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We investigate infinite horizon deterministic optimal control problems with both gradual and impulsive controls,
where any finitely many impulses are allowed simultaneously. Both discounted and long run time average criteria
are considered. We establish very general and at the same time natural conditions, under which the dynamic
programming approach results in an optimal feedback policy. The established theoretical results are applied
to the Internet congestion control, and by solving analytically and nontrivially the underlying optimal control
problems, we obtain a simple threshold-based active queue management scheme, which takes into account the
main parameters of the transmission control protocols, and improves the fairness among the connections in a
given network.
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1 Introduction

The impulsive optimal control theory has many real-life applications. For example many control
problems in queueing theory, population dynamics, mathematical epidemiology, financial math-
ematics etc can be formulated as the impulsively controlled systems: see Hordijk and van der
Duyn Schouten (1983), Hou and Wong (2011), Korn (1999), Palczewski and Stettner (2007), Pi-
unovskiy (2004), Xiao et al. (2006) and the references therein. Roughly speaking, an impulse (or
intervention) means the instant change of the state of the system. This results in discontinuous
trajectories, leading to technical difficulties when solving optimal control problems. Neverthe-
less, it is possible to adjust the dynamic programming method for such models: see Bardi and
Capuzzo-Dolcetta (1997), Bensoussan and Lions (1984), Christensen (2014), Davis (1993), Motta
and Rampazzo (1996), Yushkevich (1989). The Pontryagin maximum principle (or the closely
related Lagrangian approach) can also be used for solving impulsive optimal control problems:
see Dufour and Miller (2007), Hou and Wong (2011), Miller and Rubinovich (2003), Taringoo
and Caines (2013), Xiao et al. (2006).
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In the current paper, we consider deterministic models similar to those investigated in Bardi
and Capuzzo-Dolcetta (1997), Hou and Wong (2011), Miller and Rubinovich (2003), Motta
and Rampazzo (1996), Taringoo and Caines (2013), Xiao et al. (2006). Note that in Hou and
Wong (2011), Miller and Rubinovich (2003), Motta and Rampazzo (1996), Taringoo and Caines
(2013) only the finite-horizon case was studied. The long-run average (per cycle) reward was
considered in Xiao et al. (2006). In the latter article, only a specific optimal control problem for
a fish population was solved using the maximum principle. We underline that no gradual (or
continuous, ordinary) control and no running cost/reward were considered in Hou and Wong
(2011), Xiao et al. (2006). In Bardi and Capuzzo-Dolcetta (1997), the deterministic discounted
model was studied. To guarantee no accumulation of impulses, usually a separated from zero
cost is paid for any impulsive action; see Bardi and Capuzzo-Dolcetta (1997), Bensoussan and
Lions (1984). Note that our verification theorems remain valid when there is no impulse cost,
which is the case in the considered applications. Therefore, the distinguishing features of the
current work are like follows.

- We develop the dynamic programming approach to the infinite-horizon models both with the
total discounted reward and the long-run average reward, which include the impulse-generated
rewards along with the running reward. The impulse-generated reward/cost may be zero.

- Both the gradual and impulsive controls are considered.
- We allow any finite number of simultaneous impulses which was not allowed in Hou and Wong

(2011), Motta and Rampazzo (1996), Taringoo and Caines (2013), Xiao et al. (2006).
- We rigorously and nontrivially solve in closed-form two new problems of the Internet conges-

tion control, which are of their own importance.

Let us elaborate a bit more on importance and interest of the application of our established
theoretical results to the Internet congestion control. Recently, there has been a steady increase
in the demand for QoS (Quality of Services) and fairness among the increasing number of IP
(Internet Protocol) flows. Although the Transmission Control Protocol (TCP) gives efficient
solutions to end-to-end error control and congestion control, the problem of fairness among
flows is far from being solved: see, for example, Altman et al. (2005), Möller et al. (2007), Li
et al. (2007) for the discussions of the unfairness among various TCP versions. The fairness can
be improved by the Active Queue Management (AQM) through the participation of the links
or routers in the congestion control. We measure the network fairness by the long-run average
α-fairness and the discounted α-fairness, which can be specified to the total throughput, the
proportional fairness and the max-min fairness maximization with the particular values of the
tuning parameter α: see Mo and Walrand (2000). The network model together with its analysis
in the present article is different from the existing literature on the network utility maximization,
see e.g., Kunniyur and Srikant (2003), Kelly et al. (1998), Low and Lapsley (1999), in at least
the following three important aspects.

- We take into account the fine, saw-tooth like, dynamics of congestion control algorithms.
- We use per-flow control, which nowadays becomes feasible, see Noirie et al. (2009), and de-

scribe its form.
- By solving analytically the impulsive control problems, we propose a novel AQM scheme that

takes into account not only the traffic transiting through bottleneck links but also end-to-end
congestion control algorithms implemented at the edges of the network. More specifically, our
scheme asserts that a congestion notification (packet drop or explicit congestion notification)
should be sent out whenever the current sending rate is over a threshold, whose closed-form
expression is obtained.

The rest of the article is organized as follows. In Section 2 we provide the verification theorems
for the optimality of a control policy for the discounted and the long-run average problems,
respectively. In Section 3 we apply the established theoretical results to solving rigorously two
corresponding specific optimal impulsive control problems for the Internet congestion control.
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Section 4 concludes this article. The proofs of the statements presented in Section 3 are postponed
to the appendix.

2 Dynamic programming for general optimal impulsive control problems

In this section, we establish the verification theorems for a general infinite horizon impulsive
control problem under the long-run average criterion and the discounted criterion, which are
then used to solve the concerned Internet congestion control problems in the next section.

2.1 Description of the controlled process

Let us consider the following dynamical system inX ⊆ IRn (withX being a nonempty measurable
subset of Rn, and some initial condition x(0) = x0 ∈ X) governed by

dx = f(x, u)dt, (1)

where u ∈ U is the gradual control with U being an arbitrary nonempty Borel space. Suppose
another nonempty Borel space V is given, and, at any time moment T , if he decides so, the
decision maker can apply an impulsive control v ∈ V leading to the following new state:

x(T ) = j(x(T−), v), (2)

where j is a measurable mapping from X × V to X.
Below we let c(x, u) be the reward rate if the controlled process is at the state x and the

gradual control u is applied, and C(x, v) be the reward earned from applying the impulsive
control v, both being measurable real-valued functions.

Definition 2.1: A policy π is defined by a U -valued measurable mapping u(t) and a sequence
of impulses {Ti, vi}∞i=1 with vi ∈ V and · · · ≥ Ti+1 ≥ Ti ≥ 0, which satisfies T0 := 0 and
limi→∞ Ti = ∞. A policy π is called a feedback one if one can write u(t) = uf (x(t)), TLi =
inf{t > Ti−1 : x(t) ∈ L}, vi = vf,L(x(T−i )), where uf is a U -valued measurable mapping on X,
and L ⊂ X is a specified (measurable) subset of X. A feedback policy is completely characterized
and thus denoted by the triplet (uf ,L, vf,L).

We underline that, since it is required in the above definition that limi→∞ Ti =∞, under each
policy there are no more than finitely many impulsive controls within each finite interval.

We are interested in the admissible policies π under which the following hold (with any initial
state):
(a). T0 ≤ T1 < T2 < . . .. This requirement is not restrictive because, in case n < ∞ impulsive
controls vi+1, vi+2, . . . , vi+n are applied simultaneously, i.e., Ti < Ti+1 = Ti+2 = · · · = Ti+n <
Ti+n+1, we merge these impulsive controls as a single one v̂ by defining

j(x, v̂) := j(j(. . . j(x, vi+1), . . . , vi+n−1), vi+n) (3)

and

C(x, v̂) := C(x, vi+1) + C(j(x, vi+1), vi+2) + · · ·+ C(j(. . . j(x, vi+1), . . . , vi+n−1), vi+n). (4)

Note that different orders of vi+1, vi+2, . . . , vi+n give rise to different v̂, and since only finitely
many impulses are admitted at any single time moment, the expressions on the right hand sides
of (3) and (4) are always well defined.
(b). The controlled process x(t) described by (1) and (2) is well defined: for any initial state
x(0) = x0, there is a unique piecewise differentiable function xπ(t) with xπ(0) = x0, satisfying (1)
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for all t, wherever the derivative exists; satisfying (2) for all T = Ti, i = 1, 2, . . . ; and satisfying
that xπ(t) is continuous at each t 6= Ti.

The controlled process under such a policy π is denoted by xπ(t).

Remark 1 : We emphasize that not every arbitrary triplet (uf ,L, vf,L) defines an admissible
feedback policy: we must be sure that limi→∞ Ti =∞. Otherwise, according to Definition 2.1, the
objects uf , {TLi , vi}∞i=1 do not define a policy at all. The requirement limi→∞ Ti =∞ appears in
all cited works. Very often a positive penalty, bigger than ε > 0, for any one impulse is introduced:
see Chapter 6,§1.1 in Bensoussan and Lions (1984); see also Bardi and Capuzzo-Dolcetta (1997),
Korn (1999). In our notations, that means C(x, v) < −ε. As a result, any policy with a finite
objective will be admissible. In the next section, we do not require the impulse reward C to
be negative, and our verification theorems are of conditional nature: if one succeeds to find an
admissible policy satisfying the corresponding equations and requirements, then that policy is
optimal. Below we consider only admissible policies, and the word ‘admissible’ is omitted for
brevity.

2.2 Verification theorems

Under policy π and initial state x0, the average reward is defined by

J(x0, π) = lim inf
T→∞

1

T


∫ T

0
c(xπ(t), u(t))dt+

N(T )∑
i=1

C(xπ(T−i ), vi)

 , (5)

where and below N(T ) := sup {n > 0, Tn ≤ T}, and x(T−0 ) := x0; and the discounted reward
(with the discount factor ρ > 0) is given by

Jρ(x0, π) = lim inf
T→∞

JTρ (x0, π), (6)

where

JTρ (x0, π) =

∫ T

0
e−ρtc(xπ(t), u(t))dt+

∑
i=1,2,...Ti∈[0,T ]

e−ρTiC(xπ(T−i ), vi).

We only consider the class of (admissible) policies π such that the right side of (5) (resp., (6)) is
well defined under the average (resp., discounted) criterion, i.e., all the limits and integrals are
finite. The optimal control problem under the average criterion reads

J(x0, π)→ max
π
, (7)

and the one under the discounted criterion reads

Jρ(x0, π)→ max
π

. (8)

A policy π∗ is called (average) optimal (resp., (discounted) optimal) if J(x0, π
∗) = supπ J(x0, π)

(resp., Jρ(x0, π
∗) = supπ Jρ(x0, π)) for each x0 ∈ X. Below we consider both problems (5) and

(8), and provide the corresponding verification theorems for an optimal feedback policy, see
Theorems 2.3 and 2.5.

For the average problem (7), we consider the following condition.
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Condition 2.2 There are a continuous function h(x) on X and a constant g ∈ R such that the
following hold.
(i) The gradient ∂h

∂x exists everywhere apart from a subset D ⊂ X, whereas under every policy
π and for each initial state x0, h(xπ(t)) is absolutely continuous on [Ti, Ti+1), i = 0, 1, . . . ; and
{t ∈ [0,∞) : xπ(t) ∈ D} is a null set with respect to the Lebesgue measure.
(ii) For all x ∈ X \ D,

max

{
sup
u∈U

[
c(x, u)− g + 〈∂h

∂x
, f(x, u)〉

]
, sup
v∈V

[C(x, v) + h(j(x, v))− h(x)]

}
= 0, (9)

and for all x ∈ D, supv∈V [C(x, v) + h(j(x, v))− h(x)] ≤ 0.
(iii) There are a measurable subset L∗ ⊂ X and a feedback policy π∗ = (uf∗,L∗, vf,L∗

) such
that for all x ∈ X \ (D ∪ L∗), c(x, uf∗(x)) − g + 〈∂h∂x , f(x, uf

∗
(x)〉 = 0 and for all x ∈ L∗,

C(x, vf,L
∗
(x)) + h(j(x, vf,L

∗
(x)))− h(x) = 0, and j(x, vf,L

∗
(x)) /∈ L∗.

(iv) For any policy π and each initial state x0 ∈ X, lim supT→∞
h(xπ(T ))

T ≥ 0, whereas

lim supT→∞
h(xπ

∗
(T ))

T = 0.

Equation (9) is the Bellman equation for problem (7). The triplet (g, π∗, h) from Condition 2.2
is often called canonical, and the policy π∗ is called a canonical policy. The next result asserts
that any canonical policy is optimal for problem (7).

Theorem 2.3 : For the average problem (7), the feedback policy π∗ in Condition 2.2 is optimal,
and g in Condition 2.2 is the value function, i.e., g = supπ J(x0, π) for each x0 ∈ X.

Proof For each arbitrarily fixed T > 0, initial state x0 ∈ X and policy π, it holds that

h(xπ(T )) = h(x0) +

∫ T

0

{
〈∂h
∂x

(xπ(t)), f(xπ(t), u(t))〉
}
dt

+
∑

i:Ti∈[0,T ]

{
h(j(xπ(T−i ), vi))− h(xπ(T−i ))

}
. (10)

Therefore,

∫ T

0
c(xπ(t), u(t))dt+

N(T )∑
i=1

C(xπ(T−i ), vi) + h(xπ(T ))

= h(x0) +

∫ T

0

{
c(xπ(t), u(t)) + 〈∂h

∂x
(xπ(t)), f(xπ(t), u(t))〉

}
dt

+
∑

i:Ti∈[0,T ]

{
h(j(xπ(T−i ), vi))− h(xπ(T−i )) + C(xπ(T−i ), vi)

}
≤ h(x0) +

∫ T

0
gdt,

where the last inequality is because of (9) and the definition of g and h as in Condition 2.2.

It follows that 1
T

{∫ T
0 c(xπ(t), u(t))dt+

∑N(T )
i=1 C(xπ(T−i ), vi)

}
+ h(xπ(T ))

T ≤ h(x0)
T + g, and con-

sequently, J(x0, π) + lim supT→∞
h(xπ(T ))

T ≤ g. Since lim supT→∞
h(xπ(T ))

T ≥ 0 for each π, we
obtain J(x0, π) ≤ g for each policy π. For the feedback policy π∗ from Condition 2.2, since

lim supT→∞
h(xπ

∗
(T ))

T = 0, and we have J(x0, π
∗) = g. The statement is proved. �

The next remark is used in the proof of Theorem 3.1 below.

Remark 2 : It follows from the proof of the previous statement that if one can find a function
h, a constant g and a feedback policy π∗ such that Condition 2.2(i, ii, iii) is satisfied, and
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lim supT→∞
h(xπ

∗
(T ))

T = 0, then the policy π∗ is optimal (with the value g) out of the class of

policies π that satisfy lim supT→∞
h(xπ(T ))

T ≥ 0.

For the discounted problem (8), we formulate the following condition similar to Condition 2.2.

Condition 2.4 There is a continuous function W (x) on X such that the following hold.
(i) The gradient ∂W

∂x exists everywhere apart from a subset D ⊂ X ⊂ IRn; for any policy π and
for any initial state x0, the function W (xπ(t)) is absolutely continuous on all intervals [Ti−1, Ti),
i = 1, 2, . . .; and the Lebesgue measure of the set {t ∈ [0,∞) : xπ(t) ∈ D} equals zero.
(ii) The following Bellman equation

max

{
sup
u∈U

[
c(x, u)− ρW (x) + 〈∂W

∂x
, f(x, u)〉

]
, sup

v∈V
[C(x, v) +W (j(x, v))−W (x)]

}
= 0 (11)

is satisfied for all x ∈ X \ D and supv∈V [C(x, v) +W (j(x, v))−W (x)] ≤ 0 for all x ∈ D.
(iii) There are a measurable subset L∗ ⊂ X and a feedback policy π∗ = (uf∗,L∗, vf,L∗

) such
that c(x, uf∗(x))− ρW (x) + 〈∂W∂x , f(x, uf

∗
(x)〉 = 0 for all x ∈ X \ (D ∪L∗) and C(x, vf,L

∗
(x)) +

W (j(x, vf,L
∗
(x)))−W (x) = 0 for all x ∈ L∗; moreover, j(x, vf,L

∗
(x)) ∈ X \ L∗.

(iv) For any initial state x0 ∈ X, lim supT→∞ e
−ρTW (xπ(T )) ≥ 0 for any policy π, whereas

lim supT→∞ e
−ρTW (xπ

∗
(T )) = 0.

Theorem 2.5 : For the discounted problem (8), the feedback policy π∗ from Condition 2.4 is
optimal, and supπ Jρ(x0, π) = W (x0) = Jρ(x0, π

∗) for each x0 ∈ X.

Proof The proof proceeds along the same line of reasoning as in that of Theorem 2.3; instead of
(10), one should now make use of the representation

0 = W (x0) +

∫ T

0
e−ρt

{
〈∂W (xπ(t))

∂x
, f(xπ(t), u(t))〉 − ρW (xπ(t))

}
dt

+
∑

i=1,2,...Ti∈[0,T ]

e−ρTi
{
W (g(xπ(T−i ), vi)−W (xπ(T−i ))

}
− e−ρTW (xπ(T )).

�

According to Theorem 2.5, if some function W satisfying Condition 2.4 is obtained, it must
be unique.

Similarly to Bensoussan and Lions (1984), our results are conditional: if one succeeds to obtain
appropriate functions h or W satisfying Conditions 2.2 or 2.4, then the corresponding policy
π∗ is optimal for problem (7) or (8). We did not intend to investigate the existence of the
solutions to the Bellman equations (9) and (11). That problem is rather delicate, and various
sufficient conditions for similar problems can be found in e.g., Bardi and Capuzzo-Dolcetta
(1997), Bensoussan and Lions (1984), Miller and Rubinovich (2003). In particular, to guarantee
no accumulation of impulses, the authors usually require the (negative) impulse reward to be
separated from zero. We emphasize that in Section 3, the verification theorems presented above
are used to build the optimal policy for the problems with a zero impulse reward.

3 Applications to the Internet congestion control

In this section, we firstly informally describe the impulsive control problem for the Internet
congestion control, which will then be later formalized in the framework of the previous section.
In what follows, when the context makes it clear, we do not explicitly indicate the underlying
policy π, and often write x instead of xπ for brevity.
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Figure 1. An example of a network with three connections and seven links.

Let us consider n TCP connections operating in an Internet Protocol (IP) network of L links
defined by a routing matrix A, whose element alk is equal to one if connection k goes through
link l, or zero otherwise. Without loss of generality, we assume that each link is occupied by
some connection, and each connection is routed through some link. Denote by xk(t) the sending
rate of connection k at time t. We also denote by P (k) the set of links constituting to the path
of connection k. An example of such a network is sketched in Figure 1, where we specify a link
with the two nodes it connects. For example, (1,3) denotes the link between nodes 1 and 3. Let
us label all the links in the following way.

label 1 2 3 4 5 6 7
link (1,3) (3,5) (4,5) (5,6) (6,7) (2,3) (6,8)

the connections 1, 2, 3 are routed over the paths P (1) = {1, 2, 3}, P (2) = {3, 4, 5} and P (3) =
{2, 4, 6, 7}, respectively, so that the routing matrix is given by

A =



1 0 0
1 0 1
1 1 0
0 1 1
0 1 0
0 0 1
0 0 1


.

In this section, the column vector notation x(t) := (x1(t), . . . , xn(t))T is in use, and the terms
of connection and source are used interchangeably.

We point out that our network model is quite general at least in the following sense. The
data sources are allowed to use different TCP versions, or if they use the same TCP, the TCP
parameters (round-trip time, the increase-decrease factors) can be different. More precisely, we
suppose that the sending rate of connection k evolves according to the following equation

d

dt
xk(t) = akx

γk(t), ak ∈ (0,∞), γk ∈ [0, 1], (12)

in the absence of congestion notification, and the TCP reduces the sending rate abruptly if a
congestion notification is sent to the source k, i.e., when a congestion notification is sent to the
source k at time moment Ti,k with T0,k := 0 and Ti+1,k ≥ Ti,k, its sending rate is reduced as
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follows

xk(Ti,k) = bkxk(T
−
i,k) < xk(T

−
i,k), bk ∈ (0, 1). (13)

Here and below, ak, bk and γk are constants, which would cover at least two important versions
of the TCP end-to-end congestion control; if γk = 0 we retrieve the AIMD congestion control
mechanism (see Avrachenkov et al. (2010)), and if γk = 1 we retrieve the Multiplicative Increase
Multiplicative Decrease (MIMD) congestion control mechanism (see Kelly (2003), Zhang et al.
(2010)). Also note that (12) and (13) correspond to a hybrid model description that represents
well the saw-tooth behavior of many TCP variants, see Hespanha et al. (2001), Avrachenkov
et al. (2010), Zhang et al. (2010).

When Ti+2,k > Ti+1,k = Ti,k > Ti−1,k, multiple (indeed, two in this case) congestion notifica-
tions are being sent out simultaneously at Ti+1,k = Ti,k. We only allow finitely many congestion
notifications to be sent out at any time moment. For now we write Ti := (Ti,1, . . . , Ti,n) for the
ith time moments of the impulsive control for each of the n connections, and assume that the
decision of reducing the sending rate of connection k is independent upon the other connections.
Since there is no gradual control, we tentatively call the sequence of T1, T2, . . . a policy for the
congestion control problem, which will be formalized below.

We will consider two performance measures of the system; namely the time average α-fairness
function

lim inf
T→∞

1

1− α

n∑
k=1

1

T

∫ T

0
x1−α
k (t)dt,

and the discounted α-fairness function

lim inf
T→∞

1

1− α

n∑
k=1

∫ T

0
e−ρTx1−α

k (t)dt,

to be maximized over the consecutive moments of sending congestion notifications Ti, i =
1, 2, . . . . In the meanwhile, due to the limited capacities of the links, the expression

lim infT→∞
1
T

∫ T
0 Ax(t)dt (resp., lim infT→∞

∫ T
0 e−ρtAx(t)dt) under the average (resp., dis-

counted) criterion should not be too big. Therefore, after introducing the weight coefficients
λ1, . . . , λL ≥ 0, we consider the following objective functions to be maximized:

Q =
n∑
k=1

{
lim inf
T→∞

1

T

∫ T

0

x1−α
k (t)

1− α
dt

}
−

L∑
l=1

λl
∑

k:l∈P (k)

lim inf
T→∞

1

T

∫ T

0
xk(t)dt (14)

in the average case, and

Qρ =

n∑
k=1

{
lim inf
T→∞

∫ T

0
e−ρt

x1−α
k (t)

1− α
dt

}
−

L∑
l=1

λl
∑

k:l∈P (k)

lim inf
T→∞

∫ T

0
e−ρtxk(t)dt (15)

in the discounted case, where we recall that P (k) indicates the set of links corresponding to
connection k.

Below by using the verification theorems established earlier, we obtain the optimal policies for
the problems

Q→ max
T1,T2,...

(16)



September 10, 2014 16:38 International Journal of Control IJCsubmission

9

and

Qρ → max
T1,T2,...

, (17)

respectively.

3.1 Solving the average optimal impulsive control problem

We consider in this subsection the average problem (16). Concentrated on policies satisfying

lim inf
T→∞

1

1− α

n∑
k=1

1

T

∫ T

0
x1−α
k (t)dt = lim

T→∞

1

1− α

n∑
k=1

1

T

∫ T

0
x1−α
k (t)dt <∞

and lim infT→∞
1
T

∫ T
0 xk(t)dt < ∞ for each k = 1, . . . , n, for problem (16) it is sufficient to

consider the case of n = 1. Indeed, one can legitimately rewrite the function (14) as

Q =
n∑
k=1

lim inf
T→∞

1

T

∫ T

0

(
x1−α
k (t)

1− α
− λkxk(t)

)
dt,

where λk :=
∑

l∈P (k) λl, which allows us to decouple different sources. Thus, we will focus on
the case of n = 1, and solve the following optimal control problem

J̃(x0) = lim inf
T→∞

1

T

∫ T

0

(
x1−α(t)

1− α
− λx(t)

)
dt→ max

T1,T2,...
, (18)

where x(t) is subject to (12), (13) and the impulsive controls T1, T2, . . . with the initial condition
x(0) = x0. Here and below the index k = 1 is omitted for convenience.

In the remaining part of this subsection, using the verification theorem (Theorem 2.3), we
rigorously obtain the optimal policy and value to problem (18) in closed-forms.

Remark 3 : When more than one but finitely many congestion notifications are sent out si-
multaneously, in line with the treatment in the previous section, we will understand the resulting
multiple reductions on the sending rate as a consequence of a single “big” impulsive control.

Let us start with formulating the congestion control problem (18) in the framework given
in the previous section, which also applies to the next subsection. Indeed, one can take the
following system parameters; X = (0,∞), j(x, v) = bvx, C(x, v) = 0 with v ∈ V = {1, 2, . . . },
f(x, u) = axγ , and c(x, u) = x1−α

1−α − λx with u ∈ U, which is a singleton, i.e., there is no gradual
control, so that in what follows, we omit u ∈ U everywhere.

For the future reference and to improve the readability, we write down the Bellman equation
(9) for problem (18) as follows;

max

{(
x1−α

1− α
− λx

)
− g +

∂h

∂x
(x)axγ , sup

m=1,2,...
{h(bmx)− h(x)}

}
= 0. (19)

As will be seen in the next theorem, for each fixed x, the supremum inside the parenthesis of
(19) is attained at a finite value of m.

Theorem 3.1 : Suppose λ > 0, γ ∈ [0, 1], α > 0, α 6= 1, 2 − α − γ 6= 0, a ∈ (0,∞),
and b ∈ (0, 1). For the average congestion control problem (18), an optimal policy is given by
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π∗ = (L∗, vL∗
) with L∗ = [x,∞), and vL

∗
(x) = k if x ∈ [ x

bk−1 ,
x
bk ) ⊆ L∗ for k = 1, 2, . . . , where

x̄ =

{
(2− γ)(1− b2−α−γ)

(2− α− γ)(1− b2−γ)λ

} 1

α

> 0. (20)

When γ < 1, the value function is given by

J(x0, π
∗) = g := xλ

(
α

1− α

)
(1− γ)(1− b2−γ)

(2− γ)(1− b1−γ)
; (21)

and when γ = 1,

J(x0, π
∗) = g := xλ

(
α

1− α

)
b− 1

ln (b)
. (22)

(Clearly, the constructed policy π∗ is admissible.)

The proof of this theorem can be found in the appendix.

3.2 Solving the discounted optimal impulsive control problem

The discounted problem turns out more difficult to deal with, for which we consider that the

sending rate increases additively, i.e., dxk(t)
dt = ak > 0, and decreases multiplicatively, i.e.,

j(xk, v) = bkxk with bk ∈ (0, 1) when a congestion notification is sent, see (12) and (13). Thus,
the prevailingly used version of TCP New Reno in today’s Internet is covered as a special case.
Furthermore, we assume α ∈ (1, 2).

Similarly to the average case, we concentrate on policies under which

lim infT→∞
∫ T

0 e−ρtxk(t)dt = limT→∞
∫ T

0 e−ρtxk(t)dt < ∞, and upon rewriting the objec-

tive function in problem (17) as Qρ =
∑n

k=1 lim infT→∞
∫ T

0 e−ρt
(
x1−α
k (t)
1−α − λkxk(t)

)
dt, where

λk =
∑

l∈P (k) λl, it becomes clear that there is no loss of generality to focus on the case of
n = 1;

J̃ρ(x0) = lim inf
T→∞

∫ T

0
e−ρt

(
x1−α(t)

1− α
− λx(t)

)
dt→ max

T1,T2,...
, (23)

As in the average case, one can put this impulsive control problem in the framework of the
previous section; see Remark 3 and the paragraph above it, so that Theorem 2.5 is applicable.
Now the Bellman equation (11) has the form

max

{
x1−α

1− α
− λx− ρW (x) + a

dW

dx
, sup

i≥1
[W (bix)−W (x)]

}
= 0. (24)

The linear differential equation

x1−α

1− α
− λx− ρW̃ (x) + a

dW̃

dx
= 0 (25)

can be integrated:

W̃ (x) = e
ρ

a
(x−1)

(
λ

ρ
+
λa

ρ2
+

1

ρ(α− 1)
+ w̃1

)
− x1−α

ρ(α− 1)
− λ

ρ
x− aλ

ρ2
− e

ρ

a
x

ρ

∫ x

1
e−

ρ

a
uu−αdu. (26)
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Here w̃1 = W̃ (1) is a fixed parameter.
Suppose for a moment that no impulses are allowed, so that x(t) = x0 + at. We omit the π

index because here is a single control policy. We have a family of functions W̃ (x) depending on
the initial value w̃1, but only one of them coincides with the objective function

lim inf
T→∞

∫ T

0

{
e−ρt

(x(t))1−α

1− α
− λx(t)

}
dt = W ∗(x0).

In this situation, for the function W̃ , all the parts of Condition 2.4 are obviously satisfied
(D = ∅, T1 =∞,L∗ = ∅) except for (iv).

Since W ∗ < 0, the case lim supT→∞ e
−ρTW ∗(x(T )) > 0 is excluded and we need to find such

an initial value w∗1 that

lim
T→∞

e−ρT W̃ (x(T )) = 0, where x(T ) = x0 + aT, x0 > 0. (27)

Equation (27) is equivalent to the following:

lim
T→∞

e
ρ

a
x0

{
e−

ρ

a

(
λ

ρ
+
λa

ρ2
+

1

ρ(α− 1)
+ w̃1

)
− 1

ρ

∫ x0+aT

1
e−

ρ

a
uu−αdu

}
= 0.

Therefore,

w∗1 =
e
ρ

a

ρ

(ρ
a

)α−1
Γ
(

1− α, ρ
a

)
− 1

ρ(α− 1)
− λ(ρ+ a)

ρ2
, (28)

and W ∗(x0) is given by (26) with w̃1 = w∗1. Here Γ(y, z) =
∫∞
z e−uuy−1du is the incomplete

gamma function (Gradshteyn and Ryzhik 2007, 3.381-3).
For the discounted impulsive control problem (17), the solution is given in the following state-

ment.

Theorem 3.2 : The following statements take place.
(a) Equation

H(x) :=
(
e
ρx(1−b)

a − 1
) (1− b)λa

ρ
− (1− b)e

ρx

a

∫ x

bx
e−

ρu

a u−αdu (29)

−
(
e
ρx(1−b)

a − b
)[x1−α(1− b1−α)

α− 1
+ λx(1− b)

]
= 0

has a single positive solution x̄.
(b) Let

w1 =
e
ρ

a

ρ

∫ x̄

1
e−

ρu

a u−αdu− λ(ρ+ a)

ρ2
− 1

ρ(α− 1)
(30)

−

[
x̄1−α(1− b1−α)

ρ(α− 1)
+

(1− b)λx̄
ρ

+
e
ρbx̄

a

ρ

∫ x̄

bx̄
e−

ρ

a
uu−αdu

]/(
e
ρbx̄−ρ
a − e

ρx̄−ρ
a

)
and, for 0 < x < x̄, put W (x) = W̃ (x), where W̃ is given by formula (26) under w̃1 = w1. For
the intervals

[
x̄, x̄b

)
,
[
x̄
b ,

x̄
b2

)
, . . . the function W is defined recursively: W (x) := W (bx). Then

items (i, ii, iii) of Condition 2.4 are satisfied by the function W and the feedback policy defined
in part (c) of this statement.
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(c) The function W (x0) = supπ Jρ(x0, π) = Jρ(x0, π
∗) is the Bellman function, where the (feed-

back) optimal policy π∗ is given by

L∗ = [x̄,∞), vf,L
∗
(x) = i if x ∈

[ x̄

bi−1
,
x̄

bi

)
.

See the appendix for the proof. The shape of the Bellman function W is plotted in Figure A1.

Remark 4 : Let us calculate the limit of x̄ when ρ approaches zero. One can easily show that,
for any x > 0,

lim
ρ→0

H(x) = 0 and lim
ρ→0

H(x)

ρ
=
x2(1− b)

a

[
λ(b2 − 1)

2
+
x−α(1− b2−α)

2− α

]
.

Let

x̄0 =

[
2(1− b2−α)

λ(1− b2)(2− α)

]1/α

, (31)

i.e.

lim
ρ→0

H(x)

ρ

> 0, if x < x̄0,
< 0, if x > x̄0,
= 0, if x = x̄0.

The function H(x)
ρ is continuous with respect to ρ. Therefore, for any small enough ε > 0,

∃δ > 0 : ∀ρ ∈ (0, δ)
H(x̄0 − ε)

ρ
> 0 and

H(x̄0 + ε)

ρ
< 0

meaning that x̄ρ, the solution to (29) at ρ ∈ (0, δ), satisfies x̄ρ ∈ (x̄0 − ε, x̄0 + ε). This means
limρ→0+ x̄ρ = x̄0. Note that (31) is the optimal threshold if we consider the long-run average
reward with the same reward rate c.

Remark 5 : The two theorems established in this section define our proposed threshold-based
AQM scheme, which asserts that if the sending rate is smaller than x̄, then do not send any
congestion notification, while if the sending rate is greater or equal to x̄, then send (multiple, if
needed) congestion notifications until the sending rate is reduced to some level below x with x
given by (20) under the average criterion and by Theorem 3.2(a) under the discounted criterion.

4 Conclusion

To sum up, in this paper, we studied optimal impulsive control problems on infinite horizon with
both discounted and time average criteria, for which we established the dynamic programming
approach. Our general theoretical results are then applied to construct a novel AQM scheme,
which takes into account not only the traffic transiting through the bottleneck links but also
the congestion control algorithms operating at the edges of the network. Our network model
is deterministic, and the investigations are already nontrivial and technically involving. So a
natural continuation of this work would be to consider a more realistic and detailed stochastic
model for the underlying queueing network; see e.g., Miller and Miller (2011).
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Appendix A:

A.1 Proof of Theorem 3.1

Proof of Theorem 3.1. Suppose γ < 1. By Theorem 2.3, it suffices to show that Condition 2.2 is
satisfied by the policy π∗ = (L∗, vL∗

), the constant g given by (21) and the function

h(x) =

{
h0(x), if x ∈ (0, x̄),
hk(x) = h0(bkx), if x ∈ [x̄/bk−1, x̄/bk),

(A1)

where

h0(x) =
1

a

[
− x2−α−γ

(1− α)(2− α− γ)
+ λ

x2−γ

2− γ
+ g

x1−γ

1− γ

]
,

and x̄ is given by (20). Standard analysis shows that the function h is bounded from below, and
so Condition 2.2 is satisfied. Since part (i) of Condition 2.2 is trivially verified, we only verify
its parts (ii,iii) as follows.

Consider firstly x ∈ (0, x) = X \ L∗. Then, we obtain from direct calculations that(
x1−α

1−α − λx
)
− g + ∂h(x)

∂x axγ =
(
x1−α

1−α − λx
)
− g + ∂h0(x)

∂x axγ = 0. Let us show that

supm=1,2,...{h(bmx) − h(x)} = supm=1,2,...{h0(bmx) − h0(x)} ≤ 0 for x ∈ (0, x) as follows. De-
fine ∆1(x) := h0(bx) − h0(x) for each x ∈ (0, x). Then one can show that ∆1(x) < 0 for each
b ∈ (0, 1). Indeed, direct calculations give

∆1(x) =
x1−γ

a

[
− (b2−α−γ − 1)x1−α

(1− α)(2− α− γ)
+ λ

(b2−γ − 1)x

2− γ
+ g

(b1−γ − 1)

1− γ

]
,

so that for the strict negativity of ∆1(x), it is equivalent to showing it for the following expression

∆̃1(x) := − (b2−α−γ − 1)x1−α

(1− α)(2− α− γ)
+ λ

(b2−γ − 1)x

2− γ
+ g

(b1−γ − 1)

1− γ
,

whose first order and second order derivatives (with respect to x) are given by

∆̃′1(x) = −(b2−α−γ − 1)x−α

2− α− γ
+ λ

(b2−γ − 1)

2− γ

and

∆̃′′1(x) =
α(b2−α−γ − 1)x−α−1

2− α− γ
.

Under the conditions of the parameters, ∆̃′′1(x) < 0 for each x ∈ (0, x), and thus the function

∆̃1(x) is concave on (0, x) achieving its unique maximum at the stationary point given by

x = x =
{

(2−γ)(1−b2−α−γ)
(2−α−γ)(1−b2−γ)λ

} 1

α

> 0. Note that ∆̃1(x) = 0 and limx↓0 ∆̃1(x) ≤ 0. It follows

from the above observations and the standard analysis of derivatives that ∆̃1(x) < 0 and thus
∆1(x) < 0 for each x ∈ (0, x). Since ∂x

∂b ≤ 0 for each b ∈ (0, 1) as can be easily verified, one can
replace b with bm (m = 2, 3, . . . ) in the above argument to obtain that h0(bmx)− h0(x) < 0 for
each x ∈ (0, x), and thus

sup
m=1,2,...

{h0(bmx)− h0(x)} ≤ 0 (A2)
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for x ∈ (0, x), as desired. Hence, it follows that Condition 2.2(ii,iii) is satisfied on (0, x).
Next, we show by induction that Condition 2.2(ii,iii) is satisfied on [ x

bk−1 ,
x
bk ), k = 1, 2, . . . . Let

us consider the case of k = 1, i.e., the interval [x̄, x̄b ). By the definition of the function h(x), we
have

sup
m=1,2,...

{h(bmx)− h(x)} = 0 (A3)

for x ∈ [x̄, x̄/b). Indeed, by the definition of h(x), we have

h(bx)− h(x) = 0 (A4)

for x ∈ [x̄, x̄/b), whereas for each m = 2, 3, . . . and x ∈ [x̄, x̄b ), it holds that h(bmx) − h(x) =
h0(bmx) − h0(bx) ≤ 0, which follows from that bx ∈ (0, x), bmx = bm−1(bx) ∈ (0, x) for each
x ∈ [x̄, x̄b ), and (A2). Furthermore, one can show that

∆2(x) :=
x1−α

1− α
− λx− g +

∂h(x)

∂x
axγ ≤ 0 (A5)

for each x ∈ [x̄, x̄/b), which follows from the following observations. Since h(x) = h1(x) = h0(bx),

we see ∆2(x) = − (b2−α−γ−1)x1−α

1−α +λ(b2−γ−1)x+g(b1−γ−1) for each x ∈ [x̄, x̄b ), and in particular,

∆2(x) = 0, (A6)

as can be easily verified. The derivative of the function ∆2(x) with respect to x is given by
∆′2(x) = −(b2−α−γ − 1)x−α + λ(b2−γ − 1). If 2 − γ − α < 0, then ∆′2(x) < 0, which together
with (A6) shows ∆2(x) ≤ 0 on [x̄, x̄b ). If 2 − γ − α > 0, then ∆′′2(x) = α(b2−α−γ − 1)x−α−1 < 0
and thus, the function ∆2(x) is concave with the maximum attained at the stationary point

x =
(

1−b2−α−γ

(1−b2−γ)λ

) 1

α

. Since
(

1−b2−α−γ

(1−b2−γ)λ

) 1

α ≤ x, (A6) implies ∆2(x) ≤ 0 on [x̄, x̄b ), as desired. By the

way, for the later reference, the above observations actually show that

G(x) := −(b2−α−γ − 1)x1−α

1− α
+ λ(b2−γ − 1)x+ g(b1−γ − 1) ≤ 0 (A7)

for all x ≥ x. Thus, combining (A3), (A4), and (A5) shows that Condition 2.2(ii,iii) is satisfied
on [x̄, x̄b ).

Assume that for each x ∈ [ x
bk−1 ,

x
bk ) and each k = 1, 2, . . . ,M, relations (A3) and (A5) hold,

together with

h(bkx)− h(x) = 0 (the corresponding version of (A4)). (A8)

Now we consider the case of k = M + 1, i.e., when x ∈ [ xbM ,
x

bM+1 ). For each x ∈ [ xbM ,
x

bM+1 ),

when m = 1, 2, . . . ,M, it holds that bmx ∈ [ x
bM−m ,

x
bM+1−m ), and thus h(bmx) − h(x) =

h0(bM+1x) − h0(bM+1(x)) = 0; when m = M + 1,M + 2, . . . , bmx ∈ (0, x) = L∗, and
thus h(bmx) − h(x) = h0(bmx) − h0(bM+1x) = 0 if m = M + 1, and h(bmx) − h(x) =
h0(bm−(M+1)(bM+1x)) − h0(bM+1x) ≤ 0 if m > M + 1, by (A2). Thus, we see (A3) holds
for x ∈ [ xbM ,

x
bM+1 ). Note that in the above we have also incidentally verified the validity of (A8)

for the case of k = M + 1.
Below we verify (A5) for the case of k = M + 1, which would complete the proof by induction.

To this end, we first present some preliminary observations that hold for each k = 1, 2, . . . . For
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each k = 1, 2, . . . , since h(x) = hk(x) = h0(bkx) for each x ∈ [ x
bk−1 ,

x
bk ), we have

∆2(x) := −(bk(2−α−γ) − 1)x1−α

(1− α)
+ λx(bk(2−γ) − 1) + g(bk(1−γ) − 1).

For the convenience of the future reference, let us introduce the notation

∆̃k(x) := −(bk(2−α−γ) − 1)x1−α

1− α
+ λ(bk(2−γ) − 1)x+ g(bk(1−γ) − 1)

= bk(1−γ)(−b
k(1−α)x1−α

1− α
+ λbkx+ g)− (− x

1−α

1− α
+ λx+ g)

for each x > 0. Therefore, for x ∈ [ x
bk−2 ,

x
bk−1 ), we have

∆2(x) = ∆̃k−1(x) = b(k−1)(1−γ)(−b
(k−1)(1−α)x1−α

1− α
+ λbk−1x+ g)− (− x

1−α

1− α
+ λx+ g).

Let us define

F (x) := − x
1−α

1− α
+ λx+ g

for each x > 0. We then have from the direct calculations that

∆̃k−1(
x̄

bk−2
) = b(k−1)(1−γ)F (bx̄)− F (

x̄

bk−2
) (A9)

for each k = 1, 2, . . . . Focusing on F ( x̄
bk−2 ), we have

b1−γF (
x̄

bk−2
) = − x̄

1−α

1− α
b1−γ

b(k−2)(1−α)
+ λx̄

b1−γ

bk−2
+ gb1−γ

= − x̄
1−α

1− α
b2−α−γ

b(k−1)(1−α)
+ λx̄

b2−γ

bk−1
+ gb1−γ

= −
( x̄
b(k−1) )1−α

1− α
b2−α−γ + λ(

x̄

bk−1
)b2−γ + gb1−γ .

Recall that in the above, we have proved that G(x) ≤ 0 for x ≥ x̄, see (A7). Thus, we have

G( x̄
bk−1 ) ≤ 0, i.e., − b2−α−γ( x̄

bk−1 )1−α

1−α +λb2−γ( x̄
bk−1 )+gb1−γ ≤ − ( x̄

bk−1 )1−α

1−α +λ( x̄
bk−1 )+g. Consequently,

b1−γF (
x̄

bk−2
) ≤ −

( x̄
bk−1 )1−α

1− α
+ λ(

x̄

bk−1
) + g = F (

x̄

bk−1
).

Now we verify (A5) for the particular case of k = M + 1. By the inductive supposition, (A5)
holds for x ∈ [ x

bM−1 ,
x
bM ), we thus have ∆2( x̄

bM−1 ) ≤ 0, and

0 ≥ ∆̃M (
x̄

bM−1
) = bM(1−γ)F (bx̄)− F (

x̄

bM−1
) ≥ b(M)(1−γ)F (bx̄)− 1

b1−γ
F (

x̄

bM
).

Therefore, we obtain that b(M+1)(1−γ)F (bx̄)− F ( x̄
bM ) ≤ 0, and by (A9),

∆2(
x̄

bM
) ≤ 0. (A10)
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Furthermore, the derivative of the function ∆̃M+1(x) with respect to x is given by ∆̃′M+1(x) =

−(b(M+1)(2−α−γ) − 1)x−α + λ(b(M+1)(2−γ) − 1). If 2 − γ − α < 0, then ∆̃′M+1(x) < 0. Thus,

by (A10), we obtain that ∆2(x) = ∆̃M+1(x) ≤ 0 for x ∈ [ xbM ,
x

bM+1 ). If 2 − γ − α > 0, then

∆̃′′M+1(x) = α(b(M+1)(2−α−γ) − 1)x−α−1 < 0, and in turn, the function ∆̃M+1(x) is concave

with the maximum attained at the stationary point x =
(

1−b(M+1)(2−α−γ)

(1−b(M+1)(2−γ))λ

) 1

α

. Moreover, we have∑M
m=0 b

m(2−α−γ)∑M
m=0 b

m(2−γ) ≤ 1
bMα , which follows from the fact that for each m = 0, 1, . . . ,M, m(2−α− γ) +

Mα ≥ m(2− γ), so that bm(2−α−γ)bMα ≤ bm(2−γ). From this we see

(1− b2−α−γ)
∑M

m=0 b
m(2−α−γ)

(1− b2−γ)
∑M

m=0 b
m(2−γ)

≤ 1

bMα

1− b2−α−γ

1− b2−γ

⇒ 1− b(M+1)(2−α−γ)

(1− b(M+1)(2−γ))λ
≤ 1

bMα

(2− γ)(1− b2−α−γ)

(2− α− γ)(1− b2−γ)λ

⇔

(
1− b(M+1)(2−α−γ)

(1− b(M+1)(2−γ))λ

)( 1

α
)

≤ x̄

bM
.

Finally, it follows from the last line of the previous inequalities, the concavity of the function
∆̃M+1 and (A10) that ∆2(x) ≤ 0 for x ∈ [ xbM ,

x
bM+1 ), which verifies (A5), and thus completes the

proof.
For the case of γ = 1, we consider the function h in the form of (A1) with x̄ being still given

by (20), and h0 being defined by

h0(x) =
1

a

{
− x1−α

(1− α)2
+ λx+ g lnx

}
.

Condition 2.2(i, ii, iii) can be verified similarly to the case of γ < 1. We now focus on the verifica-
tion of Condition 2.2(iv). If α > 1, then g < 0, and standard analysis shows that h0 is bounded
from below, so that Condition 2.2(iv) is verified. Consider the case of α < 1. Then g > 0,

and any policy π satisfying lim supt→∞
h(xπ(t))

t < 0 cannot be optimal. Indeed, it follows from

lim supt→∞
h(xπ(t))

t < 0 that for each ε > 0, there exists some T > 0 such that h(xπ(t)) ≤ −εt for

all t > T. Therefore, limt→∞ h(xπ(t)) = −∞. Since − x1−α

(1−α)2 +λx is bounded on [0, x], necessarily

limt→∞ x
π(t) = 0. But then lim inft→∞

1
t

∫ t
0

(
(xπ(s))1−α

1−α − λxπ(s)
)
ds = 0 < g (c.f. (18)). There-

fore, it suffices to consider policies π which verify Condition 2.2(iv), i.e., lim supt→∞
h(xπ(t))

t ≥ 0.
Now the statement follows from Remark 2.

A.2 Proof of Theorem 3.2

Some comments and remarks are in position before we give the proof of this theorem. In fact,
they help the reader follow the proof. For b = 0.5, ρ = 1, α = 1.3, λ = 2, a = 0.2 the graph of
the function W is presented in Figure A1. Here x̄ = 0.7901 and w1 = −4.9301. The dashed line
represents the graph of the function

z(x) = −1

ρ

(
x1−α

α− 1
+ λx

)
. (A11)
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When W̃ (x) = z(x), we have dW̃
dx = 0; if W̃ (x) > z(x) (resp., W̃ (x) < z(x)), the function W̃

increases (resp., decreases). The dotted line represents the graph of the function

v(x) =
a(x−α − λ)

ρ2
− 1

ρ

(
x1−α

α− 1
+ λx

)
.

If W̃ (x) = v(x), then from (25) we have

a2d
2W̃

dx2
= a2

[
aρ
dW̃

dx
+ λa− ax−α

]

= a2

[
ρ2W̃ (x) + ρλx+

ρx1−α

α− 1
+ λa− ax−α

]
= 0,

that is, x is the point of inflection of the function W̃ . This reasoning applies to any solution of
equation (25).

Figure A1. Graph of the Bellman function W (x) (bright line with the star point markers).

In the graph, for 0 < x < x̄, the Bellman function W (x) = W̃ (x) has three parts, denoted
below as I, II and III, where it increases, strictly decreases, and again increases. Correspondingly,
the function W̃ (bx) also has three parts I, II and III, where it increases, strictly decreases and
increases again, and W (x) = W̃ (bx) for x̄ ≤ x < x̄

b . The point x̄ is such that

W̃ (x̄) = W̃ (bx̄) and
dW̃ (x)

dx

∣∣∣∣∣
x̄

=
dW̃ (bx)

dx

∣∣∣∣∣
x̄

. (A12)

As is shown in the proof of Theorem 3.2 below, these two equations are satisfied if and only if
x̄ solves equation (29).

Proof of Theorem 3.2. (a) Firstly, let us prove that no more than one positive number x̄ can
satisfy equations (A12). If x̄ satisfies (A12), then the function W̃ cannot have only one increasing
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branch above function v because the two increasing functions W̃ (x) and W̃ (bx) could not have
common points.

The increasing part I of function W̃ (x) cannot intersect with W̃ (bx).
The strictly decreasing part II of the function W̃ (x) cannot intersect with the parts II and

III of the function W̃ (bx). Possible common points with the part I of W̃ (bx) are of no interest

because here dW̃ (x)
dx < 0 and dW̃ (bx)

dx ≥ 0.

The increasing part III of function W̃ (x) can intersect with the parts I and II of function

W̃ (bx), but again the latter case is of no interest because here dW̃ (x)
dx ≥ 0 and dW̃ (bx)

dx < 0.

Thus, the only possibility to satisfy (A12) is the case when the increasing part III of W̃ (x)
touches the increasing part I of function W̃ (bx). The inflection line v(x) is located between the
increasing and decreasing branches of the function z(x), so that the part III of W̃ (x) is convex
and the part I of W̃ (bx) is concave, meaning that no more than one point x̄ can satisfy the
equations (A12).

Using formula (26), the equations (A12) can be rewritten as follows:

0 = W̃ (x)− W̃ (bx) =
(
e
ρx

a − e
bρx

a

)[
e−

ρ

a

(
λ

ρ
+
λa

ρ2
+

1

ρ(α− 1)
+ w̃1

)

−1

ρ

∫ x

1
e−

ρu

a u−αdu

]
− x1−α(1− b1−α)

ρ(α− 1)
− (1− b)λx

ρ
+
e
bρx

a

ρ

∫ bx

x
e−

ρu

a
u−αdu; (A13)

0 =
dW̃ (x)

dx
− dW̃ (bx)

dx
=

(
ρ

a
e
ρx

a − bρ

a
e
bρx

a

)[
e−

ρ

a

(
λ

ρ
+
λa

ρ2
+

1

ρ(α− 1)
+ w̃1

)

−1

ρ

∫ x

1
e−

ρu

a u−αdu

]
− (1− b)λ

ρ
+
be

bρx

a

a

∫ bx

x
e−

ρu

a u−αdu.

After we multiply these equations by factors
(

1− be(b−1) ρx
a

)
and a

ρ

(
1− e(b−1) ρx

a

)
correspond-

ingly and subtract the equations, the variable w̃1 is cancelled and we obtain equation

0 =
(

1− be(b−1) ρx
a

)[b1−αx1−α

ρ(α− 1)
+
e
bρx

a

ρ

∫ bx

x
e

−ρu
a u−αdu− x1−α

ρ(α− 1)
− (1− b)λx

ρ

]

−a
ρ

(
1− e

(b−1)ρx

a

)[be bρxa
a

∫ bx

x
e−

ρu

a u−αdu− (1− b)λ
ρ

]
,

which is equivalent to H(x) = 0.
Equation (30) follows directly from the first one of equations (A13): if we know the value of x

(equal to x̄), we can compute the value of w̃1 = w1.
To prove the solvability of the equation (29) we compute the following limits:

lim
x→∞

H(x) ≤ − lim
x→∞

e
ρx(1−b)

a · λx(1− b) = −∞;

lim
x→0

H(x) = lim
x→0

(b− 1)

[
x1−α(1− b1−α)

α− 1
+

∫ x

bx
e−

ρu

a u−αdu

]
,

and the positive expression in the square brackets does not exceed

x1−α(1− b1−α)

α− 1
+

∫ x

bx

[
1− ρu

a
+

1

2

(ρu
a

)2
]
u−αdu =

x1−α(1− b1−α)

α− 1
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+

[
u1−α

1− α
− ρu2−α

a(2− α)
+

ρ2u3−α

2a2(3− α)

]x
bx

=

[
ρ2u3−α

2a2(3− α)
− ρu2−α

a(2− α)

]x
bx

→ 0 as x→ 0,

so that limx→0H(x) = 0.
Finally,

dH

dx
= −ρ(1− b)

a
e
ρx(1−b)

a

[
x1−α(1− b1−α)

α− 1
+ λx(1− b)

]
+
(
b− e

ρx(1−b)
a

) [
λ(1− b)− x−α(1− b1−α)

]
+ λ(1− b)2e

ρx(1−b)
a

−ρ
a

(1− b)e
ρx

a

∫ x

bx
e−

ρu

a u−αdu− (1− b)e
ρx

a

[
e−

ρx

a x−α − be−
ρbx

a (bx)−α
]

= −ρ(1− b)(1− b1−α)

a(α− 1)
x1−α −

(
b− 1− ρx(1− b)

a

)[
(1− b1−α)x−α − λ(1− b)

]
+λ(1− b)2 − ρ

a
(1− b)x

1−α(1− b1−α)

1− α

−(1− b)
(

1 +
ρx

a

)[
x−α

(
1− ρx

a

)
− b

(
1− ρbx

a

)
(bx)−α

]
+ ε(x),

where limx→0 ε(x) = 0; so

lim
x→0

dH

dx
= lim

x→0

ρ(1− b)(1− b2−α)

a
x1−α = +∞

meaning that the continuous function H(x) increases from the limit zero for small values of x
and becomes negative for big values of x.

Therefore, equation (29) has a single positive solution x̄, and part (a) of the statement has
been proved.

(b) Item (i) of Condition 2.4 is obviously satisfied (D = ∅).
For Item (ii), we consider the following three cases.
(α) Let 0 < x ≤ x̄. The differential equation (25) holds for function W on the interval

0 < x < x̄. For these values of x,

W (bix) < W (x), ∀ i ≥ 1. (A14)

Indeed, to prove this, note that the function W (bx) = W̃ (bx) is increasing (c.f. Figure A1), so
that W (bx) > W (b2x) > . . . . As explained in the proof of part (a), Part III of the function
W (x) is convex and the function W̃ (bx) touching smoothly W (x) at the point x̄, is concave, so
that W (bx) = W̃ (bx) < W (x) here. The same inequality holds for smaller values of x where
W (x) decreases (part II) and W (bx) = W̃ (bx) increases. Part I of the function W (x) is obviously
bigger than W (bx), too. Thus the Bellman equation (24) is satisfied on the interval 0 < x < x̄
and also on the interval (0, x̄].

(β) Consider x ∈ (x̄, x̄/b] and denote x1 and x2 the points of the analytical maximum and
minimum of the function W (x) = W̃ (bx). (See Fig.A1.)

For x ∈ (x̄, x1) the function W (x) is concave; hence

a
dW

dx

∣∣∣∣
x

< a
dW

dx

∣∣∣∣
x̄

= a
dW̃

dx

∣∣∣∣∣
x̄

= ρW̃ (x̄)− x̄1−α

1− α
+ λx̄ = ρ[W̃ (x̄)− z(x̄)].

(See formula (A11).) Since W (x) increases starting from W (x̄) = W̃ (x̄) and z(x) decreases, we
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have

a
dW

dx

∣∣∣∣
x

< ρ[W (x)− z(x)] = ρW (x)−
(
x1−α

1− α
− λx

)
,

and the Bellman equation (24) is satisfied because hereW (x) = W̃ (bx) = W (bx) andW (bi+1x) <
W (bx) for all i ≥ 1 by (A14).

For x ∈ [x1, x2] we have W (x) > z(x) and adWdx ≤ 0: remember, W (x) = W̃ (bx) and the latter
function is of type II for x ∈ [x1, x2]. Therefore, again

a
dW

dx
− ρ

[
W (x)− 1

ρ

(
x1−α

1− α
− λx

)]
< 0

and the Bellman equation (24) is satisfied.
For x ∈ (x2, x̄/b], we have

a
dW

dx
= b

dW̃

dx

∣∣∣∣∣
bx

<
dW̃

dx

∣∣∣∣∣
bx

because the function W̃ increases here and b ∈ (0, 1). Next,

ρ[W (x)− z(x)] = ρ[W̃ (bx)− z(x)] > ρ[W̃ (bx)− z(bx)]

because the function z(x) decreases. Therefore,

a
dW

dx
− ρ[W (x)− z(x)] <

dW̃

dx

∣∣∣∣∣
bx

− ρ[W̃ (bx)− z(bx)] = 0

since bx ≤ x̄, and, for these values, equation (25) holds. We see that the Bellman equation (24)
is satisfied.

(γ) Finally, let us consider the remaining interval ( x̄b ,∞). Suppose

a
dW

dx
− ρ[W (x)− z(x)] < 0 for x ∈

( x̄

bi−1
,
x̄

bi

]
,

for some natural i ≥ 1. Then, for x ∈
(
x̄
bi ,

x̄
bi+1

]
, we have

a
dW

dx
− ρ[W (x)− z(x)] = ba

dW

dx

∣∣∣∣
bx

− ρ[W (bx)− z(x)].

If dW
dx

∣∣
bx
< 0 then the last expression is negative. Otherwise,

ba
dW

dx

∣∣∣∣
bx

≤ a dW
dx

∣∣∣∣
bx

and z(x) < z(bx),

so that

a
dW

dx
− ρ[W (x)− z(x)] < a

dW

dx

∣∣∣∣
bx

− ρ[W (bx)− z(bx)] < 0

by the induction supposition.
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Thus, the Bellman equation (24) is satisfied for all x > 0.
To finish the proof of part (b) of this statement, it remains to note that Item (iii) of Condition

2.4 is also obviously satisfied:

L∗ = [x̄,∞); vf,L
∗
(x) = vi if x ∈

[ x̄

bi−1
,
x̄

bi

)
.

(c) Note that item (iv) of Condition 2.4 is not satisfied. Indeed, there is an admissible control
policy such that, on any time interval (T−1, T ], xπ(·) is so close to zero that e−ρTW (xπ(T )) < −1.
(Remember that limx→0W (x) = −∞.)

Let us fix an arbitrary x0 > 0 and modify the reward rate:

ĉ(x) =

{
c(x), if x ≥ min{x0, bx̄} := x̂;
c(x̂), if x < x̂.

Note that ĉ ≥ c. The function W̃ (x) given by (26) will change only for x < x̂ ≤ x0 and

remains increasing in its part I, meaning that this modified function Ŵ satisfies all items (i)–
(iii) of Condition 2.4: the proof is identical to the one presented above. But now Condition 2.4

(iv) is also satisfied because the function Ŵ is bounded. Therefore, according to Theorem 2.5,

supπ Ĵρ(x0, π) = Ŵ (x0) = Ĵρ(x0, π
∗), where Ĵρ corresponds to the reward rate ĉ. But

sup
π
Jρ(x0, π) ≤ sup

π
Ĵρ(x0, π) = Ŵ (x0) = W (x0),

and for the feedback policy π∗, which is independent of x0, we have

W (x0) = Ŵ (x0) = Ĵρ(x0, π
∗) = Jρ(x0, π

∗).

The last equality holds because, under the feedback policy π∗, starting from x0, the trajectory
xπ

∗
(t) satisfies xπ

∗
(t) ≥ x̂ for all t ≥ 0, and in this region ĉ = c.
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