Study of B_c^+ decays to the $K^+K^−\pi^+$ final state and evidence for the decay $B_c^+ \rightarrow \chi_{c0}\pi^+$

The LHCb collaboration†

Abstract

A study of $B_c^+ \rightarrow K^+K^−\pi^+$ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV. Evidence for the decay $B_c^+ \rightarrow \chi_{c0}(\rightarrow K^+K^-)\pi^+$ is reported with a significance of 4.0 standard deviations, resulting in the measurement of $\frac{\sigma(B_c^+)}{\sigma(B^+)} \times B(B_c^+ \rightarrow \chi_{c0}\pi^+)$ to be $(9.8^{+3.4}_{-3.0}\text{(stat)} \pm 0.8\text{(syst)}) \times 10^{-6}$. Here B denotes a branching fraction while $\sigma(B_c^+)$ and $\sigma(B^+)$ are the production cross-sections for B_c^+ and B^+ mesons. An indication of $\bar{b}c$ weak annihilation is found for the region $m(K^-\pi^+) < 1.834\text{ GeV}/c^2$, with a significance of 2.4 standard deviations.

© CERN on behalf of the LHCb collaboration, license [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)

†Authors are listed at the end of this article.
Heavy flavour physics involves studying the decays of hadrons containing at least one b or c valence quark, with the possibility of making precision measurements of Standard Model (SM) parameters and detecting effects of new physics. The B_c^+ meson ($\bar{b}c$), the only currently established hadron having two different heavy-flavour quarks, has the particularity of decaying weakly through either of its flavours. In the SM, the B_c^+ decays with no charm and beauty particles in the final or intermediate states can proceed only via $\bar{b}c \to W^+ → u\bar{q}$ ($q = d, s$) annihilation, with an amplitude proportional to the product of CKM matrix elements $V_{ub}V_{uq}$. Calculations predict branching fractions in the range $10^{-8}−10^{-6}$ [13]. Any significant enhancement could indicate the presence of $\bar{b}c$ annihilations involving particles beyond the SM, such as a mediating charged Higgs boson (see e.g. Ref. [4,5]).

Experimentally, the decays of B_c^+ mesons to three light charged hadrons provide a good way to study such processes. These decay modes have a large available phase space and can include other processes such as $B_c^+ → D^0(→ K\pi)h^+(h = \pi, K)$ [6] mediated by $\bar{b} → \pi$ and $\bar{b} → d, \pi$ transitions, $B_c^+ → B^0_q(→ h_1^+h_2^+)h_3^+$ decays [7] mediated by $c → q$ transitions, or charmonium modes $B_c^+ → [\sigma(→ h_1^+h_2^-)h_3^+]$ [8] mediated by the $b → c$ transition [9]. In this study, special consideration is given to decays leading to a $K^+K^−\pi^+$ final state in the region well below the D^0 mass, taken to be $m(K^−\pi^+) < 1.834\text{ GeV}/c^2$, where, after removing possible contributions from ($[\sigma], B^0_q → K^+K^−$, only the annihilation process remains. The other contributions listed above are also examined. The $B^+ → D^0(→ K^+K^−)\pi^+$ decay is used as a normalization mode to derive the quantity

$$R_f = \frac{\sigma(B_c^+)}{\sigma(B^+)} × B(B_c^+ → f),$$

where B is the branching fraction, and $\sigma(B_c^+)$ and $\sigma(B^+)$ are the production cross-sections of the B_c^+ and B^+ mesons. The quantity R_f is measured in the fiducial region $p_T(B) < 20\text{ GeV}/c$ and $2.0 < y(B) < 4.5$, where p_T is the component of the momentum transverse to the proton beam and y denotes the rapidity. The data sample used corresponds to integrated luminosities of 1.0 and 2.0 fb$^{-1}$ collected by the LHCb experiment at 7 and 8 TeV centre-of-mass energies in pp collisions, respectively. Since the kinematics of B meson production is very similar at the two energies, the ratio $\frac{\sigma(B_c^+)}{\sigma(B^+)}$ is assumed to be the same for all the measurements discussed in this Letter.

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, described in detail in Ref. [10]. The detector allows the reconstruction of both charged and neutral particles. For this analysis, the ring-imaging Cherenkov (RICH) detectors [12], distinguishing pions, kaons and protons, are particularly important. Simulated events are produced using the software described in Refs. [13–19].

The $B^+_c → K^+K^−\pi^+$ decay candidates are reconstructed applying the same selection procedure as in Ref. [20]. A similar multivariate analysis using a boosted decision tree (BDT) classifier [21] is implemented. Particle identification (PID) requirements are then applied to reduce the combinatorial background and suppress the cross-feed from pions.

1Charge conjugation is implied throughout the paper.
misidentified as kaons. The BDT and PID requirements are optimized jointly in order to maximize the sensitivity to small event yields.

The B_c^+ signal yield is determined from a simultaneous fit in three bins of the BDT output O_{BDT}, $0.04 < O_{BDT} < 0.12$, $0.12 < O_{BDT} < 0.18$ and $O_{BDT} > 0.18$, each having similar expected yield but different levels of background [20]. The normalization channel $B^+ \to \bar{D}^0(\to K^+K^-)\pi^+$ uses the same BDT classifier, with tighter PID requirements to suppress the abundant background from $B^+ \to K^+\pi^-\pi^+$ decays. Its yield is determined requiring $O_{BDT} > 0.04$, and demanding $1.834 < m(K^+K^-) < 1.894\text{ GeV}/c^2$ to remove charmless $B^+ \to K^+K^-\pi^+$ candidates. Signal and background yields are obtained from extended unbinned maximum likelihood fits to the distribution of the invariant mass of the $K^+K^-\pi^+$ combinations. The $B_c^+ \to K^+K^-\pi^+$ and $B^+ \to K^+K^-\pi^+$ signals are each modelled by the sum of two Crystal Ball functions [22] with a common mean. For $B_c^+ \to K^+K^-\pi^+$ all the shape parameters and the relative yields in each bin of O_{BDT} are fixed to the values obtained in the simulation, while for $B^+ \to K^+K^-\pi^+$ the mean and the core width are allowed to vary freely in the fit. A Fermi-Dirac function accounts for a possible partially reconstructed component from decays with $K^+K^-\pi^+\pi^0$ final states where the neutral pion is not reconstructed, resulting in a $K^+K^-\pi^+$ invariant mass below the nominal B_c^+ or B^+ mass. All shape parameters of these background components are fixed to the values obtained from simulation. The combinatorial background is modelled by an exponential function. Figure 1 shows the results of the fit to determine the yield of the $B^+ \to \bar{D}^0(\to K^+K^-)\pi^+$ channel, $N_a = 8577 \pm 109$.

In the B_c^+ region $6.0 < m(K^+K^-\pi^+) < 6.5\text{ GeV}/c^2$, the signals are fitted separately for regions of the phase space corresponding to the different expected contributions: the annihilation region $(m(K^-\pi^+) < 1.834\text{ GeV}/c^2)$, the $D^0 \to K^-\pi^+$ region $(1.834 < m(K^-\pi^+) < 1.894\text{ GeV}/c^2)$, and the $B_s^0 \to K^-K^+$ region $(5.3 < m(K^+K^-) < 6.0)$.

Figure 1: Fit to the $K^+K^-\pi^+$ invariant mass for the B^+ candidates, with $1.834 < m(K^+K^-) < 1.894\text{ GeV}/c^2$. The contributions from the signal $B^+ \to \bar{D}^0(\to K^+K^-)\pi^+$, combinatorial background (Comb.) and partially reconstructed background (Part.) obtained from the fit are shown.
Figure 2: Projection of the fit to the $K^+K^-\pi^+$ invariant mass in the B_c^+ region, in the bins of BDT output used in the analysis: (top) $0.04 < \mathcal{O}_{\text{BDT}} < 0.12$, (middle) $0.12 < \mathcal{O}_{\text{BDT}} < 0.18$ and (bottom) $\mathcal{O}_{\text{BDT}} > 0.18$, for $m(K^-\pi^+) < 1.834 \text{GeV}/c^2$, including the vetoes in $m(K^+K^-)$ (see text). Apart from the signal type, which is given by $B_c^+ \rightarrow K^+K^-\pi^+$, the contributions are indicated according to the same scheme as in Fig. 1.

5.4 \text{GeV}/c^2). For the first two regions, the ranges $3.38 < m(K^+K^-) < 3.46 \text{GeV}/c^2$ and $5.2 < m(K^+K^-) < 5.5 \text{GeV}/c^2$ are vetoed to remove contributions from χ_{c0} (as explained below) and $B^0_{s(1)} \rightarrow h_1^+h_2^-$ decays. A possible signal appears in the annihilation region, as shown in Fig. 2. The corresponding yield is $N_c = 20.8^{+11.4}_{-9.9}$, with a statistical significance of 2.5 standard deviations (σ), inferred from the difference in the logarithm of the likelihood for fits with and without the signal component.

The distribution of events in the $m^2(K^-\pi^+)$ vs. $m^2(K^+K^-)$ plane, for the signal region $6.2 < m(K^+K^-\pi^+) < 6.35 \text{GeV}/c^2$, is shown in Fig. 3. A concentration of events is observed around $m^2(K^+K^-) \sim 11 \text{GeV}^2/c^4$. A one-dimensional projection in the variable $m(K^+K^-)$ shows clustering near 3.41 GeV/c2, which is close to the mass of the charmonium state χ_{c0}. Among all the charmonia, χ_{c0} has the highest branching fraction into the K^+K^- final state [23]. The accumulation of events near $m^2(K^+K^-) \sim 29 \text{GeV}^2/c^4$ for the loose \mathcal{O}_{BDT} cut appears to be mainly due to $B^0_{s(1)} \rightarrow K^+K^-$ decays combined with random pions.
The values obtained are 1. To determine the \(B_+ \) signal yield, the two-dimensional \(m(K^+K^-) \) vs. \(m(K^+\pi^+) \) distributions are fitted simultaneously for the three BDT bins. The \(m(K^+K^-) \) distribution is modelled in the same way as described above. The \(m(K^+K^-) \) distribution, defined in the range \(3.20 < m(K^+K^-) < 3.55 \text{ GeV}/c^2 \), is modelled with a Breit–Wigner function, with mean and width fixed to their known values \([23]\), convolved with a Gaussian resolution function, representing the \(\chi_{c0} \to K^+K^- \) shape, and a first-order polynomial representing \(K^+K^- \) background. Figure 1 shows the projections of the fit result. The yield obtained is \(N_{\chi_{c0}} = 20.8^{+7.4}_{-5.7} \), with a statistical significance of 4.1 \(\sigma \). The fits for the \(D^0 \) and \(B^0_s \) regions, where no signal is observed, can be found at Ref. [9].

The efficiencies for the signals, \(\epsilon_c \), and normalization channel, \(\epsilon_u \), are inferred from simulated samples and are corrected using data-driven methods as described in Ref. [20]. They include the effects of reconstruction, selection and detector acceptance. An efficiency map defined in the \(m(K^-\pi^+) \) vs. \(m(K^+K^-) \) plane is computed. The efficiency for the annihilation region is estimated in two ways: first, by taking the simple average efficiency from the map for \(m(K^-\pi^+) < 1.834 \text{ GeV}/c^2 \) and alternatively, by taking the efficiency weighted according to the sparse distribution of candidates in data in the \(m(K^-\pi^+) \) vs. \(m(K^+K^-) \) plane. The average of the two values is taken as the efficiency and the difference is treated as a systematic uncertainty (labelled as “event distribution” in Table 1) reflecting the limited knowledge of the distribution of the signal events due to low statistics. A correction accounting for the vetoed \(m(K^+K^-) \) regions described above is included. In the calculation of the observable \(R_f \) the efficiency ratio \(\epsilon_u/\epsilon_c \) is required. The values obtained are \(1.698 \pm 0.015 \) for the annihilation region and \(1.241 \pm 0.012 \) for the \(B_+ \to \chi_{c0}(K^+K^-)\pi^+ \) mode. The uncertainties are due to the limited sizes of the simulated samples. The differences between the \(B^+ \) and \(B_+ \) efficiencies are caused by the
Figure 4: Fit projections to the (left) $K^+K^-\pi^+$ and (right) K^+K^- invariant masses, in the bins of BDT output (top) $0.04 < \mathcal{O}_{\text{BDT}} < 0.12$, (middle) $0.12 < \mathcal{O}_{\text{BDT}} < 0.18$ and (bottom) $\mathcal{O}_{\text{BDT}} > 0.18$, for the extraction of the $B_c^+ \rightarrow \chi_{c0} \rightarrow K^+K^-\pi^+$ signal. The contributions from the $B_c^+ \rightarrow \chi_{c0} \rightarrow K^+K^-\pi^+$ signal, combinatorial background (Comb.), possible pollution from the annihilation region $B_c^+ \rightarrow (K^-\pi^+)K^+$, and combinations of $\chi_{c0} \rightarrow K^+K^-$ with a random track X are shown.

The measured quantities are determined as

$$R_{\text{ann},KK} = \frac{N_c}{N_u} \times \frac{\epsilon_u}{\epsilon_u\text{(an, } KK\pi)} \times \mathcal{B}(B^+ \rightarrow D^0\pi^+) \times \mathcal{B}(D^0 \rightarrow K^+K^-)$$

for the annihilation region, and

$$R_{\chi_{c0}\pi} = \frac{\sigma(B_c^+)}{\sigma(B^+)} \times \mathcal{B}(B_c^+ \rightarrow \chi_{c0}\pi^+) = \frac{N_{\chi_{c0}}}{N_u} \times \frac{\epsilon_u}{\epsilon_u\text{(}\chi_{c0})} \times \frac{\mathcal{B}(B^+ \rightarrow D^0\pi^+) \times \mathcal{B}(D^0 \rightarrow K^+K^-)}{\mathcal{B}(\chi_{c0} \rightarrow K^+K^-)},$$

where ϵ_x are the efficiencies and N_x are the yields obtained from the fits.

Systematic uncertainties are associated with the yield ratios, the efficiency ratios and the branching fractions $\mathcal{B}(B^+ \rightarrow D^0\pi^+) = (4.81 \pm 0.15) \times 10^{-3}$, $\mathcal{B}(D^0 \rightarrow K^-K^+)= (4.01 \pm 0.07) \times 10^{-3}$ and $\mathcal{B}(\chi_{c0} \rightarrow K^-K^+) = (5.91 \pm 0.32) \times 10^{-3}$ [23]. Table 1 summarizes
Table 1: Relative systematic uncertainties (in %) of the measurements of $R_{an,KK\pi}$ and $R_{\chi_{c0}\pi}$.

<table>
<thead>
<tr>
<th>Source</th>
<th>$R_{an,KK\pi}$</th>
<th>$R_{\chi_{c0}\pi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalisation yield</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Event distribution</td>
<td>1.6</td>
<td>–</td>
</tr>
<tr>
<td>Fit model</td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td>BDT shape</td>
<td>5.0</td>
<td>2.9</td>
</tr>
<tr>
<td>PID</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Simulation</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Detector acceptance</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>B_c^+ lifetime</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Hardware trigger</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Fiducial cut</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Branching fractions</td>
<td>3.6</td>
<td>6.2</td>
</tr>
<tr>
<td>Total</td>
<td>7.5</td>
<td>7.8</td>
</tr>
</tbody>
</table>

the uncertainties. The yields are affected by the uncertainties on the fit functions and parameters, and by the variation of the yield fractions in the BDT output bins, due to the uncertainty on the BDT output distribution. The uncertainties on the efficiency ratios are due to the PID calibration, the limited sizes of the simulated samples, the effect of the detector acceptance, the B_c^+ lifetime 0.507 ± 0.009 ps [24], and the trigger and fiducial cut corrections.

We obtain $R_{an,KK\pi} = (8.0^{+4.4}_{-3.8}(\text{stat}) \pm 0.6(\text{syst})) \times 10^{-8}$ and $R_{\chi_{c0}\pi} = (9.8^{+4.4}_{-3.9}(\text{stat}) \pm 0.8(\text{syst})) \times 10^{-6}$. Accounting for the systematic uncertainties related to the signal extraction, the significances of these measurements are 2.4 σ and 4.0 σ, respectively. For the annihilation region, a 90(95)% confidence level (CL) upper limit, $R_{an,KK\pi} < 15(17) \times 10^{-8}$, is estimated by making a scan of $R_{an,KK\pi}$, comparing profile likelihood ratios for the “signal+background” against “background-only” hypotheses [9,25].

For the modes $B_c^+ \rightarrow B_s^0 (\rightarrow K^+K^-)\pi^+$ and $B_c^+ \rightarrow D^0 (\rightarrow K^-\pi^+)K^+$, no significant deviation from the background-only hypothesis is observed. Using $\mathcal{B}(B_s^0 \rightarrow K^+K^-) = (2.50 \pm 0.17) \times 10^{-5}$ and $\mathcal{B}(D^0 \rightarrow K^-\pi^+) = (3.93 \pm 0.04)\%$ [23], the following 90(95)% CL upper limits are obtained: $R_{B_s^0\pi} \equiv \frac{\sigma(B_c^+)}{\sigma(B_s^+)} \times \mathcal{B}(B_c^+ \rightarrow B_s^0\pi^+) < 4.5(5.4) \times 10^{-3}$ and $R_{D^0K} \equiv \frac{\sigma(B_c^+)}{\sigma(B_s^+)} \times \mathcal{B}(B_c^+ \rightarrow D^0K^+) < 1.3(1.6) \times 10^{-6}$. The first limit is consistent with the result of Ref. [26], which gives $R_{B_s^0\pi} = (6.2 \pm 1.0) \times 10^{-4}$, using $\sigma(B_s^0) / \sigma(B_s^+)$ = 0.258\pm0.016 [27,28].

In summary, a study of B_c^+ meson decays to the $K^+K^-\pi^+$ final state has been performed in the fiducial region $p_T(B) < 20$ GeV/c and $2.0 < y(B) < 4.5$. Evidence for the decay $B_c^+ \rightarrow \chi_{c0}\pi^+$ is found at 4.0 σ significance. This result can be compared to the measurement involving another charmonium mode, $\frac{\sigma(B_c^+)}{\sigma(B_s^+)} \times \mathcal{B}(B_c^+ \rightarrow J/\psi\pi^+) = (7.0 \pm 0.3) \times 10^{-6}$, obtained from Refs. [23,29].
A indication of $\bar{b}c$ weak annihilation with a significance of 2.4 σ is reported in the region $m(K^-\pi^+)<1.834$ GeV/c^2. The branching fraction of $B_c^+ \rightarrow \bar{K}^{*0}(892)K^+$ has been recently predicted to be $(10.0^{+1.8}_{-3.4}) \times 10^{-7}$ [3]. The contribution of the mode $B_c^+ \rightarrow \bar{K}^{*0}(892)(\rightarrow K^-\pi^+)K^+$ to $R_{\text{an},KK\pi}$ could be prominent, so an estimate is made as follows. Using the predictions listed in Ref. [30] for $B(B_c^+ \rightarrow J/\psi \pi^+)$, which span the range $[0.34,2.9] \times 10^{-3}$, and the above value of $\frac{\sigma(B_c^+)}{\sigma(B^+)} \times B(B_c^+ \rightarrow J/\psi \pi^+)$ based on Ref. [29], $\frac{\sigma(B_c^+)}{\sigma(B^+)} \sim [0.23,2.1]\%$ is obtained. Combining with the prediction of Ref. [3], a value of $\frac{\sigma(B_c^+)}{\sigma(B^+)} \times B(B_c^+ \rightarrow \bar{K}^{*0}(892)(\rightarrow K^-\pi^+)K^+) \sim [0.1,1.7] \times 10^{-8}$ is obtained, including the theoretical uncertainties and the $\bar{K}^{*0}(892) \rightarrow K^-\pi^+$ branching fraction. This estimate is lower than the $R_{\text{an},KK\pi}$ measurement. The statistical uncertainty, however, is at present too large to make a definite statement. The data being accumulated in the current run of the LHC will allow LHCb to clarify if the weak annihilation process of B_c^+ meson decays produces significant contributions from heavier $K^-\pi^+$ states, or is enhanced by other sources.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), Conseil Général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, The Royal Society, Royal Commission for the Exhibition of 1851 and the Leverhulme Trust (United Kingdom).

References

The text is not transcribed due to the presence of large amounts of identifying and personal information.
10 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
11 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
12 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
13 School of Physics, University College Dublin, Dublin, Ireland
14 Sezione INFN di Bari, Bari, Italy
15 Sezione INFN di Bologna, Bologna, Italy
16 Sezione INFN di Cagliari, Cagliari, Italy
17 Sezione INFN di Ferrara, Ferrara, Italy
18 Sezione INFN di Firenze, Firenze, Italy
19 Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
20 Sezione INFN di Genova, Genova, Italy
21 Sezione INFN di Milano Bicocca, Milano, Italy
22 Sezione INFN di Milano, Milano, Italy
23 Sezione INFN di Padova, Padova, Italy
24 Sezione INFN di Pisa, Pisa, Italy
25 Sezione INFN di Roma Tor Vergata, Roma, Italy
26 Sezione INFN di Roma La Sapienza, Roma, Italy
27 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
28 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
29 National Center for Nuclear Research (NCBJ), Warsaw, Poland
30 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
31 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
32 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
33 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
34 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
35 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
36 Institute for High Energy Physics (IHEP), Protvino, Russia
37 ICCUB, Universitat de Barcelona, Barcelona, Spain
38 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
39 European Organization for Nuclear Research (CERN), Geneva, Switzerland
40 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
41 Physik-Institut, Universität Zürich, Zürich, Switzerland
42 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
43 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
44 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
45 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
46 University of Birmingham, Birmingham, United Kingdom
47 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
48 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
49 Department of Physics, University of Warwick, Coventry, United Kingdom
50 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
51 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
52 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
53 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
54 Imperial College London, London, United Kingdom
55 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
56 Department of Physics, University of Oxford, Oxford, United Kingdom
57 Massachusetts Institute of Technology, Cambridge, MA, United States
58 University of Cincinnati, Cincinnati, OH, United States
59 University of Maryland, College Park, MD, United States
60 Syracuse University, Syracuse, NY, United States
61 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
62 University of Chinese Academy of Sciences, Beijing, China, associated to
63 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to
64 Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia, associated to
65 Institut für Physik, Universität Rostock, Rostock, Germany, associated to
66 National Research Centre Kurchatov Institute, Moscow, Russia, associated to
67 Yandex School of Data Analysis, Moscow, Russia, associated to
68 Instituto de Física Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain, associated to
69 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands, associated to

a Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
b Laboratoire Leprince-Ringuet, Palaiseau, France
c P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
d Università di Bari, Bari, Italy
e Università di Bologna, Bologna, Italy
f Università di Cagliari, Cagliari, Italy
g Università di Ferrara, Ferrara, Italy
h Università di Genova, Genova, Italy
i Università di Milano Bicocca, Milano, Italy
j Università di Roma Tor Vergata, Roma, Italy
k Università di Roma La Sapienza, Roma, Italy
l AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
m LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
n Hanoi University of Science, Hanoi, Viet Nam
o Università di Padova, Padova, Italy
p Università di Pisa, Pisa, Italy
q Università degli Studi di Milano, Milano, Italy
r Università di Urbino, Urbino, Italy
s Università della Basilicata, Potenza, Italy
t Scuola Normale Superiore, Pisa, Italy
u Università di Modena e Reggio Emilia, Modena, Italy
v Iligan Institute of Technology (IIT), Iligan, Philippines