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Abstract

It is now well established that, through the use of sequential Monte Carlo methods, it is possible to track
the time-varying state of mechanical systems ‘online’, using a continous stream of measurements. The best
known of these algorithms is the particle filter - a numericalalgorithm that can be applied to a large variety
of nonlinear problems and which, in recent years, has been used to aid the condition monitoring of many
mechanical systems. In this paper, a Sequential Monte Carlomethod is used to estimate the parameters of
a model from a continuous stream of measurements, with the aim of establishing how one’s parameter es-
timates converge as more data is analysed. Crucially, for reasons described in this paper, this is a situation
where a particle filter is unsuitable. The issue is instead resolved using a variant of a Sequential Monte Carlo
sampler. It is shown how the algorithm can be used to identifythe parameters of a model from large data
sets and, within the context of structural dynamics, it is compared with the performance of a similar, Markov
chain Monte Carlo method.

1 Introduction

Consider a scenario where one wishes to infer probabilisticestimates of a model’s parameters,θ, from a set
of measurement data,z1:n = {z1, ...,zn}. In this contextzt represents a vector of measurements taken at
time t and soz1:n = {z1, ...,zn} represents the set of all measurements taken up to timen. These could, for
example, represent time histories of acceleration measurements taken from a dynamic structure. Adopting
a Bayesian framework, one can realise probabilistic estimates ofθ, conditional onz1:n, from the posterior
parameter distribution:

p(θ |z1:n) ∝ p(z1:n|θ)p(θ). (1)

At this stage one will often generate samples fromp(θ |z1:n) using, for example, Markov chain Monte Carlo
(MCMC) methods. Whenn is large however, this can be very expensive, and so a subset of this training data
must be used. How this subset should be selected is often unclear, and it can be difficult to establish when
a sufficient amount of information has been extracted from the ‘full’ dataset. An information-theoretic solu-
tion to this issue was proposed in [1] which, while useful in some scenarios, does rely on one approaching
the problem with a reasonable estimate of the most probable vector of model parameters. MCMC methods
designed to address this scenario were proposed in [2, 3]. These allow one to track how one’s estimates ofθ

converge as an increasingly large set of data is analysed. Unfortunately, the computational cost of applying
these methods in situations where large amounts of data are required can still be prohibitive. This is also
an issue which cannot be tackled using a particle filter, as this would lead to the influence on one’s initial
measurements decreasing as more data is analysed (see [4] for more details).



The current paper proposes a method which, the authors believe, can tackle this problem at reduced compu-
tational cost and in a way which is very well suited to parallel processing. It therefore tackles ‘Big Data’ in
the sense that it aims to facilitate the analysis of data setswhich are too large for current methodologies. The
proposed algorithm is essentially a variant of a SequentialMonte Carlo (SMC) sampler (which, somewhat
confusingly, is part of the family of SMCmethods).

2 Prerequisites

2.1 Importance sampling

Importance sampling forms the foundation of the method proposed here and, as such, it is given a brief in-
troduction in this section. For more information, nice introductions to importance sampling can be found in
the books [5, 6] as well as numerous tutorials.

Here,π(θ) is used to represent the target distribution which, in the context of this paper, is the posterior
parameter distribution in equation (1). Consider the situation where one wishes to estimate the expected
value of some function,f(θ), (whereθ ∼ π(θ)). With importance sampling, one first generates the set of
samples,{θ1, ...,θN} from a ‘target distribution’,q(θ) (which is relatively easy to sample from). One then
calculates a set of ‘importance weights’ according to

wi =
π(θi)

q(θi)
, i = 1, ..., N. (2)

It can then be shown that

E[f(θ)] ≈
N
∑

i=1

f(θi)w̃i (3)

where

w̃i =
wi

∑

j w
j
, i = 1, ..., N (4)

are referred to as ‘normalised importance weights’. If one then generates a new set of samples,{θ̄
1
, ..., θ̄

N
},

by sampling with replacement from the original set while ensuring that

Pr(θ̄ = θi) = w̃i (5)

then it can also be shown that the new set of samples will be an approximate discrete representation ofπ(θ).
The weights of the new samples are, as a result, approximately equal. This method, known as ‘resampling’,
helps to remove samples with low weights and produce replicas of those with large weights. Resampling is
often performed when one’s estimates are dominated by relatively few samples (in other words, when the
majority of samples have low weights). This is often referred to as ‘degeneracy’ in particle filter literature.
Based on the work in [7], resampling occurs if the ‘effectivesample size’,Nf , drops below a threshold (N/2
in the current paper), where the effective sample size is defined as

Neff =
1

∑

i(w̃
i)2

. (6)

It is important to note that the resampling procedure can be readily parallelised (see [8] for more details)
and that this suitability for modern, fine grained computer architectures is a property of the algorithm that is
proposed in the current paper.



2.2 Previous work

In [9] it was suggested that importance sampling could help to address the issues raised at the beginning of
the current paper. In the situation where one has obtained measurements up to timet, the target distribution
is p(θ |z1:t). Using the prior,p(θ), as a proposal density, one’s importance weights at timet can then be
calculated according to

wt =
p(z1:t|θ)p(θ)

p(θ)
= p(z1:t|θ). (7)

Assuming that the probability of witnessing separate measurements is independent, such thatp(z1:t |θ) =
∏t

i=1 p(zi |θ), allows these importance weights to be calculated sequentially by

wt = p(zt|θ)wt−1 (8)

which prevents one from having to analyse the entire datasetevery time a new measurement arrives. Unfor-
tunately however, as more data arrives, the posterior tendsto become very concentrated relative to the prior
and many of the samples generated will be associated with very low importance weights. While resampling
can help to remove these samples, it doesn’t help further exploration of the parameter space in regions of
high probability density. In [9] it was suggested that a ‘move step’ could be inserted to address this (possibly
using MCMC). This step is, however, rather expensive to implement. In the current work it is suggested that
this move step can be conducted efficiently using a SMC sampler, which is introduced in the next section.

3 Sequential Monte Carlo samplers

A brief introduction to SMC samplers is given here. A more detailed description is given in [10] while a
more applied introduction can be found in [11].

Sayθk is the state of a system at iterationk and thatπk(θk) is defined as thekth target distribution - the
current distribution of interest. (The observant reader may notice a change in notation here, wherek’s have
been employed instead oft’s - the reasons for this are explained later in the text.)π(θ1:k) is used to represent
the joint distribution over all previous states. With an SMCsampler, rather than targetingπk(θk) directly,
one instead targets

πk(θk)

k
∏

k′=2

L(θk′−1|θk′) (9)

whereL(θk′−1|θk′) (known as the ‘L-kernel’) is defined such that

∫

{

πk(θk)

k
∏

k′=2

L(θk′−1|θk′)

}

dθ1:k−1 = πk(θk). (10)

Generating samples from the proposal distributionq(θ1:k) = q(θk |θk−1)q(θ1:k−1), importance weights are
assigned according to:

wi
k =

πk(θ
i
k)

∏k
k′=2 L(θk′−1|θk′)

q(θk |θk−1)q(θ1:k−1)
. (11)

From this one can then go on to show that



wi
k = wi

k−1

πk(θ
i
k)

πk−1(θ
i
k−1)

L(θi
k−1|θ

i
k)

q(θi
k|θ

i
k−1)

(12)

such that, in other words, the importance weights can now be updated in a sequential manner ask increases.
At first sight one may consider exchanging the indicesk andt such that the target distribution is

πt(θt) = p(θ |z1:t) (13)

and using the SMC sampler to tackle the problem outlined in Section 1. This would, however, still require
analysis of the full dataset every time new measurements arrive. In the current paper it is suggested that the
SMC sampler can actually be used to facilitate the ‘move step’ of the method proposed in [9]. As will be
shown, the advantages of this approach are that

• The move step will only be conducted if the effective sample size drops below a pre-defined threshold.

• The move step will be suitable for parallelisation.

4 Proposed methodology

Say one has a model of the form

yt = f(xt,θ) (14)

wherext represents the input to the model at timet. It is assumed that measurements are made according to

zt = h(yt) + ǫ, ǫ ∼ N (0,Σǫ) (15)

where the covariance matrixΣǫ is known andh can be a nonlinear function. The proposed methodology for
sequential parameter estimation is outlined in algorithm 1.



Algorithm 1 Proposed algorithm.
Setk = 1, t = 1
Sample{θ1

t,k, ...,θ
N
t,k} from the prior,p(θ)

Find initial weights:wi
t,k = p(z1 |θ

i
t,k), i = 1, ..., N

while do
Normalise weights:̃wi =

wi
t,k

∑
j w

j

t,k

Estimate quantities of interest.
Find effective sample size:Neff = 1∑

i(w̃
i)2

while Neff < N/2 do
Resample to get{θ1

t,k, ...,θ
N
t,k}

Reset weights:wi
t,k = 1, i = 1, ..., N

Setk = k + 1
Generate new samples{θ1

t,k, ...,θ
N
t,k} from q(θt,k |θt,k−1)

Find new weights:wi
t,k =

p(z1:t | θ
i
t,k)

p(z1:t |θ
i
t,k−1

)

L(θi
t,k−1

|θi
t,k)

q(θi
t,k | θi

t,k−1
)
, i = 1, ..., N

Normalise weights:̃wi =
wi

t,k
∑

j w
j

t,k

Find effective sample size:Neff = 1∑
i(w̃

i)2

end while
t = t+ 1
Find new weights:wi

t,k = wi
t−1,kp(zt |θt,k)

end while

Key points to note are that:

• If degeneracy doesn’t occur (such that the effective samplesize remains sufficiently large) then the
SMC sampler will never be employed, and the algorithm will proceed in a similar manner to that
proposed in [9] (except without ‘move steps’).

• The SMC sampler is only employed if degeneracy occurs. The SMC sampler helps to provide a further
exploration of the parameter space in a way which is suitablefor parallel processing.

• The SMC sampler will run until the effective sample size has increased above the predefined threshold.

• k is used to index the number of times the SMC sampler is run, while t indexes time.

One of the advantages of this approach is that, if new data hasrelatively little effect on the geometry of the
posterior, then the samples simply need to be reweighted. Itis only when ‘information rich’ data arrives, and
a large change in the posterior occurs, that the parameter samples need to be moved (and the entire dataset
needs to be reanalysed). The method therefore embodies the idea of ‘highly informative training data’ out-
lined in [1].

With regard to the L-kernel, it should be noted that asymmetric proposal distribution is utilised throughout
the following examples. The L-kernel is chosen to be

L(θi
t,k−1|θ

i
t,k) = q(θi

t,k−1|θ
i
t,k) (16)

which then allows the weights of the samples generated usingthe SMC sampler to be calculated from

wi
t,k =

p(z1:t |θ
i
t,k)

p(z1:t |θ
i
t,k−1)

L(θi
t,k−1 |θ

i
t,k)

q(θi
t,k |θ

i
t,k−1)

=
p(z1:t |θ

i
t,k)

p(z1:t |θ
i
t,k−1)

. (17)



5 Results

5.1 Example 1 - linear system

In this first example, a linear model is considered, where

yt = θxt (18)

and measurements are made according to

zt = yt + ǫ, ǫ ∼ N (0, β−1
ǫ ) (19)

whereβǫ is the noise precision. This is a convenient problem as, by choosing a Gaussian prior,p(θ) =
N (θ;µ0, β

−1
0 ), closed form expressions for the posterior distribution can be obtained. This therefore allows

one to check that the proposed method can follow the true solution. 100 ‘measurements’ were generated
(samplingx from U [0, 1]) and the data was analysed sequentially. The prior moments,noise precision and
true value ofθ were

µ0 = 0, β0 = 1, βǫ = 100, θ = 1 (20)

while N = 100 samples were employed. Proposals were drawn according to

q(θit,k|θ
i
t,k−1) = N (θit,k; θ

i
t,k−1, 1). (21)

Figure 1 shows that the algorithm performed well, and was able to closely match the true solution. It should
be noted that resampling - the reanalysis of the full dataset- was only needed when particularly ‘informative’
data points were analysed (in other words, when large changes in the estimated mean and variance occurred).
The remainer of the analysis could be performed very cheaply, without the SMC sampling step.
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Figure 1: Applying the proposed methodology to the identification of a linear system.

5.2 Example 2 - comparison with MCMC

In this section, the previous example is reanalysed using a MCMC based method. Specifically, a variant
of the well-known Transitional MCMC (TMCMC) [12] algorithmis proposed and applied. Here, when the
effective sample size drops below the predefined threshold,new samples are generated in a manner similar
to that employed in the TMCMC algorithm. Specifically, Markov chains (which are ergodic and whose sta-
tionary distributions are equal to the target), are ‘grown’from the existing samples. The probability that each
chain will grow is equal to the normalised importance weights of the corresponding existing sample. This



therefore encourages new samples to be generated in the region where existing samples are highly weighted.
The problem described in the previous section was analysed 1000 times using the proposed SMC methodol-
ogy as well as this new, TMCMC based methodology.

The statistics of the ensemble of results are shown in Figure2. It is clear that both methodologies are very
closely matched. The advantage of the SMC approach, however, is that it will always be suitable for parallel
processing (while the parallelisation of TMCMC depends on the distribution of importance weights). In an
extreme case, for example, where one sample has a normalisedweight equal to 1 and all others are equal
to zero, the TMCMC approach would result in the generation ofa single Markov chain which would be
impossible to parralelise.
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Figure 2: Identification of a linear system using the proposed SMC approach and the proposed MCMC
approach. Statistics are taken from an ensemble of 1000 simulations.

5.3 Example 3 - simulated two-storey structure

As the final example in this paper, ‘measurement’ data is generated from a simulation of a linear two-storey
structure. The mass of each floor was set equal to 10000 kg. Thevector of parameters to be estimated were
θ = (k1, k2, c1, c2)

T where thek’s andc’s represent interstorey stiffness and damping terms respectively.
Their true values, and details of the prior distributions that were utilised, are given in Table 1.

Parameter True value Prior
k1 30× 106 N (k1; 25× 106, 2, 5 × 1012)
k2 20× 106 N (k2; 25× 106, 2, 5 × 1012)
c1 30× 103 Γ(c1; 1, 5 × 104)
c2 20× 103 Γ(c2; 1, 5 × 104)

Table 1: True parameter values and corresponding prior (SI units).

To generate training data, the structure was subjected to a band-limited white noise base acceleration, with
standard deviation equal to 0.01 m/s2. The displacement time histories of the two floors were then corrupted
with Gaussian noise, such that the signal to noise ratio was approximately 10. Figure 3 shows how the pro-
posed algorithm successfully converges to the true parameter values as more data is analysed. It should be
noted that, again, as more data is analysed resampling is needed less frequently. This is because, after an
initial phase, new measurement data is contributing relatively little additional information.
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Figure 3: Parameter estimation of two-storey simulated structure using the proposed SMC methodology.

6 Conclusions

In this paper the authors investigate the parameter identification of systems from data sets which are con-
tinuously growing. The aim is to provide an efficient methodology which can be used to track how one’s
parameter estimates converge as more data is analysed, thusallowing one to decide when a sufficient quan-
tity of data has been analysed. An algorithm is proposed which utilises a Sequential Monte Carlo sampler.
The efficiency of the method stems from its ability to quicklyanalyse data which adds little additional infor-
mation, thus allowing it to focus on data which is ‘information rich’. It is demonstrated that the proposed
method is able to achieve a similar level of repeatability when compared to an alternative, Markov chain
Monte Carlo method. The proposed Sequential Monte Carlo method is, however, better suited to parallel
implementation on modern computer architectures.
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