Abstract—LCL filters have been widely used for grid-connected inverters. However, the problem that how time delay affects the stability of digitally controlled grid-connected inverters with LCL filters has not been fully studied. In this paper, a systematic study is carried out on the relationship between the time delay and stability of single-loop controlled grid-connected inverters that employ inverter current feedback (ICF) or grid current feedback (GCF). The ranges of time delay for system stability are analyzed and deduced in the continuous s-domain and discrete z-domain. It is shown that in the optimal range, the existence of time delay weakens the stability of the ICF loop, whereas a proper time delay is required for the GCF loop. The present work explains, for the first time, why different conclusions on the stability of ICF loop and GCF loop have been drawn in previous papers. To improve system stability, a linear predictor based time delay reduction method is proposed for ICF, while a time delay addition method is used for GCF. A controller design method is then presented that guarantees adequate stability margins. The delay-dependent stability study is verified by simulation and experiment.

Index Terms—Digital control, grid-connected inverter, LCL filter, stability, time delay.

I. INTRODUCTION

GRID-CONNECTED inverters form an important interface between distributed power generation systems and the power grid. LCL filters have been commonly adopted to mitigate switching harmonics generated by the inverters. Compared with L filters, LCL filters have better attenuating ability and allow the use of low inductance inductors, resulting in a cost-effective solution [1]. However the inherent resonance of LCL filters has the tendency to destabilize the inverter systems [2], [3]. Different passive and active damping methods have been proposed to improve system stability [3]-[5]. The passive damping strategy increases the power loss. The active damping methods, multi-loop or filter based, are complex in the realization and design of the controller [5]-[8].

Simple but effective single-loop current control methods without additional damping have been proposed and researched for the LCL-filtered grid-connected inverters, employing inverter current feedback (ICF) or grid current feedback (GCF) [2], [9]-[19]. It has been proved that both the ICF loop and GCF loop can be made stable because of their inherent damping characteristics [10], [14], [15].

However, the stability of the ICF and GCF loops has not been fully studied so far, especially when the time delay is taken into account. The time delay roots from the time for analog-to-digital conversion, computation, and pulse-width-modulation (PWM) generation [4], [9], [20].

Much work has been devoted to the choice of the feedback current and different conclusions on the stability of ICF loop and GCF loop have been drawn, leading to much confusion. Without considering any time delay, Tang et al. [10] found that the ICF loop is stable due to its inherent damping characteristics, while the GCF loop is unstable. Similar findings were also demonstrated in [11] and [12] where the grid current is indirectly controlled by the inverter current. Active damping methods are needed if the grid current is to be controlled directly [21], [22]. Considering time delay, Zhang et al. [9] and Bierhoff et al. [23] found that the ICF is still more advantageous than the GCF. Again, damping methods are necessary if the grid current is to be controlled directly [24], [25]. On the other hand, Dannehl et al. [2] found that GCF is superior to ICF based on stability evaluation using root loci. Similar conclusions were also drawn in [13]-[15] which showed that the GCF loop can maintain stability without any additional damping method.

Many publications have been devoted to the identification of the factors that influence the stability of the single-loop control systems. Dannehl et al. [2], [26] indicated that the stability is closely related to the ratio of sampling frequency to the LCL resonance frequency, but the nature of this relationship is not known. Yin et al. [15] presented the damping characteristic of the time delay in the GCF loop, and Park et al. [16] found that the GCF loop can be stable if the resonance frequency is smaller than 1/6 of the sampling frequency. However only the GCF with a delay of 1.5Ts (Ts is the sampling period) is studied. Rui et al. [17] implied that the GCF loop is stable when the time delay is between 0.53Ts and 1.33Ts, but this range is only valid for the controller parameters used by the authors. Zou et al. [18] proposed a method to obtain the stable ranges of time delay for ICF and GCF loops. However the method is not based on precise derivation, and the deduced stable ranges, which are

Jianguo Wang, Student Member, IEEE, Jiu Dun Yan, Member, IEEE, Lin Jiang, Member, IEEE, and Jiyan Zou
different to the result in [17], are only for specified LCL and controller parameters.

In this paper, a thorough theoretical study is carried out on the relationship between the time delay and stability of single-loop controlled grid-connected inverters with LCL filters. It is found that the time delay is a key factor that affects the system stability. The main contributions of this paper are summarized below.

Firstly, the stable ranges of the time delay (the ranges of the time delay within which the system can be made stable) are deduced in the continuous s-domain and discrete z-domain, applicable for any LCL parameters. The present study explains why different conclusions on the stability of the single-loop control systems are drawn in previous papers, i.e., the time delay in these cases falls into different ranges. Furthermore, it can be deduced that the stable ranges of time delay for the loop with capacitor current feedback are same as those of the ICF loop. Therefore the study can also facilitate the analysis of the active damping methods which employ an inner ICF or capacitor current feedback loop.

Secondly, to improve the stability of the single-loop control systems, time delay compensation methods are proposed. For ICF, a linear predictor based time delay reduction is used [27], [28]. For GCF, a proper time delay is added. By employing the proposed time delay compensators, the allowed sampling frequency ranges can be increased while still maintaining system stability.

Thirdly, a simple PI tuning method without simplification is proposed. To design the controller, the LCL filter is often simplified as an L filter [16], [19], [29]; this approach however is not accurate enough since the LCL resonance frequency impacts stability margins significantly. By using the proposed design method, adequate stability margins can be guaranteed.

This paper is organized as follows. Section II presents the single-loop controlled three-phase grid-connected inverter system and an analysis of the relationship between the time delay and system stability in the continuous s-domain. Section III provides the derivation of the stable ranges of time delay in the discrete z-domain. Section IV is devoted to the optimal range of the time delay and time delay compensators. A PI controller design method is proposed in Section V. Simulation and experimental results are presented in Section VI to verify the delay-dependent stability. Conclusions are finally drawn in Section VII.

II. SINGLE-LOOP CONTROLLED THREE-PHASE GRID-CONNECTED INVERTERS WITH LCL FILTERS

A. System Description

The circuit diagram of a three-phase grid-connected inverter with LCL filters is shown in Fig. 1(a), where the inverter is supplied with a constant DC voltage \(V_d \). Its equivalent single-phase circuit is shown in Fig. 1(b), where \(v_i \) is the inverter voltage and \(v_g \) the grid voltage. The inverter side inductor \(L_i \), grid side inductor \(L_g \), and capacitor \(C \) are the components of the LCL filter. The parasitic resistance associated with the inductors is neglected to represent the worst case [10], [16].

The inverter current \(i_i \) or grid current \(i_g \) can be sensed as the feedback variable for a single-loop current control system. The transfer functions from the inverter voltage to the inverter current and to the grid current are given as (1) and (2) respectively, with \(\omega_0 = \sqrt{L_i/C} \) and \(\omega_{res} = \sqrt{(L_i + L_g)/L_iC} \).

\[
G_{vi}(s) = \frac{i_i(s)}{v_i(s)} = \frac{s^2 + \omega_0^2}{sL_i(s^2 + \omega_{res}^2)} \tag{1}
\]

\[
G_{vg}(s) = \frac{i_g(s)}{v_i(s)} = \frac{\omega_0^2}{sL_i(s^2 + \omega_{res}^2)} \tag{2}
\]

B. Time Delay in the Control Loop

To acquire the average value of a current in a switching period and to avoid switching noises, the synchronous sampling method is commonly adopted. The currents are sampled at the beginning or the middle of a switching period [30], [31].

Taking the symmetric-on-time modulator as an example, the digital control process is shown in Fig. 2. A current is sampled when the PWM counter reaches the peak value, resulting in a sampled quantity. \(T_d \) represents the time for analog-to-digital conversion. With a digital controller, the duty-ratio \(d \) (the shadow compare register value) is calculated, and \(T_d \) is the time for computation. In a digital signal processor (DSP), \(d \) is generally updated to the compare register (with a value of \(d' \), equal to \(d \)) when the counter reaches zero and/or the period value, leading to a duty-ratio update delay \(T_{dU} \). The total processing delay is expressed in terms of \(T_i \) as \(T_{dU} = T_d = T_{dU} \).
Normally, λT_s is not larger than one sampling period T_s, and its typical values in real operation are $0.5 T_s$ and T_s [9], [30]. In addition to the processing delay, there is a delay T_{d4} due to the PWM, and equivalently $T_{d4} = 0.5 T_s$ [27]. Therefore the total time delay in the control loop is $T_d = T_{d1} + T_{d2} + T_{d3} + T_{d4} = (\lambda + 0.5) T_s$ [20]. In the following analysis to deduce the stable ranges of time delay, λ is assumed to be a random value.

C. Analysis of the Delay-Dependent Stability in Continuous s-Domain

The block diagrams of the single-loop controlled grid-connected inverters are shown in Fig. 3. The total time delay is expressed as $G_d(s) = e^{-\lambda T_s}$, and $k_{PWM} = V_{dc}/2$ is the gain of the PWM. $G_c(s)$ is the controller, and a PI is used:

$$G_c(s) = k_p (1 + \frac{k_i}{s}). \quad (3)$$

The loop gains of the ICF and GCF are $T_c(s) = k_{PWM} G_c(s)$ and $T_g(s) = k_{PWM} G_c(s) G_f(s)$ in the ICF, and $T_g(s)$ respectively. The stability analysis is carried out using the Nyquist stability criterion. In the open-loop Bode diagram, only the frequency ranges with magnitudes above 0 dB are considered. For the phase plot in these ranges, a $\pm (2k + 1)\pi$ crossing in the direction of phase rising is defined as a positive crossing, while a crossing in the direction of phase falling is defined as a negative crossing. The numbers of the positive and negative crossings are denoted as N_p and N_n respectively [32]. According to the Nyquist stability criterion, the number of the open-loop unstable poles P must equal $2(N_p - N_n)$ to ensure system stability, i.e., $P = 2(N_p - N_n)$. As can be seen from (1), (2), and (3), $P = 0$, hence $N_p - N_n = 0$ is required for both of the ICF and GCF systems.

1) Inverter Current Feedback

The magnitude (in decibels) and phase of $T_c(s)$ with $G_c(s) = k_p$ (the integral term k_i/s can be designed to have a negligible influence on system stability [11]) are given in (4) and (5) respectively.

$$\begin{align*}
20 \log_{10}|T_c(s)|_{\omega_{res}} &= 20 \log_{10} \left| k_p k_{PWM} e^{-\lambda T_s} \frac{-\omega^2 + \omega_n^2}{j\omega L_s(-\omega^2 + \omega_n^2)} \right|, \\
&= 20 \log_{10} \left| k_p k_{PWM} \frac{-\omega^2 - \omega_n^2}{j\omega L_s(\omega_n^2 - \omega^2)} \right|, \quad (\omega < \omega_n) \\
&= 20 \log_{10} \left| k_p k_{PWM} \frac{-\omega^2 + \omega_n^2}{j\omega L_s(\omega_n^2 - \omega^2)} \right|, \quad (\omega_n < \omega < \omega_r) \\
&= 20 \log_{10} \left| k_p k_{PWM} \frac{-\omega^2 + \omega_n^2}{j\omega L_s(\omega_n^2 - \omega^2)} \right|, \quad (\omega > \omega_r)
\end{align*} \quad (4)$$

$$\begin{align*}
\angle T_c(s)|_{\omega_{res}} &= \angle k_p k_{PWM} e^{-\lambda T_s} \frac{-\omega^2 + \omega_n^2}{j\omega L_s(-\omega^2 + \omega_n^2)} \\
&= \left\{ \begin{array}{ll}
\frac{\pi}{2} - \alpha \omega_n, & (\omega < \omega_n) \\
\frac{\pi}{2} - \omega T_d, & (\omega_n < \omega < \omega_r) \\
\frac{\pi}{2} - \omega, & (\omega > \omega_r)
\end{array} \right. \quad (5)
\end{align*}$$

The Bode diagrams of $T_c(s)$ with several different time delays are shown in Fig. 4. The magnitude at f_r $(\omega_r/2\pi)$ is definitely below 0 dB although there is a $+180^\circ$ jump in the phase, hence $N_p = 0$, $N_n = 0$ is thus required for system stability. Using a sufficiently small k_p, the magnitude of $T_c(s)$ can be set below 0 dB to avoid negative crossing, except at the resonance frequency f_{res} $(\omega_{res}/2\pi)$ where the magnitude is positive infinite and there is a fall of 180° in the phase. Therefore, assuming k_p is adjustable, the system can be made stable only if the phase at f_{res} does not cross over $\pm (2k + 1)\pi$. Otherwise there will be a negative crossing at f_{res} whatever k_p is, i.e., $N_n \neq 0$ and thus the system is unstable. Without any time delay, the phase at f_{res} falls from 90° to -90° and no negative crossing is generated, so the system is stable, in agreement with the findings in [10]. With a finite time delay, the phase lag increases. To avoid any $\pm (2k + 1)\pi$ crossing at f_{res}, it can be derived from (5) that the time delay should fall into one of the following ranges:

$$\begin{align*}
T_d < \frac{\pi}{2\omega_{res}}, & (k = 0) \\
\frac{(4k - 1)\pi}{2\omega_{res}} < T_d < \frac{(4k + 1)\pi}{2\omega_{res}}, & (k = 1, 2, 3, \ldots)
\end{align*} \quad (6)$$
Grid Current Feedback

The magnitude (in decibels) and phase of $T_g(s)$ with $G_c(s) = k_p$ are given as (7) and (8) respectively.

\[
20 \log |T_g(s)|_{s=j\omega} = 20 \log \left(k_p G_{PWM} e^{-j\omega T_d} \right) \\
\frac{\omega^2}{\omega^2 + \omega^2_{rez}} \left\{ \begin{array}{ll}
+\infty, \omega < \omega_{rez} \\
\frac{20 \log[k_p G_{PWM} \omega^2 - \omega^2]{}}{\omega^2 - \omega^2_{rez}}, \omega > \omega_{rez}
\end{array} \right.
\]

(7)

\[
\angle T_g(s)|_{s=j\omega} = \angle k_p G_{PWM} e^{-j\omega T_d} \frac{\omega^2}{\omega^2 + \omega^2_{rez}}
\frac{\omega^2}{\omega^2 + \omega^2_{rez}} \left\{ \begin{array}{ll}
\frac{\pi}{2} - \omega T_d, \omega < \omega_{rez} \\
-\frac{3\pi}{2} - \omega T_d, \omega > \omega_{rez}
\end{array} \right.
\]

(8)

The Bode diagrams of $T_g(s)$ with different time delays are shown in Fig. 5. Similar to the ICF loop, the GCF loop can be made stable if there is no negative crossing at f_{rez}, i.e., the phase at f_{rez} does not cross over $\pm (2k + 1)\pi$. Without any time delay, the phase at f_{rez} falls from -90° to -270° and a negative crossing exists, the system is thus unstable. To avoid any potential negative crossing at f_{rez} it can be deduced from (8) that the time delay should be in the following ranges:

\[
\frac{(4k + 1)\pi}{2\omega_{rez}} < T_d < \frac{(4k + 3)\pi}{2\omega_{rez}}, (k = 0, 1, 2, \ldots),
\]

(9)

which indicates that a proper time delay is necessary for the stability of GCF loop.

III. ANALYSIS OF THE DELAY-DEPENDENT STABILITY IN DISCRETE Z-DOMAIN

In this section, the delay-dependent stability of the single-loop controlled grid-connected inverters with LCL filters is studied in the discrete z-domain. The proportional gain k_p is assumed to be adjustable. Then the stable ranges of the time delay for ICF and GCF loops are deduced, based on the requirement that when the time delay is in the stable ranges all discrete closed-loop poles should be inside the unit circle if an infinitely small k_p is used. On the other hand, if the time delay is outside the stable ranges, there will be unstable closed-loop poles outside the unit circle for any k_p.

A. Discrete Models

To obtain the discrete models, the processing delay and PWM are analyzed separately. The processing delay is expressed as $e^{-j\omega T_d}$. The PWM is usually modeled as a zero-order-hold (ZOH) [33], that is

\[
G_{PWM}(s) = \frac{1 - e^{-j\omega T_d}}{s},
\]

(10)

A more precise PWM model has been proposed in [9] and [30] and is expressed as

\[
G_{PWM}(j\omega) = \frac{1 - e^{-j\omega T_d}}{j\omega} = \frac{\sin \frac{\omega T_d}{4} \cos \frac{\omega T_d}{4} e^{-j\frac{\omega T_d}{2}}}{\omega^2 / 4}
\]

(11)

The frequency domain models of (10) and (11) are denoted as

\[
G_{PWM}(j\omega) = \frac{1 - e^{-j\omega T_d}}{j\omega} = \frac{\sin \frac{\omega T_d}{4} \cos \frac{\omega T_d}{4} e^{-j\frac{\omega T_d}{2}}}{\omega^2 / 4}
\]

and

\[
G_{PWM}(j\omega) = \frac{T_d}{2} (e^{-\frac{\omega T_d}{2}} + e^{-j\frac{\omega T_d}{4}}) = T_d \cos \frac{\omega T_d}{4} e^{-j\frac{\omega T_d}{2}}
\]

(13)

respectively. It can be seen that the time delays of these two PWM models are identical (0.5 T_d), and their magnitude gains are almost same because a small T_d is commonly used. Therefore the ZOH model (10) is adequate for the discrete analysis [33].

The block diagrams of the single-loop digitally controlled grid-connected inverters are shown in Fig. 6, where $G_{PWM}(s)$ is given in (10), and $G_c(z)$ is the discrete equivalent of $G_c(s)$ [30]. To obtain the closed-loop discrete transfer functions of the two control systems, the discrete transfer function from $d(z)$ to $i(z)$ and $i(z)$ should be obtained first. Therefore z-transform is used to obtain the discrete transfer functions of the paths which contain the processing delay, PWM, and the plant transfer functions $G_{\nu_p}(s)$ and $G_{\nu_i}(s)$ followed by ideal samplers. For a plant transfer function $G(s)$, the discrete transfer function is expressed as [9], [30]

\[
G(z) = Z[e^{-j\ell T_d} G_{PWM}(s) k_{PWM} G(s)]
\]

(14)

where ℓ is an integer, $0 \leq m < 1$, and $\lambda = \ell - m$. $Z \left\{ \frac{G(s)}{s} e^{\ell T_d} \right\}$ in (14) can be obtained using the following property [33]:

\[
Z \left\{ \frac{G(s)}{s} e^{\ell T_d} \right\} = \sum_{i=0}^{\infty} \text{Re} \left\{ Z \left\{ \frac{G(s)}{s} e^{\ell T_d} \right\} \right\}_{s=p_i}
\]

(15)

where $p_i (i = 1, 2, \ldots, n)$ are the poles of $G(s)/s$ and Re denotes the residue.

Substituting $G_{\nu_p}(s)$ and $G_{\nu_i}(s)$ for $G(s)$ in (14) and (15), the discrete transfer functions from $d(z)$ to $i(z)$ and $i(z)$ are obtained as (16) and (17) respectively.
inverters. (a) ICF. (b) GCF.

Fig. 6. Block diagrams of the single-loop digitally controlled grid-connected loops with ICF and GCF are given as (18) and (19).

Therefore, the closed-loop transfer functions of the control loops with ICF and GCF are given as (18) and (19) respectively.

\[
G_\text{cl}(z) = \frac{G_i(z)G_g(z)}{1 + G_i(z)G_g(z)}
\]

A discrete closed-loop is stable if all the poles are inside the unit circle. From (16) and (17) it can be seen that the ICF and GCF have the same open-loop poles, and three are on the unit circle (\(z_1 = 1, z_2, z_3 = \cos \omega_r T_s \pm j \sin \omega_r T_s\)). Thus with \(G_z(z) = k_p\), for a possible stable operation, i.e. the time delay being in the stable ranges, all the closed-loop poles should be inside the unit circle when an infinitely small \(k_p\) is used. On the other hand, if the time delay is outside the stable ranges, there will be unstabe closed-loop poles outside the unit circle whatever \(k_p\) is.

The \(\nu\)-transform \(z = (w + 1)/(w - 1)\) is used to map the area inside the unit circle in the \(z\)-plane into the left half-plane (LHP) of the \(w\)-plane, such that the Routh’s stability criterion can be used [32]. The stable ranges of the time delay can be derived based on the requirement that the roots of \(D_\nu(w) = 1 + k_p G_\nu(w)\) are in the LHP when an infinitely small \(k_p\) is used. An exemplary derivation for GCF with the case of \(0 < \lambda \leq 1\), i.e., \(\ell = 1\) and \(0 \leq m < 1\), is provided in the Appendix. The stable ranges of GCF with other cases of \(\lambda\) can also be derived using the same method, as well as those of the ICF.

B. Inverter Current Feedback

Using the method in the Appendix, the general requirement for the stability of the ICF loop can be obtained as

\[
\sin[(\lambda + 1 - m)\omega_r T_s] > \sin[(\lambda - m)\omega_r T_s]
\]

\[
\Rightarrow \sin[(\lambda + 1)\omega_r T_s] > \sin(\lambda \omega_r T_s),
\]

which results in \((\lambda + 1/2)T_s < \frac{\pi}{2\omega_r}\) (\(k = 0\)) , \((4k + 1)\pi < (\lambda + 1/2)T_s < (4k + 1)\pi\) (\(k = 1, 2, 3\ldots\)) , the same as (6) that was deduced in the \(s\)-domain. However for controllability, \(f_{res}\) should be smaller than half the sampling frequency (\(f_s/2\), the Nyquist frequency), i.e., \(\omega_{res} T_s < \pi\) [32], [34]. Considering this restriction, the stable ranges of the time delay are obtained as (21), shown at the bottom of this page.

It is interesting from (21) that for a given \(T_s\), the system can be stabilized by modifying the value of \(\lambda\), and vice versa. Moreover, there are many optional ranges for \(\lambda\) and \(T_s\). Taking \(\lambda = 3\) for example, the available values of \(k\) are 0 and 1; therefore the resultant condition is \(T_s \in (0, \pi/7\omega_{res}) \cup (3\pi/7\omega_{res}, 5\pi/7\omega_{res})\). The root loci of the closed-loop system with \(T_s\) in different ranges are shown in Fig. 7, which demonstrate that there are at least two unstable poles outside the unit circle if the condition is not met.

C. Grid Current Feedback

Using the method in the Appendix, the following stable condition can be obtained for the GCF loop:

\[
\sin((\lambda + 1 - m)\omega_r T_s) < \sin((\lambda - m)\omega_r T_s)
\]

\[
\Rightarrow \sin[(\lambda + 1)\omega_r T_s] < \sin(\lambda \omega_r T_s),
\]

\[
(\lambda + 1/2)T_s < \frac{\pi}{2\omega_r}, (\lambda \geq k, k = 0)
\]

\[
\frac{(4k + 1)\pi}{2\omega_r} < (\lambda + 1/2)T_s < (\lambda + 1/2)\frac{\pi}{\omega_r}, (2k - 1 < \lambda \leq 2k, k = 1, 2, 3,\ldots)
\]

\[
(\lambda > 2k, k = 1, 2, 3,\ldots)
\]

(21)

\[
\frac{(4k + 1)\pi}{2\omega_r} < (\lambda + 1/2)T_s < (\lambda + 1/2)\frac{\pi}{\omega_r}, (2k - 1 < \lambda \leq 2k + 1, k = 0, 1, 2,\ldots)
\]

(23)
which results in $\frac{(4k+1)\pi}{2\omega_{res}} < \frac{(\lambda + \frac{1}{2})T_s}{2\omega_{res}} < \frac{(4k+3)\pi}{2\omega_{res}}$ $(k = 0, 1, 2, ...)$, the same as (9) that was derived in the s-domain. Also considering the restriction $\omega_{res}T_s < \pi$, the stable ranges of the time delay are yielded as (23), shown at the bottom of the former page.

Like ICF, the GCF loop can also be stabilized by adjusting the value of λ or T_s. For example, for the case of $\lambda = 3$, the available values of k are 0 and 1, thus the stable ranges of T_s are $(\pi/7\omega_{res}, 3\pi/7\omega_{res}) \cup (5\pi/7\omega_{res}, \pi/\omega_{res})$. The root loci of the closed-loop system with T_s in different ranges are shown in Fig. 8. As seen if T_s is outside the stable ranges, there are at least two unstable poles whatever the proportional gain k_p is.

It can be seen from (6) and (9), (21) and (23) that the stable ranges of the time delay for ICF and GCF are complementary. It means that with a given time delay, only one of them can be made stable if no time delay compensator is applied.

IV. OPTIMAL RANGE OF TIME DELAY AND COMPENSATORS

In this section the optimal range of the time delay is discussed and identified, to achieve the maximum bandwidth and ensure adequate stability margins. It is found that in the optimal range, the existence of time delay degrades the stability of the ICF loop, whereas a proper time delay is needed for the GCF loop. To improve stability, a linear predictor based time delay reduction method is proposed for ICF, while a proper time delay can be added for GCF.

A. Reasonable Time Delay Range

The stable ranges (21) and (23) indicate that there are many available ranges for the time delay. However, for a large k, the

phase lag due to the time delay is significant. Small controller gains have to be used to guarantee stability, leading to a low bandwidth. From (21) and (23), it can be seen that $k = 0$ is the case for achieving the highest bandwidth. The reasonable time delay ranges of ICF and GCF are thus given as (24) and (25) respectively.

$$\frac{\pi}{2\omega_{res}} < \frac{(\lambda + \frac{1}{2})T_s}{2\omega_{res}} < \frac{\pi}{\omega_{res}}(\lambda \geq 0)$$

(24)

$$\frac{\pi}{2\omega_{res}} < \frac{(\lambda + \frac{1}{2})T_s}{2\omega_{res}} < \frac{\pi}{\omega_{res}}(0 < \lambda \leq 1)$$

(25)

From (24) it can be seen that an increase in time delay degrades the stability of the ICF loop. However for the GCF, (25) indicates that a proper time delay is required for the stability of the GCF loop, and that in the scale of $0 < \lambda \leq 1$, $\lambda = 1$ is the best option to get the largest available range of the sampling period T_s.

For a given λ, requirements (24) and (25) can also be used to calculate the stable range of f_s. Taking $\lambda = 0.5$ and $\lambda = 1$ for example, the ranges of f_s are given in Table I. Note that the requirement of GCF for $\lambda = 1$ is in agreement with the findings in [16].

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>STABLE AND OPTIMAL RANGES OF THE SAMPLING FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>method</td>
<td>λ</td>
</tr>
<tr>
<td>ICF</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>GCF</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 7. Root loci of the ICF loop when $\lambda = 3$ and with T_s in different ranges. (a) $T_s \in (0, \pi/7\omega_{res})$. (b) $T_s \in (\pi/7\omega_{res}, 3\pi/7\omega_{res})$. (c) $T_s \in (3\pi/7\omega_{res}, 5\pi/7\omega_{res})$. (d) $T_s \in (5\pi/7\omega_{res}, \pi/\omega_{res})$.

Fig. 8. Root loci of the GCF loop when $\lambda = 3$ and with T_s in different ranges. (a) $T_s \in (0, \pi/7\omega_{res})$. (b) $T_s \in (\pi/7\omega_{res}, 3\pi/7\omega_{res})$. (c) $T_s \in (3\pi/7\omega_{res}, 5\pi/7\omega_{res})$. (d) $T_s \in (5\pi/7\omega_{res}, \pi/\omega_{res})$.
A system can be made stable when the time delay falls into the stable ranges. However, the possible stable operation is not enough, adequate stability margins including phase margin (PM) and gain margin (GM) should also be considered.

For the ICF, when the time delay is within the stable range (24), the Bode diagram of the loop gain is shown in Fig. 9. There are three crossover frequencies: \(\omega_1, \omega_2, \) and \(\omega_3 \) (\(\omega_1 < \omega_2 < \omega_3 < \omega_{res} \)). It is apparent that the PM of \(\varphi \) at \(\omega_3 \) is the smallest one. For a predetermined PM of \(\varphi \) (\(\varphi < \pi/2 \)), to ensure a possibility for \(\varphi \) \(\geq \) \(\varphi \), the phase lag of the time delay at \(\omega_{res} \) should be smaller than \(\pi/2 - \varphi \), that is

\[
(\lambda + \frac{1}{2})T_s < \frac{\pi/2 - \varphi}{\omega_{res}}.
\]

(26)

For the GCF, based on (25), the Bode diagram of the loop gain is shown in Fig. 10. There are also three crossover frequencies: \(\omega_{g1}, \omega_{g2}, \) and \(\omega_{g3} \). \(\varphi \) can be modified to be larger than \(\varphi \) by adjusting \(k_p \). To make it possible for \(\varphi \geq \varphi \) and \(\varphi \), the following optimal range of the time delay can be obtained:

\[
\begin{align*}
\frac{\pi/2 + \varphi}{\omega_{g3}} < (\lambda + \frac{1}{2})T_s < & (\lambda + \frac{1}{2})T_s - \frac{\varphi}{\omega_{g3}} & (\varphi \leq \lambda \leq 1 - \frac{\varphi}{\pi}) \\
\frac{\pi/2 + \varphi}{\omega_{g3}} < (\lambda + \frac{1}{2})T_s < & 3\frac{\pi/2 - \varphi}{\omega_{g3}} & (\lambda > 1 - \frac{\varphi}{\pi})
\end{align*}
\]

(27)

To sum up, to make it possible for PM to be larger than \(\varphi \), the time delay of the ICF and GCF must fall into the optimal range (26) and (27) respectively. For a given \(\lambda \), the optimal range of \(f_s \) can also be deduced. Taking \(\varphi = \pi/6 \) (30°) for instance, the optimal range of \(f_s \) for \(\lambda = 0.5 \) and \(\lambda = 1 \) are also summarized in Table I.

C. Time Delay Compensators

1) Time Delay Reduction for ICF

As stated previously, the time delay weakens the stability of the ICF loop. Therefore, time delay reduction methods should be adopted if (26) is not met. Numerous compensators have been proposed, such as the state observers [24] and shifting of sampling constants [32], [33]. However, the state observers are sensitive to the parameter variations, and the shifting of the sampling constants is limited by aliasing and switching noises [32]. A linear predictor (LP) as described in [27] is adopted in the present work due to its effectiveness and ease of realization. Its discrete transfer function is given as

\[
G_{LP}(z) = 1 + \frac{T_s - T_{res}/T_s}{z^{-1}} = \lambda + \frac{3}{2} - (\lambda + \frac{1}{2})z^{-1}.
\]

(28)

The compensated block diagram is shown in Fig. 11, where the LP is in the feedback loop [20]. Taking \(\lambda = 1 \) for example, Table I indicates that \(f_s = 6f_{res} \) is the critical sampling frequency. However, with the adoption of the linear predictor, the phase margin is increased significantly as shown in Fig. 12, thus the stability is improved.

Using the previous procedure, it can be deduced that the stable ranges of time delay for the loop with capacitor current feedback, which is usually adopted as an inner active damping loop [26], are the same as those of the ICF loop. This is why time delay reduction methods are employed to eliminate the non-minimum phase behavior of the inner loop, thus to improve the overall system stability [25], [32]. Therefore, the present work can also facilitate the analysis of the active damping methods with an inner loop using the capacitor current feedback or ICF [3].

Fig. 9. Bode diagram of the ICF loop gain with time delay in the optimal range.

Fig. 10. Bode diagram of the GCF loop gain with time delay in the optimal range.

Fig. 11. Block diagram of the ICF loop with a linear predictor.

Fig. 12. Bode diagrams of the loop gain of ICF when \(\lambda = 1 \) and \(f_s = 6f_{res} \), with and without the linear predictor.
2) A Proper Time Delay Added for GCF
For a given \(f_s > 2f_{res} \), if (27) is not fulfilled, \(\lambda \) should generally be increased properly. The available range of \(\lambda \) can be yielded as
\[
\left(\frac{4}{\pi} \frac{1}{f_{res}} - \frac{1}{2} \right) < \lambda < \left(\frac{4}{\pi} \frac{1}{f_{res}} - \frac{1}{2} \right). \tag{29}
\]

The corresponding compensated block diagram is shown in Fig. 13, where a delay \(z^n \) is added so that the processing time delay fulfills (29). In the real operation, \(\lambda \) is an integer multiple of 0.5 [9], this should be considered when using (29).

Taking \(\lambda = 0.5, f_s = 6f_{res} \) for example, Table I and the root loci in Fig. 14 indicate an unstable system. According to (29), the optimal range for \(\varphi = 30^\circ \) is \(1.5 < \lambda < 3.5 \). The root loci of the system with a compromise value \(\lambda = 2.5 \) (\(n = 2 \)) are shown in Fig. 14. It can be seen that the system can be stabilized by adding a proper time delay.

D. Discussion on the Choice of the Feedback Current
Confusions exist in conclusions and findings relevant to the stability of the single-loop control systems from different previous work. The analysis in the present work is able to clarify the confusions and provide a unified explanation.

Without considering any time delay, the ICF loop can be made stable while the GCF loop can never be stabilized without other measures. This is why the inverter current was chosen as the control variable in [10]-[12], [35]. The GCF has only been made stable while the GCF loop can never be stabilized without other measures. This is why the inverter current was chosen as the feedback variable.

From aforementioned analyses, the choice of the feedback current should be made based on the LCL parameters. For a low LCL resonance frequency, it is better to choose the inverter current to obtain a large stable range of the sampling frequency. For a high LCL resonance frequency, the grid current can be used to avoid a too high sampling frequency. In some cases, both of these two currents can be adopted with the proposed time delay compensators applied.

Finally, the robustness of the single-loop control systems against the grid inductance variation is discussed. The addition of a grid inductance is equivalent to an increase in \(L_{eq} \), hence leading to a lower \(\omega_{res} \) (\(\omega_{res} = \sqrt{L_{eq}/L_{g}} \)). For the ICF, it can be seen from (24) and (26) that the available time delay range is increased. The ICF is therefore robust to the grid inductance variation. For the GCF, (25) and (27) indicate that the decreased \(\omega_{res} \) shifts the available time delay range. The previous time delay in the system would not be covered by the shifted stable range. Therefore, the GCF is susceptible to the grid inductance variation.

V. DESIGN OF THE CONTROLLER
Now that a single-loop control system can be stabilized if the time delay is in the stable ranges, and the optimal range makes it possible for the PM to be larger than a predetermined value, the PI controller has to be designed to guarantee adequate stability margins.

The design of PI controller for an LCL-filtered inverter is usually implemented by simplifying the LCL as an \(L \) filter [6], [16], [19]. However, from previous analysis, the LCL resonance affects the stability margins significantly, this approximation is thus not accurate enough. In this section, a simple tuning procedure is proposed. This method is also suitable for the proportional resonant (PR) controller.

A. Inverter Current Feedback
Firstly, the proportional gain \(k_{p1} \) is discussed. There are three main values, \(k_{p1} \), to achieve a PM of \(\varphi \), \(k_{p2} \) to ensure a GM of 3 dB [35], and the maximum value \(k_{pmax} \) to ensure stability.

For a predetermined PM of \(\varphi \), according to (5) the crossover frequency \(\omega_{s} \) in Fig. 9 can be yielded as
\[
\varphi = \pi - \frac{\pi}{2} - \left(\lambda + \frac{1}{2} \right) \omega_s T_s \Rightarrow \omega_{s} = \pi - 2\varphi \left(2\lambda + 1 \right) T_s. \tag{30}
\]

\(k_{p1} \) is then set to achieve unity loop gain at \(\omega_{s} \), according to (4) the following is obtained
\[
k_{p1} = \frac{\omega_s L_s (\omega_s^2 - \omega_{m}^2)}{k_{pmax} \left(\omega_s^2 - \omega_{m}^2 \right)}. \tag{31}
\]

The frequency \(\omega_m \) at which the phase of the open-loop transfer function crosses over \(-180^\circ \) is given as

On the other hand, in [2], \(f_{res} = 1224.1 \) Hz and \(f_s \in (3500, 7000) \) Hz thus \(f_s/f_{res} \in (2.8592, 5.7185) \), then it concluded that the GCF loop is stable whereas the ICF loop is unstable. Similar conclusions were also drawn in [14] (\(f_{res} = 2219.3 \) Hz and \(f_s = 8000 \) Hz, \(f_s/f_{res} = 3.6047 \)) and [15] (\(f_{res} \in (2905.8, 5058.3) \) Hz and \(f_s = 16000 \) Hz, \(f_s/f_{res} \in (3.1631, 5.5062) \)) by using the grid current as the feedback variable.
\[(\lambda + \frac{1}{2}) \omega_c T_s = \pi / 2 \Rightarrow \omega_c = \frac{\omega_4}{2(2\lambda + 1)}. \]

(32)

where \(\omega_c = 2\pi f_c \), \(k_{\text{max}} \) is then set to achieve unity at \(\omega_c \), given as

\[k_{\text{max}} = \frac{\omega_4 L_4 (\omega_c^2 - 4(2\lambda + 1) \omega_c^3)}{2(2\lambda + 1) \omega_c^2 - 8(2\lambda + 1) \omega_c^3}. \]

(33)

\(k_{p2} \) to ensure a GM of 3 dB is therefore expressed as

\[k_{p2} = \frac{\sqrt{2}}{2 \ k_{\text{PPM}}} \left[\frac{2(2\lambda + 1) \omega_c^2 - 8(2\lambda + 1) \omega_c^3}{24 \ k_{\text{PPM}}} \right]. \]

(34)

As a result, \(k_p \) is chosen to be the smaller one of \(k_{p1} \) and \(k_{p2} \).

Finally, the integral gain \(k_i \) can be tuned to make a small phase contribution at \(\omega_{\text{ref}}/2 \), given as \([10], [29] \)

\[k_i = \frac{\omega_{\text{max}}}{20}. \]

(35)

If a LP (28) is applied to enhance the stability, the parameters should be modified. The magnitude and phase of the loop gain becomes \(|T(s)| = |k_{\text{PPM}} G_{L2}(s) G_{L1}(s) G_{L}(s)| \) and \(\angle T(s) = \angle k_{\text{PPM}} G_{L2}(s) G_{L1}(s) G_{L}(s) \) respectively. The magnitude and phase of the LP are

\[G_{L2}(s) = \sqrt{8 \pi^2 + 16 \pi + 10 - (8 \pi^2 + 16 \pi + 6) \cos \omega T_s^2}. \]

(36)

\[\theta_{L2}(s) = \arctan \left(\frac{(2\lambda + 3) \sin \omega T_s^2}{(2\lambda + 3) \cos \omega T_s^2 - (2\lambda + 1)} \right) - \omega T_s + \pi. \]

Therefore following the same tuning procedure above, \(k_{p1} \) and \(k_{p2} \) can be calculated as

\[k_{p1} = \frac{\omega_4 L_4 (\omega_c^2 - \omega_c^3)}{k_{\text{PPM}} (\omega_c^2 - \omega_c^3) G_{L2}(\omega_c^3)}, \]

\[k_{p2} = \frac{\sqrt{2}}{2 \ k_{\text{PPM}}} \left(\omega_c^2 - \omega_c^3 \right) G_{L2}(\omega_c^3), \]

(37)

where \(\omega_c \) and \(\omega_a \) are modified as

\[\omega_a = \frac{\pi - 2\theta + 2\theta_s(\omega_c)}{(2\lambda + 1) T_s}, \omega_a = \frac{\pi + 2\theta_s(\omega_a)}{(2\lambda + 1) T_s}. \]

(38)

The integral gain \(k_i \) is still given by (35).

B. Grid Current Feedback

On the basis of (27), to achieve a PM of \(\phi \), the crossover frequencies \(\omega_{p1}, \omega_{p2}, \) and \(\omega_{p3} \) are obtained from (8) as

\[\omega_p = \frac{\pi - 2\theta + 2\theta_s(\omega_c)}{(2\lambda + 1) T_s}, \omega_a = \frac{\pi + 2\theta_s(\omega_c)}{(2\lambda + 1) T_s}. \]

(39)

The corresponding proportional gains are then derived from (7) as

\[k_{p1} = \frac{\omega_4 L_4 (\omega_c^2 - \omega_c^3)}{k_{\text{PPM}} \omega_c^2}, \]

\[k_{p2} = \frac{\sqrt{2}}{2 \ k_{\text{PPM}}} (\omega_c^2 - \omega_c^3), \]

\[k_{p3} = \frac{\omega_4 L_4 (\omega_c^2 - \omega_c^3)}{k_{\text{PPM}} \omega_c^2}. \]

(40)

The frequency \(\omega_c \) at which the phase of the open-loop transfer function crosses over \(-180^\circ\) is the same as (32). The maximum value \(k_{\text{PPM}} \) and \(k_{\text{max}} \) to give a GM of 3dB are then written as

\[k_{\text{PPM}} = \frac{\omega_4 L_4 [4(2\lambda + 1)^2 \omega_c^2 - \omega_c^3]}{8 k_{\text{PPM}} (2\lambda + 1)^2 \omega_c^2}, \]

(41)

\[k_{p4} = \frac{\sqrt{2} \omega_4 L_4 [4(2\lambda + 1)^2 \omega_c^2 - \omega_c^3]}{16 k_{\text{PPM}} (2\lambda + 1)^2 \omega_c^2}. \]

Then \(k_p \) is chosen to be the smallest value among \(k_{p1}, k_{p2}, k_{p3}, \) and \(k_{p4} \). Finally, the integral gain \(k_i \) is tuned to have a small influence on the phase at \(\omega_{\text{max}} \):

\[k_i = \frac{\omega_{\text{max}}}{10} = \frac{\pi - 2\theta}{10(2\lambda + 1) T_s}. \]

(42)

VI. RESULTS

Simulations and experiments were implemented to verify the delay-dependent stability of the single-loop controlled grid-connected inverters with \(LCL \) filters. Parameters of the circuits are given in Table II. The control is implemented in the synchronous \(dq \) frame, thus decoupling terms are used [19]. The transient response as the amplitude of the grid current stepping from 1 A to 4 A is examined to evaluate the system stability. Therefore it is achieved by stepping the reference \(d \) current from 1 A to 4 A. For GCF, the reference \(q \) current is set to 0. For ICF, as the grid current is indirectly controlled, the reference \(q \) current is set to \(\omega_0 C V_c \) instead of 0 to achieve unity power factor [10].

\[\begin{array}{lll}
\hline
\text{Symbol} & \text{Quantity} & \text{Value} \\
\hline
V_{\text{dc}} & \text{DC input voltage amplitude} & 450 V \\
V_{\text{g}} & \text{Single-phase grid voltage amplitude} & 155 V \\
L_{\text{g}} & \text{Inverter side inductor} & 4.4 \text{mH} \\
L_{\text{d}} & \text{Grid side inductor} & 2.2 \text{mH} \\
C & \text{Capacitor of LCL filter} & 10 \mu\text{F} \\
\omega_0 & \text{Resonance angular frequency of } L_g \text{ and } C & 6742 \text{ rad/s} \\
\omega_{\text{ref}} & \text{Resonance angular frequency} & 8257.2 \text{ rad/s} \\
f_{\text{res}} & \text{Resonance frequency} & 1314.2 \text{ Hz} \\
\omega_a & \text{Fundamental angular frequency} & 2\pi 50 \text{ rad/s} \\
\hline
\end{array}
\]

Simulations in MATLAB/PLECS were used to verify the stable ranges of the time delay obtained in Section II and III. Taking \(f_c = 6f_{\text{res}} \) for example, \(\omega_{\text{max}} T_s < \pi \) is fulfilled, therefore the stable ranges (6) and (21) of the ICF are identical, as well as the stable ranges (9) and (23) of the GCF.

The reference \(d \) current steps from 1 A to 4 A at 0.02 s. For ICF, the transient responses when \(T_d < \pi/2\omega_{\text{ref}} \) (\(k = 0 \)), \(3\pi/2\omega_{\text{ref}} < T_d < 5\pi/2\omega_{\text{ref}} \) (\(k = 1 \)), and \(7\pi/2\omega_{\text{ref}} < T_d < 9\pi/2\omega_{\text{ref}} \) (\(k = 2 \)) are shown in Fig. 15, the lags in the responses are due to the time delay in the forward-loop. It can be seen that when the time delay is within these ranges, the ICF loop can be made stable. The instabilities when \(T_d \) outside the stable ranges are also shown in Fig. 15, where the range of \(T_d \) changes at 0.08 s. For \(k \geq 3 \) (in 6), although not shown here, the loop can also be made stable. However, as can be seen from Fig. 15, for a larger \(k \), a slower transient response is produced because of the lower bandwidth.

For GCF, the stable transient responses when \(\pi/2\omega_{\text{ref}} < T_d < 3\pi/2\omega_{\text{ref}} \) (\(k = 0 \)), \(5\pi/2\omega_{\text{ref}} < T_d < 7\pi/2\omega_{\text{ref}} \) (\(k = 1 \)), and \(9\pi/2\omega_{\text{ref}} < T_d < 11\pi/2\omega_{\text{ref}} \) (\(k = 2 \)) are shown in Fig. 16.
Fig. 15. Simulated transient responses of ICF when \(T_d \) is in different ranges. (a) \(\pi/20\omega_{res} < T_d < 3\pi/20\omega_{res} \) (b) \(3\pi/20\omega_{res} < T_d < 5\pi/20\omega_{res} \) (c) \(5\pi/20\omega_{res} < T_d < 9\pi/20\omega_{res} \)

Fig. 16. Simulated transient responses of GCF when \(T_d \) is in different ranges. (a) \(\pi/20\omega_{res} < T_d < 3\pi/20\omega_{res} \) (b) \(3\pi/20\omega_{res} < T_d < 5\pi/20\omega_{res} \) (c) \(5\pi/20\omega_{res} < T_d < 9\pi/20\omega_{res} \)

The parasitic resistance of the inductors improves system stability, but it does not affect the evaluation of the stable ranges, because if the time delay is outside the stable ranges, the system will be unstable even with a small \(k_p \). For cases with time delay in the optimal range, controller parameters are designed using the method in Section V. For other cases, comprised parameters are used to validate the stable ranges.

1) Inverter Current Feedback

Fig. 17 shows the one-phase grid voltage and grid current. As can be seen the grid current is synchronized with the grid voltage when it is controlled indirectly by the inverter current. For \(\lambda = 0.5 \), as shown in Table I, \(f_i = 6f_{ref} \) is the critical value, below which the system is unstable. When \(f_i = 6f_{ref} \), the transient response is shown in Fig. 19, which indicates the stable operation. When \(f_i = 4f_{ref} \), the system is marginally stable, as presented in Fig. 20 where the steady-state oscillation...
appears. Although not shown here, when \(f_s < 4f_{res} \) the system is more likely to be unstable. However, if a linear predictor is used when \(f_s = 4f_{res} \), the transient response is shown in Fig. 21. It can be seen that the linear predictor stabilizes the system, thus the stable range of the sampling frequency is increased.

For \(\lambda = 1, f_s > 6f_{res} \) is required for stability. When \(f_s = 6f_{res} \), the transient response is shown in Fig. 22, the current ripples imply the weak stability. Compared with the case of \(\lambda = 0.5 \), the increase in the time delay degrades the stability of the ICF system. However, with the adoption of the linear predictor, the system is stabilized, as shown in Fig. 23. When \(f_s = 10f_{res} \), the response in Fig. 24 indicates a stable system.

These experimental results verify the stable ranges of the sampling frequency deduced previously from the stable ranges of time delay. The stability improvement due to the linear predictor has also been verified.

2) Grid Current Feedback

For \(\lambda = 0.5, 2f_{res} < f_s < 4f_{res} \) is required for stability. When \(f_s = 4f_{res} \), the transient response shown in Fig. 25 indicates the critical stability. The system is unstable when \(f_s > 4f_{res} \) irrespective of the controller parameters. To improve the stability when a high sampling frequency is used, a proper time delay is added. Taking \(f_s = 6f_{res} \) for example, by adding a delay of \(2T_s \), the system is stabilized, as shown in Fig. 26.
For $\lambda = 1, 2f_{\text{ref}} < f_s < 6f_{\text{ref}}$ is the stable range. When $f_s = 4f_{\text{ref}}$ the transient response in Fig. 27 shows a stable operation. Compared with that of $\lambda = 0.5$, it is obvious that the time delay improves the stability and increases the stable range of the sampling frequency. The transient response when $f_s = 6f_{\text{ref}}$ is shown in Fig. 28. In this case the system is obviously unstable, and circuit breaks are opened due to the overcurrent. To enhance the stability, a proper time delay should be added. Taking $f_s = 7f_{\text{ref}}$ for instance, an additional delay of $2T_s$ is also used. The transient response is given in Fig. 29, which shows the improvement on stability due to the time delay addition.

The above results validate the stable ranges of sampling frequency in Table I which are deduced from the study of time delay requirements. It is also verified that the stability of the GCF system can be enhanced by using the delay addition method when a high sampling frequency is used.

VII. CONCLUSION

A systematic study of the relationship between the time delay and stability of single-loop controlled grid-connected inverters with LCL filters has been carried out. The stable ranges of time delay for the inverter current feedback loop and grid current feedback loop are obtained, in the continuous s-domain and also the discrete z-domain. The optimal range of the time delay is also discussed. To improve system stability, a linear predictor based time delay reduction method is proposed for the inverter current feedback, whereas a proper time delay is added for the grid current feedback. The available sampling frequency ranges are therefore increased. Furthermore, a simple PI controller design method has been presented, by which adequate stability margins can be guaranteed. Simulation and experimental results have validated the study of the delay-dependent stability. This study has, for the first time, explained why different conclusions on the stability of the single-loop control systems were drawn in different previous studies. Furthermore, the procedure can be extended to analyze the influence of time delay on the stability of LCL-filtered grid-connected inverters controlled by other methods including active damping.

APPENDIX

This is a derivation example of the stable ranges of time delay in the discrete z-domain.

For the GCF, $G_s(z)$ in (17) can be written as

$$G_s(z) = \frac{k_{\text{LCL}}}{(I_s + L_s)\omega_{\text{ref}} z^n (z^n - z^{n+m} + z^m - 1)},$$

(A.1)

with $n = m(\theta - \sin \theta) - \sin(1 - \theta) + 2 \sin \theta - 2m\theta \cos \theta, \quad e = m(2 - (1 - \theta) \cos \theta - \sin \theta + 2 \sin(1 - \theta) d, \quad \theta = \omega_{\text{ref}} T_s (^{\theta} \pi)$. With $G_s(z) = k_p$, the denominator of the closed-loop transfer function (19) is denoted as

$$D(z) = z^n + z^{n+1}e - z^{n+1}e - z^n + z^n K_a + z^n K_b + z^n K_c + K_d \quad \text{(A.2)}$$

where $K = \frac{k_{\text{LCL}}}{I_s + L_s + k_p\omega_{\text{ref}}}$.

Taking $\ell = 1$ and $0 < m < 1$, i.e., $0 < \lambda (\ell - m) \leq 1$ for example, in this case $D(z) = z^n + (K_a - e)z^{n+1} + (K_b + e)z^{n+1} - (K_c - 1)z + K_d$. Using the w-transform $z = (w + 1)/(w - 1), D(w)$ can be expressed as

$$D(w) = D(z)|_{z = \frac{1}{1 - w}} = \frac{Aw^4 + Bw^3 + Cw^2 + Dw + E}{(w - 1)^4},$$

(A.3)

with $A = K(a + b + c + d), B = 2(3 + K_c - 2K_d + e), C = 2(3 - K_b + 3K_d + e), D = 2(1 - K_a + K_c - 2K_d + e), E = 2 - K_a + K_c - K_b + K_d$. Defining $e_1 = 1 + e = 1 + (1 + \cos \theta), e_2 = 3 - e = 2(1 - \cos \theta), K_a = (a - c - 2d), K_b = (b + 3d), K_c = K - (a + c - 2d), K_d = K - (a + b + c - d),$ we have:

$$A = K\theta e_1, \quad B = 2(e_1 + K_c), \quad C = 2(e_2 + K_d),$$

$$D = 2(e_1 + K_c), \quad E = 2e_1 + K_d.$$ \hspace{1cm} (A.4)

Note that $0 < \theta < \pi, e_1 > 0$ and $e_2 > 0$ are obtained, hence $A > 0, B > 0, C > 0, D > 0, E > 0$.

To ensure system stability, all of the roots of the characteristic equation $Aw^4 + Bw^3 + Cw^2 + Dw + E = 0$ should be in the LPH, this can be evaluated using the Routh’s stability criterion. The Routh array of $Aw^4 + Bw^3 + Cw^2 + Dw + E = 0$ is given as:

\[
\begin{array}{cccc}
 w^4 & A & C & E \\
 w^3 & B & D \\
 w^2 & BC - AD & E \\
 w^1 & D - B^3E & BC - AD \\
 w^0 & E & & \\
\end{array}
\]

(A.5)

Note that $K_a, K_b, K_c, \text{and } K_d$ all contain a factor of K, the second inequality can be simplified to (A.6) below when an infinitely small K (i.e., by setting an infinitely small k_p). The second inequality can be simplified to (A.6) below when an infinitely small K is used so that the second-order and third-order terms for K can be eliminated.

$$2(K_a - K_d)e_1 + 2(K_c - K_d)e_2 > K\theta e_1^2$$

(A.6)

Eliminating K in (A.6) gives

$$(-a - b + 3c - 5d)(3 - e) + 2(-a - b + c + 5d)(1 - e) > \theta(1 - e)^2,$$

(A.7)

which can be converted to

$$\sin[(2 - m)\theta] < \sin[(1 - m)\theta]$$

(A.8)

Finally, because $\omega_{\text{ref}} T_s < \pi$ and in this GCF example $0 < \lambda \leq 1$, the following stable range of time delay is obtained

$$\frac{\pi}{2\omega_{\text{ref}}} \leq (\lambda + \frac{1}{2}) T_s \leq (\lambda + \frac{1}{2}) \frac{\pi}{\omega_{\text{ref}}}, (0 < \lambda \leq 1).$$

(A.9)

REFERENCES

Lin Jiang (M’00) received the B.Sc. and M.Sc. degrees from Huazhong University of Science and Technology, Wuhan, China, in 1992 and 1996, respectively, and the Ph.D. degree from The University of Liverpool, Liverpool, U.K., in 2001, all in electrical engineering.

He was a Postdoctoral Research Assistant with The University of Liverpool, Liverpool, U.K., from 2001 to 2003 and a Postdoctoral Research Associate with the Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U.K., from 2003 to 2005. He was a Senior Lecturer with the University of Glamorgan from 2005 to 2007 and joined the University of Liverpool in 2007. Currently, he is a Senior Lecturer with The University of Liverpool. His current research interests include control and analysis of power system, smart grid, and renewable energy.

Jiyan Zou received the B.S. degree from the Department of electrical engineering, Shenyang University of Technology, M.S. degree from Institute of Electrical Engineering (IEE) of Sino-Academy, and Ph.D degree in electrical engineering from Xi’an Jiaotong University, Xi’an, China.

He was a research associate in IEE of Sino-Academy from 1982 to 1984, before with Huazhong University of Science and Technology from 1990 to 1998. He is a Member of Council of Sino-Electric Engineering Institute (CIEE), and the Vice-chairmen of Arcs and Electric Contact Committee and Electromagnetic Launch Committee of CIEE. Since 1999, as a Professor he has been with the School of Electrical Engineering, Dalian University of Technology, Dalian, China. His research interests include research and applications on intelligent power apparatus, intelligent detection and state monitoring technology, high voltage engineering and pulse power technology, theory and applications on arcs and electric contacts, and power electronics.