Formation of Three-Dimensional Structures in the Hemisphere-Cylinder

S. Le Clainche∗
Universidad Politécnica de Madrid, 28040 Madrid, Spain
D. Rodríguez†
Universidade Federal Fluminense, 24220-900 Niterói - RJ, Brazil
V. Theofilis‡
University of Liverpool, Liverpool L69 3GH, United Kingdom
and
J. Soria§
Monash University, Clayton, Victoria 3800, Australia

DOI: 10.2514/1.J055011

This paper presents an investigation of the origin and evolution of the complex flow pattern on a hemisphere-cylinder at separated flow conditions. Three-dimensional numerical simulations have been performed for a range of Reynolds numbers and angles of attack. A critical point theory has been used to analyze the flowfields. This has yielded, for the first time for this geometry, a bifurcation diagram that classifies the different flow topology regimes as a function of the Reynolds number and angle of attack. A complete characterization of the origin and evolution of the complex structural patterns of this geometry is documented. For the higher Reynolds number and angle of attack, a structurally stable topology is found that is associated with the pattern of the horn vortices, usually found on this geometry in a range from low to high Reynolds numbers and from incompressible to compressible regimes. Surface critical points and surface and volume streamlines describe the main flow structures and their strong dependence with the flow conditions.

I. Introduction

Flow separation over inclined axisymmetric bodies such as the hemisphere-cylinder (HC) is usually associated with problems of flight stability and control. Due to its numerous applications, such as in aircraft fuselages, missiles, and submarines, the study of the flow around the hemisphere-cylinder geometry, at both zero and nonzero angles of attack (AOAs), has been the subject of several experimental and computational investigations. The main goal has been to understand how flow separation affects aerodynamic properties: particularly, the forces and moments on the hemisphere-cylinder body.

The importance of the prediction and control of three-dimensional separation relies on the highly undesirable effects that it can cause on the aerodynamic characteristic and structural loads of the object. Massive flow separation leads to stall conditions on lifting bodies to the aerodynamic characteristic and structural loads of the object. Massive flow separation leads to stall conditions on lifting bodies to the aerodynamic characteristic and structural loads of the object. Massive flow separation leads to stall conditions on lifting bodies to the aerodynamic characteristic and structural loads of the object. Massive flow separation leads to stall conditions on lifting bodies to the aerodynamic characteristic and structural loads of the object. Massive flow separation leads to stall conditions on lifting bodies to the aerodynamic characteristic and structural loads of the object.

The high AOA attained by these vehicles lead to massive three-dimensional separation; hence, the methods used traditionally in aircraft industry, mainly based on potential flow, were not adequate. It was then, when the flow topology laws (introduced and expanded successively by Legendre [3], Lighthill [4], Perry and Fairlie [5], Dallman [6], Tobak and Peake [7], and Perry and Chong [8]) became useful in the analysis of the flow structures in three-dimensional separated flows to enable the deduction of mean flow characteristics. These laws provided a theoretical foundation for the analysis and description of the flow patterns in situations where lack of resolution (both experimental and numerical) might cause inaccuracies in the study of these kindd of complex flows.

Hsieh [9-11] was the first to study the flow around a hemisphere-cylinder in low supersonic flow. The author was able to identify three different separation patterns as a function of the Reynolds number, Mach number, and AOA:

1) The first pattern is crossflow separation, resulting from the crossflow pressure gradient (i.e., a direct consequence of AOA) that causes a pair of leeside vortex sheets that wind over themselves forming the leeward vortices.
2) The second pattern is the nose separation bubble (SB), caused by the meridional pressure gradient.
3) The third pattern are the secondary separation lines defining the secondary leeward vortices that appear when the crossflow pressure gradient is intense enough.
Next, Fairlie [12] studied prolate-spheroid and hemisphere-cylinder geometries in incompressible flow at \(Re \approx 1.5 \times 10^6 \) and high AOs. He found that, when the AOA was larger than 17.5 deg, the horn vortices emerged from the body surface: two spiral nodes, symmetrically located around the leeward plane of symmetry, gave rise to a pair of counter-rotating vortices that were shed downstream.

Further subsequent investigations were carried out to study the three-dimensional complex topology patterns developed above the body surface, based on critical point theory. Based on this theory, Tobak and Peake [7,13,14] were the first to identify and classify critical points and separation lines on the hemisphere-cylinder body surface in compressible flows. They pointed out the existence of two unstable foci, associated with the emergence of the horn vortices; a saddle and a node point; related to a separation bubble; as well as a reattachment line and primary and secondary lines of separation, related to the leeward vortices. Additionally, this study found that compressibility altered quantitatively the flow characteristics, but that the topological patterns on the surface of the hemisphere-cylinder were equivalent between compressible and incompressible regimes. Supplementary to this hypothesis, Bippes and Turk [15] studied the influence of the Mach number, Reynolds number, and AOA for the same geometry and found that the structural flow patterns in stable laminar flow were very similar to the ones found in turbulent separated flow.

A sequence of experiments performed in the early 1980s using surface hot-film sensors [16,17] and laser Doppler velocimetry [18,19] studied in more detail these leeward vortices (previously detected by Hsieh [9]), far from the body nose. It was postulated that the contribution of substantial crossflow and heavily inflectional profiles of the boundary layer on the leeside caused the development of vortex sheets that ultimately formed the counter-rotating leeward vortices, which were not able to remain laminar for large Reynolds number (transitioning to a turbulent regime). In addition, Hsieh and Wang [20] provided numerical evidence in support of this flow pattern.

Several authors continued the work and contributed with their research. Mead and Schiff [21] studied surface pressure distributions and their variations in the separation bubble region in supersonic flows. Ying et al. [22] suggested that the horn vortices might appear in an asymmetric fashion, but Hoang et al. [23], who studied experimentally the influence of the Reynolds number and AOA on these vortex pair in incompressible flows, did not find evidence of such asymmetry. In addition, these latter authors found that the nose structures and the separation lines, which gave rise to the vortical structures over the aft part of the body, were not connected.

More recently, Gross et al. [24] performed direct numerical simulations and experiments at moderate Reynolds numbers (\(Re_D = 2000 \) and \(Re_D = 5000 \)) and moderate-to-high incidence. At AOA = 10 deg, they determined the presence of long separation bubble shedding structures that were primarily two-dimensional (2-D), suggesting that the dominant mechanism of such flow oscillations was an inviscid linear shear-layer instability on the symmetry plane. However, the geometry studied by these authors was different in the rear part of the body to the classic HC geometry studied in the literature mentioned previously. They studied the so-called DARPA subbof hull geometry, for which the rear part was extended smoothly to form a fuselaged tail. On the contrary, the HC body ended in a plane cylinder base, constituting a bluff body and then giving rise to a wide wake. As found by Gross et al. [24], flow oscillations in three-dimensional separated flows might be dominated by an inflectional instability and become unstable at relatively small Reynolds numbers [25]. However, the three-dimensional nature of the flow around a hemisphere-cylinder prevented, in principle, the use of traditional linear stability analysis based on one-dimensional velocity profiles. Methodologies for global instability analysis needed to be employed. On the other hand, large-scale coherent structures in turbulent flows were often reminiscent of flow structures generated by linear instabilities, especially in mixing layers flows (e.g., Crow and Champagne [26], Gaster et al. [27], Reynolds and Hussain [28], etc.).

Coming back to the HC, Bohorquez et al. [29] and Sammiguel-Rojas et al. [30] performed numerical simulations at AOA = 0 deg, finding bifurcations of the linear global stability modes on the wake as a function of the Reynolds number and the aspect ratio (\(AR \)) of the body (length/diameter). A global mode was found to be associated with the instability of the counter-rotating vortex pair forming the three-dimensional wake, with the associated nondimensional frequency of \(St \approx 0.11 \). Similar frequencies were found by many authors that studied flows past bluff bodies [31,32]. This result was in good agreement with the standard weakly nonlinear theory for Hopf bifurcation [33]. Finally, Le Clainche et al. [34], who studied the HC at high AOs and low Reynolds numbers, also found the same frequency related with the wake oscillations. These authors found that the onset of unsteadiness in the HC was due to an instability in the three-dimensional wake with a frequency of \(St \approx 0.11 \). The fluctuations commenced close to the cylinder base and were convected downstream. This effect suggested that the base of the cylinder played a fundamental role in the primary instability of this flow. However, to totally understand this behavior, the mechanism of flow separation, and its connection with the horn vortices, it was necessary to study more in depth the origin and evolution of the complex structural patterns characterizing the geometry.

In the past, topology patterns have been analyzed over different configurations on a hemisphere-cylinder at high AOs in compressible and incompressible regimes employing both experimental and numerical techniques at high Reynolds numbers. However, the origin of the complex topological patterns is still an open question. These patterns evolved from laminar regimes starting from very low values of Reynolds numbers until they achieved the more classical configuration presented in the literature [14].

This paper explains the origin and evolution of the critical points on the surface of a hemisphere-cylinder, and it details the analysis of three-dimensional topological patterns that precede the formation of the three well-known topology patterns found in this geometry: the separation bubble, the horn vortices, and the leeward vortices. For the first time, a bifurcation diagram that classifies the different flow topology regimes as functions of the Reynolds number and AOA is presented for this geometry.

The paper is organized as follows: Sec. II defines the geometry and the numerical code, and it demonstrates the convergence of the presented results. Section III reviews in detail the critical point theory. Section IV introduces and classifies the results in the bifurcation diagram. Section V shows the results. Finally, a brief discussion and the main conclusions are presented in Sec. VI.

II. Model Description and Numerical Simulations

Three-dimensional numerical simulations are performed to study the flow around a hemisphere-cylinder with an aspect ratio of \(AR = L/D \), where \(L \) and \(D \) are the length and diameter of the body, respectively. In addition, the angle \(\Phi \) is defined in the azimuthal direction and is measured positive in the clockwise direction. The value of this angle corresponds to zero on the symmetry plane of the body (see Fig. 1b).

Flow topology and structural analysis are carried out for several combinations of AOA and Reynolds number (\(Re \)), which is defined as \(Re = U_D D/\nu \), where \(U_\infty \) is the freestream velocity and \(\nu \) represents the kinematic viscosity. Figure 1 shows the model and the parameters defined for the analysis. More details about the geometry can be found in the work by Le Clainche [35].

A. Numerical Simulations

Three-dimensional numerical simulations are carried out for Reynolds numbers ranging from 100 to 1000 and AOs from 0 to 30 deg in a HC geometry with \(AR = 8 \). Table 1 summarizes the numerical simulations performed.

1. Numerical Code

The numerical code used for the simulations is OpenFOAM 2.0, which is an open-source computational fluid dynamics software.\(^{4}\)

\(^{4}\)Data available online at http://www.openfoam.com [retrieved 2016].
High-quality results over axisymmetric bodies related to linear stability analysis using this code have been recently reported \cite{29,30,36,37}.

The module employed in OpenFOAM discretizes the incompressible Navier–Stokes equations using a finite volume method. The spatial and temporal discretizations are performed using a central difference scheme (linear interpolation scheme to relate cell center and face center values) for both the convective and diffusive terms and a Crank–Nicholson scheme, respectively, with second-order accuracy in both cases (see work by Le Clainche \cite{35} for further numerical details).

2. Computational Domain and Boundary Conditions

The computational domain is a coaxial cylindrical surface rotated 360 deg (fully three-dimensional) of diameter 20D and length 50D. This length is demonstrated to be sufficient to accurately capture the physics of the problem in the case with AOA = 0 deg \cite{29,30}, and is therefore used for the present study. The mesh employed is generated using the OpenFOAM utility BlockMesh. It is composed of a regular tetrahedral grid. To avoid numerical singularities, the mesh within the sphere region is created following the numerical algorithm that defines a cubic sphere \cite{38}.

No-slip boundary conditions are employed on the body surface and freestream boundary conditions on the far field using $u(x, t) = (U_\infty \cos(\text{AOA}), U_\infty \sin(\text{AOA}), 0)$ in the inlet and sides of the domain (with $U_\infty = 1$) and $p(x, t) = 0$ in the outlet.

3. Study of Convergence and Validation

A mesh containing $\sim 2.8 \times 10^6$ tetrahedral cells is used for the numerical simulations at $Re \geq 350$. Le Clainche et al. \cite{39} showed that the frequency spectrum observed in the velocity field close to the nose region converges for the specific resolution and the numerical error is below 3\% for drag coefficient calculations at $Re = 1000$ and AOA = 20 deg (the most demanding case considered in this analysis). Hsieh and Wang \cite{20} showed that the flow topology patterns found in the hemisphere-cylinder were always present in the flow physics description of this geometry; thus, they could be considered as a robust physical phenomenon. The robustness of this flow pattern led to the identification of the critical points that define the laminar separation bubble, even in cases of limited spatial resolutions. Le Clainche et al. \cite{40} identified the critical points defining the separation bubble at $Re = 1000$ and AOA = 20 deg using the same numerical code and a mesh containing $\sim 10^5$ cells. The small quantitative errors in the location of the critical points did not have the potential to modify the topological description of the flow, and they are considered to be acceptable for the present analysis.

The numerical simulations have been validated with time-resolved particle image velocimetry experiments (presented in work by Le Clainche et al. \cite{39}) and with the literature \cite{29,37}. The drag coefficient of the HC with $\text{AOA} = 2$ is compared with the results obtained by Sanmiguel-Rojas et al. \cite{37} at $Re = 300$ and AOA = 0 deg. The relative error defined as $\varepsilon(\%) = [(C_D - C_{D0})/C_{D0}] \times 100$ (where C_{D0} is the drag coefficient obtained from the literature, and C_D is the drag coefficient obtained in the present simulations) is smaller than 2.5\%. This is considered to be sufficiently small to carry out the structural analysis. The small differences between the present data and the previously published results are most likely due to the different numerical schemes employed in both cases. Sanmiguel-Rojas et al. \cite{37} used a total variation-diminishing (TVD) scheme as spatial discretization to solve the numerical simulations. However, the present authors use a central differencing scheme: in particular, a linear interpolation scheme. TVD schemes are known to be highly dissipative, whereas central differencing schemes are associated with low numerical dissipation and high dispersion. Dissipative effects can reduce the effective Reynolds number, and they could explain the smaller values obtained for the drag coefficient in the present investigation compared to the values obtained in the literature. Nevertheless, this small error ($\sim 2.5\%$) is assumed to be admissible in the results presented herein.

Table 1 Numerical simulations performed on the hemisphere-cylinder with $Re = 8$ (marked X)

<table>
<thead>
<tr>
<th>Reynolds number</th>
<th>AOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>X</td>
</tr>
<tr>
<td>150</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>X</td>
</tr>
</tbody>
</table>

III. Critical Points Theory

Critical point theory is a technique that was introduced sequentially by Legendre \cite{3}, Lighthill \cite{4}, Perry and Fairlie \cite{5}, Dallman \cite{6}, Tobak and Peake \cite{7}, and Perry and Chong \cite{8} to describe the topological features of flow patterns. A critical point is a location in space where the three components of the velocity vector are all simultaneously zero and the streamline slope is undefined. Using Taylor series to expand the flow around the critical points, and only retaining the linear terms, the flow expansion can be represented via the Jacobian matrix J as $\dot{x} = Jx$, where x is the vector representing the spatial coordinates and \dot{x} represents its time derivatives.

The eigenvectors of the Jacobian matrix define the planes of the flow trajectories around the critical points, whereas the eigenvalues λ of the Jacobian matrix satisfy the following equation:

$$\lambda^3 + P\lambda^2 + Q\lambda + R = 0$$

(1)

where P, Q, and R are defined as the trace, the discriminant, and the determinant of J, respectively.

In incompressible flows, the divergence of the velocity field is zero; so, in Eq. (1), $P = 0$ and the critical points are classified according to their location in the Q-R plane: the Q-R chart \cite{41}. The curve solution $T = 27R^2 + 4Q^3$ separates real and complex eigenvalues.

Depending on the nature of the eigenvalues λ, critical points are classified as nodes ($Q > 0$, $T < 0$), foci ($Q > 0$, $T > 0$), saddle
points \((Q < 0) \), and a sequence of borderline cases. Nodal and focal points can be either stable (sink of streamlines) or unstable (source of streamlines), depending on whether the streamlines are attracted toward or repelled from the critical point, respectively. Borderline cases are a mixture of two different critical points (i.e., \(P = 0 \) \(\rightarrow \) node-saddle or \(Q = 0 \) \(\rightarrow \) node-foci/starnode). On a body surface, since the velocity vector is equal to zero, the wall shear stress is used instead for the critical point calculations. Wall streamlines are then called skin-friction lines.

For a body totally immersed in a flow, a set of topological rules has been postulated in the literature [14]. One of these, which is of particular relevance to this work, stated that the number of nodes or foci minus the number of saddles on a three-dimensional body was equal to two [4,42]:

\[
\sum N - \sum S = 2
\]

IV. Topological Bifurcations and Phase Diagram

The results obtained from the numerical simulations for the hemisphere-cylinder with \(\beta R = 8 \) are classified in a topological bifurcation diagram as a function of the Reynolds number and AOA. In the diagram, it is possible to identify steady–unsteady flow and attached–separated flow. Additional classifications are included, depending on the nature of the separation bubble. Figure 2a shows the phases diagram, in which six different regimes are identified for the first time in this work. The flow is steady in the two first regimes, whereas it is unsteady in the other regimes. The diagram also distinguishes two kind of separation topologies based on the type of point of separation that defines the separation bubble (node or saddle): the separation process is known as local (node) or global (saddle) [14]. The regimes are described as follows:

1) Regime I is steady attached flow.

2) Regime II is steady state with local nose separation. The separation bubble is described by a node of separation (local separation), a node of reattachment, and two saddles \(S_1 \) symmetrically positioned with respect to the symmetry plane.

3) Regime III is unsteady attached flow.

4) Regime IV is an unsteady state with local nose separation. The topological description of the nose bubble is analogous to the one in regime II.

5) Regime V is the unsteady state with global separation. The separation bubble is described by a saddle of separation (global separation), a node of reattachment, and two saddles \(S_1 \) and two nodes \(N_1 \), both symmetrically positioned with respect to the symmetry plane. These foci are related to the origin of the nose vortices. When the two foci \(F \) are identified among the surface critical points defining the separation bubble, the vortical pattern that is found in the nose area of the hemisphere-cylinder is called the nose vortex. Based on this definition, the three-dimensional topology pattern leads to distinguishing two subregimes into regime VI:

7) Regime VI.I is when the nose vortices do not emerge from the body surface. This is a previous step to the formation of the horn vortices: a transitional regime.

8) Regime VI.II is when the nose vortices emerge from the body surface. It is then when these nose vortices are called horn vortices. The present phases diagram is representative for many configurations of the hemisphere-cylinder. The topology patterns found in regime VI are also found in the incompressible regime at moderate to high Reynolds numbers [14] and in the compressible regime at high Reynolds numbers [15].

![Fig. 2](http://arc.aiaa.org/doi/abs/10.2514/1.J055011)
Fig. 2 Representation of a) phase diagram as function of Reynolds number and AOA, and b) mean flow skin-friction lines and critical points in different Regimes.
Figure 2b shows the different surface topologies of the separation bubble of regimes II, IV, V, and VI. The onset of unsteadiness occurs incidentally in region IV, characterized by a local separation. However, at these conditions, the flow oscillations are related to a wake instability [34], and the flow around the separation bubble is mostly steady.

Finally, Fig. 3 shows isosurfaces of instantaneous streamwise velocity in a case contained in regime IV ($Re = 350$ and $\text{AOA} = 20 \text{ deg}$ (Regime IV)); isosurface of streamwise velocity (right) and zoom-in of instantaneous skin-friction lines (left).

V. Flow Topology Patterns in the Hemisphere-Cylinder

The three topology patterns of the hemisphere-cylinder along the different regimes of the phase diagram are the leeward vortices, the separation bubble, and the horn vortices, which are found in the present numerical simulations. The same evolution of the flow regime under variations of Reynolds numbers and AOA can be recovered following two different paths: maintaining the Reynolds number while varying the AOA, and maintaining the AOA while varying the Reynolds number. In the following, the evolution for increasing the Reynolds number is studied for a constant AOA by monitoring the location and classification of critical points, pressure gradients, and surface and volume streamlines.

A. Formation of the Leeward Vortices

As a consequence of the AOA in the simulations performed over the HC, the crossflow pressure gradient effect causes the boundary layer to separate and roll up, leading to the origin of a pair of leeside vortices known as leeward vortices. It is possible to distinguish two different cases in the phase diagram, depending on the nature of the formation of the LV. On the one hand, if the origin of the vortices is not a critical point, the path of vortices formation is known as “open separation” (regime I). On the other hand, if the origin of the vortices is a critical point, the path of formation is known as “closed separation” (regime II) [14]. The following sections study in detail these two possible paths.

1. Leeward Vortices and Open Separation

Figures 4a–4d show the evolution of the streamlines, skin-friction lines, and critical points at Reynolds number from 10 to 150 and $\text{AOA} = 20 \text{ deg}$. At very low Reynolds numbers, the flow is fully attached and there is a single “limiting streamline” or “line of reattachment” on the surface of the body in the symmetry plane. This line acts as a barrier, dividing the body streamlines in two sides (symmetry plane).

Tobak and Peake [14] postulated that the initial configuration of critical points on the HC, when the flow is fully attached and with a zero AOA, are characterized by a node of attachment in the hemisphere and a node of separation in the base of the body (cylinder base). When the Reynolds number increases, the node of separation is bifurcated into a new couple of points (node–saddle), leading to the

configuration found in Figs. 4a–4b (bottom): node–saddle–node. The reattachment line ends in these critical points. As seen, the number of surface critical points over a three-dimensional body obeys the topological rules previously mentioned

$$\left(\sum N - \sum S = 2 \right)$$

[4,24,42,43]. As the Reynolds number increases (Fig. 4b), the nodes from the cylinder base separate from each other. Crossflow pressure effects lead the skin-friction lines to converge into two new lines, the “lines of primary separation,” which end in these two nodes. The two nodes prevent the “limiting” streamlines from crossing. This regime is characterized by an open separation, as the attachment lines are not anchored at a critical point.

Increasing the Reynolds number slightly (Fig. 4c), the two reattachment node points evolve into two foci. On the one hand, the focal points are always located in regions of maximum vorticity [5] and they can be considered as the origin of vortical formations. On the other hand, it is possible to identify two foci in the streamlines drawn in a plane transversal to the inflow velocity, close to the cylinder base (Fig. 4c top right): these two foci identify the LV. The formation of the LV remarks the influence of the crossflow pressure gradient over the entire geometry. Let us note that the origin of the LV is not reflected on the body surface by a critical point.

Finally, increasing the Reynolds number (Fig. 4d), two new couples of node–saddle points appear in the base of the HC as a result of two bifurcation processes.

2. Leeward Vortices and Closed Separation: Separation Bubble

Figures 4d–4f show the transition from open to closed separation (from left to right). As the Reynolds number increases, the meridional pressure gradient (in the meridional or symmetry plane) causes the flow to separate at the nose of the body, which is manifested by the appearance of a node–saddle couple close to the region of minimum pressure at the nose. Increasing the Reynolds number, the concurrent effect of the meridional and crossflow pressure gradients around the nose region causes the separation saddle to bifurcate, giving rise to a new node–saddle couple. The critical points redistribute symmetrically to adopt the structurally stable configuration of Fig. 4f (top), conforming to the nose separation bubble. In this new topology, the separation lines associated with the leeward vortices are anchored to the two saddle points delimiting the nose separation bubble. Figure 4f (bottom) shows streamlines in a plane transversal to the HC, which is very close to these two saddle points. It is possible to see that the trajectory followed by the streamlines represents the origin of the leeward vortices.

Regarding the phases diagram of Fig. 2, it is possible to identify the origin of leeward vortices with open and closed separation in regimes I and II, respectively, in which the flow remains steady. As mentioned before, close separation in the leeward vortices is directly linked to the presence of a separation bubble. The topological bifurcations that are associated with flow separation are induced by crossflow and meridional pressure gradients (due to the three-dimensional nature of the geometry itself). These effects also contribute to the formation of the leeward vortices and the separation bubble. Furthermore, as expected, the separation and reattachment lines, which evidence the presence of the LV that interacts with the body, are always connected with the base of the HC, suggesting that the planar base of the cylinder may play an important role in the formation of the flow structures.

[34]. This conclusion was also found in several investigations carried out in the literature [24,35,37].

3. Secondary Leeward Vortices

The presence of the leeward vortices in the body surface is limited by the lines of primary separation and reattachment. However, by increasing the Reynolds number, the crossflow leads to a new couple of separation lines: the “secondary” separation lines. Crossflow
pressure gradient leads to the bifurcation of the reattachment lines. The topology presents a new couple of vortices between the body surface and the leeward vortices: the “secondary leeward” vortices. These secondary separation lines are only found in regime VI.

Figure 5 compares skin-friction lines and critical points in regime V (Fig. 5a) (leeward vortices) and regime VI (Fig. 5b) (primary and secondary leeward vortices). As seen, both skin-friction lines and critical points identify the presence of the primary and secondary leeward vortices. Skin-friction lines delimiting the primary leeward vortex have their upstream origin on two saddle points out of the symmetry plane. These saddle points delimit the recirculation region within the separation bubble. Finally, the line of flow separation corresponding to secondary leeward vortices emanates from a node in the plane of symmetry, and it has no connection to the nose separation bubble.

B. Formation of the Separation Bubble

At $Re = 200$, the flow is separated (regime II). As shown in Fig. 4f, the separation bubble in this regime is defined by two nodes
The separation lines of the primary LV are still emerging from the two saddles S_I.

Finally, the increased crossflow pressure gradient at $Re = 1000$ causes the two node points N_I (found at $Re = 500$) to go through a local bifurcation and become foci F (regime VI). The presence of a focal point is always linked to the presence of a saddle point and generates a vortex “sheet” [7]. These two foci delimit the extent of the horn vortices (see Sec. V.C for more details).

As seen, the topological patterns found by Tobak and Peake [7], who studied the flow around the same geometry at different AOAs and higher Reynolds number ($Re \approx 10^5$, turbulent regime, incompressible flow), have been reproduced by the present results in regime VI. These flow structures were in good agreement with the ones presented by Bippes and Turk [15] in the same geometry at AOA = 15 deg and $Re \approx 2 \times 10^6$ in a compressible flow regime.

1. Pressure Distribution

An adverse pressure gradient (APG) occurs when the static pressure increases in the direction of the flowm causing a flow deceleration that, if strong enough, may lead to flow detachment and the formation of a nose separation bubble. This is the origin of flow separation and the separation bubble.

Pressure coefficients have been computed along the surface of the hemisphere-cylinder at Reynolds numbers ranging from 100 to 1000 (AOA = 20 deg) to study more in depth the origin and evolution of the separation bubble. The results obtained have been compared with the equivalent potential flow (obtained with the same numerical solver) for which separation cannot occur, with the aim of highlighting the relation between the pressure gradients and the topology of skin-friction lines.

The pressure coefficient is defined as

$$C_p = \frac{p - p_\infty}{(1/2)\rho_\infty U_\infty^2}$$ \hspace{1cm} (3)

where p and p_∞, are local and far-field pressures, respectively; ρ_∞ is the density; and U_∞ is the far-field velocity.

It is known that the origin of the separation bubble starts when the APG surpasses a certain value [44], and it is reflected in the variations of C_p. In the meridional plane (symmetry), this coefficient decreases to negative values (which means that the local pressure is smaller than far field) with $C_{p_{\text{peak}}}$ as a minimum value, and subsequently increases slowly. In this growth, it is possible to identify a zone in which C_p remains nearly constant: this is the “plateau” region and it describes the SB. The points of separation and reattachment are located upstream and downstream of this zone, respectively.

Figure 7 shows the pressure coefficient in $\Phi = 0$ deg for Reynolds numbers ranging from 100 to 1000 and compared with potential flow theory. The point $X/D = 0$ corresponds to the...
junction point between the hemisphere and the cylinder. The region of C_{peak} and the region of constant C_p are identified. C_{peak} is found in the area with $X/D < 0$. However, the position of C_{peak} is farther from $X/D = 0$ in the viscous calculations than in the calculations done using potential flow theory. As expected, the results obtained with potential flow theory differ from the calculations obtained with viscous theory. The figure also details the critical points in the nose of the HC in regimes I (AS denotes attached, steady), II (LS denotes local separation, steady), IV (LU denotes local separation, unsteady), V (GU denotes global separation, unsteady), and VI (GU denotes global separation, unsteady). The points of separation and re-attachment are marked by squares.

As seen, if the AOA is maintained, the size of the separation bubble increases when the Reynolds number increases. In addition, it is observed that, in the particular cases shown in the figure, the point of separation moves from $X/D > 0$ (steady regimes) to $X/D < 0$ (unsteady regimes, global separation). Finally, the point of reattachment moves upstream as the Reynolds number increases.

C. Formation of the Horn Vortices

The main goal of this section is to detail the path of formation of the horn vortices. The origin of these vortices lies in the two foci F found in the nose of the body surface defining the three-dimensional separation bubble [12, 14]. As previously seen, these two foci are conforming the bubble in the cases contained in regime VI. The evolution from regime V to regime VI (formation of HV) is studied in detail in Fig. 8. In regime V, the separation bubble remains steady, but it is unsteady in regime VI. The top of Fig. 8 shows the contours of the C_p coefficient and the critical points on the body surface that bounds the SB. The middle part of the figure shows the evolution of the focus F_s in the symmetry plane. The distance from this focus to the body surface ($Y/D = 0$) measures the height of the SB. Table 2 shows the position of the critical points and the position of the focus F_s found in the symmetry plane of the SB.

Finally, Fig. 8 (bottom) shows the evolution from N_I to F of the critical points describing the SB. Their corresponding eigenvalues have been represented in the QR chart [41]. The node (stable) is transformed into a focus (stable) when the eigenvalue cross the line marked with “T.” In the figure, cases 1 and 2 show two events contained in regime V ($Re = 500, AOA = 20$ deg and $Re = 1000, AOA = 10$ deg, respectively). The size of the bubble is smaller in case 1. This suggests that, regardless the Reynolds number, the size of the SB decreases when the AOA increases. The same effect is found in cases 3 and 4, shown in the same figure, that compares two events...
from regime VI ($Re = 1000$, $AOA = 20$ deg and $Re = 1000$, $AOA = 30$ deg, respectively).

Coming back to the evolution of the critical points in the SB from regime VI to VI (from left to right in Fig. 8), case 1 is established as the baseline state (critical points and C_p coefficient) in the forthcoming explanation. As seen in case 2, increasing the Reynolds number (or AOA) results in the meridional pressure gradient increasing and, as a consequence, the length of the SB also increases. This effect and also the crossflow pressure gradient produce the two saddles S_1 to approximate each other. The height of the SB has also diminished. Increasing the Reynolds number slightly more, the combined effect of both the crossflow and meridional pressure gradients induces a crossflow and longitudinal deceleration (respectively) and leads to the transformation of the two nodes N_f into the two foci F. This effect is evidenced in case 3. As mentioned before, the focal points are always located in regions of maximum vorticity. Hence, these two foci suggest a vorticity rise inside the SB. At the same time, the results also show a notable growth in the height of the SB. Finally, increasing the Reynolds number slightly more, meridional and crossflow pressure gradients lead to an increase in the foci F_1 intensity (in the QR chart, Q, which is discriminant of the Jacobian matrix defined in Sec. III, is more positive), and consequently it is expected that the vorticity within the SB also increases. This effect is evidenced in case 4, where the results also show that the length and height of the bubble are diminished. At this point, the intensity of these foci is sufficiently high to become the origin of the HV. However, surface topology is not sufficient to address this hypothesis, and using the three-dimensional flow topology is necessary.

1. **Three-Dimensional Flow Topology and Skin-Friction Lines**

A three-dimensional representation of the skin-friction lines of the HC has been performed. To this aim, the volume streamlines have been computed around the bubble nose of the body at two different flow conditions from regime VI ($Re = 1000$ and $AOA = 20$ and 30 deg). The flow was unsteady around the nose of the HC; thus, the streamlines computed corresponded to the mean flow. Figure 9 shows the coherent structures detected with Q criterion [43], displaying the vorticity and a rake of volume streamlines. As seen, it is possible to distinguish the SB and a pair of counter-rotating vortices (the nose vortices, classified in region VI of the phases diagram in Fig. 2). Volume streamlines reveal that, at an AOA of 30 deg, these vortices emerge from the body surface; thus, they are called HVs. Under these conditions, the intensity of the streamwise vorticity is stronger than at $AOA = 20$ deg. This result is in good agreement with the description of Fig. 8. As seen in the diagram, at $AOA = 20$ deg (case 3), when the intensity of the surface foci is not strong enough, crossflow separation is still the origin of the vortices found in the hemisphere-cylinder. These vortices can be considered as leeward vortices; however, since the two foci F from which they emerge are present in the description of the nose separation bubble, these vortices are renamed as nose vortices. The terminology presented in this paper considers these vortices as a transition that will evolve into the HV.

Figure 10 shows the same vortical structures detected with Q and some selected volume streamlines, emerging from the two foci F. The trajectory followed by these streamlines and their interaction with the vortices pattern represented by isosurfaces of Q criterion show that, at $AOA = 20$ deg, the surface foci F (stable, sink of skin-friction lines) are connected to the focus F_1 at the symmetry plane (unstable, source of skin-friction lines). However, at $AOA = 30$ deg, the nose vortices emerge from those foci F; thus, they are referred to as HVs. Finally, it is worth mentioning that the crossflow pressure gradient, considered as the main contributor to the origin of the LV, is also interacting with the HV downstream of the SB (see the rake of volume streamlines in Fig. 9b and the volume streamline in Fig. 10b).

Table 2 Critical points describing the nose separation bubble

<table>
<thead>
<tr>
<th>Case</th>
<th>Separation</th>
<th>Attachment</th>
<th>Sides</th>
<th>Extra</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Re = 500$</td>
<td>S</td>
<td>N</td>
<td>S_1</td>
<td>N_f</td>
<td>F_S</td>
</tr>
<tr>
<td>$AOA = 20$ deg</td>
<td>$(-0.056, 0)$</td>
<td>S</td>
<td>N</td>
<td>S_1</td>
<td>N_f</td>
</tr>
<tr>
<td>$Re = 1000$</td>
<td>S</td>
<td>S</td>
<td>S_1</td>
<td>N_f</td>
<td>F_S</td>
</tr>
<tr>
<td>$AOA = 10$ deg</td>
<td>$(-0.020, 0)$</td>
<td>S</td>
<td>N</td>
<td>S_1</td>
<td>N_f</td>
</tr>
<tr>
<td>$Re = 1000$</td>
<td>F</td>
<td>N</td>
<td>F_S</td>
<td>S_1</td>
<td>N_f</td>
</tr>
<tr>
<td>$AOA = 20$ deg</td>
<td>$(-0.08, 0)$</td>
<td>F</td>
<td>N</td>
<td>F_S</td>
<td>S_1</td>
</tr>
<tr>
<td>$Re = 1000$</td>
<td>S</td>
<td>N</td>
<td>S_1</td>
<td>F</td>
<td>F_S</td>
</tr>
<tr>
<td>$AOA = 30$ deg</td>
<td>$(-0.16, 0)$</td>
<td>S</td>
<td>N</td>
<td>S_1</td>
<td>F</td>
</tr>
</tbody>
</table>

aS = saddle, N = node, F = foci, Φ = azimuthal angle measured clockwise, X/D and Y/D correspond to streamwise and wall-normal component, respectively, non-dimensionalized with the diameter of the hemisphere-cylinder D.

Fig. 9 Three-dimensional flow topology at $Re = 1000$. Mean flow volume streamlines and isosurfaces of instantaneous Q colored with spanwise vorticity (red and blue colors represent the counter-rotating vortices, and green color shows the zero vorticity regions).

a) $AOA = 20$ deg, $Q = 1300$; and b) $AOA = 30$ deg, $Q = 4000$.

The hemisphere-cylinder at a high AOA is a geometry representative of submarine bodies, aircraft fuselages, and torpedoes or missiles (i.e., Infra Red Imaging System Tail (IRIS-T), AIM-132, . . .); these applications operate at high Reynolds numbers and, in some cases, in transonic supersonic regimes.

The study performed in this paper addressed the three-dimensional separated flow topologies that developed as the AOA was increased. The findings of the study at incompressible and low-Reynolds-number flow conditions shed light on the physical phenomena occurring at higher Reynolds number. Concerning the topology of the three-dimensional separated flow, it was noted by Bippes and Turk [15] and Peake and Tobak [1] that the flow patterns encountered on the hemisphere-cylinder at very high Reynolds numbers and transonic conditions were qualitatively identical to the ones found for low Reynolds numbers in incompressible flow.

Three different flow structures surround the hemisphere-cylinder under separated flow conditions; i.e., separation bubbles, horn vortices, and leeward vortices. With the aim of studying the origin and evolution of the complex flow patterns, this paper presents three-dimensional numerical simulations for a variety of Reynolds numbers and AOAs.

Critical point theory has been applied to the simulated flowfields to provide, for the first time for this geometry, a bifurcation diagram that classified the different flow topology regimes as a function of the Reynolds number and the AOA. Six different flow regimes have been distinguished and studied in detail. Along the six studied regimes, it was shown that the separation bubble appeared initially defined as a local separation phenomenon (node of separation) and evolved to global separation (saddle of separation) when the flow conditions changed (Reynolds number or AOA increase). Furthermore, the two foci found in the critical points that defined the separation bubble were a result of a high-vorticity region that contributed to modify the size of the bubble and evidenced the presence of the HV. Finally, it was found that the leeward vortices, generated by the crossflow pressure gradient, were the most robust characteristic pattern of this geometry, found in both steady and unsteady flows and regardless of the presence of nose separation, except for very low Reynolds numbers and AOAs.

The deeper understanding gained regarding the topologies of the three-dimensional separated flow can be useful in the future to improve existing industrial methods for the calculation of aerodynamic forces and moments. These methods typically rely on potential flow calculations that fail to a large extent when massive separation exists. Currently existing methods for introducing the effect of flow separation in engineering design tools are devised for two-dimensional separation, and their extension to three-dimen-

[12] Fairlie, B.,

[14] Reynolds, W. C., and Hussain, A. K. M. F.,

[16] Costis, C. E., and Telionis, D. P.,

[17] Meade, A., and Schiff, L.,

[18] Bippes, H., and Turk, M.,

[19] Hsieh, T.,

[20] Hoang, N., Rediniotis, O., and Telionis, D.,

[21] Meade, A., and Schiff, L.,

[22] Costis, C. E., and Telionis, D. P.,

[23] Costis, C. E., Hoang, N. T., and Telionis, D. P.,

[24] Haragus, M., and Iooss, G.,

[26] Rancic, M., Purser, J., and Mesinger, F.,

[27] Hsieh, T., and Wang, K.,

[28] Costis, C. E., and Telionis, D. P.,

B. Ganapathisubramani
Associate Editor