Manuscript Number:

Title: Preventing infant and child morbidity and mortality due to maternal depression

Article Type: Issue 30.7

Keywords: Mental health, depression, anxiety, mothers, child, developing countries

Corresponding Author: Prof. Atif Rahman,

Corresponding Author's Institution:

First Author: Pamela J Surkan

Order of Authors: Pamela J Surkan; Shivani A Patel; Atif Rahman

Abstract: This review provides an overview of perinatal depression and its impacts on the health of mothers, their newborns, and young children in low- and middle-income countries (LMIC). We define and describe the urgency and scope of the problem of perinatal depression for mothers, while highlighting some specific issues such as suicidal ideation and decreased likelihood to seek healthcare. Pathways through which stress may link maternal depression to childhood growth and development (e.g., the HPA axis) are discussed, followed by a summary of the adverse effects of depression on birth outcomes, parenting practices, and child growth and development. Though preliminary studies on the association between maternal depressive symptoms and maternal and child mortality exist, more research on these topics is needed. We describe available interventions and suggest strategies to reduce maternal depressive symptoms in LMICs, including integration of services with existing primary healthcare systems.
PREVENTING INFANT AND CHILD MORBIDITY AND MORTALITY DUE TO MATERNAL DEPRESSION

Authors: Pamela J. Surkan¹, Shivani A. Patel², Atif Rahman³

¹. Social and Behavioural Interventions Program, Department of International Health, Johns Hopkins Bloomberg School of Health, Baltimore, USA

². Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, USA

³. Department of Psychological Sciences, Institute of Psychology, Health & Society, University of Liverpool, United Kingdom.

Current word count: 8,658
Target word count: 7000 with references

Corresponding author:

Atif Rahman
Professor of Child Psychiatry
University of Liverpool
Institute of Psychology, Health & Society
Department of Psychological Sciences
Child Mental Health Unit
Alder Hey Children's NHS Foundation Trust
Mulberry House, Eaton Road
Liverpool L12 2AP
UK
email: Atif.Rahman@liverpool.ac.uk
ABSTRACT
This review provides an overview of perinatal depression and its impacts on the health of mothers, their newborns, and young children in low- and middle-income countries (LMIC). We define and describe the urgency and scope of the problem of perinatal depression for mothers, while highlighting some specific issues such as suicidal ideation and decreased likelihood to seek healthcare. Pathways through which stress may link maternal depression to childhood growth and development (e.g. the HPA axis) are discussed, followed by a summary of the adverse effects of depression on birth outcomes, parenting practices, and child growth and development. Though preliminary studies on the association between maternal depressive symptoms and maternal and child mortality exist, more research on these topics is needed. We describe available interventions and suggest strategies to reduce maternal depressive symptoms in LMICs, including integration of services with existing primary healthcare systems.

Abstract Word Count: 144

HIGHLIGHTS
- Perinatal mental health is an urgent issue in low- and middle-income countries
- It is a fundamental upstream cause of variety of adverse maternal and child outcomes
- Integration of mental and primary healthcare is needed in low-resource settings

KEYWORDS
Mental health, depression, anxiety, mothers, child, developing countries
INTRODUCTION

Maternal depression is an urgent priority in the global health agenda [1]. The World Health Organization (WHO) identifies major depression as the primary cause of years lived with a disability and the second leading cause of disability-adjusted life years in women of reproductive age worldwide [2]. Common perinatal mental disorders (CPMD), referring primarily to depression and anxiety, is estimated to occur in nearly one out of six pregnant women and one out of five women in the postpartum period in LMICs [3]. Maternal depression in LMICs is not only harmful to the women’s wellbeing, but also often adversely impacts child health and development [4, 5]. The high prevalence of perinatal depressive symptoms presents particular challenges for families in LMICs, where mental health services are scarce [6]. Although LMICs have a higher prevalence of maternal depression, most research on the consequences of perinatal depression on mothers and children is concentrated in high income countries (HIC). For these reasons, we have chosen to focus this review primarily on the correlates of perinatal depression and its impacts on the health of mothers, newborns, and young children in LMICs. Where data are not available in LMIC settings, we report evidence from high income settings that may provide insight into the respective phenomenon in LMICs.

Scope of Problem of Maternal Depression

Definitions and correlates

Maternal depression can broadly be divided by the time of occurrence: during the pregnancy (in the “prenatal period”) or after the delivery of a child (in the “postnatal period”). A recent systematic review suggests that prevalence of postnatal CPMD (19.8%) is higher than the prevalence of prenatal CPMD (15.6%) in LMICs [3]. Just as with depression outside the
perinatal period, there is no universally accepted definition for screening or diagnosis of
postnatal depression. Definitions vary in their method of assessment and specified length of the
“postnatal period”. For example, the DSM-IV defines “postpartum depression” to have a window
of onset within 4 weeks of delivery, while the ICD-10 defines the window to be up to 6 weeks
from delivery [7]. Postnatal depression may encompass postpartum depression [8], and
definitions have spanned from anywhere from 1 week to 1 year after the delivery of a child [9-
12].

Available data suggest that postnatal depression is higher in LMICs than HICs,[8, 11]
though prevalence estimates vary substantially and range from 0-60% depending on the setting
[13]. In addition to varying time periods of interest and different cultural and socioeconomic
contexts of motherhood across studies, this wide range of prevalence may be due to inconsistent
measurement tools (e.g., measures of depressive symptoms versus a diagnostic measure) or
sampling designs (e.g., clinical versus community samples) [13].

In a cross-cultural qualitative study in eleven countries, respondents universally
acknowledged the phenomenon of morbid unhappiness after delivery and also universally
recognized social support from family partners as a possible remedy [14]. Similarly, several
quantitative studies have confirmed that social stressors or economic hardships are risk factors
for postnatal depression [8, 10, 15, 16]. Intimate partner violence is another risk factor for
prenatal or postnatal depression across culturally and economically diverse settings [10, 17, 18].
Psychological violence alone or psychological, physical and sexual partner violence together
during pregnancy were predictive of postnatal depression (ORs 1.58 and 1.76, respectively)
among women in Brazil [17]. Women in rural Pakistan who experienced domestic violence were
three times more likely to be depressed three months after the birth of a child [10]. In addition,
history of depression or mood disorders during and prior to pregnancy has consistently been related to postnatal depression [15, 19]

Depression during pregnancy has been less studied than postnatal depression [15]. Much of the research in the prenatal period focuses on the third trimester, a time when risk of depression is higher than that observed in the general population [20, 21]. Although our best pooled estimate of prenatal CPMDs, of which depression is the most common disorder, in LMICs is 15.6% [3], several studies of rural women report higher estimates (e.g., 18%, 25% and 47% in rural areas of Bangladesh [22], Pakistan [23], and South Africa [21], respectively).

Many social, family and socioeconomic factors have been linked to prenatal depression. Several studies have found that being single/unmarried at the time of pregnancy is related to prenatal depressive symptoms [24, 25], in addition to having negative attitudes towards the pregnancy [25, 26]. Socioeconomic correlates of depressive symptomology during pregnancy included, being in debt [26], having fewer years of schooling [22] and employment insecurity or participating in casual (as opposed to salaried) work [27]. Poor family relationships and hostile home environments are also consistently linked with prenatal depression. Partner violence [28], lack of support from husbands or mothers-in-law [24, 28], and lack of decision making power in major decisions [27] were each more likely to be reported by depressed compared with non-depressed women.

Perinatal depression and suicidal ideation

Suicide ideation is a major concern among mothers who experience depression. Data from a confidential Enquiry into Maternal Death in the United Kingdom demonstrate that suicide rates in the postnatal period may be as high as other times in a woman’s life, challenging the notion that maternity protects against suicidal behavior [29]. Several studies have examined
suicidality measured as thoughts of self-harm during depression screening, for example a single-item (item 10) on the Edinburgh Postnatal Depression Scale (EPDS) [28, 30, 31] or a single item on the Patient Health Questionnaire (PHQ) [32].

Previous or concurrent depression, economic hardship, interpersonal violence, and lack of social support appear to play an important role in suicidal ideation during the prenatal period [28, 31, 32]. In rural Bangladeshi women at 34-35 weeks into their pregnancy, 14% who were classified as depressed reported thoughts of self-harm, and in qualitative follow-up, the authors found that suicidal thoughts were in particular associated with spousal violence [28]. Nearly one-quarter of pregnant women receiving antenatal care in Brazil had “current suicide risk”; investigators found depressive symptomology (OR=4.44) and years of education (OR=0.45) to be significant correlates of current suicide risk [33]. Another study of pregnant women in Brazil found the prevalence of suicidality to be 8%, and lack of education, low socioeconomic class, being single, and symptoms of anxiety and depression were all significantly higher in women who reported suicidality compared with those who did not [30]. Among Peruvian women, symptoms of depression, lifetime intimate partner violence, history of childhood abuse, and difficulty paying for basic needs were significantly higher among women who had thoughts of self-harm measured using both the PHQ-9 and the EPDS [32].

In the postnatal period, the prevalence of suicidal variation has varied from 4% in Nepal to 8% in South Africa [9, 31]. In South African women three months after delivery, experiencing food insecurity was associated with higher likelihood of probably depression (adjusted risk ratio [RR] =1.05, p<.05) and suicidality (adjusted RR = 1.15, p<.05) [9].

Health care seeking during pregnancy among depressed women
Women who are depressed during pregnancy do not often seek treatment for their depression [34]. This may be in part due to the scarcity of mental health services in LMICs [35]. As mental health conditions are stigmatized in many LMICs [36], the desire to acknowledge or seek treatment may also be culturally sensitive. There are several reports that depressed women tend to express their symptoms somatically in non-Western settings [37]. From a clinical standpoint, physicians in these settings should be sensitized to diagnosing/detecting women who present with somatic symptoms. Migrant women from non-Western cultures have been observed to be more reluctant to discuss mental problems outside the household [38]. Furthermore, pharmaceutical treatment during the pregnancy may be undesirable to women.

Beyond care for depression, depressed mothers may be less likely to seek prenatal care [39]. One Taiwanese study found that within a sample of women with a depressive disorder within two years of their delivery, those that had seven or fewer prenatal visits were at approximately a four-fold five-fold and two-fold higher risk for low birthweight (LBW), preterm birth (PTB), and small-for-gestational age (SGA), respectively [40].

Stress Pathways Linking Maternal Depression with Fetal and Child Growth and Development

Depression may be considered an expression of psychosocial stress, and research suggests several potential pathways linking chronic stress to negative perinatal outcomes. The effects of prenatal depression may result from both physiological changes in the mother (i.e. altered maternal hypo-pituitary axis [HPA] and catecholamine function; early evidence on epigenetics) that affect the developing fetus directly as well as stress-related health behaviors that impact the infant [41, 42]. In utero and postnatal period when the fetus is developing at an extraordinary rate, environmental stressors such as experience of depressive symptoms can have an especially pronounced impact [43]. Given that women are the primary caretakers of infants and children
globally [44], and stress associated with antenatal depression and anxiety tend to endure across
the prenatal and postnatal periods [45, 46], depression and anxiety may have a cumulative impact
in the postnatal period when maternal-child interactions are critical for child growth and
development [4, 47]. Although measurement of stress in pregnancy may differ and results may
depend on variation in the response to stressful events and interactions with other factors that
modify it (e.g. underlying anxiety as well as support and coping mechanisms)[48], we
summarize what is known about impacts of maternal stress on fetal and infant growth and
development.

During fetal development, growing evidence suggests that maternal stress and depression
affect nutrition, maternal-fetal communication [49], and may result in neurobehavioral
dysregulation [50]. One study showed that fetuses of depressed compared to non-depressed
mothers had elevated baseline heart rates, had attenuated response to induced vibroacoustic
stimulation, and longer recovery time to return to baseline heart rates [51]. Another similar study
did not find differences at baseline but showed increased heart rate reactivity in fetuses of
depressed mothers compared to both non-depressed women and women with anxiety disorders
when mothers were exposed to a standardized laboratory challenge paradigm [52]. In terms of
fetal activity, fetuses of women with high levels of depressive symptoms have been found to be
more active between the 5th and 7th months of pregnancy [53]. Maternal cortisol levels may in
part mediate the relation between maternal prenatal depression and fetal weight; fetuses of
mothers with elevated maternal cortisol levels had approximately 13 times higher odds of having
fetuses with below average estimated fetal weight [54]. Dysregulation of cortisol is additionally
expected to adversely affect the mother and child through cardiometabolic (e.g., elevated
cholesterol) and inflammatory (e.g., elevated cytokines) responses that may increase risk of
preterm birth [42].

The effects of exposure to cortisol in utero appear to carry over into the postnatal period
for infants. Mothers with higher urinary cortisol levels at 20 weeks of gestation reported higher
depressive symptoms; their fetuses had smaller head circumference, abdominal circumference
biparietal diameter and fetal weight; and after birth, their newborns persisted to have indicators
of growth restriction [55]. It has also been suggested that this neurobehavioral dysregulation
developed prenatally subsequently interacts with depressed mothers’ poor interaction styles,
potentially compounding growth and developmental problems over time [50]. Among infants of
depressed mothers, studies have found elevated cortisol and norepinephrine levels like their
mothers [54, 56] and greater relative right frontal EEG symmetry [54], which is associated with
high cortisol levels in infants [57]. Poorer performance on the Brazelton assessment
(administered within the first day after birth) has been observed in newborns of depressed
mothers, on a number of assessments including irritability, less activity and interest, lower
endurance and robustness, as well as lower orientation and motor scores.[58]

Maternal stress may also have physiological effects leading to PTB, including (1) increases
in corticotrophin-releasing hormone (CRH) caused by stress leading to upregulation of
inflammatory cytokine release that stimulates myometrial contractions leading to preterm labor,
(2) stress-related down regulation of functions of T and B lymphocytes that increase
susceptibility to infections that act as co-factors triggering PTB, and (3) stimulation of a low-
grade inflammation reflected in increased levels of cytokines and C-reactive protein caused by
chronic stress.[59]
Although research on epigenetic mechanisms linking in utero maternal stress to fetal DNA methylation changes is in its infancy, the effects of depression and anxiety in pregnancy on epigenetic changes is one potential pathway through which pregnancy outcomes may be affected.[60] Social stressors such as intimate partner violence [61], psychological stress [62], such as in response to natural disaster [63] or post-traumatic stress disorder [64] have shown differential methylation in CpG sites. Likewise, infants of depressed mothers have shown differential methylation of CpG sites compared to unexposed infants.[65] However evidence is mixed, with not all studies finding such an association.[66]

Maternal depression, pregnancy and birth outcomes

Several recent reviews summarize the impact of stress and symptoms of depression and anxiety during pregnancy and birth outcomes. Grote et al pooled 29 research studies on the impact of depressive symptoms and depression in pregnancy and birth outcomes including PTB, LBW and intrauterine growth restriction (IUGR).[67] Maternal depressive symptoms predicted between a 39-49% higher risk of these three outcomes in studies with a categorical maternal depression/depressive symptom variable.[67] Weaker non-significant or marginally significant effects were observed for a small number of studies with continuous depression measures for these same outcomes. [67] Of the 29 studies only three were conducted in LMICs, all of which tended to show relatively strong relationships. Prenatal psychiatric morbidity, comparing the top to the lower three quartiles of the General Health Questionnaire (GHQ), was associated with a 3.5 times higher likelihood of LBW in India [68]. Maternal antenatal depression was associated with 2.1 times higher risk of LBW in Pakistan.[69] In Brazil, the associations (RRs) of antenatal
maternal depressive symptoms with PTB, LBW, and IUGR were 2.3, 2.0, and 1.6, respectively.[70]

Another recent meta-analysis conducted by Grigoriadis et al (2013) found prenatal maternal depression or depressive symptoms significantly associated with 37% higher odds of premature delivery, but showed a non-significant association with LBW, except among studies conducted with low socio-economic groups [71]. Only two studies included in the review were conducted in LMICs (one of the two in Hong Kong, resembling more closely a high-income economy). The study conducted in a low-income setting, in Pakistan, reported significant associations between maternal depressive symptoms with PTB, LBW, lower mean APGAR scores, and obstetric complications[72]. Although that study lacked sample size to control for potential confounders, strong associations were reported.

Accortt et al (2015) also published a review focused on prenatal depression diagnosis or depressive symptoms and PTB or LBW [73]. It included both observational studies and case-control studies, but did not pool results in a formal meta-analysis. Authors reported the proportion of studies with significant results for each outcome, concluding that evidence exists for a stronger relationship between preterm depressive symptoms and LBW (and birthweight) than with PTB (and gestational age). However, similar to the other reviews, few studies were conducted in LMICs[73].

Another meta-analysis of prospective cohort studies by Ding et al published in 2014 focused on the same outcomes, PTB and LBW, but specifically studied maternal antenatal symptoms of anxiety and anxiety disorder as the exposure of interest.[74] Based on 9 and 6 studies included in their meta-analyses, they reported overall significant increased risks of 1.5 and 1.8 for PTB and LBW births for mothers with prenatal anxiety, respectively. However, no studies with PTB as an
outcome included in the meta-analysis were from LMICs. For the studies with LBW as an outcome, the association appeared stronger in the two Asian countries included than the three studies conducted in Europe [74].

Finally, Bussières et al in a 2015 meta-analysis of 88 studies report associations between maternal prenatal stress – e.g. including subjective stress, anxiety disorder, pregnancy-related anxiety, cortisol, life events, exposure to disaster, etc. – and infant birthweight and gestational age.[75] Type of stress appeared to be related to the magnitude of the association, with strongest effects observed for pregnancy-related anxiety, compared to other stress indicators. Both high risk samples and studies conducted outside of Europe and North America also showed larger effect sizes. Only four of 88 studies were from LMICs, indicating an apparent paucity of research from those settings. [75]

Littleton et al 2009, conducted a review of 35 studies focusing birth outcomes and four categories of stressors: number of stressful events, hassles or minor stressors, perceived stress, and appraised stressful life events.[76] Although associations were small in magnitude, authors found significant associations between psychosocial stress in pregnancy and birth outcomes such as LBW and lower neonatal weight. Like Bussières et al, they noted that the strength of the associations differed depending on the type of stress, e.g. minor stressors were more weakly associated with negative outcomes than major stressors. [76] Apart from these reviews, two studies in Africa (Ethiopia and Ghana) found that antenatal depression was associated with higher risk for prolonged labor [26, 77].

Maternal depression and early parenting practices

In addition to poor maternal-child interactions, aspects of parenting such as health-care seeking and parenting may also be affected by maternal depression [78]. The impact of
depression on specific parenting practices beyond feeding behaviors is not well-described in LMIC settings, and evidence for this pathway largely comes from HIC. Reviews of maternal depression and early parenting practices in HIC identified the domains of infant feeding, sleep routines, preventive health care such as well-child visits and vaccinations, and negative coercive behaviors [78, 79].

Of parenting practices, breastfeeding has been best studied in relation to depressive symptoms in LMICs. In a study of mothers in rural Pakistan, depressed mothers breastfed for a shorter duration than non-depressed mothers [80]. Authors suggest that this association between depression and truncated breastfeeding may be mediated by perceived insufficient milk [80]. Another study in rural Ethiopia found that depressed mothers delayed initiation of breastfeeding compared with non-depressed mothers [26]. Similarly, in U.S. studies, depressed mothers were less likely to continue breastfeeding 2-4 months after delivery [81], and an international meta-analysis of mothers largely in high-income countries found that maternal depression was associated with a lower odds of breast feeding initiation [71]. Another study found that mothers with more symptoms of depression, anxiety and stress was related to non-responsive feeding in low-income US children [82]. Although there is mixed evidence regarding whether mothers with depression engage in unsafe parenting practices (e.g., mothers with depression were no more or less likely to put their to sleep in an unsafe position or fail to lower the water temperature during bathing), practices to encourage child development may be compromised among depressed mothers [81]. After adjusting for demographics and socioeconomic factors, depressed mothers in the U.S. were less likely to engage in any of the four examined practices related to child development: setting routines, showing their infant a
book daily, talking to their infant while working, and playing with their infant daily [81]. We are not aware of comparable studies in LMICs.

Health-care seeking for the child – both preventive and curative – is another important parenting responsibility that often falls on mothers. In the U.S., there is evidence of increased use of acute care and decreased vaccination in children under 3 years for children of depressed mothers [83]. However, a study of children under the age of two in Brazil did not find an association with maternal depressive symptoms and time to completion of recommended vaccination.[84] Other research showed an increased odds of a “problem visit” to the hospital among infants <5 months of depressed mothers, but no significant association with well-child visits [85]. Although preventive care and vaccination may be particularly relevant in LMICs—where the burden of infectious disease remains high—the lack of well-developed health care systems in LMICs may preclude the relevance of unnecessary emergency department visits/acute care. Other poor parenting practices associated with maternal depression in HICs [78, 86] such as reduced odds of car seat usage, storage of medicines, and water heat regulation may similarly be less relevant among the poor and lower-middle class in many LMIC settings. Finally, it is important to acknowledge that no population within or outside LMICs is homogenous, and there may be different concerns in different communities and cultural groups. In a multi-ethnic longitudinal study of child behavior problems in the U.S., maternal depression significantly and negatively impacted parental provision of emotional support and cognitive stimulation among White and Latino children; among Black/African-American children, there was no relation between maternal depression and parenting practices [87].

Negative coercive behaviors have included a broad range of practices such as hitting, using an unpleasant voice, and expressing hostility toward the child [79]. In a review of 46
studies, Lovejoy and colleagues reported that maternal depression was strongly related to negative coercive behaviors, especially among mothers who were currently depressed [79], and the link between maternal depression and harsh or physical disciplining has also been confirmed in more recent studies in the U.S. [86, 88]. Another study among U.S. families reported that although there is a strong cross-sectional relation between maternal depression and negative parenting behaviors such as physical assault and psychological aggression, there was no evidence that a change in maternal depression (i.e., a new episode of depression) negatively impacted parenting behavior [89].

Postpartum depressive symptoms and child growth

Physical growth is considered one of the best indicators of child health status, with stunting (short stature-for-age relative to reference growth curves) reflecting more chronic nutritional and health insults, while other indicators such as wasting reflect more acute undernutrition or disease. [90] A meta-analytic review of studies in LMICs mostly including children up to the age of two years found maternal depression or depressive symptoms associated with approximately a 40% and 50% higher overall estimated risk of child stunting and underweight, respectively.[91] Inconsistencies across studies may be attributable to either cultural/contextual differences or heterogeneity in the measurement of depressive symptoms and anthropometric indices, age of the child and time to follow-up. For stunting, half of the 12 studies found significant impact of maternal depression or depressive symptoms, while the other half of the studies did not.[91] Interestingly, all four of the studies in the review that were conducted in South Asia (India, Bangladesh, and Pakistan) found positive effects of postpartum depression/depressive symptoms on stunting [69, 92-94]. While with the exception of one Nigerian study [95], no other study from the African continent (including Ethiopia, South Africa
and Malawi) confirmed this association with stunting.[93, 96, 97] Among studies published since that review, Nasreen et al documented a relation between antenatal but not postnatal depressive symptoms with stunting in Bangladeshi infants at 6-8 months of age.[98]

Regarding underweight during the first year of life, four of the six South Asian studies (conducted in India and Pakistan) in the review showed significant associations with maternal depression or depressive symptoms [69, 92, 99, 100], though no association was observed in any of the studies from the African continent [93, 95-97]. Supporting the South Asian findings, a subsequent Bangladeshi study reported maternal depressive symptoms at 2-3 months postpartum were associated with underweight in infants 6 to 8 months old.[98] Some of the strongest effect estimates have been observed in South Asia; in Pakistan a community-based study found approximately a three-fold higher risk for underweight and stunting at six and twelve month follow-ups (OR range 2.8-3.5).[69]

The particularly strong associations between maternal depression and child growth failure in South Asia has led some authors to conclude that maternal depression particularly impacts infant growth in Asia compared to in Africa or South America [101-103]. Reasons for these differences have been put forward; Harpham et al 2005 suggested that women in Asia may be disempowered and face particular social pressure, such that depressed mothers in these contexts have more difficulty in making sure a child is adequately nourished.[93] Stewart conjectured that the ‘Asian Enigma’, of higher rates of malnutrition on the Indian subcontinent than would be predicted from food availability, might be in part due to maternal mental health.[101]

Studies of maternal depressive symptoms and maternal and child mortality

Very few studies have empirically examined the association between depressive symptoms among mothers and subsequent mortality risk among mothers or children in LMICs or
elsewhere. Even HIC studies of mortality related to mental health, which have mostly focused on schizophrenia rather than depression, have been generally limited by weak study design and lack of statistical power [104]. With respect to antenatal depression, neither of the two prospective cohort studies conducted on this topic in LMICs—specifically, rural Ghana [77] or rural Ethiopia [26]—found an association between antenatal depression and neonatal mortality, although the Ethiopian study may have been underpowered to detect an association. Maternal depressive symptoms and stillbirth were not statistically significantly associated among adolescent mothers in urban Brazil [105]. Similarly, in the high-income setting of the Netherlands, antenatal depression was not associated with child loss defined as miscarriages, fetal deaths, and neonatal deaths [106]. A study conducted in Taiwan which examined mortality of children up to age 5 years found that children were at a 1.47 times greater risk of death if their mother was depressed [107]. In contrast, in a cohort of Ghanaian mothers probable postnatal depression was found to be highly and significantly associated with infant mortality, with an adjusted mortality rate ratio of 2.86 (95% CI: 1.58 to 5.19) [108]. Collectively, these findings suggest that postnatal depression may be more critical for child survival outcomes than antenatal depression.

Strategies to reduce maternal depressive symptoms in LMICs

A dearth of funding exists for mental health services in LMICs, impacting both community and human resources, with the poorest countries tending to allocate the smallest proportion of their overall health budgets for mental health problems [35]. Part of the inability to overcome barriers to improving mental health services in low-resource settings may be due to lack of mental health leadership in LMICs and the lack of a population-oriented perspective [109]. Regardless of the cause, this treatment gap in which globally the most socio-economically needy populations have the least access to care for mental health conditions [35, 110] has
important implications for the prevention and treatment of perinatal depression in these settings. Recognition of this situation has led to calls for an increase the involvement of a range of appropriately trained non-specialist providers [111].

Research suggests interventions for common perinatal mental disorders in LMICs using supervised non-specialist health and community workers can be feasible and effective [112]. One program, an effective evidence-based intervention based on Cognitive Behavior Therapy implemented in the late prenatal and early postpartum period, the Thinking Health Program (THP), more than halved maternal depression and the effects were sustained until at least a year postpartum [113]. THP has been adopted as model program by the WHO as an effective low-intensity psychological intervention for perinatal depression in LMICs [114]. A meta-analysis of thirteen randomized trials summarized the effects of maternal mental health interventions on maternal depressive symptoms, mother-infant relationships and infant developmental outcomes between three weeks to three years after delivery [112]. The pooled intervention effect suggested on average approximately a 0.4 standardized effect size reduction in maternal depressive symptom score attributable to the intervention. Regarding the content of these interventions, four trials focused directly on symptoms of depression, while others centered on topics such as parenting education and child development. Notably, almost all of studies reviewed were conducted with low-income participants [112].

Another review focused on the content of nine psychological interventions for perinatal depression delivered by non-specialist health workers in LMICs [115]. The authors highlighted key features of such successful interventions in LMICs included that they: were community based, involved other family members in addition to the mother, extended from the prenatal to postnatal period, and addressed larger psychosocial issues (e.g. empowerment, domestic
violence). [115] Further study on the type of psychosocial intervention that may be most effective for common perinatal mental health disorders in LMICs in these settings was carried out in a pooled analysis by Clarke et al, showing significantly larger effect size associated with psychological interventions compared to health promotion interventions [116]. Others have suggested that while interventions vary in their approach and level of training of personnel implementing the programs, one crosscutting finding is that social support provided to participants at home has been a successful strategy across diverse studies [117]. This finding is supported by research from a study of largely multi-ethnic immigrant women the US suggesting that enhanced social support and social networks are independently inversely associated with postpartum depressive symptoms [118].

Future directions and recommended approaches

Regarding the importance of different types of psychosocial factors, more research is needed to understand their relative impact in specific socio-cultural settings, as these may vary. A pooled analysis, including both LMICs and HICs, highlighted that among longitudinal studies partner violence during pregnancy was associated with a three-fold higher risk of high levels of postnatal depressive symptoms. [119] Though a body of randomized trials has now evaluated the effectiveness of using lay or non-mental health workers to address mental health disorders in LMICs [120, 121], Mutumba et al noted that lay health worker interventions have almost exclusively focused on secondary or tertiary prevention, rather than taking a more population approach to prevention [120], which is has been suggested as the most sustainable approach to reducing the burden of mental disorders.

Because of its interconnectedness to other disorders, addressing mental health issues (like maternal depression) is key to addressing a wide range of physical health disorders and mental
health awareness needs to be integrated into all aspects of delivery of healthcare generally [122]. A promising approach to improve perinatal depression in LMICs could be through the integration of services for these women into maternal and child health programs [123, 124]. Use of non-specialized health care workers, e.g. in the context of an integrated CBT intervention, demonstrated success was enhanced through their training in: emphatic listening, family engagement, guided discovery by use of pictures, behavioral activation and through problem solving [125].

An integrated approach of mental health and primary care services has the advantage of providing a holistic approach towards treating the patient while reducing stigma associated with mental health specialist care, and may foster long-term relationships with families that can improve the care of the family and perhaps can also have spillover effects, by predisposing mothers to be receptive to other maternal and child health programs [124]. Furthermore, because of the population-based nature of many such programs, mental health initiatives integrated into maternal and child health programs may facilitate access to rural and hard to reach populations compared to other strategies [124]. Some necessary steps in order to integrate maternal mental health with child health programs include improving collaboration between sectors and bringing mental health screening and other services into routine primary healthcare [123]. Regarding lay health workers, research is needed to develop a larger number of effective treatments that they can deliver, which relates to a need for increased capacity building for mental health research, education and training in LMICs [123].

Conflicts of interest: None
Practice Points

- Maternal depression is an urgent global health priority in LMICs that adversely affects both maternal and child health
- Depressed mothers are at risk for self-harm due to suicidal ideation
- Prenatal depressive symptoms may impact the developing infant through fetal dysregulation and lead to adverse birth outcomes
- Postpartum depressive symptoms can lead to poor parenting and child developmental problems
- Interventions for perinatal mental health implemented by non-specialized healthworkers can be effective in LMICs

Research Agenda

- Additional study of consequences of maternal depression on mother’s health and well-being in LMICs
- Causes for regional variation on maternal depression and child growth
- Effect of maternal depression on specific maternal behaviors related to child care beyond breastfeeding in LMICs
- Strategies to screen and manage depression among new mothers in LMICs
- Implementation science research to integrate mental health programs into primary care
REFERENCES

32. Zhong Q-Y, Gelaye B, Rondon MB, Sánchez SE, Simon GE, Henderson DC, et al. Using the Patient Health Questionnaire (PHQ-9) and the Edinburgh Postnatal Depression Scale...
(EPDS) to assess suicidal ideation among pregnant women in Lima, Peru. Archives of Women's Mental Health 2014:1-10.

44. OECD. Balancing paid work, unpaid work and leisure. In.

84. Surkan PJ, Kiihl SF, Kozuki N, Vieira LM. Social support of low-income Brazilian mothers related to time to completion of childhood vaccinations. Hum Vaccin Immunother 2012, 8:596-603.

89. Turney K. Labored love: Examining the link between maternal depression and parenting behaviors. *Social Science Research* 2011, **40**:399-415.

102. Hanlon C. Maternal depression in low- and middle-income countries. *Int Health* 2013;5:4-5.

HIGHLIGHTS

- Perinatal mental health is an urgent issue in low- and middle-income countries
- It is a fundamental upstream cause of variety of adverse maternal and child outcomes
- Integration of mental and primary healthcare is needed in low-resource settings
Practice Points

Practice Points

- Maternal depression is an urgent global health priority in LMICs that adversely affects both maternal and child health
- Depressed mothers are at risk for self-harm due to suicidal ideation
- Prenatal depressive symptoms may impact the developing infant through fetal dysregulation and lead to adverse birth outcomes
- Postpartum depressive symptoms can lead to poor parenting and child developmental problems
- Interventions for perinatal mental health implemented by non-specialized healthworkers can be effective in LMICs
Research Agenda

- Additional study of consequences of maternal depression on mother’s health and well-being in LMICs
- Causes for regional variation on maternal depression and child growth
- Effect of maternal depression on specific maternal behaviors related to child care beyond breastfeeding in LMICs
- Strategies to screen and manage depression among new mothers in LMICs
- Implementation science research to integrate mental health programs into primary care
Multiple Choice Questions

Question 1
Commonly used approaches to measure perinatal depression in large research studies in LMICs include:
(a) Edinburgh Postnatal Depression Scale
(b) Patient Health Questionnaire
(c) Psychiatrist’ diagnosis
(d) General Health Questionnaire
(e) Depression Scale for Low Income Women

Answers to Question 1
(a) T (b) T (c) F (d) T (e) F

Explanations for answers to Question 1
(a) The Edinburgh Postnatal Depression Scale is one of the most common measures used for postnatal depression.
(b) Patient Health Questionnaire is a general mental health questionnaire that is used to assess symptoms of common mental disorders, including depressive symptoms in women around the time of pregnancy.
(c) Psychiatric diagnosis is not commonly employed in large research studies because of cost. Instead, survey questionnaires of depressive symptoms are more common due to feasibility of implementation at scale.
(d) The General Health Questionnaire is a general mental health questionnaire that is used to assess depressive symptoms in women during pregnancy and in the postnatal period.
(e) There is no such questionnaire.

Question 2
Risk factors for perinatal depression in low- and middle-income settings include:
(a) There are no known risk factors
(b) Exposure to intimate partner violence
(c) High family income
(d) Previous history of depression
(e) Poor family relationships

Answers to Question 2
(a) F (b) T (c) F (d) T (e) T

Explanations for answers to Question 2
(a) Maternal depression is not randomly distributed in the population. Several psychosocial and economic correlates have been identified across multiple settings.
(b) Exposure to intimate partner violence is a risk factor for higher depressive symptoms in both the prenatal and postnatal period.
(c) Evidence indicates that women with fewer economic resources are at higher risk for depression or depressive symptoms.
Question 3
There is research suggesting that the following are associated with perinatal depression:
(a) Infant low birthweight
(b) Preterm infant birth
(c) Decrease in breastfeeding initiation
(d) Child stunting
(e) Practices and behaviors compromising child development

Answers to Question 3
(a) T (b) T (c) T (d) T (e) T

Explanations for answers to Question 3:
(a) See a meta-analytic reviews: Grote et al 2010 for prenatal depression; Grigoriadis et al 2013 reported a relation only among low-socio-economic groups.
(b) See the meta-analytic review by Grigoriadis et al 2013
(c) See the meta-analytic review by Grigoriadis et al 2013
(d) See the meta-analytic review by Surkan et al 2012 in LMICs
(e) Much of this work has been conducted in high-income settings. There evidence pointing to suboptimal parenting practices among mothers with high levels of depressive symptoms (see reviews: Field 2010 and Lovejoy et al 2000; McLearn et al. 2006).

Question 4
The following statements are true regarding interventions to reduce perinatal depression
(a) Employing non-specialists health workers is considered a feasible strategy to address maternal depression
(b) Cognitive behavioral therapy is not effective at reducing maternal depression
(c) Health promotion is as effective as psychological intervention
(d) Involving other family members is a key feature of effective interventions
(e) Interventions cannot target upstream factors such as empowerment

Answers to Question 4
(a) T (b) F (c) F (d) T (e) F

Explanations for answers to Question 4:
(a) Recent research such as the Thinking Healthy Program in Pakistan (See Rahman et al 2008) has highlighted the feasibility of successfully using non-specialist health workers in low-resource settings; also see Chowdhary et al 2014.
(b) Cognitive behavioral therapy is indicated for reducing maternal depressive symptoms
(c) See Clarke et al for a meta-analysis based on 10 studies.
(d) Based on guidelines from Zafar et al 2014, family engagement and assuring their support is important to the success of such interventions.
(e) Although it may be costly and difficult to change cultural norms to improve empowerment, such upstream factors may be key to ultimately improving peri-natal depressive symptoms.