with the trial treatment; present treatment with a COX-2 inhibitor.

Median age: 77 years
Male: 61.6%
Ethnicity: 97% White

Interventions

Treatment arm (17/350 patients EGFR M+): erlotinib 150mg/daily

Comparator arm (11/320 patients EGFR M+): placebo

Outcomes

Primary:
OS

Secondary:
PFS, QoL, AEs

Mutation Assessment Method

Sequenom OncoCarta Panel v1.0

Exons assessed

19,21

Notes

The trial set out to assess the benefit of erlotinib in a population of patients with NSCLC who were considered unsuitable for chemotherapy

Risk of bias table

42 / 73
<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation</td>
<td>Low risk</td>
<td>Patients were randomised with a computer generated sequence with a block size of 10.</td>
</tr>
<tr>
<td>(selection bias)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocation concealment</td>
<td>Low risk</td>
<td>Randomisation was done by site staff telephoning the Cancer Research UK and University College London Cancer Trials Centre. All investigators, clinicians, and patients were masked to assignment.</td>
</tr>
<tr>
<td>(selection bias)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blinding of participants and</td>
<td>Low risk</td>
<td>All investigators, clinicians, and patients were masked to assignment. Use of placebo.</td>
</tr>
<tr>
<td>personnel (performance bias)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blinding of outcome assessment</td>
<td>Low risk</td>
<td>All investigators, clinicians, and patients were masked to assignment. Use of placebo.</td>
</tr>
<tr>
<td>(detection bias)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incomplete outcome data</td>
<td>Low risk</td>
<td>All patients accounted for. ITT analysis conducted.</td>
</tr>
<tr>
<td>(attrition bias)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective reporting</td>
<td>Low risk</td>
<td>All specified outcomes reported.</td>
</tr>
<tr>
<td>(reporting bias)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Risk of patients in erlotinib arm developing rash thereby disclosing treatment allocation. Partial funding from pharmaceutical company</td>
</tr>
<tr>
<td>TORCH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methods

Open-label, randomised, phase III trial conducted in Italy and Canada.

Length of follow-up (months): 24.3

The trial included a mixed patient population. The analysis of EGFR M+ data only (n=39) is presented as subgroup analysis in the primary publication.

Participants

760 patients with NSCLC

Inclusion Criteria: histologically or cytologically confirmed NSCLC Stage IIIB (with malignant pleural effusion or supraclavicular nodes) or IV, at least one target or non-target lesion age younger than 70 years (no age limits for Canadian centres), ECOG PS 0 to 1. Patients at first diagnosis and those with recurrence after surgery were eligible.

Exclusion Criteria: Prior treatment with anti-EGFR agents; history of prior invasive malignancy or inadequate bone marrow, any unstable systemic disease, including active infections and significant cardiovascular, hepatic, renal, or metabolic disease. Patients with inflammatory eye surface changes and those who could not take or absorb oral medications.

Median age: 62.5 years

Male: 66.%

Ethnicity: 96% Caucasian

Interventions

Treatment arm (19/380 patients EGFR M+): erlotinib 150 mg/daily until disease progression

Comparator arm (20/380 patients EGFR M+): cisplatin 80 mg/m² intravenously on day 1 and gemcitabine 1,200 mg/m² intravenously per day on days 1 and 8 every 3 weeks until progression.

Outcomes

Primary Outcome:

OS

Secondary Outcomes:

- Total progression-free survival (total PFS), time from random assignment to progression after second-line treatment or death if it occurred before second progression, or last follow-up visit for patients who were not included in the previous two categories
- PFS after first-line therapy (first PFS), defined as the time from random assignment to progression after first-line treatment, or death if it occurred before first progression, or last follow-up visit for patients who were not included in the previous two categories.
- ORR, defined as the number of patients with complete or partial response at any time divided by the total number of patients enrolled onto each arm.

All based on RECIST criteria.

Toxicity

Mutation Assessment Method

Direct

Exons assessed

19

Notes

Early trial termination due to the demonstration of the non-inferiority of the experimental arm.

This was a two-stage trial with erlotinib given as first-line treatment and cisplatin plus gemcitabine as second-line treatment.
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Patients were centrally randomly assigned to the two treatment arms (1:1 ratio) through a centralized automated minimization procedure by using histology (adenocarcinoma vs other), smoking status (never vs ever smoker), sex, age (70 vs 70 years), centre, and PS (0 vs 1) as strata.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Centralised admin system used.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>The trial was open-label.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>High risk</td>
<td>No evidence of independent assessment.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All patients accounted for.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Unclear risk</td>
<td>Paper states that further secondary end points are not reported in this article and included quality of life, comparisons of resource use, and studies of exploratory biomarkers in tumor and blood samples.</td>
</tr>
<tr>
<td>Other bias</td>
<td>High risk</td>
<td>The trial was stopped early because non-inferiority of the experimental arm was demonstrated. The trial was funded by a pharmaceutical company.</td>
</tr>
</tbody>
</table>

WJTOG3405
Methods
Open-label, phase III randomised multi-centre trial conducted in Japan
Length of follow-up: 59.1 months

Participants
177 chemotherapy-naive patients aged 75 years or younger and diagnosed with Stage IIIB/IV non-small-cell lung cancer or postoperative recurrence harbouring EGFR mutations. (Five patients were excluded after randomisation).

Inclusion Criteria: histologically or cytologically confirmed NSCLC, harbouring activating EGFR mutations (either exon 19 deletion or L858R in exon 21), aged 75 years or younger, WHO PS 0–1, measurable or non-measurable disease and adequate organ function.

Exclusion Criteria: previous drug therapy that had targeted EGFR, history of interstitial lung disease, severe drug allergy, active infection or other serious disease condition, symptomatic brain metastases, poorly controlled pleural effusion, pericardial effusion or ascites necessitating drainage, active double cancer, or severe hypersensitivity to drugs containing polysolvate 80.

Median age: 64 years
Male:36.%
Ethnicity: 100% Japanese

Interventions
Treatment arm (86/86 patients EGFR M+): gefitinib 250 mg/daily
Comparator arm (86/86 patients EGFR M+): cisplatin 80 mg/m², IV over ~90-min once every 3 week cycle and docetaxel 60 mg/m², administered IV over 1 hr once every 3 week cycle

Treatment continued until progression of the disease, development of unacceptable toxic effects, a request by the patient to discontinue treatment, serious non-compliance with the protocol, or completion of three to six chemotherapy cycles. Further therapy after progression of the disease was at the physician’s discretion.

Outcomes
Primary Outcome:
PFS (RECIST criteria)
Secondary Outcomes:
OS,
ORR,
Disease Control Rate,
Safety,

Mutation Assessment Method
PNA-LNA

Exons assessed
19,21

Notes
All patients were EGFR M+

Risk of bias table
Bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Patients were allocated at the data centre to each treatment group using a desktop computer programmed for the minimisation method.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Centralised allocation see above</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>High risk</td>
<td>Open-label</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>High risk</td>
<td>No independent verification of PFS.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All patients accounted for.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>No concern over selective reporting.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>7 authors had received remuneration from pharmaceutical companies including Astra Zeneca. The trial group is non-profit making but receives unrestricted funding from several pharmaceutical companies</td>
</tr>
</tbody>
</table>

Yu 2014

Methods

- Open label, Phase II, single centre
- Length of follow-up (months): 35
 - The trial included a mixed patient population. The analysis of EGFR M+ data only (n=31) is presented as subgroup analysis in the primary publication.

Participants

- 117 chemo-naïve patients with advanced (stage IIB or IV) non-squamous NSCLC. ECOG 0 or 1.
 - Mean age=55%
 - % Male= 50%
 - Ethnicity= Chinese

Interventions

- **Treatment arm** (13/58 patients EGFR M+): gefitinib 250mg days 3 to 16 + pemetrexed 500mg/m² with cisplatin 75mg/m² or carboplatin AUC=5 every 3 weeks up to 6 cycles
- **Comparator arm** (18/59 patients EGFR M+): pemetrexed 500mg/m² with cisplatin 75mg/m² or carboplatin AUC=5 every 3 weeks up to 6 cycles

Outcomes

- **Primary outcome**
 - Non-progression rate (RECIST 1.0)
- **Secondary outcomes**
 - ORR
 - PFS
 - OS
 - AE

Mutation Assessment Method

- Direct sequencing

Exons assessed

- 18 to 21

Notes

- Treatment in both arms was administered for a maximum of 6 cycles
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...
<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crino 2008</td>
<td>only patients surviving at 1 year were tested for EGFR mutation status</td>
</tr>
<tr>
<td>ECOG 4508</td>
<td>Insufficient robust EGFR M+ samples available in trial</td>
</tr>
<tr>
<td>FASTACT</td>
<td>Data for the 7 EGFR patients not in usable format</td>
</tr>
<tr>
<td>Gatzemeier 2003</td>
<td>EGFR expression tested only</td>
</tr>
<tr>
<td>Goss 2009</td>
<td>EGFR expression tested only</td>
</tr>
<tr>
<td>Heigener 2014</td>
<td>The number of EGFR M+ patients was considered too small for analysis</td>
</tr>
<tr>
<td>Hirsh 2011</td>
<td>TKI used in both trial arms</td>
</tr>
<tr>
<td>Janne 2012</td>
<td>TKI used in both trial arms</td>
</tr>
<tr>
<td>JO25567</td>
<td>TKI used in both trial arms</td>
</tr>
<tr>
<td>Lilenbaum 2008</td>
<td>EGFR expression tested only</td>
</tr>
<tr>
<td>Massutti 2014</td>
<td>TKI used in both trial arms</td>
</tr>
<tr>
<td>NEJ005 2014</td>
<td>TKI used in both trial arms</td>
</tr>
<tr>
<td>NEJ009</td>
<td>TKI used in both trial arms</td>
</tr>
<tr>
<td>Rosell 2004</td>
<td>EGFR expression tested only</td>
</tr>
</tbody>
</table>
Rosell 2008

| Reason for exclusion | EGFR expression tested only |

Thatcher 2014

| Reason for exclusion | EGFR testing by IHC |

White

| Reason for exclusion | Due to small sample size, survival analyses were not determined for patients with EGFR mutations |

Xie 2015

| Reason for exclusion | TKI used in both trial arms |

Yang 2015

| Reason for exclusion | TKI used in both trial arms |

Footnotes

Characteristics of studies awaiting classification

INSPIRE

| Methods | Open-label, randomised, phase III, international trial |
| Participants | 633 patients with previously untreated, stage IV, non-squamous NSCLC |
| Interventions | Treatment arm (315 patients): necitumumab+pemetrexed and cisplatin
Comparator arm (318 patients): pemetrexed and cisplatin
Patients received either cisplatin 75 mg/m² and pemetrexed 500 mg/m² on day 1 of a 3-week cycle for a maximum of six cycles alone, or with necitumumab 800 mg on days 1 and 8. Necitumumab was continued after the end of chemotherapy until disease progression or unacceptable toxic effects |
| Outcomes | Primary outcome:
OS
Secondary outcomes:
TTP (RECIST criteria), ORR, Duration of Response, QoL, AEs |
| Notes | Necitumumab continued to disease progression |

TALENT
Methods
Placebo-controlled, randomised, phase III, international trial

Participants
1159 patients with histologically documented, unresectable, locally advanced, recurrent or metastatic (Stage IIIb/IV) NSCLC, age 18 years, ECOG PS of 0 or 1;

Interventions
- **Treatment arm (580 patients):** erlotinib 150mg/daily plus cisplatin and gemcitabine
- **Comparator arm (579 patients):** placebo plus cisplatin and gemcitabine
 - Gemcitabine 1,250 mg/m² on days 1 and 8 and cisplatin 80 mg/m² on day 1 of each cycle.
 - Treatment up to 6 cycles

Outcomes
- **Primary outcome:** OS
- **Secondary outcomes:** TTP (RECIST criteria), ORR, Duration of Response, QoL, AEs

Notes

TRIBUTE

Methods
Placebo-controlled, randomised, phase III multicentre trial conducted in the USA

Participants
1079 patients with histologically documented Stage IIIB or Stage IV NSCLC; age 18 years; and ECOG PS of 0 or 1.

Interventions
- **Treatment arm (539 patients):** erlotinib 150mg/daily plus paclitaxel and carboplatin
- **Comparator arm (540 patients):** placebo plus paclitaxel and carboplatin
 - Paclitaxel 200mg/m² and carboplatin AUC 6 every 3 weeks until disease progression

Outcomes
- **Primary outcome:** OS
- **Secondary outcomes:** TTP, ORR, AEs

Notes

Footnotes

Characteristics of ongoing studies

ARCHER
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer (NSCLC)

<table>
<thead>
<tr>
<th>Study name</th>
<th>ARCHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Open-label, Phase III RCT conducted in Asia</td>
</tr>
<tr>
<td>Participants</td>
<td>440 Stage IIIB/IV NSCLC with at least one activating EGFR mutation.</td>
</tr>
<tr>
<td>Interventions</td>
<td>Dacomitinib, Gefitinib</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Primary: PFS by independent radiological review. Secondary: PFS by investigator assessment, OS, ORR, duration of response, safety, QoL</td>
</tr>
<tr>
<td>Starting date</td>
<td>April 2013</td>
</tr>
</tbody>
</table>

Footnotes

Summary of findings tables

1 Summary of findings

First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous, NSCLC

Patient or population: EGFR M+ patients with NSCLC
Settings: Oncology
Intervention: gefitinib
Comparison: paclitaxel + carboplatin

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Illustrative comparative risks* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of Participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assumed risk [control]</td>
<td>Corresponding risk [experimental]</td>
<td>HR</td>
<td>489 (2 studies)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Overall survival</td>
<td>67 per 100</td>
<td>66 per 100 (58 to 73)</td>
<td>0.95 (0.77 to 1.18)</td>
<td>489 (2 studies)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Progression-free survival</td>
<td>89 per 100</td>
<td>57 per 100 (50 to 65)</td>
<td>0.39 (0.32 to 0.48)</td>
<td>485 (2 studies)</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

*The basis for the assumed risk is calculated as the event rate in the treatment group.
The corresponding risk is calculated as the assumed risk x the relative risk (RR) of the intervention where RR = (1 - exp(HR x ln(1 - assumed risk))) / assumed risk
CI: Confidence interval; RR: Risk Ratio; Hazard Ratio

GRADE Working Group grades of evidence

- **High quality:** Further research is very unlikely to change our confidence in the estimate of effect.
- **Moderate quality:** Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.
- **Low quality:** Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.
- **Very low quality:** We are very uncertain about the estimate.

Footnotes

2 Summary of findings
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer (NSCLC)

Patient or population: EGFR M+ patients with NSCLC

Settings: Oncology

Intervention: erlotinib

Comparison: control

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Illustrative comparative risks* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of Participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumed risk</td>
<td>Corresponding risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[control]</td>
<td>[experimental]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall survival</td>
<td>56 per 100</td>
<td>54 per 100 (46 to 63)</td>
<td>HR 0.95 (0.75, 1.22)</td>
<td>429 (3 studies)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Progression-free survival</td>
<td>73 per 100</td>
<td>34 per 100 (28 to 40)</td>
<td>HR 0.31 (0.25, 0.39)</td>
<td>595 (4 studies)</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

*The basis for the assumed risk is calculated as the event rate in the treatment group
The corresponding risk is calculated as the assumed risk x the relative risk (RR) of the intervention where RR = (1 - exp(HR x ln(1 - assumed risk))) / assumed risk
CI: Confidence interval; RR: Risk Ratio; HR: Hazard Ratio

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

3 **Summary of findings**

First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous, NSCLC

Patient or population: EGFR M+ patients with NSCLC

Settings: Oncology

Intervention: afatinib

Comparison: CTX

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Illustrative comparative risks* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of Participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumed risk</td>
<td>Corresponding risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[control]</td>
<td>[experimental]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall survival</td>
<td>46 per 100</td>
<td>44 per 100 (37 to 52)</td>
<td>HR 0.93 (0.74 to 1.17)</td>
<td>709 (2 studies)</td>
<td>High quality</td>
</tr>
<tr>
<td>Progression-free survival</td>
<td>56 per 100</td>
<td>29 per 100 (15 to 50)</td>
<td>HR 0.41 (0.20 to 0.83)</td>
<td>709 (2 studies)</td>
<td>High quality</td>
</tr>
</tbody>
</table>

*The basis for the assumed risk is calculated as the event rate in the treatment group
The corresponding risk is calculated as the assumed risk x the relative risk (RR) of the intervention where RR = (1 - exp(HR x ln(1 - assumed risk))) / assumed risk
CI: Confidence interval; RR: Risk Ratio; HR: Hazard Ratio

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.
Additional tables

1 Adverse events - most commonly occurring Grade 3 & 4

<table>
<thead>
<tr>
<th>Study</th>
<th>Definition of AE</th>
<th>Population</th>
<th>Top AE (listed according to intervention)</th>
<th>Second top AE (listed according to intervention)</th>
<th>Third top AE (listed according to intervention)</th>
<th>Top 3 AEs (listed according to comparator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFATINIB TRIALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUX-Lung 3</td>
<td>CTC (V3) EGFR only</td>
<td>EGFR only Rash/acne: 16.2% (AFA) vs 0% (CTX)</td>
<td>Diarrhoea: 14.4% (AFA) vs 0% (CTX)</td>
<td>Paronychia: 11.4% (AFA) vs 0% (CTX)</td>
<td>Neutropenia: 18% vs 0.4% Fatigue: 12.6% vs 1.3% Leukopenia: 8.1% vs 0.4%</td>
<td></td>
</tr>
<tr>
<td>LUX-Lung 6</td>
<td>CTC (V3) EGFR only</td>
<td>EGFR only Rash/acne: 14.6% (AFA) vs 0% (CTX)</td>
<td>Diarrhoea: 5.4% (AFA) vs 0% (CTX)</td>
<td>Stomatitis/mucositis: 5.4% (AFA) vs 0% (CTX)</td>
<td>Neutropenia: 26.5% vs 0.4% Vomiting: 19.4% vs 0.8% Leukopenia: 15.1% vs 0.4%</td>
<td></td>
</tr>
<tr>
<td>ERLOTINIB TRIALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEN</td>
<td>Incidence rate >=10%</td>
<td>Unselected population Rash: 64.9% (ERL) vs NR (CTX)</td>
<td>Diarrhoea: 29.8% (ERL) vs NR (CTX)</td>
<td>Mouth ulceration: 14% (ERL) vs NR (CTX)</td>
<td>Decreased appetite: 26.3% vs NR Diarrhoea: 12.3% vs NR Vomiting: 10.5% vs NR Anorexia: 10.5% vs NR</td>
<td></td>
</tr>
<tr>
<td>ENSURE</td>
<td>Grade ≥3 5% in either arm</td>
<td>EGFR Rash: 6.4% (ERL) vs 1% (CTX)</td>
<td>Neutropenia, Leukopenia Anaemia: All 0.9% (ERL) vs 25%, 14.4%, 12.5% respectively (CTX)</td>
<td>Neutropenia: 25% vs 0.9% Leukopenia: 14.4% vs 0.9% Anaemia: 12.5% vs 0.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EURTAC</td>
<td>Grade 3/4 CTC (V3) Common AEs</td>
<td>EGFR Rash: 13% (ERL) vs 0% (CTX)</td>
<td>Fatigue: 6% (ERL) vs 20% (CTX)</td>
<td>Diarrhoea: 5% (ERL) vs 0% (CTX)</td>
<td>Neutropenia: 22% vs 0% Fatigue: 20% vs 6% Thrombocytopenia: 14% vs 0%</td>
<td></td>
</tr>
<tr>
<td>FASTACT 2</td>
<td>Grade 3/4 CTC (V3) Most commonly reported</td>
<td>Unselected population Neutropenia: 29% (ERL) vs 25% (CTX)</td>
<td>Thrombocytopenia: 14% (ERL) vs 14% (CTX)</td>
<td>Anaemia: 11% (ERL) vs 9% (CTX)</td>
<td>Neutropenia: 25% vs 29% Thrombocytopenia: 14% vs 14% Anaemia: 9% vs 11%</td>
<td></td>
</tr>
</tbody>
</table>
GTOWG
- Grade 3/4
- Unselected population
- Rash: 12% (ERL) vs 0% (CTX)
- Diarrhoea: 6% (ERL) vs 2% (CTX)
- Constitutional symptoms: 3% (ERL) vs 5% (CTX)
- Neutropenia: 36% vs 0%
- Leukocytes: 33% vs 0%
- Hemoglobin: 11% vs 0.7%

OPTIMAL
- Grade 3/4 CTC (V3)
- AEs occurred in 3% or more in either treatment group
- EGFR
- Increased ALT: 4% (ERL) vs 1% (CTX)
- Skin rash: 2% (ERL) vs 0% (CTX)
- Diarrhoea: 1% (ERL) vs 0% (CTX)
- Neutropenia: 36% vs 0%
- Thrombocytopenia: 40% vs 0%
- Anaemia: 13% vs 0%

TOPICAL
- CTC (V3)
- Specific AEs grade 3 or 4
- Unselected population
- Dyspnoea: 59% (ERL) vs 64% (PLA)
- Fatigue: 23% (ERL) vs 23% (PLA)
- Diarrhoea: 8% (ERL) vs 1% (PLA)

TORCH
- Worst toxicity experienced with first line treatment alone
- Unselected population
- Skin Rash: 11% (ERL) vs 0% (CTX)
- Pulmonary toxicity: 9% (ERL) vs 6% (CTX)
- Fatigue: 8% (ERL) vs 12% (CTX)

GEFITINIB TRIALS

FIRST-SIGNAL
- Grade 3 or 4 CTC (V3)
- Unselected population
- Rash: 29.3% (GEF) vs 2% (CTX)
- Anorexia: 13.8% (GEF) vs 57.3% (CTX)
- AST: 11.3% (GEF) vs 2% (CTX)

INTACT1
- Grade 3/4 CTC
- Commonly occurring AEs
- Unselected Population
- Thrombocytopenia:* 5.8% (GEF+CTX) vs 5.6% (CTX)
- Rash: 3.6% (GEF+CTX) vs 1.1% (CTX)
- Diarrhoea: 3.6% (GEF+CTX) vs 2.3% (CTX)

INTACT2
- Grade 3/4 CTC (V2)
- Common drug-related AEs
- Unselected population
- Diarrhoea: 9.9% (GEF+CTX) vs 2.9% (CTX)
- Neutropenia: 6.7% (GEF+CTX) vs 5.9% (CTX)
- Rash: 3.2% (GEF+CTX) vs 1.5% (CTX)

IPASS
- Grade 3,4 or 5 CTC (V3)
- At least 10% of patients in either treatment group and at least a 5% difference between arms
- Unselected population
- Diarrhoea: 3.8% (GEF) vs 1.4% (CTX)
- Any neutropenia: 3.7% (GEF) vs 67.1% (CTX)
- Rash: 3.1% (GEF) vs 0.8% (CTX)

55 / 73
<table>
<thead>
<tr>
<th>NEJSG</th>
<th>WJTOG3405</th>
<th>Yu 2014</th>
<th>CETUXIMAB TRIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade >=3 CTC (V3)</td>
<td>Grade >=3 CTC (V3)</td>
<td>Grade 3+</td>
<td>BMS099</td>
</tr>
<tr>
<td>At least 10% of patients in either treatment group and at least a 5% difference between arms</td>
<td>AEs occurred in 10% of either of the treatment groups</td>
<td>Patients with at least 1 AE</td>
<td>Unselected population</td>
</tr>
<tr>
<td>EGFR only</td>
<td>EGFR only</td>
<td>Unselected population</td>
<td>Unselected population</td>
</tr>
<tr>
<td>ATE: 26.3% (GEF) vs 0.9% (CTX)</td>
<td>ALT/AST: 27.5% (GEF) vs 2.3% (CTX)</td>
<td>Rash: 16% (GEF+CTX) vs 0% (CTX)</td>
<td>Neutropenia: 62.5% (CET+CTX) vs 56% (CTX)</td>
</tr>
<tr>
<td>Rash: 5.3% (GEF) vs 2.7% (CTX)</td>
<td>Rash: 2.3% (GEF) vs 0% (CTX)</td>
<td>Vomiting: 10% (GEF) vs 8% (CTX)</td>
<td>Leukopenia: 43.8% (CET+CTX) vs 30.7% (CTX)</td>
</tr>
<tr>
<td>Appetite loss: 5.3% (GEF) vs 6.2% (CTX)</td>
<td>Fatigue: 2.3% (GEF) vs 2.3% (CTX)</td>
<td>Neutropenia: 10% (GEF) vs 12% (CTX)</td>
<td>Fatigue: 15.1% (CET+CTX) vs 12.2% (CTX)</td>
</tr>
<tr>
<td>Neutropenia: 65.5% vs 0.9%</td>
<td>Neutropenia: 84% vs 0%</td>
<td>Neutropenia: 12% vs 10%</td>
<td>Same AEs as intervention</td>
</tr>
<tr>
<td>Arthralgia: 7.1% vs 0.9%</td>
<td>Leukocytopenia: 50% vs 0%</td>
<td>Neutropenia: 12% vs 5%</td>
<td>Febrile neutropenia: 19% (CTX) vs 25% (CET vs CTX)</td>
</tr>
<tr>
<td>Neuropathy: 6.2% vs 0%</td>
<td>Neutropenia: 16% (CTX) vs 0%</td>
<td>Nausea: 8% vs 5%</td>
<td>Anaemia: 17% vs 0%</td>
</tr>
<tr>
<td>Appetite loss: 6.2% vs 5.3%</td>
<td></td>
<td>Vomiting: 8% vs 10%</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes
AE= adverse event; AFA=afatinib; ATE=aminotransferase elevation; ALT=alanine aminotransferase; AST=aspartate aminotransferase; CET=cetuximab; CTC=common toxicity criteria; CTX=cytotoxic chemotherapy; ERL=erlotinib; GEF=gefitinib

*neutropenia was also reported as 5.8% for G3/4 as this rate was higher than the rate for all patients (5%) it was not included in the table; ** Rash listed as Grades A to D rather than 3 or 4

References to studies

Included studies

BMS099

CHEN

56 / 73
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

* Chen YM, Tsai CM, Fan WC, Shih JF, Liu SH, Wu CH, et al. Phase II randomized trial of erlotinib or vinorelbine in

ENSURE

study of first-line erlotinib versus gemcitabine/cisplatin in Asian patients with epidermal growth factor receptor (EGFR)

patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase III, randomized, open-

EURTAC

Published and unpublished data

non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) activating mutations − the
EURTAC Phase II randomized trial interim results [i]. European Journal of Cancer 2011;47:S597-S597.

first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a

FASTACT 2

Mok T, WuYL, Thongprasert S, YuC, Zhang J, Ladrera L, et al.. A randomized placebo-controlled phase III study of
intercalated erlotinib with gemcitabine/platinum in first-line advanced non-small cell lung cancer (NSCLC): FASTACT-II. In:
American Society of Clinical Oncology. 2012 Annual Meeting of the American Society of Clinical Oncology, ASCO Chicago,
IL United States.. Vol. 15 (S1). 2012.

for patients with advanced stage non-small-cell lung cancer (FASTACT-2): a randomised, double-blind trial. The Lancet
Oncology 2013;14(8):777-86.

First-SIGNAL

and cisplatin trial in never-smokers with adenocarcinoma of the lung. Journal of Clinical Oncology April 1 2012;30(10):1122-
1128.

FLEX

GTOWG

patients (age 70 or older) with advanced non-small cell lung carcinoma (NSCLC): a randomised phase II study of the

INTACT 1

Bell DW, Lynch TJ, Haserlat SM, Harris PL, Okimoto RA, Brannigan BW, et al. Epidermal growth factor receptor mutations in
non-small cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib studies. Journal of Clinical Oncology
2005;23:8081-8092.

INTACT 2

First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

WJTOG3405

Yu 2014

Excluded studies

Boutsikou 2013

Crino 2008

ECOG 4508
Aggarwal C, Dahlberg S, Hanna E, Kolesar N, Hirsch J, Ramalingam FR, et al. Exploratory biomarker analyses from ECOG 4508: Three-arm randomized phase II study of carboplatin (C) and paclitaxel (P) in combination with cetuximab (CET), IMC-A12, or both for advanced non-small cell lung cancer (NSCLC) patients (pts). In: American Society of Clinical Oncology. 2013 Annual Meeting of the American Society of Clinical Oncology, ASCO Chicago, IL United States.. Vol. 15 (S1). 2013 Annual Meeting of the American Society of Clinical Oncology, ASCO Chicago, IL United States..

FASTACT

Gatzemeier 2003

Goss 2009

Heigener 2014

Hirsh 2011
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer (NSCLC) is an area of active research and development. Various studies have been conducted to evaluate different therapeutic approaches in this patient population. Here are some key studies:

Janne 2012

JO25567

Lilenbaum 2008

Massuti 2014

NEJ005 2014

NEJ009

Rosell 2004

Rosell 2008

Thatcher 2014

White

First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer.

Xie 2015

Yang 2015

Studies awaiting classification

INSPIRE

TALENT
* Published data only (unpublished sought but not used)*

TRIBUTE

Ongoing studies

ARCHER

Other references

Additional references

Bai 2013

Booth 2012

Brown 2013

Cancer Research UK
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

Ku 2011

Lee 2013

Lee 2015

Linardou 2008

Maheswaran 2008

Murtaza 2013

NICE 2010

NICE 2012

NICE 2014

Perol 2012

Peters 2012

Pilkington 2012

Pujol 2014

Reck 2014
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

Rosell 2009

Rosell 2011

Rosell 2012

Salanti 2009

Salanti 2011

Schiller 2002

Scoccianti 2012

Shi 2014

Shigematsu 2005

Spiro 2004

Su 2012

Tsiatis 2010

Ulivi 2012

Vogelstein 2013

Yang 2014
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer.

Yasuda 2011

Zhang 2012

Other published versions of this review
Classification pending references

Data and analyses

1 Erlotinib versus Control

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Overall Survival</td>
<td>5</td>
<td></td>
<td>Hazard Ratio (IV, Random, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>1.1.1 Erlotinib versus CTX</td>
<td>3</td>
<td></td>
<td>Hazard Ratio (IV, Random, 95% CI)</td>
<td>0.95 [0.75, 1.22]</td>
</tr>
<tr>
<td>1.1.2 Erlotinib versus vinorelbine</td>
<td>1</td>
<td></td>
<td>Hazard Ratio (IV, Random, 95% CI)</td>
<td>2.16 [0.58, 8.10]</td>
</tr>
<tr>
<td>1.1.3 Erlotinib plus CTX versus CTX plus placebo</td>
<td>1</td>
<td></td>
<td>Hazard Ratio (IV, Random, 95% CI)</td>
<td>0.48 [0.27, 0.85]</td>
</tr>
<tr>
<td>1.2 Progression Free Survival</td>
<td>6</td>
<td></td>
<td>Hazard Ratio (IV, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>1.2.1 Erlotinib versus CTX</td>
<td>4</td>
<td></td>
<td>Hazard Ratio (IV, Fixed, 95% CI)</td>
<td>0.30 [0.24, 0.38]</td>
</tr>
<tr>
<td>1.2.2 Erlotinib versus vinorelbine</td>
<td>1</td>
<td></td>
<td>Hazard Ratio (IV, Fixed, 95% CI)</td>
<td>0.55 [0.21, 1.46]</td>
</tr>
<tr>
<td>1.2.3 Erlotinib plus CTX versus CTX plus placebo</td>
<td>1</td>
<td></td>
<td>Hazard Ratio (IV, Fixed, 95% CI)</td>
<td>0.25 [0.16, 0.39]</td>
</tr>
<tr>
<td>1.2.4 Erlotinib versus CTX (sensitivity analysis using ENSURE independent review data)</td>
<td>4</td>
<td></td>
<td>Hazard Ratio (IV, Fixed, 95% CI)</td>
<td>0.33 [0.26, 0.42]</td>
</tr>
<tr>
<td>1.3 Tumour response</td>
<td>7</td>
<td></td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>1.3.1 Erlotinib versus CTX</td>
<td>5</td>
<td>593</td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>2.20 [1.53, 3.17]</td>
</tr>
<tr>
<td>1.3.2 Erlotinib versus vinorelbine</td>
<td>1</td>
<td>24</td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>0.83 [0.19, 3.67]</td>
</tr>
<tr>
<td>1.3.3 Erlotinib versus erlotinib plus CTX</td>
<td>0</td>
<td>0</td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>Not estimable</td>
</tr>
<tr>
<td>1.3.4 Erlotinib plus CTX versus CTX plus placebo</td>
<td>1</td>
<td>97</td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>5.74 [2.86, 11.50]</td>
</tr>
</tbody>
</table>

2 Gefitinib versus CTX

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Overall survival</td>
<td>4</td>
<td></td>
<td>Hazard Ratio (IV, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>2.1.1 Gefitinib versus gemcitabine plus cisplatin</td>
<td>1</td>
<td></td>
<td>Hazard Ratio (IV, Fixed, 95% CI)</td>
<td>1.04 [0.50, 2.20]</td>
</tr>
<tr>
<td>2.1.2 Gefitinib versus paclitaxel plus carboplatin</td>
<td>2</td>
<td></td>
<td>Hazard Ratio (IV, Fixed, 95% CI)</td>
<td>0.95 [0.77, 1.18]</td>
</tr>
<tr>
<td>2.1.3 Gefitinib versus docetaxel plus cisplatin</td>
<td>1</td>
<td></td>
<td>Hazard Ratio (IV, Fixed, 95% CI)</td>
<td>1.25 [0.88, 1.78]</td>
</tr>
<tr>
<td>2.2 Progression free survival</td>
<td>4</td>
<td></td>
<td>Hazard Ratio (IV, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>2.2.1 Gefitinib versus gemcitabine plus cisplatin</td>
<td>1</td>
<td></td>
<td>Hazard Ratio (IV, Fixed, 95% CI)</td>
<td>0.54 [0.27, 1.10]</td>
</tr>
<tr>
<td>2.2.2 Gefitinib versus paclitaxel plus carboplatin</td>
<td>2</td>
<td></td>
<td>Hazard Ratio (IV, Fixed, 95% CI)</td>
<td>0.39 [0.32, 0.48]</td>
</tr>
<tr>
<td>2.2.3 Gefitinib versus docetaxel plus cisplatin</td>
<td>1</td>
<td></td>
<td>Hazard Ratio (IV, Fixed, 95% CI)</td>
<td>0.49 [0.34, 0.71]</td>
</tr>
<tr>
<td>2.3 Tumour response</td>
<td>4</td>
<td>648</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.87 [1.60, 2.19]</td>
</tr>
<tr>
<td>2.3.1 Gefitinib versus gemcitabine plus cisplatin</td>
<td>1</td>
<td>42</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>2.26 [1.17, 4.34]</td>
</tr>
<tr>
<td>2.3.2 Gefitinib versus paclitaxel plus carboplatin</td>
<td>2</td>
<td>489</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.83 [1.54, 2.18]</td>
</tr>
<tr>
<td>2.3.3 Gefitinib versus docetaxel plus cisplatin</td>
<td>1</td>
<td>117</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.93 [1.26, 2.94]</td>
</tr>
</tbody>
</table>
3 Afatinib versus CTX

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Overall survival</td>
<td>2</td>
<td></td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>0.93[0.74, 1.17]</td>
</tr>
<tr>
<td>3.1.1 Afatinib versus pemetrexed plus cisplatin</td>
<td>1</td>
<td></td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>0.91[0.66, 1.25]</td>
</tr>
<tr>
<td>3.1.2 Afatinib versus gemcitabine plus cisplatin</td>
<td>1</td>
<td></td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>0.95[0.68, 1.33]</td>
</tr>
<tr>
<td>3.2 Progression free survival</td>
<td>2</td>
<td></td>
<td>Hazard Ratio(IV, Random, 95% CI)</td>
<td>0.41[0.20, 0.83]</td>
</tr>
<tr>
<td>3.2.1 Afatinib versus pemetrexed plus cisplatin</td>
<td>1</td>
<td></td>
<td>Hazard Ratio(IV, Random, 95% CI)</td>
<td>0.58[0.43, 0.78]</td>
</tr>
<tr>
<td>3.2.2 Afatinib versus gemcitabine plus cisplatin</td>
<td>1</td>
<td></td>
<td>Hazard Ratio(IV, Random, 95% CI)</td>
<td>0.28[0.20, 0.39]</td>
</tr>
<tr>
<td>3.3 Tumour response</td>
<td>2</td>
<td>709</td>
<td>Risk Ratio(M-H, Fixed, 95% CI)</td>
<td>2.71[2.12, 3.46]</td>
</tr>
<tr>
<td>3.3.1 Afatinib versus pemetrexed plus cisplatin</td>
<td>1</td>
<td>345</td>
<td>Risk Ratio(M-H, Fixed, 95% CI)</td>
<td>2.48[1.74, 3.54]</td>
</tr>
<tr>
<td>3.3.2 Afatinib versus gemcitabine plus cisplatin</td>
<td>1</td>
<td>364</td>
<td>Risk Ratio(M-H, Fixed, 95% CI)</td>
<td>2.92[2.08, 4.09]</td>
</tr>
</tbody>
</table>

4 Cetuximab plus CTX versus CTX

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Overall survival</td>
<td>2</td>
<td></td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>4.1.1 Cetuximab plus paclitaxel or docetaxel plus carboplatin versus paclitaxel or docetaxel plus carboplatin</td>
<td>1</td>
<td></td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>1.62[0.54, 4.84]</td>
</tr>
<tr>
<td>4.1.2 Cetuximab plus vinorelbine plus cisplatin versus vinorelbine plus cisplatin</td>
<td>1</td>
<td></td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>1.48[0.77, 2.82]</td>
</tr>
<tr>
<td>4.2 Progression free survival</td>
<td>2</td>
<td></td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>Subtotals only</td>
</tr>
<tr>
<td>4.2.1 Cetuximab plus paclitaxel or docetaxel plus carboplatin versus paclitaxel or docetaxel plus carboplatin</td>
<td>1</td>
<td></td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>1.17[0.36, 3.80]</td>
</tr>
<tr>
<td>4.2.2 Cetuximab plus vinorelbine plus cisplatin versus vinorelbine plus cisplatin</td>
<td>1</td>
<td></td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>0.92[0.53, 1.60]</td>
</tr>
<tr>
<td>4.3 Tumour response</td>
<td>2</td>
<td>81</td>
<td>Risk Ratio(M-H, Fixed, 95% CI)</td>
<td>1.43[0.83, 2.47]</td>
</tr>
<tr>
<td>4.3.1 Cetuximab plus paclitaxel or docetaxel plus carboplatin versus paclitaxel or docetaxel plus carboplatin</td>
<td>1</td>
<td>17</td>
<td>Risk Ratio(M-H, Fixed, 95% CI)</td>
<td>4.50[0.63, 32.38]</td>
</tr>
<tr>
<td>4.3.2 Cetuximab plus vinorelbine plus cisplatin versus vinorelbine plus cisplatin</td>
<td>1</td>
<td>64</td>
<td>Risk Ratio(M-H, Fixed, 95% CI)</td>
<td>1.19[0.67, 2.11]</td>
</tr>
</tbody>
</table>

5 Erlotinib versus CTX

<table>
<thead>
<tr>
<th>Outcome or Subgroup</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical Method</th>
<th>Effect Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Overall survival</td>
<td>3</td>
<td></td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>0.96[0.75, 1.23]</td>
</tr>
<tr>
<td>5.1.1 Erlotinib versus gemcitabine plus cisplatin</td>
<td>2</td>
<td></td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>1.00[0.71, 1.40]</td>
</tr>
<tr>
<td>5.1.2 Erlotinib versus docetaxel plus cisplatin or gemcitabine plus cisplatin</td>
<td>1</td>
<td></td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>0.91[0.63, 1.31]</td>
</tr>
</tbody>
</table>
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

<table>
<thead>
<tr>
<th>5.2 Progression free survival</th>
<th>4</th>
<th>Hazard Ratio(IV, Fixed, 95% CI)</th>
<th>0.29[0.24, 0.35]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1 Erlotinib versus gemcitabine plus carboplatin</td>
<td>2</td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>0.24[0.18, 0.33]</td>
</tr>
<tr>
<td>5.2.2 Erlotinib versus gemcitabine plus cisplatin</td>
<td>1</td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>0.60[0.30, 1.19]</td>
</tr>
<tr>
<td>5.2.3 Erlotinib versus docetaxel plus cisplatin or gemcitabine plus cisplatin</td>
<td>1</td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>0.34[0.23, 0.50]</td>
</tr>
<tr>
<td>5.2.4 Erlotinib versus gemcitabine plus carboplatin (sensitivity analysis using ENSURE independent review data)</td>
<td>2</td>
<td>Hazard Ratio(IV, Fixed, 95% CI)</td>
<td>0.27[0.19, 0.37]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.3 Tumour response</th>
<th>5</th>
<th>593</th>
<th>Risk Ratio(M-H, Fixed, 95% CI)</th>
<th>2.26[1.85, 2.76]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.1 Erlotinib versus gemcitabine plus carboplatin</td>
<td>2</td>
<td>371</td>
<td>Risk Ratio(M-H, Fixed, 95% CI)</td>
<td>2.05[1.65, 2.56]</td>
</tr>
<tr>
<td>5.3.2 Erlotinib versus gemcitabine plus cisplatin</td>
<td>1</td>
<td>39</td>
<td>Risk Ratio(M-H, Fixed, 95% CI)</td>
<td>1.68[0.67, 4.24]</td>
</tr>
<tr>
<td>5.3.3 Erlotinib versus docetaxel plus cisplatin or gemcitabine plus cisplatin</td>
<td>1</td>
<td>173</td>
<td>Risk Ratio(M-H, Fixed, 95% CI)</td>
<td>3.89[2.28, 6.63]</td>
</tr>
<tr>
<td>5.3.4 Erlotinib versus vinorelbine plus carboplatin</td>
<td>1</td>
<td>10</td>
<td>Risk Ratio(M-H, Fixed, 95% CI)</td>
<td>0.33[0.04, 2.56]</td>
</tr>
</tbody>
</table>

6 Erlo tinib plus CTX versus CTX plus placebo				
Outcome or Subgroup	Studies	Participants	Statistical Method	Effect Estimate
6.1 Overall Survival	1		Hazard Ratio(IV, Fixed, 95% CI)	0.48[0.27, 0.85]
6.1.1 Erlotinib plus gemcitabine plus carboplatin or cisplatin versus gemcitabine plus carboplatin or cisplatin plus placebo	1		Hazard Ratio(IV, Fixed, 95% CI)	0.48[0.27, 0.85]
6.2 Progression Free Survival	1		Hazard Ratio(IV, Fixed, 95% CI)	0.25[0.16, 0.39]
6.2.1 Erlotinib plus gemcitabine plus carboplatin or cisplatin versus gemcitabine plus carboplatin or cisplatin plus placebo	1		Hazard Ratio(IV, Fixed, 95% CI)	0.25[0.16, 0.39]
6.3 Tumour response	1	97	Risk Ratio(M-H, Fixed, 95% CI)	5.74[2.86, 11.50]
6.3.1 Erlotinib plus gemcitabine plus carboplatin or cisplatin versus gemcitabine plus carboplatin or cisplatin plus placebo	1	97	Risk Ratio(M-H, Fixed, 95% CI)	5.74[2.86, 11.50]

7 Erlo tinib versus vinorelbine				
Outcome or Subgroup	Studies	Participants	Statistical Method	Effect Estimate
7.1 Overall survival	1		Hazard Ratio(IV, Fixed, 95% CI)	Subtotals only
7.1.1 Erlotinib versus vinorelbine	1		Hazard Ratio(IV, Fixed, 95% CI)	2.16[0.58, 8.10]
7.2 Progression free survival	1		Hazard Ratio(IV, Fixed, 95% CI)	Subtotals only
7.2.1 Erlotinib versus vinorelbine	1		Hazard Ratio(IV, Fixed, 95% CI)	0.55[0.21, 1.46]
7.3 Tumour response	1		Risk Ratio(M-H, Fixed, 95% CI)	Subtotals only
7.3.1 Erlotinib versus vinorelbine	1	24	Risk Ratio(M-H, Fixed, 95% CI)	0.83[0.19, 3.67]

8 Gefitinib plus CTX versus CTX				
Outcome or Subgroup	Studies	Participants	Statistical Method	Effect Estimate
8.1 Progression-free survival	1		Hazard Ratio(IV, Fixed, 95% CI)	0.20[0.05, 0.75]
8.2 Tumour response	1	31	Risk Ratio(M-H, Fixed, 95% CI)	1.54[0.89, 2.67]

Figures

Figure 1
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

Captions
Study flow diagram.

Figure 2
Caption
Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies.

Figure 3
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer (NSCLC) patients:

Table: Risk of bias summary: Review authors’ judgements about each risk of bias item for each included trial.

Caption
Risk of bias summary: review authors' judgements about each risk of bias item for each included trial.

Sources of support

Internal sources
- No sources of support provided

External sources
- No sources of support provided

Feedback

Appendices
1. **MEDLINE**edline (via OvidVID: 1946 onwards)
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer (date: Feb 5th, 2014)

Ovid MEDLINE(R) <1946 to January Week 4 2014>

1 exp Carcinoma, Non-Small-Cell Lung/ (30107)
2 (lung and (cancer$ or carcin$ or neoplasm$ or tumour$ or tumor$) and ((non-small or nonsmall) and cell)).ti,ab. (29454)
3 nsclc.ti,ab. (16188)
4 1 or 2 or 3 (36222)
5 (tyrosine kinase inhibit$ or monoclonal antibod$ or EGFR or TKI$).tw. (183400)
6 (erlotinib or tarceva).af. (3081)
7 (gefitinib or iressa).af. (3928)
8 (afatinib or gilotrif).af. (65)
9 5 or 6 or 7 or 8 (185552)
10 randomized controlled trial.pt. (359493)
11 controlled clinical trial.pt. (86909)
12 randomized.ab. (260696)
13 placebo.ab. (141221)
14 clinical trials as topic.sh. (1203305)
15 trial.ti. (268187)
16 or/9-15
17 exp animals/ not humans.sh. (13090537)
18 16 not 17
19 8 and 18

2 Updated search strategy

First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer (date: Feb 5th, 2014)

Ovid Embase <1996 to 2014 February 14>

1 exp lung non small cell cancer/ (55263)
2 (lung and (cancer$ or carcin$ or neoplasm$ or tumour$ or tumor$) and ((non-small or nonsmall) and cell)).ti,ab. (44493)
3 nsclc.ti,ab. (29792)
4 1 or 2 or 3 (62940)
5 (tyrosine kinase inhibit$ or monoclonal antibod$ or EGFR or TKI$).tw. (152359)
6 (erlotinib or tarceva).af. (15970)
7 (gefitinib or iressa).af. (15976)
8 (afatinib or gilotrif).af. (707)
9 5 or 6 or 7 or 8 (166496)
10 4 and 9 (14716)
11 random:.tw. or placebo:.mp. or double-blind:.mp. (900038)
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small c...

12 10 and 11 (2814)
13 10 and 11 (2814)
14 limit 13 to yr="2012 -Current" (765)

Cochrane Central Register of Controlled Trials : Issue 1 of 12, January 2014

#1MeSH descriptor: [Carcinoma, Non-Small-Cell Lung] explode all trees2303
#2lung:ti,ab 18465
#3(cancer* or carcin* or neoplasm* or tumour* or tumor*):ti,ab 69595
#4(non-small or nonsmall):ti,ab 4068
#5#2 and #3 and #4 4012
#6nsclc:ti,ab 2450
#7#1 or #5 or #6 4416
#8(tyrosine kinase inhibit* or monoclonal antibod* or EGFR or TKI*):ti,ab 3127
#9(erlotinib or tarceva):ti,ab 245
#10(gefitinib or iressa):ti,ab 213
#11(afatinib or gilotrif):ti,ab 19
#12#8 or #9 or #10 or #11 3406
#13#7 and #12 135
#14#7 and #12 from 2012 to 2014135

3 Search strategy 3

Ovid EMBASE April 2014 until 1st June 2015 and 1946 to 1st June
1 exp lung non small cell cancer
2 (lung and (cancer$ or carcin$ or neoplasm$ or tumour$ or tumor$) and ((non-small or nonsmall) and cell)).ti,ab.
3 nsclc.ti,ab.
4 1 or 2 or 3
5 (tyrosine kinase inhibit$ or monoclonal antibod$ or EGFR or TKI$).tw.
6 (erlotinib or tarceva).af.
7 (gefitinib or iressa).af.
8 (afatinib or gilotrif).af.
9 5 or 6 or 7 or 8
10 4 and 9
11 random:.tw. or placebo:.mp. or double-blind:.mp.
12 10 and 11