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Abstract 

A fundamental theory has been developed for a general two-stage Bayesian system 

identification problem in the companion paper (Part I). This paper applies the theory to 

the particular case of structural system identification using ambient vibration data. In 

Stage I, the modal properties are identified using Fast Bayesian FFT method. Given the 

data, their posterior distribution can be well approximated by a Gaussian distribution 

whose mean and covariance matrix can be computed efficiently. In Stage II, the structural 

model parameters (e.g., stiffness, mass) are identified incorporating the posterior 

distribution of the natural frequencies and mode shapes in Stage I and their conditional 

distribution based on the theoretical structural finite element model. Synthetic and 

experimental data are used to illustrate the proposed theory and applications. A number 

of factors commonly relevant to structural system identification are studied, including the 

number of measured degrees of freedom, the number of identifiable modes and sensor 

alignment error.  
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1 Introduction 
A general theory has been presented in the companion paper [1] for a two-stage Bayesian 

system identification problem. It fundamentally expresses the posterior probability 

density function (PDF) of structural model parameters in Stage II in terms of the posterior 

PDF of the modal parameters in Stage I. In this paper, the theory is applied to the 

identification of structural model parameters (e.g., stiffness, mass), which is the problem 

originally motivated the development of the general theory. The data is assumed to 

consist of digital acceleration time histories measured at a limited number of degrees of 

freedom (dofs) of the subject structure under ambient environment. The loading is 

unknown but assumed to be broadband random within the resonance band of the 

identified modes. This context is of high relevance in practice, as ambient vibration tests 

are becoming economically viable and commercially sustainable [2][3]. It is also of high 

scientific relevance because the identification uncertainty of modal parameters based on 

(output-only) ambient data is often significantly higher than their counterparts identified 

from properly managed free or forced vibration data. As mentioned in the companion 

paper, different variants of two-stage Bayesian formulations for structural system 

identification have been proposed, e.g., [4][5][6][7][8][9], although they all involve 

heuristics in the formulation of the likelihood function in Stage II. 

 

For clarity we first give an overview of the two-stage approach applied to structural 

identification problem in the context of the theoretical framework developed in the 

companion paper. Using ambient vibration data, the objective is to identify the set of 

structural model parameters ɗ involved in the characterization of the finite element 

model of the real structure, e.g., stiffness, mass, boundary conditions, etc. In Stage I, Fast 

Bayesian FFT (Fast Fourier Transform) method is used for identifying the modal 

properties based on ambient vibration data [10][11][12][13]; see a recent review in [14]. 

The method is well-suited for ambient modal identification for its computational 

efficiency and assumption robustness. Operating in the frequency domain, the data D  

effectively consists of the FFT of the measured acceleration time histories within the 

resonance frequency bands of the modes selected by the analyst. As far as structural 
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system identification is concerned, the information content of this FFT data is equivalent 

to the original time domain data, because the FFTs in other frequency bands are 

irrelevant or difficult to model. Using only the FFT data in the selected frequency bands 

for identification significantly reduces the number of modal parameters to be identified 

simultaneously and requires minimal assumption on the ambient excitation.  

 

The full set of modal parameters Ŭ, from which an explicit likelihood function )|( ŬDp

can be derived, comprises the natural frequencies, damping ratios, partial mode shapes 

(i.e., confined to the measured dofs), the power spectral density (PSD) matrix of the 

modal forces and the PSD of the prediction error (arising from, e.g., sensor noise). With 

sufficient data, these parameters are globally identifiable and their posterior PDF can be 

well approximated by a Gaussian distribution with mean and covariance matrix that can 

be computed efficiently. Uniform (i.e., constant) prior distributions are used in practice 

for modal identification problems. As a result, the hypothetical posterior PDF )|(0 Dp Ŭ  

and the actual posterior PDF )|( DpŬ  are identical. Within ],[ ɡŬ v= , the set v for 

identifying the structural parameters in Stage II comprises the natural frequencies and 

partial mode shapes because they can be theoretically predicted by a structural (e.g., finite 

element) model. The set ɡ comprises the remaining modal parameters, i.e., the damping 

ratios, PSD matrix of modal forces and the PSD of prediction error. As a property of 

Gaussian distribution, the marginal distribution )|(0 Dp v  is also Gaussian, whose mean 

and covariance matrix can be directly taken from those of the full distribution )|(0 Dp Ŭ .     

 

This work focuses on the case when there is no structural prediction error. That is, the 

natural frequencies and mode shapes can be completely determined by the structural 

parameters so that ))(~()|( ɗɗ vvdv -=p  is a Dirac-Delta function centered at the 

theoretical structural model prediction )(~ ɗv . This scope is considered as it is consistent 

with the conventional scenario studied in the literature, providing a starting point for 

applying the general theory. Modeling )|( ɗvp  in a non-trivial manner and incorporating 

its information for updating ɗ requires substantially more consideration that deserves a 

separate line of research.  



4 

 

 

This paper is organized as follows. The structural modeling assumptions are first 

described, followed by an outline of Fast Bayesian FFT method in Stage I. Theoretical 

and computational issues in Stage II are discussed. A comparison with the conventional 

formulations is then given, followed by a summary of the whole procedure. Illustrative 

examples with synthetic and experimental data are presented to verify the method with 

applications. 

2 Problem context 
Consider a linear elastic structure, modeled by the conventional structural dynamics 

equation 

)()()()( tttt WKxxCxM =++ ###        (1) 

where M , C , K , W  are the mass matrix, damping matrix, stiffness matrix and force 

vector, respectively. Assuming classical damping, the response can be expressed as a sum 

of modal contributions: 

ä=
i

ii tt )()( hux          (2) 

where iu  and ih are respectively the full mode shape and modal response of the i -th 

mode; the sum is overall all modes of the structure. The full mode shape iu  satisfies the 

generalized eigenvalue equation: 

iii MuKu
2w=          (3) 

where ii fpw 2=  and if  are the natural frequency in rad/sec and in Hz, respectively. The 

modal response ih satisfies the uncoupled modal equation of motion: 

)()()(2)( 2 twttt iiiiiii =++ hwhwzh ###        (4) 

where  
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is the modal force. 
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The goal of the structural identification problem in this paper is to identify the structural 

parameters ɗ from ambient vibration data of the as-built structure at a limited number of 

dofs. Only the stiffness matrix K  and the mass matrix M  are assumed to possibly 

depend on ɗ. This assumption arises from practical consideration in structural 

engineering where there is no acceptable means for modeling the damping of real 

structures.  The loading )(tW  is not measured but is assumed to be broadband random in 

the specific sense that the modal force )(twi  of the identified modes has a constant PSD 

within resonance frequency bands selected by the analyst.  

 

Let },...,1:Ĕ{ NjRn
j =Íy , abbreviated as }Ĕ{ jy , denote the time domain acceleration 

data at n  measured degrees of freedom (dofs) of the structure; N  is the number of data 

points. The FFT }Ĕ{ kF  of }Ĕ{ jy  is defined as  

ä
=

--
-

D
=

N

j

jk
N

kj

N

t

1

]
)1)(1(

2exp[Ĕ
2Ĕ iy pF       (6) 

where 12 -=i ; kFĔ corresponds to frequency abscissa tNkk D-= /)1(f  for qNk ,...,1= ; 

tD  is the sampling interval; qN  is the index corresponding to the Nyquist frequency, 

equal to the integer part of 2/1 N+ . Operating in the frequency domain, the data D  used 

for system identification effectively consists of the FFT within a number of disjoint 

frequency bands containing the modes that can be identified, i.e.,  

},...,1:{ )(
B

r nrDD ==         (7) 

where 
)(rD  denotes the collection of FFT }Ĕ{ kF  in the r -th frequency band.  

 

In Stage I, the set of modal parameters that completely defines the distribution of D  is 

given by 

],[ ɡŬ v=            (8) 

Here v comprises the natural frequencies and partial mode shapes (i.e., confined to the 

measured dofs) 

},{ ūf=v            (9) 
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where f  and ū denote respectively the collection of all natural frequencies and mode 

shapes within all the selected bands. On the other hand, ɡ consists of the remaining 

modal parameters  

},,{ eSSɕɡ=            (10) 

where ɕ, S and eS  denote respectively the collection of the damping ratios, PSD of 

modal forces and PSD of prediction errors in all selected frequency bands.  

 

With little loss of generality, a uniform (constant) prior distribution is assumed for the 

modal parameters ],,[ eSSɕɡ=  that are not related to the structural parameters ɗ. This is 

justified because for sufficient data often encountered in practice the likelihood function 

in the modal identification problem is fast varying compared to the prior distribution. On 

the other hand, the prior distribution for ],[ ūf=v  is not subjected to free choice 

because it is already determined by )(ɗp  and the conditional distribution )|( ɗvp  

(structural prediction model) through  

ñ= ɗɗɗ dppp )()|()( vv         (11) 

Nevertheless, according to the standard formulation, this PDF is immaterial as it is not 

involved in the computations.  

 

In the next two sections we shall discuss the formulation of the (hypothetical) posterior 

distribution )|(0 Dp v  in Stage I and the conditional distribution )|( ɗvp  that connects 

Stage I and II. These allow the posterior distribution )|( Dpɗ  to be obtained in Stage II 

according to (29) in the companion paper: 

ñ´ vvv dpDppDp )|()|()()|( 0 ɗɗɗ       (12) 

3 Modal identification (Stage I) 
In Stage I, the modal parameters },,,,{ eSSūɝfŬ=  are identified from the data D , i.e., 

FFT within the resonance frequency bands of modes selected by the analyst. Although 

only the identification result of },{ ūf=v  is used in Stage II through )|(0 Dp v , the full 
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set of modal parameters ],[ ɡŬ v=  need to include },,{ eSSɕɡ=  because only the 

likelihood function )|( ŬDp  has been derived in explicit analytical form.  

 

The frequency bands for modal identification can be easily selected by the analyst based 

on a smoothed (averaged) version of the singular value spectrum computed from the time 

history data, e.g., see Figure 1, where there are 3=Bn  disjoint frequency bands. Within 

the r -th band, the FFT is modeled as 

kkk Ů+=FFĔ           (13) 

where kF  is the theoretical modal response of the structure and kŮ  is the prediction error 

(arising from, e.g., channel noise) in the frequency domain. The statistical properties of 

both kF  and kŮ  depend on the modal parameters of the modes in the band.   

 

At frequency kf  within the r -th selected band, the theoretical modal response is 

assumed to consist of the contributing modes in the band only, i.e.,  

ä
=

=
rm

i

r
ik

r
ik

1

)()(
hūF     (within the r -th band) (14) 

where the sum is over the modes in the r -th band whose number is rm ; nr
i RÍ

)(
ū  

( rmi ,...,1= ) is the partial mode shape of the i -th mode in the r -th band; )(r
ik
h  is the FFT 

of the theoretical modal response of the i -th mode in the r -th band at frequency index k , 

whose time domain counterpart satisfies (4).  

 

The prediction errors at different measured dofs are assumed to be independent and they 

have a constant PSD of 
)(r

eS  in the r -th band. That is, they need not be ówhiteô over the 

whole sampling spectrum (from DC up to the Nyquist frequency), but only ólocally whiteô 

in the selected frequency bands. This is a robust assumption and is one advantage of 

operating in the frequency domain rather than the time domain.  
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Let 
)(rD  denote the collection of the FFT data }Ĕ{ kF  in the r -th frequency band. The set 

of modal parameters that completely characterizes the probability distribution of  is 

       (15) 

where  

        (16) 

        (17) 

denote respectively the set of natural frequencies and damping ratios for the modes in the 

band;  denotes the (Hermitian) PSD matrix of modal forces, assumed to 

be constant within the frequency band;  denotes the PSD of prediction error, 

assumed to be constant within the band; and  

       (18) 

denotes the partial mode shape matrix, assumed to be normalized with unit norm, i.e., 

        (19) 

 

3.1 Lik elihood function  
The likelihood function for modal identification in Stage I corresponds to the PDF of the 

FFT in the selected frequency bands for a given : 

       (20) 

It has been derived under asymptotic conditions for sufficiently high sampling rate and 

long data duration, which are often justified in applications [14][15][16]. Assuming 

stationary data, for a given , the FFT data  on different non-

overlapping frequency bands are independent. This implies that 

        (21) 

Since the distribution of  depends on  only (see (14)), 


























































