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Abstract

It is now well established that, through the use of sequeht@te Carlo methods, it is possible to track
the time-varying state of mechanical systems ‘online’ngsi continous stream of measurements. The best
known of these algorithms is the patrticle filter - a numeralgbrithm that can be applied to a large variety
of nonlinear problems and which, in recent years, has beed tesaid the condition monitoring of many
mechanical systems. In this paper, a Sequential Monte @atbod is used to estimate the parameters of
a model from a continuous stream of measurements, with theofiestablishing how one’s parameter es-
timates converge as more data is analysed. Crucially, &moms described in this paper, this is a situation
where a particle filter is unsuitable. The issue is insteadlved using a variant of a Sequential Monte Carlo
sampler. It is shown how the algorithm can be used to idethiéparameters of a model from large data
sets and, within the context of structural dynamics, it impared with the performance of a similar, Markov
chain Monte Carlo method.

1 Introduction

Consider a scenario where one wishes to infer probabikstiitnates of a model's parameteflsfrom a set

of measurement data;.,, = {z1, ..., 2, }. In this contextz, represents a vector of measurements taken at
timet¢ and sozy., = {z1, ..., 2, } represents the set of all measurements taken up totiri@ese could, for
example, represent time histories of acceleration meamnts taken from a dynamic structure. Adopting
a Bayesian framework, one can realise probabilistic estisnaf@, conditional onz;.,, from the posterior
parameter distribution:

p(0[z1:n) o< p(Z1:n| 0)p(0). @

At this stage one will often generate samples fraid | z;.,,) using, for example, Markov chain Monte Carlo
(MCMC) methods. Whem is large however, this can be very expensive, and so a sultsit training data
must be used. How this subset should be selected is ofterarelnd it can be difficult to establish when
a sufficient amount of information has been extracted froantfihil’ dataset. An information-theoretic solu-
tion to this issue was proposed in [1] which, while useful dmg scenarios, does rely on one approaching
the problem with a reasonable estimate of the most probaa®wrof model parameters. MCMC methods
designed to address this scenario were proposed in [2, 8s€Tdllow one to track how one’s estimate® of
converge as an increasingly large set of data is analysefirtunately, the computational cost of applying
these methods in situations where large amounts of dataeguered can still be prohibitive. This is also
an issue which cannot be tackled using a particle filter, mswbuld lead to the influence on one’s initial
measurements decreasing as more data is analysed (seerfijrfodetails).



The current paper proposes a method which, the authors/bgtian tackle this problem at reduced compu-
tational cost and in a way which is very well suited to patgll®cessing. It therefore tackles ‘Big Data’ in
the sense that it aims to facilitate the analysis of dataveleitsh are too large for current methodologies. The
proposed algorithm is essentially a variant of a Sequektaite Carlo (SMC) sampler (which, somewhat
confusingly, is part of the family of SM@ethods

2 Prerequisites

2.1 Importance sampling

Importance sampling forms the foundation of the method gsed here and, as such, it is given a brief in-
troduction in this section. For more information, nice aauctions to importance sampling can be found in
the books [5, 6] as well as numerous tutorials.

Here, 7(0) is used to represent the target distribution which, in thetexd of this paper, is the posterior
parameter distribution in equation (1). Consider the fibmawhere one wishes to estimate the expected
value of some functionf(8), (where@ ~ =(0)). With importance sampling, one first generates the set of
samples{6',..., 0"} from a ‘target distribution’g(8) (which is relatively easy to sample from). One then
calculates a set of ‘importance weights’ according to

w' = W(ei), i=1,..,N. )
q(0")
It can then be shown that
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are referred to as ‘normalised importance weights’. If dretgenerates a new set of samp{@é,, very éN},
by sampling with replacement from the original set whilewrirgy that

Pr( = 6') = o' (5)
then it can also be shown that the new set of samples will b@aroaimate discrete representationmg®).
The weights of the new samples are, as a result, approxiynedeial. This method, known as ‘resampling’,
helps to remove samples with low weights and produce repbtshose with large weights. Resampling is
often performed when one’s estimates are dominated byvaiafew samples (in other words, when the
majority of samples have low weights). This is often refdrte as ‘degeneracy’ in particle filter literature.
Based on the work in [7], resampling occurs if the ‘effecteenple size’ N, drops below a threshold\{/2
in the current paper), where the effective sample size ineéfas

1
—_. (6)
Zi(wZ)Q
It is important to note that the resampling procedure canebdily parallelised (see [8] for more details)

and that this suitability for modern, fine grained computehaectures is a property of the algorithm that is
proposed in the current paper.

Nepy =



2.2 Previous work

In [9] it was suggested that importance sampling could helpddress the issues raised at the beginning of
the current paper. In the situation where one has obtainegunements up to time the target distribution

is p(@] z1.t). Using the priorp(0), as a proposal density, one’s importance weights at tiwen then be
calculated according to

o p('zl:t’ 0)p(9)
Wy = ———————=
p(6)
Assuming that the probability of witnessing separate measants is independent, such théat,.. | 0) =
[1;_, p(z: | @), allows these importance weights to be calculated secligrity

= p(21:4]6). )

Wy = p(zt‘ g)wt—l 8
which prevents one from having to analyse the entire datasesy time a new measurement arrives. Unfor-
tunately however, as more data arrives, the posterior tenldecome very concentrated relative to the prior
and many of the samples generated will be associated withie@rimportance weights. While resampling
can help to remove these samples, it doesn't help furthdoetjon of the parameter space in regions of
high probability density. In [9] it was suggested that a ‘re@tep’ could be inserted to address this (possibly
using MCMC). This step is, however, rather expensive to @m@nt. In the current work it is suggested that
this move step can be conducted efficiently using a SMC sapwpiiech is introduced in the next section.

3 Sequential Monte Carlo samplers

A brief introduction to SMC samplers is given here. A moreadle description is given in [10] while a
more applied introduction can be found in [11].

Say#, is the state of a system at iteratiérand thatr(6y) is defined as théth target distribution - the
current distribution of interest. (The observant readey m&ice a change in notation here, whéig have
been employed instead 6 - the reasons for this are explained later in the textg; ;) is used to represent
the joint distribution over all previous states. With an SK&npler, rather than targeting (6;) directly,
one instead targets

k

(0k) [ L(Ow-110k) ©)

k'=2
whereL(6;_1|0;/) (known as the ‘L-kernel’) is defined such that

s
/{Wk(ek) 11 L(9k1—1|9k/)} dfy.,—1 = 7 (0). (10)

k'=2

Generating samples from the proposal distributiof.;.) = q(0y | 8x—-1)q(61.x—1), importance weights are
assigned according to:

7 (6}) [Tiv—p L(O1—1161)
q(0k | 0r-1)q(01.6-1)
From this one can then go on to show that

wy, = (11)



wi = wi_, g ( f) ( zk_lz’ k)

Wk—l(ek—l) Q(0k|0k—1)
such that, in other words, the importance weights can nowpbated in a sequential mannerkamcreases.
At first sight one may consider exchanging the indicesdt such that the target distribution is

(12)

m(0:) = p(0 |21:) (13)

and using the SMC sampler to tackle the problem outlined oti@® 1. This would, however, still require
analysis of the full dataset every time new measurementsatn the current paper it is suggested that the
SMC sampler can actually be used to facilitate the ‘move’ sitefhe method proposed in [9]. As will be
shown, the advantages of this approach are that

e The move step will only be conducted if the effective same drops below a pre-defined threshold.

e The move step will be suitable for parallelisation.

4 Proposed methodology

Say one has a model of the form

Y, = f(@,0) (14)
wherex; represents the input to the model at titnét is assumed that measurements are made according to

z = h(y,) + €, e ~N(0,%,) (15)

where the covariance matrX, is known andh can be a nonlinear function. The proposed methodology for
sequential parameter estimation is outlined in algorithm 1



Algorithm 1 Proposed algorithm.
Setk=1,t=1
Sample{6; ., ..., 6, } from the prior,p()
Find initial weights:w; , = p(z1 |6} ), i=1,..,N
while do
Normalise weightsi’ =

i
Wy g

. 3 Wik
Estimate quantities of interest.
1

Find effective sample sizeV, s = SRCE
while N.y; < N/2 do
Resample to ge; ;. ..., 07,

Reset weightsw! , = 1, i=1,..,N
Setk=k+1
Generate new sampl¢8; ;. ..., 0,7} from q(6, | 6, 1)
: : ; p(z1:¢]0; 1) L(Bé,kﬂ \92,1@) T
Find new weightswy; , = p(z;:t\ﬂi_,,;,l) 66, ) t=1,..,N
. . i wz’k

Normalise weightsw® = =l
Find effective sample sizeV, ;s = ﬁ

end while

t=t+1

Find new weightsw! , = w! | ,p(z¢|0: 1)

end while ’ ’

Key points to note are that:

e If degeneracy doesn’'t occur (such that the effective sarsigke remains sufficiently large) then the
SMC sampler will never be employed, and the algorithm withgared in a similar manner to that
proposed in [9] (except without ‘move steps’).

e The SMC sampler is only employed if degeneracy occurs. Th€ ShMnpler helps to provide a further
exploration of the parameter space in a way which is suitilparallel processing.

e The SMC sampler will run until the effective sample size maséased above the predefined threshold.

e kis used to index the number of times the SMC sampler is ruriewlimdexes time.

One of the advantages of this approach is that, if new dataghatvely little effect on the geometry of the
posterior, then the samples simply need to be reweightésloktly when ‘information rich’ data arrives, and

a large change in the posterior occurs, that the parametesles need to be moved (and the entire dataset
needs to be reanalysed). The method therefore embodiedea®i ‘highly informative training data’ out-
lined in [1].

With regard to the L-kernel, it should be noted thatyanmetric proposal distribution is utilised throughout
the following examplesThe L-kernel is chosen to be

L(6} 111607 ;) = (0} _116; 1) (16)
which then allows the weights of the samples generated tissm§MC sampler to be calculated from

. z1.4 0! L(6: 0! z1.4 | 01
i p(z1:t | t,k) (t,k—1| t,k) _ p(z1:¢ | t,k) (17)

bk 4 . 4 . .
P(z1:6 |03 1) 4015161 —1)  P(21:4]60; 1)




5 Results

5.1 Example 1 - linear system

In this first example, a linear model is considered, where

yr = Oy (18)

and measurements are made according to

a=y+e, e~ NG (19)

where 3, is the noise precision. This is a convenient problem as, lopsihg a Gaussian priop(0) =
N(0; 1o, By 1), closed form expressions for the posterior distribution lsa obtained. This therefore allows
one to check that the proposed method can follow the trudignlu100 ‘measurements’ were generated
(samplingz from U0, 1]) and the data was analysed sequentially. The prior momeoitse precision and
true value ofy were

po=0,  Bo=1,  fe=100, O=1 (20)

while N = 100 samples were employed. Proposals were drawn according to

q(0; 1107 1) = N0} 4; 07 1.1, 1). (21)

Figure 1 shows that the algorithm performed well, and was @btlosely match the true solution. It should
be noted that resampling - the reanalysis of the full datasas only needed when particularly ‘informative’
data points were analysed (in other words, when large clsandgbe estimated mean and variance occurred).
The remainer of the analysis could be performed very chegjiijout the SMC sampling step.
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Figure 1: Applying the proposed methodology to the iderdtfan of a linear system.

5.2 Example 2 - comparison with MCMC

In this section, the previous example is reanalysed usingCMK based method. Specifically, a variant
of the well-known Transitional MCMC (TMCMC) [12] algorithns proposed and applied. Here, when the
effective sample size drops below the predefined thresheld,samples are generated in a manner similar
to that employed in the TMCMC algorithm. Specifically, Mavikechains (which are ergodic and whose sta-
tionary distributions are equal to the target), are ‘grofvom the existing samples. The probability that each
chain will grow is equal to the normalised importance wedghit the corresponding existing sample. This



therefore encourages new samples to be generated in the ehere existing samples are highly weighted.
The problem described in the previous section was analyd@d times using the proposed SMC methodol-
ogy as well as this new, TMCMC based methodology.

The statistics of the ensemble of results are shown in Figuieis clear that both methodologies are very
closely matched. The advantage of the SMC approach, howevkat it will always be suitable for parallel
processing (while the parallelisation of TMCMC dependslandistribution of importance weights). In an
extreme case, for example, where one sample has a normalé&igtt equal to 1 and all others are equal
to zero, the TMCMC approach would result in the generatiom sfngle Markov chain which would be
impossible to parralelise.
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Figure 2: Identification of a linear system using the propoS&C approach and the proposed MCMC
approach. Statistics are taken from an ensemble of 1000ations.

5.3 Example 3 - simulated two-storey structure

As the final example in this paper, ‘measurement’ data isgeéee from a simulation of a linear two-storey
structure. The mass of each floor was set equal to 10000 kgvéldter of parameters to be estimated were
0 = (ki,ks,c1,c0)” where thek’s andc’s represent interstorey stiffness and damping terms ctispdy.
Their true values, and details of the prior distributionsttivere utilised, are given in Table 1.

Parameter True value Prior
k1 30 x 105 | AM(k1;25 x 10%,2,5 x 1012)
ko 20 x 105 | N(ko;25 x 10%,2,5 x 10'2)
c1 30 x 103 ['(c1;1,5 x 10%)
s 20 x 103 ['(c2;1,5 x 10%)

Table 1: True parameter values and corresponding priorr{i&)u

To generate training data, the structure was subjected &md-limited white noise base acceleration, with
standard deviation equal to 0.01 R/Fhe displacement time histories of the two floors were therupted
with Gaussian noise, such that the signal to noise ratio wpoaimately 10. Figure 3 shows how the pro-
posed algorithm successfully converges to the true pammatues as more data is analysed. It should be
noted that, again, as more data is analysed resampling deddess frequently. This is because, after an
initial phase, new measurement data is contributing xalbtilittle additional information.
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Figure 3: Parameter estimation of two-storey simulateacsire using the proposed SMC methodology.

6 Conclusions

In this paper the authors investigate the parameter ideatiifin of systems from data sets which are con-
tinuously growing. The aim is to provide an efficient methiody which can be used to track how one’s
parameter estimates converge as more data is analysed|ldwisg one to decide when a sufficient quan-
tity of data has been analysed. An algorithm is proposed whiitises a Sequential Monte Carlo sampler.
The efficiency of the method stems from its ability to quichlyalyse data which adds little additional infor-
mation, thus allowing it to focus on data which is ‘infornmatirich’. It is demonstrated that the proposed
method is able to achieve a similar level of repeatabilityewltompared to an alternative, Markov chain
Monte Carlo method. The proposed Sequential Monte Carldvodeis, however, better suited to parallel

implementation on modern computer architectures.
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