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Abstract

A fundamental theorras been developed fageneral twestage Bayesiagystem
identification problem in the companion paper (Part I). This paper appliéscibeyto

the particular case of structural system identification using ambient vibration data. In
Stage |, the modal properties are identified usiagtBayesiarFFT method. Given the
data, their pagrior distribution can be wedlpproximated by a Gaussian distribution
whose mean and covariance matrix can be computed efficien®yage I, the structural
model parameters (e.qg., stiffness, mass)identifiedncorporatingthe posterior
distribution of the natural fregmcies and mode shapasStage | and their conditional
distribution based on the theoretical structural finite element model. Synthetic and
experimental data are used to illustrate the proposedythad g@plications. A number

of factorscommonly relevant to structural system identification are studied, including the
number of measured degrees of freeddma,tumber of identifiable modes asehsor

alignment errar
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1 Introduction
A general theoryas beempresented in the companion pafgrfor atwo-stageBayesian

system identificatioproblem It fundamentally expresses the postepabability

density function PDF) of structuralmodelparameters in Stage Il in termstbé posterior

PDF ofthemodal parameters in Stagdn.this paper, the theory applied tahe

identification of structural model parameters (e.qg., stiffness, mass), which is the problem
originally motivated the development of theneraktheory. The datessiassumed to

consist of digital acceleration time histories measured at a limited number of degrees of
freedom (dofs) of the subject structure under ambient environiealoadingis

unknown but assumed to be broadband random within the resonance band of

identified modesThis contextis of high relevance in practicas ambient vibration tests
arebecomingeconomically vable and commercially sustainalp®[3]. It is also of high
scientific relevance because the identification uncertainty of modal parameters based on
(outputonly) ambient data isftensignificantly higher than their counterparts identified
from properly managed feeor forced vibration dat&s mentioned in the companion

paper, different variants ofvb-stageBayesiarformulationsfor structurdsystem

identification have been proposgeé.g.,[4][5][6][7][8][9], although they all involve

heuristics in the formulation of the likelihood function in Stage Il

For clarity we first give an overview of the tvatage approach applied to structural
identification problemn the context of the theoretical framework developed in the
companion paper. Using ambiesilbrationdata, the objective is to identify the set of
structural model parametecsinvolved in the characterization of thieife element

model of the real structure, e.g., stiffness, mass, boundary conditions, etc. In Btge |,
BayesianFFT (Fast Fourier Transformmethodis used for identifying the modal
propertiesbased on ambient vibration dfi®][11][12][13]; see a recent review jh4].
Themethodis well-suited for ambient modal identification for its computational
efficiency and assumption robustnedgerating in the frequency domain, the data
effectively consists of the FFT of the measured acceleration time histories within the

resonance frequency bands of the modes selected by the anafgstagstructural



system identification is concerned, the information contetttisfFFT datas equivalent

to the original timelomain data, because the FFTs in other frequency bands are
irrelevant or difficult to modelJsing only the FFT data in the selected frequency bands
for identification significantly reduces the number of modal parametersitie bified

simultaneoushand requires minimal assumption on the ambient excitation

Thefull set of modal parametets, from which an explicit likelihood functiorp(D | U)

can be deriveccompriseshe natural frequencies, damping ratios, partial mode shapes
(i.e., confined to the measured dothg power spectral density (PSD) matrixiodé

modal forces and the PSD of the predictiaoefarising from, e.g., sensooise).With
sufficient data, theeparameters are globally identifiable and thpeisteriorPDF can be
well approximated by a Gaussidistributionwith mean and covarianeeatrix that can

be computed efficientlyJniform (i.e., constantprior distributions are used in practice

for modal identification problems. As a restitte thypothetical posteriétDF pg(U| D)
and the actual posteri®@DF p(U| D) are identicalwithin U=[v,g], the setv for

identifying the structural pameters in Stage Il compristt® natural frequeres and
partial mode shapdsecausehey can beheoretically predicted by a structuralde finite
element) model. The sef compriseghe remaining modal parameters, i.e., the damping

ratios, PSD matrix of modal forces and the PSD of prediction ésaa. property of

Gausgan distribution, thenarginal distributionpg(v | D) is also Gaussian, whose mean

and covariance matrix can be directly taken from those of the full distribp{j(ia| D).

This work focuses on the case when there is no structural predictionldabrs, the
naturalfrequenciesand mode shapes can be completely determined by the structural
parameters so thai(v |d) =d(v - v (d)) is a DiracDelta functioncentered at the
theoretical structl modelpredictionv (d) . This scope is consideregit is consistent
with theconventional scenario studiedthe literature providing astartingpoint for
applying the generaheory Modeing p(v |d) in a nontrivial manner andncorporating
its information forupdatingd requiressubstantiallymore consideration that desesva

separatdine of research



This paper is organized as followdhe structural modeling assumpticargfirst
described, followed bgn outline ofFast Bayesian FFT methadStage |.Theoretical
and computationaksuesn Stage Il areliscussedA comparison with the conventional
formulations is then giverollowed by a summary of the whole proceduliestrative
examples with synthetic and experimental daapresentetb verify the method with

applications.

2 Problem context
Consder a linearelastic structuremodeled by theonventional structural dynamics

equation

Mi(t) + C(t) + Kx (t) = W(t) @
whereM , C, K, W are themass matrix, damping matrix, stiffness matrix and force
vector, respectivelyAssuming classical dampindne responsean be expressed asum

of modal contributions:

X(t) = & uifi (1) 2

whereu; and/; are respectively the full mode shape and modal response ioftithe
mode; the sum is overall all modes of the structure. Thenfotle shap U; satisfiesthe
generalized eigenvalue equation:

Kuj = nfMu; ©)
where W =2¢f; and f; arethe natural frequency in rad/sec and in Hz, respectidlg

modal responsdy; satisfies the uncoupledodal equation of motion:

(L) + 22, M (2) + nh; (£) = W (1) 4
where
ut W(t)
W (t) =— ®)
u Mu

is themodal force.



Thegoal of the structural identification problem in this paper is to identify the structural
parametersl from ambient vibration dataf the asbuilt structure at émitednumber of
dofs Only the stiffness matriX and the mass matril are assumed to possibly
depend ord . This assumption arises from practical consideration in structural
engineering where there is no acceptable means for modeling the damping of real

structues. The loadingW(t) is not measured but is assumed to be broadband random in

the speific sense that the modal foras (t) of the identified modes haswnstant PSD

within resonancérequency bandselected by the anait

Let {Ej i R":j=1...,N}, abbreviated asEj} , denote the timdomain acceleration

data atn measured degrees of freedom (dofs) of the strucfdrés the number of data

points. The FFEF} of {¥} is definal as

N

. N _ . _
= 2y exp[—zn&N(“)] (6)
j=1

-

wherei® =- 1; F corresponds to frequency absci$gas (k- 1)/ NDt for k=1,...,Ny;
Dt is the sampling intervallNg is the index corresponding to the Nyquist frequency,

equal to the integer part &ft N/2. Operating in the frequency domaihetdataD used
for systemidentificationeffectively consists oftie FFTwithin a number of disjoint

frequency bands containing the modes that can be identified, i.e.,

D={D":r=1...ng} ©)

where D(") denotes the collection of FH‘F%} in ther -th frequency band.

In Stage I, he set of modal parameters that completely defines the distributibniof

given by

U=[v,q] )

Herev compriseghe natural frequencies and partial mode shapes (i.e., confined to the
measured dofs)

v ={f,0a} 9)



wheref andt denote respectively the collection of all natural frequencies and mode
shapes within all the selected bands. On the other lgandnsists of the remaining

modal parameters
9={6S S} (10
whereg, S and S, denoterespectively the collection of the damping ratios, PSD of

modalforces and PSD of prediction ersan all selected frequency bands.

With little loss of generality, aniform (constant) prior distribution is assumed for the
modal parameterg =[6,S,Sg] that are not related the structural parametetk. This is

justified because for sufficient data often ematered in practice the likelihood function
in the modal identification problem is fast varying comparedeatior distribution. On

the other hand, the prior distribution fer=[f,0 ] is not subjected tfree choice
because it is alreadletermined byp(d) and the conditional distributiop(v |d)

(structural prediction model) through
P(v) =pp(v |d)p(d)dd (11)

Nevertheless, according to the standard formulation, this PDF is immaterial as it is not

involved in the computations.

In the next two sections we shall discuss the formulation dhtyythetical)posterior
distribution pg(v | D) in Stagel and the conditional distributiop(v |d) that connects
Stage | and Il. Thesallow the posterior distributiop(d| D) to be obtainedh Stage I

according to (29) in the companion paper:

p(d[D)” p(d)fipro(v [D)p(v |d)dv 12

3 Modal identification (Stage I)

In Stage |, the modal parametdls-{f,3;0 ,S,S} are identified from thelataD, i.e.,
FFT within the resonance frequency bands of modes selected by the aitdgsigh
only the identification result of ={f,0} is used in Stage Il throughg(v | D), the full
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set of modal parametet$=[v ,g] need to includey ={6,S,Ss} because only the

likelihood function p(D |U) has been derived in expligihalyticalform.

The frequency bands for modal identificatiman be easily selected by the analyst based

on a smoothed (averaged) version of the singular value spectrum computed from the time
history dda, e.g., seFigurel, wherethere areng =3 disjoint frequency band$Vithin

the r -th band the FFT is modeledas

e =F+ (13

whereFy is the theoretical modal response of the strucandsﬂl( Is the prediction error
(arising from, e.g., channel noise) in the frequency donidie.statistical properties of

bothF, and U< depend orthe modal parameters of the modes in the band

At frequencyf . within the r -th selectedand,thetheoretical modal response is

assumedo consist othe contributing modeis the band onlyi.e.,
My
Fe=4a Al (within the r -th band) (14)
i=1
wherethe sum is over the modes in theth bandwhose number isn, ; G i(r) I R
(i =1...,m) is the partial mode shape of theh mode in ther -th band;hi(kr) is the FFT

of thetheoreticaimodal response of theth modein the r -th bandat frequency indexX ,

whose timadomain counterpadatisfies(4).

The prediction errors at different measured dofs are assumed to be independent and they

haveaconstantPSD@r)inther-th band. That is, they need

whole sampling spectrum (from DC up to the
in the selected frequency bands. This is a robust assumption and is one advantage of

operating in the frequency dain rather than the time domain.



Let D) denote theollection of the FFT dat{aF%} in ther -th frequency bandrhe set

of modal parameters that completely characterizes the probability digtnitmiti is

(19
where

(16)

(17)
denote respectively the setradtural frequencies and damgiratios for the modes in the
band denotes the (HermitiathSDmatrix of modal forcs, assumed to
be constant within the frequency band; denotes the PSD of prediction etro
assumed to be constant within the baardj

(18)
denotes the partial mode shape masissumed to beormalized with unit norm, i.e.,

(19

3.1 Likelihood function
The likelihood functiorfor modal identification in Stageclorresponds to the PO# the

FFT in the selected frequency bands for a given
(20)
It has beererivedunder asymptotic conditions for sufficiently high sampling rate and

long data durationwhichare often justified in applicatiorj$4][15][16]. Assuming

stationarydatg for agiven , theFFT data on different non

overlapping frequency bands ameéependent. This implies that

(21)

Since thaistribution of depends on  only (see(14)),























































































