DISTINCT MUTATIONAL SIGNATURES ARE ASSOCIATED WITH CORRELATES OF INCREASED IMMUNE ACTIVITY IN PANCREATIC DUCTAL ADENOCARCINOMA

Ashton A Connor, MD1,2,3; Robert E Denroche1,4, MSc; Gun Ho Jang1,4, PhD; Lee Timms1,5, MSc; Sangeetha N. Kalimuthu1, MD; Iris Selander2, MSc; Teresa McPherson2, MSc; Gavin W. Wilson1,4, PhD; Michelle A. Chan-Seng-Yue1, BSc; Ivan Borozan4, PhD; Vincent Ferretti4, PhD; Robert C. Grant1,2, MD; Ilinca M. Lungu, MSc6; Eithne Costello7, PhD; William Greenhalf7, PhD; Daniel Palmer7, PhD; Paula Ghaneh7, PhD; John P. Neoptolemos7, MD; Markus Buchler8, MD; Gloria Petersen9, MD; Sarah Thayer10, MD, PhD; Michael A. Hollingsworth11, PhD; Alana Sherker12, BSc; Daniel Durocher2,12, PhD; Neesha Dhani13, MD; David Hedley13, MD; Stefano Serra3, MD; Aaron Pollett2,15, MD; Michael H.A. Roehrl1,14,15,16,17, MD, PhD; Prashant Bavi1, MD; John M.S. Bartlett6, Sean Cleary1,3, MD; Julie M. Wilson1, PhD; Ludmil B. Alexandrov18,19, PhD; Malcolm Moore13, MD; Bradley G. Wouters15, PhD; John D. McPherson5,16, PhD; Faiyaz Notta1, PhD; Lincoln D. Stein4,12, MD, PhD; Steven Gallinger1,2,3, MD

1PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
2Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
3Hepatobiliary/pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada.
5Genome Technologies Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
6Transformative Pathology, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
7The University of Liverpool, Liverpool, UK
8Heidelberg University Hospital, Heidelberg, Germany
9Mayo Clinic, Rochester, MN, USA
10Massachusetts General Hospital, Boston, MA, USA
11University of Nebraska Medical Centre, Omaha, NE, US
12Molecular Genetics Department, University of Toronto, Toronto, Ontario, Canada
13Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
14Department of Pathology, University Health Network, Toronto, Ontario, Canada.
15Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.
16Department of Medical Biophysics, University of Toronto, Toronto, ON Canada.
17BioSpecimen Sciences Program, University Health Network, Toronto, Ontario, Canada.
18Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
19Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.

To whom correspondence should be addressed:
Dr. Steven Gallinger, MD, MSc, FRCS
Professor of Surgery
Head, Hepatobiliary/pancreatic Surgical Oncology Program
University Health Network and Mount Sinai Hospital
University of Toronto
Toronto General Hospital
200 Elizabeth St, 10EN, Room 206, Toronto, Ontario
Canada M5G2C4
Email: steven.gallinger@uhn.ca

Word count: 2,953
IMPORTANCE Outcomes for patients with pancreatic ductal adenocarcinoma (PDAC) remain poor. Advances in next-generation sequencing provide a route to therapeutic approaches, and it is hoped that integrating DNA and RNA analysis with clinicopathologic data is a crucial step to design personalized strategies for this lethal disease.

OBJECTIVES To classify PDAC according to distinct mutational processes, and explore their clinical significance.

DESIGN, SETTING AND PARTICIPANTS We performed a retrospective cohort study of resected PDAC, using cases collected between 2008 and 2015 as part of the International Cancer Genome Consortium. The discovery cohort comprised 160 PDAC from 154 patients (148 primary; 12 metastases) that underwent tumor enrichment prior to whole genome (WGS) and RNA sequencing. The replication cohort comprised 95 primary PDAC that underwent WGS and expression microarray on bulk biospecimens.

INTERVENTIONS 144 discovery and 95 replication cohort patients underwent curative-intent surgery and standard peri-operative management. Treatment data for 24 discovery patients who received neoadjuvant, adjuvant or palliative platinum-based chemotherapy were available for analysis.

MAIN OUTCOMES AND MEASURES Somatic mutations accumulate from sequence-specific processes creating signatures detectable by DNA sequencing. Using non-negative matrix factorization, we measured the contribution of each signature to carcinogenesis, and used hierarchical clustering to subtype each cohort. We examined expression of anti-tumor immunity genes across subtypes to uncover biomarkers predictive of response to systemic therapies.

RESULTS Five predominant mutational subtypes were identified that clustered PDAC into four major subtypes: Age Related; Double-strand break repair (DSBR); Mismatch repair (MMR), and
one with unknown etiology (Signature 8). These were replicated and validated. Signatures were faithfully propagated from primaries to matched metastases, implying their stability during carcinogenesis. Half of the DSBR cases lacked germline or somatic events in canonical homologous recombination genes – BRCA1, BRCA2 or PALB2. DSBR and MMR subtypes were associated with increased expression of anti-tumor immunity, including activation of CD8+ T-lymphocytes (GZMA and PRF1) and over-expression of regulatory molecules (CTLA-4, PD-1 and IDO-1), corresponding to higher frequency of somatic mutations and tumor-specific neoantigens.

CONCLUSIONS AND RELEVANCE Signature-based subtyping may guide personalized therapy of PDAC in the context of biomarker-driven prospective trials.
Pancreatic ductal adenocarcinoma (PDAC) has the lowest 5-year overall survival (OS) of any epithelial carcinoma1. Randomized trials2,3 of adjuvant4 and palliative5,6 cytotoxic chemotherapies show modest endpoint improvements with considerable attendant toxicities. Targeted agents trialed without biomarker selection, including evofosfamide, PD-L17, CTLA-48 and ERBB29 inhibitors, have not improved OS, except for marginal benefit from erlotinib10-12. PDAC outcomes will improve with rational molecular subtyping and ensuing directed therapies, as with breast13 and lung14 carcinomas. The PDAC exome15-17 contains four driver genes, KRAS, TP53, CDKN2A and SMAD4, and few disturbed pathways that are not translatable into predictive subtypes. Stratification by somatic events, including MYC amplification and specific KRAS mutant codons17, is not consistently prognostic. Structural variation in 100 genomes18 identified four PDAC subtypes, with one predictive of platinum chemotherapy response, but progression-free (PFS) and OS were not assessed. Finally, prognostic transcription-based subtypes have been described19 and refined20,21, but with neither relation to genomic features nor therapeutic implications.

Cancer genomes accumulate mutations over cell cycles from DNA damage and repair. Analyses of these processes22,23, informative in other tumors24-26, have not been comprehensively reported in PDAC. Signatures representative of each process22 can be quantified per tumor, and the population of tumors subtyped25 by their relative contributions. Genomic and transcriptomic landscapes of anti-tumor immunity have been systemically explored in other tumor types23 and predict response to immunotherapies26,27, however, the character of immune infiltration and its association with mutational signatures has not been studied in PDAC.

We integrated genome, transcriptome and clinicopathologic data from two independent datasets to define four major signature-based PDAC subtypes. These aligned with known
hereditary pancreas cancer predisposition syndromes (HPCSs)28, were propagated from primary tumors to paired metastases, and differentially expressed anti-tumor immune markers.

METHODS

Whole genome sequencing (WGS) variant calls, RNA sequencing and microarray expression values, clinical information and metadata for discovery and replication cohorts are available from the ICGC data portal29 (http://dcc.icgc.org). Discovery cohort samples underwent tumor enrichment prior to sequencing. All reads were processed through the same data workflows. Bioinformatics tool names and versions are provided in Supplement One.

RESULTS

Mutational signatures define four principal PDAC subtypes

Our discovery cohort consisted of 148 primary PDAC and 12 metastases from 154 patients that underwent WGS (Figure 1a, eTable 1). For replication, 95 whole PDAC genomes from 95 patients were obtained from the ICGC (eFigure 1, eTable 1).

We identified 11 mutational signatures in our discovery and 12 in our replication genomes using the approach of Alexandrov et al.30, which were merged by shared etiologies into 7 signatures per cohort. Hierarchical clustering by the proportion of single nucleotide variants (SNVs) attributable to each signature (eFigure 2ab) in each cohort independently confirmed four major subtypes: 1) an “Age Related” group dominated by Signatures 1 and 5, attributed to clock-like mutational processes accumulated over cell divisions31; 2) a “double strand break repair, DSBR” group characterized by Signature 3, attributed to deficiencies in homologous recombination repair (HRR) of double-strand breaks; 3) a “mismatch repair, MMR” group characterized by Signatures 6, 20 and 26, attributed to defects in DNA MMR; and 4) a group
characterized by Signature 8, of unknown etiology (Figure 1a; eFigure 1). There were two minor
groups in both cohorts, one dominated by Signature 17, another by APOBEC. Tumor cellularity
and coverage were consistent between subtypes (eFigure 3). Subtype prevalence was equivalent
between cohorts (p=0.075, chi-squared).

We verified that signatures associated with their attributed etiologies. The number of
SNVs in Signatures 1 and 5 correlated with patient age at diagnosis across all cases
\(r_{\text{discovery}}=0.21, p_{\text{discovery}}=0.0077; r_{\text{replication}}=0.23, p_{\text{replication}}=0.03\) (Pearson’s correlation), while total
SNVs did not (eFigure 4).

Tumors dysfunctional in HRR rely on non-conservative forms of DSBR, namely single
strand annealing, which creates large structural deletions\(^{32,33}\), and non-homologous end-joining
and microhomology-mediated end joining, which create short deletions (3-20 base pairs in
length). Consistent with this, DSBR cases had greater numbers of both large structural and short
deletions greater than 3 base pairs relative to Age Related cases \(p_{\text{discovery}}<3\times10^{-9}\) for each;
\(p_{\text{replication}}<3\times10^{-4}\) (Wilcoxon) (Figure 1a; eFigure 5).

MMR cases had dramatically more SNVs than Age Related cases \(p_{\text{discovery}}=0.0007;\)
Wilcoxon) (Figure 1a). MMR deficiency was verified by immunohistochemistry and a PCR-
based assay (eTable 2). Of the four MMR cases, three had germline and one had only somatic
mutations in MMR genes (eTable 3). Published frequencies of MMR deficiency in PDAC vary
widely\(^{17,34}\). Absence of MMR from the replication cohort is likely due to its smaller size. To
validate MMR prevalence, we stained a tumor microarray of 370 PDAC from the European
Society Group for Pancreatic Cancer (ESPAC)\(^{35-37}\) for four MMR proteins. Of 342 successfully
stained, six were immunodeficient. Assuming discovery, replication and ESPAC cohorts to be
unbiased samplings of one population, we infer MMR deficiency prevalence in PDAC to be
1.7% (0.65-2.7%), nearly equal to that of Lynch syndrome in PDAC (eTable 4). Somatic MMR deficiency thus contributes little to PDAC, unlike colorectal and endometrial cancers.

The discovery cohort included 12 metastases – 10 Age Related, 1 DSBR and 1 MMR. Five of these were matched with three primaries and showed faithful propagation of signatures (Figure 1b), including a DSBR pair with a germline PALB2 mutation. This implies that mutational processes are established early in carcinogenesis and is important for trials where PDAC metastases are more safely biopsied. Paired primaries and metastases were obtained at autopsy from patients who received palliative chemotherapy (eTable 5).

Tiers of DSBR deficiency

Clinical interest in HRR deficiency is growing, with tailored treatment strategies for breast and ovarian cancer. Of 17 discovery DSBR cases, 11 are explained by bi-allelic inactivation of BRCA1, BRCA2 or PALB2. Nine had pathogenic germline mutations with somatic inactivations of the second allele, and two had bi-allelic somatic inactivations (eTable 6). The remaining six were occult, lacking germline or somatic inactivation of canonical HRR genes, referred to as “BRCAness” in the literature. DSBR etiology in the replication cohort was similar, with two germline, two somatic and six BRCAness. We inferred DSBR prevalence in PDAC to be 10.8% (95%CI 7.0-14.7%), comprising 4.4% (1.9-7.0%) germline deficiency, 1.6% (0.04-3.2%) somatic, and 4.8% (2.2-7.5%) BRCAness. This germline frequency is nearly equal to the prevalence of germline BRCA1 or BRCA2 deficiency in PDAC, implying PALB2 contributes minimally to PDAC predisposition.

In the amalgamated discovery and replication DSBR cases, the proportion of SNVs attributed to Signature 3 was greater in germline than somatic cases, with BRCAness cases intermediate (Figure 2). The number of SNVs attributed to a mutational process likely increase
with its duration in tumorigenesis30. Thus, germline cases may become HRR deficient earlier, while somatic cases become deficient later or sub-clonally, with BRCAness an admixture of both etiologies. This may have implications for therapies targeting HRR deficiency. BRCAness cases also have relatively low numbers of SVs (Figure 2) and may alternatively harbor a mutational process distinct from classical HRR deficiency.

Assuming one or few genes with “two hits” explain the 12 BRCAness cases, we agnostically compared frequencies of bi-allelic inactivation of genes in the DSBR and Age Related tumors of our amalgamated cohorts (Figure 3). We considered only primaries since metastasis-specific events were reported in PDAC44. BRCA2 was the only gene preferentially inactivated in the DSBR group (FDR 0.004%).

The idiopathic Signature 8 is similar to Signature 3, with the additional feature of strand bias for C>A substitutions. The latter was reported in PDAC exomes17 and attributed to smoking, a PDAC risk factor45, although our data do not support this epidemiologic association (eFigure 6). Signature 8 is also found in breast cancer30,46, suggested as due to either past activity of transcription-coupled nucleotide excision repair, or to HRR deficiency. Comparison of frequencies of bi-allelic inactivation per gene in Signature 8 with either DSBR or Age Related primary cases revealed no associations (eFigure 7ab). One Signature 8 case bore a germline missense (rs141465583) of uncertain significance in BRCA1 with somatic loss of the wild type allele. This variant is unlikely to impair HRR as overexpression of GFP-fused BRCA1 p.P977L restored the ability of RAD51 to form ionizing radiation-induced foci in U2OS Flp-In cells depleted of endogenous BRCA1 to a similar extent as wild type GFP-BRCA1 (eFigure 8). Thus, occult drivers of BRCAness and Signature 8 were either so heterogeneous that each affects few
cases or not assayed – non-coding, epigenetic, haploinsufficiency of an HRR-pathway gene, exogenous carcinogens.

Mutational signatures are linked to predisposition syndromes

Truncating germline mutations of HPCS genes were found in 16 cases in our discovery cohort, including BRCA1, BRCA2 and PALB2 mutations in 10, MSH2 and MSH6 in 3, ATM in 2 and CDKN2A in 1. There were 7 HPCS carriers in the replication cohort, including 4 BRCA2, 1 PALB2, 1 ATM and 1 PMS2 (eTable 7). Age at diagnosis differed in discovery but not replication donors with, versus without, HPCS ($p_{\text{discovery}}=0.0015$, $p_{\text{replication}}=0.32$, t-test; eFigure 9).

Most HPCS patients developed tumors driven by processes linked to their predispositions, demonstrating the importance of recognizing HPCS, including genetic counseling and germline testing. A minority developed tumors with processes unrelated to their predisposition. The somatic MMR discovery case had a germline BRCA2 frameshift. Another discovery donor had a germline MSH6 frameshift, but a tumor that was microsatellite stable and strongly positive for Signature 17, of unknown etiology. One replication case had a germline stopgain in PMS2 (not long-range PCR verified) that was microsatellite stable, and two cases had germline BRCA2 truncations without somatic “second hits” that lacked Signature 3. The latter agrees with a mouse model heterozygous for BRCA2 that retained the second, functional allele in PDAC and was not sensitive to mitomycin C and PARP1 inhibitors.

Nine discovery and seven replication cases had bi-allelic events in ATM. Only one bore Signature 3, the replication germline ATM carrier who lacked inactivation of another canonical HRR gene (eFigure 10).
Integration of mutational signatures with gene expression

We performed RNASeq on 76 discovery tumors. Our replication cohort had array expression data for 91 cases. We classified these by Collisson et al.19, Moffitt et al.20 and Bailey et al.21 methodologies. As with other cancers, including melanoma24 and colorectal cancer48, mutational and transcriptional subtypes did not overlap (eFigure 11). Survival analyses trended towards worse prognosis in the Moffitt basal subtype (eFigure 12).

We used gene sets23 representative of 16 categories of immune function to characterize local immune activity. Adaptive immunity and co-inhibition genes were more highly expressed in DSBR and MMR cases (Figure 4a; eFigure 13a). Cytolytic activity of infiltrating CD8+ T-lymphocytes, measured by the geometric mean of $GZMA$ and $PRF1$ expression, and co-regulatory molecules, namely CTLA-4, PD-L1, PD-L2 and IDO-1, were increased in DSBR and MMR relative to Age Related cases (eFigure 14), reminiscent of expression patterns in melanoma responsive to checkpoint blockade49. Clustering of cases by differential expression of the genes in these sets23 identified most DSBR (discovery 6 of 6 DSBR, replication 5 of 8) and all MMR cases as “immunogenic” (eFigure 15-16). The DSBR primary and metastasis pair both had high cytolytic activity, implying anti-tumor responses are driven intrinsically.

To relate signatures to elevated cytolytic activity, we enumerated tumor neoantigens in discovery and replication cases. These paralleled SNV counts ($r_{\text{discovery}}=0.98$, $p_{\text{discovery}}<3\times10^{-16}$; $r_{\text{replication}}=0.85$, $p_{\text{replication}}<3\times10^{-16}$; Pearson’s) (Figure 4b; eFigure 13b) and were elevated in DSBR and MMR cases ($p_{\text{discovery}}=1.8\times10^{-7}$; $p_{\text{replication}}=2.9\times10^{-5}$; DSBR vs. Age Related; Wilcoxon) (eFigure 17). The number of neoantigens per SNV did not differ by subtype, implying no signature was inherently “immunogenic”. Neither neoantigen nor SNV counts were associated with OS (eFigure 18). We found no other drivers of anti-tumor immunity, including
incorporation of exogenous viruses, expression of endogenous retroviruses or of cancer testes antigens.

Equal frequencies of bi-allelic mutations in genes in the DSBR and Age Related cases (Figure 3) imply that neither tumor suppressor, nor HLA Class 1, nor extrinsic apoptosis gene inactivation are immune resistance strategies in PDAC.

Cytolytic activity, CD8A and PD-L1 expression strongly correlated with CD8 and PD-L1 immunohistochemistry on a tumor microarray of 33 separate PDAC cases, validating our RNAseq (Figure 5; p-values in legend). Histology from 81 discovery cases showed no difference in the degree of peri- and intra-tumoral inflammation across signature classes, implying microscopy alone cannot accurately measure local anti-tumor immunity (eFigure 19).

Prognostic and predictive value of mutational signatures

Signature groups were neither prognostic nor associated with tumor grade and stage (eFigure 20-21). Favorable outcomes are anecdotally reported for MMR deficient PDAC. The four discovery MMR patients had median OS of 1281 days (Q1:Q3 1248-1457 days) compared with 461 (254-1165) for Age-Related cases. The stage IV MMR case is alive 24 months from diagnosis, responding to immunotherapy. In contrast, the 6 MMR immunodeficient ESPAC cases had worse survival than immunointact cases (p=0.03, log-rank test; eFigure 22). Rarity of MMR deficiency precludes definitive conclusions.

Roughly 1 in 10 cases in both cohorts have the DSBR signature. Since HRR deficient PDAC, breast and ovarian cancers may be sensitive to platinum-based therapy, we compared outcomes in 18 cases treated with either cisplatin or oxaliplatin (eTable 8; eWorksheet 1). In the palliative setting, median PFS was not significantly longer in DSBR than Age Related cases (181.5 vs. 107 days) (eFigure 23). Platinum responders were observed in both groups,
suggesting platinum-based therapy may also benefit non-DSBR cases. Sample size limitations preclude determining whether susceptibility varies with proportion of DSBR.

DISCUSSION

Mutational signatures in WGS defined four major PDAC classes, namely Age Related, DSBR, MMR and Signature 8. These were verified, replicated in independent cohorts, associated with predisposition syndromes and propagated from primary to metastatic lesions. PDAC bearing DSBR and MMR signatures have elevated local anti-tumor immunity, driven by high levels of tumor neoantigens and evaded by expression of regulatory genes. This has implications for personalized management of PDAC.

Approximately 10% of PDAC is categorized as DSBR. Slightly more than half of these have bi-allelic inactivation of HRR genes; the rest are occult. The latter have lower numbers of large and small deletions greater than three base pairs relative to DSBR cases with known causal variants. These BRCAness tumors may have milder HRR deficiency or may represent a novel process that generates DSBR-like nucleotide substitutions but is distinct from classical HRR deficiency at a SV level. We might not expect platinum- or PARP inhibitor-based therapies directed at HRR deficiencies to be as effective in the BRCAness group, nor perhaps in the somatic DSBR cases that have a lower proportion of Signature 3 attributed SNVs. Similarly, ovarian cancers with BRCA1 promoter hypermethylation are less sensitive to chemotherapy than those with BRCA1 mutations\(^{53,54}\), despite both being HRR deficient. This may explain why exceptional responses to platinum-based chemotherapy are not seen in 10% of PDAC patients in clinical trials. Our failure to retrospectively detect significant improvement in PFS in a palliative setting in DSBR cases is also consistent with heterogeneous mechanisms of HRR deficiency and
secondary platinum resistance. Biomarker-driven prospective trials of PARP inhibitors55 and platinum-based therapies should clarify this controversy.

Though BRCA\textit{ness} genomes do not appear to be driven by one or few genes, multiple lines of evidence support the distinction of these cases. At the nucleotide level, the analogous mutational processes acting in germline, somatic and occult DSBR cases give rise to tumor-specific neoantigens that in turn drive anti-tumor cytolytic activity, a prerequisite to successful immunotherapy23. A recent study found that metastatic melanoma responding to anti-PD-1 therapy are enriched for mutations in BRCA\textit{2}56. The rate of neoantigen formation per SNV was equal across signature types, implying that increased mutation rate alone may predict checkpoint inhibitor response, as shown in colorectal cancer27, and platinum-based chemotherapy response, as shown in ovarian cancer57. While it has been hypothesized that sequestration protects PDAC cells from adaptive immunity58-60, our data suggest that resistance occurs through increased expression of PD-1, CTLA-4 and IDO-1. The potential for immunotherapy in PDAC has recently been demonstrated in a mouse model that recapitulates its fibrotic stroma using T cells engineered to recognize PDAC-specific antigen61. The progressive dysfunction of these T cells in vivo is compatible with our RNA expression findings, implying a role for immune checkpoint inhibition. Also, high expression of IDO-1 in both DSBR and MMR cases argues for trials of IDO-1 inhibitors in PDAC, as in other cancers62,63. Current limited success of immunotherapy in PDAC7,8 may be because only a minority of cases have significant local anti-tumor activity. Nonetheless, our data do not prove responsiveness to immunotherapies in subtypes of PDAC. Other important factors, such as host immunocompetence and tumor microenvironment, must be better understood to facilitate use of immunotherapeutics in clinical settings.
The nature of our cDNA-based RNA capture did not allow assessment of expression of all endogenous retroviruses or cancer testes antigens, nor quantification of tumor cellularity from RNASeq. Tumor cellularity estimates of the same fresh tissue from sections used for WGS were not significantly different between subtypes (eFigure 3). Our outcome analyses are limited by the retrospective nature of this work, including non-randomized patient treatment selection and possible confounding factors not balanced between subtypes. Also, bi-allelic inactivation of other genes important to both DNA damage response and PDAC predisposition, such as ATM64, were not associated with signatures, implying that either our whole genome sample size was too small to detect all mutational processes or that the contribution of mutations produced by some processes were too few to be detected30. Nonetheless, that genomic and transcriptomic data generated separately with different platforms agree in all aspects validates our findings.

Ours and other sequencing efforts have focused on resectable PDAC, constituting a fifth of cases. Improving outcomes for the majority of patients with metastatic disease is sorely needed. Our analysis provides a framework for integrating genomics and transcriptomics to suggest translatable differences between tumor subtypes. We are now applying this to whole genome and transcriptome sequences from tumor biopsies to understand resistance to conventional treatment and to select second-line strategies for patients with advanced disease within the context of a prospective clinical trial (NCT-02750657).
Figure and Table Captions

Figure 1:
(A) Barplot of proportion of seven merged signatures in each of the 160 discovery tumors, sorted by hierarchical clustering (dendogram at bottom), showing germline (dark blue), somatic (mauve) and occult (clear) DSBR etiologies and heatmaps for total number of single nucleotide variants (SNVs), total number of neoantigens, total number of indels, total number of short deletions greater than 3 base pairs, total number of structural deletions, and transcriptional subtypes (Moffitt Tumor class, Collisson class and Bailey class) in cases for which RNASeq is available for the tumor;
(B) Barplots of proportion of 7 merged signatures in paired primary tumors and metastases from 4 cases.

Figure 2:
Boxplots of proportion of SNVs attributed to Signature 3, number of short deletions greater than 3 base pairs in length, number of SVs, and number of large (structural) deletions in the DSBR subtype divided by etiology – germline (dark blue), BRCAness / occult (clear) or somatic (mauve) – and in the Age Related subtype (light blue), for amalgamated discovery and replication cohorts. All values are significantly greater in both DSBR germline and BRCAness / occult groups relative to the Age Related subtype, \(p < 0.0002 \) for each, Wilcoxon test, as marked by asterisks.

Figure 3:
Scatterplot of proportions of cases with bi-allelic inactivation of every gene in the DSBR subtype primary tumors (n=27) versus that in the Age Related subtype primary tumors (n=169) for the amalgamated discovery and replication cohorts. Driver genes include \(CDKN2A, SMAD4, TP53 \).

FDR = false discovery rate

Figure 4:
(A) Heatmap of median expression of gene sets representative of categories of immune function by signature group for discovery cohort cases with tumor cellularity between 20-80%;
(B) Scatterplot of number of neoantigens (y-axis) versus number of somatic SNVs (single nucleotide variants, x-axis) per tumor, colored by signature-based subtype, for 137 discovery cohort cases to which we confidently assigned HLA Class 1 genotypes. Regression line from linear model (\(y \sim x \)) is shown in black with areas between confidence bands shaded in grey.

Figure 5:
(A) PD-L1 and CD8 immunohistochemical expression in representative cancer TMA spots showing high (left column) and low (right column) expression of PD-L1 (top row) and CD8 counts (bottom row);
(B) Median (dotted lines) and interquartile ranges (shaded regions) of expression of PD-L1, CD8A and cytolytic activity (left-sided y-axis) and absolute counts of cells with immunohistochemical staining for CD8 (right-sided y-axis) at each level of PD-L1 immunohistochemical staining (0-3, see Methods). CD8 staining cell counts and CD8A expression were strongly correlated (\(p = 7.1 \times 10^{-7}, R = 0.744 \), Pearson’s correlation). PD-L1 and cytolytic activity expression were significantly higher across PD-L1 staining levels (\(p_{PD-L1} = 0.0064, p_{cytolytic \ activity} = 0.01, \) PD-L1 0-1 vs 2-3 staining, Wilcoxon test).
eFigure 1:
Barplot of proportion of seven merged signatures in each of the 95 replication tumors, sorted by hierarchical clustering (dendrogram at bottom), showing germline (blue), somatic (mauve) and occult (clear) DSBR etiologies and heatmaps for total number of SNVs, total number of neoantigens, total number of indels, total number of short deletions greater than 3 base pairs, total number of structural deletions, and transcriptional subtypes (Moffitt Tumor class, Collisson class and Bailey class) in cases for which expression microarray data are available for the tumor.

eFigure 2:
Hierarchical clustering of (A) 160 discovery and (B) 95 replication cohort samples according to proportion (see Figure 1a and eFigure 1) of seven merged signatures in each tumor. Dark green = MMR, dark blue = DSBR, gold = Signature 8, light green = APOBEC, pink = Signature 17, light blue = Age Related.

eFigure 3:
Boxplots of (A) & (C) cellularity and (B) & (D) mean tumor coverage by signature-based subtype for (A) & (B) discovery and (C) & (D) replication cohorts.

eFigure 4:
Scatterplots of age at surgery versus either (A) & (E) total number of somatic SNVs, (B) & (F) number of SNVs attributed to Age Related signatures, (C) & (G) number of SNVs attributed to Signature 1, (D) & (H) number of SNVs attributed to Signature 5 in (A-D) discovery and (E-H) replication cohorts. Regression lines from linear models (y ~ x) are shown in solid black with areas between confidence bands shaded in grey.

eFigure 5:
Boxplots of number of (A) & (G) SVs, (B) & (H) structural (large) deletions, (C) & (I) inversions, (D) & (J) duplications, (E) & (K) transversions, and (F) & (L) short deletions >3 base pairs in tumors of each signature-based subtypes for (A-F) discovery and (G-L) replication cohorts. P-values from comparison of numbers of each somatic variant class in DSBR vs Age Related subtypes by Wilcoxon test.

eFigure 6:
Smoking status in Age Related (‘signature.1.5’) and Signature 8 (‘signature.8’) in (A) discovery and (B) replication cohorts.

eFigure 7:
Scatterplot of frequency of bi-allelic inactivation of every gene in (A) the Signature 8 subtype primary tumors (n=36) versus that in the Age Related subtype primary tumors (n=169) and in (B) the Signature 3 subtype primary tumors (n=27) versus that in the Signature 8 subtype primary tumors (n=36) for the amalgamated discovery and replication cohorts. Driver genes include CDKN2A, SMAD4, TP53. FDR = false discovery rate.

eFigure 8:
RAD51 assay performed on BRCA1 p.P977L (rs141465583) germline variant of uncertain significance demonstrates ability of variant allele to restore irradiation-induced foci.
eFigure 9:
Boxplots of (A) age at surgery in discovery cohort, (B) age at diagnosis in replication cohort, and (C) the amalgamated cohorts for those cases with and without pathogenic germline variants in HPCS genes. P values for comparison of ages in Hereditary Pancreas Cancer Syndrome (HPCS) carriers vs non-HPCS carriers are by t-test.

eFigure 10:
Stripcharts of proportion of SNV’s attributed to each merged signature in cases with bi-allelic inactivation vs monoallelic inactivation and wild type ATM for the amalgamated discovery and replication cohorts.

eFigure 11:
Proportions of (A,C,E) Moffitt tumor and (B,D,F) Collisson transcriptional-based subtypes composed of each signature-based subtype for (A-B) discovery, (C-D) replication and (E-F) combined cohorts.

eFigure 12:
Overall survival curves for (A,D) Moffitt tumor, (B,E) Collisson and (C,F) Bailey transcriptional-based subtypes in (A-B) discovery and (C-D) replication cohorts.

eFigure 13:
(A) Heatmap of median expression of gene sets representative of categories of immune function by signature group for replication cohort cases with tumor cellularities between 20-80%; (B) Scatterplots of number of neoantigens (y-axis) versus number of somatic SNVs (single nucleotide variants, x-axis) per tumor, colored by signature-based subtype, for 87 replication cohort cases to which we confidently assigned HLA Class 1 genotypes. Regression line from linear model (y ~ x) is shown in black with areas between confidence bands shaded in grey.

eFigure 14:
Boxplots of expression of cytolytic activity, CTLA-4, PD-L1, PD-L2 and IDO-1 in signature-based subtypes in discovery (top row) and replication (bottom row) cohort cases with tumor cellularities between 20-80%. The differences in expression between AR (Age Related) and either DSBR or MMR are calculated by Wilcoxon test; FPKM = Fragments Per Kilobase of transcript per Million mapped reads.

eFigure 15:
Heatmap of expression of 113 genes representative of categories of immune function in discovery RNASeq cases with tumor cellularities between 20-80%. Hierarchical clustering shows increased immune activity in all discovery DSBR (6 of 6) and MMR (2 of 2) cases.

eFigure 16:
Heatmap of expression of 113 genes representative of categories of immune function in replication microarray expression cases with tumor cellularities between 20-80%. Hierarchical clustering shows increased immune activity in 5 of 8 DSBR.
eFigure 17: Boxplots of (A,D) number of neoantigens, (B,E) number of somatic single nucleotide variants (SNV), (C,F) number of neoantigens per SNV in tumors of each signature-based subtypes for (A-C) discovery and (D-F) replication cohorts. P values calculated by Wilcoxon test.

eFigure 18: Overall survival curves with stratification by standard deviation of (A,D) somatic single nucleotide variants (SNV), (B,E) somatic insertion and deletion variants and (C,F) neoantigen load (A-C) discovery and (D-F) replication cohorts.

eFigure 19: Proportions of tumors divided by (A,C) presence or absence and (B,D) degree of (A-B) intra- and (C-D) peri-tumoral inflammation composed of each signature-based subtype for the discovery cohorts cases with haematoxylin and eosin stained slides available (n = 81).

eFigure 20: Overall survival curves for signature-based subtypes in (A) discovery and (B) replication cohorts.

eFigure 21: Proportions of tumors divided by (A) histologic grade, (B) T stage, (C) N stage, (D) M stage composed of each signature-based subtype for (A-D) discovery and (E-H) replication cohorts.

eFigure 22: Overall survival curve for ESPAC cohort according to mismatch repair protein immunohistochemistry (IHC) deficiency.

eFigure 23: Progression free survival with stratification by Signature 3 (DSBR) vs Signatures 1+5 (Age Related) for (A) all cases that received platinum-based palliative chemotherapy and (B) all cases that responded to platinum-based palliative chemotherapy. P values by univariable Cox proportional hazard models.
eTable 1:
Summary of clinical and pathologic data for discovery and replication cohorts with appropriate statistical comparisons between the two groups.

eTable 2:
Summary of immunohistochemistry of 4 MMR proteins and PCR-based microsatellite instability testing for discovery cohort. Acronyms: MSS = microsatellite stable; MSI = microsatellite instability; NA = not available

eTable 3:
Summary of germline and somatic mutations in hereditary pancreatic cancer syndrome (HPCS) genes in cases whose tumors had mismatch repair deficiency in the discovery cohort.

eTable 4:
Number of cases per signature-based subtype per cohort and derived population-level estimates.

eTable 5:
Summary of clinical and pathologic data, including palliative chemotherapy regimens, received by cases with paired primaries and tumors (for signatures, see Figure 1B).

eTable 6a,b:
Summary of germline and somatic mutations in BRCA1, BRCA2 and PALB2 in cases whose tumors have evidence of double strand break repair deficiency in discovery and replication cohorts. Acronym: LOH = loss of heterozygosity of the wild type allele of the affected gene

eTable 7a,b:
Summary of pathogenic germline variants in hereditary pancreatic cancer syndrome (HPCS) genes in discovery and replication cohorts.

eTable 8:
Summary of cases that received platinum-based palliative chemotherapy in the discovery cohort; see Supplement One for statistical methodologies.

eWorksheet 1:
Treatment details of cases that received platinum-based palliative chemotherapy in the discovery cohort; see Supplement One for further details.
Acknowledgements

This study was conducted with the support of the Ontario Institute for Cancer Research (PanCuRx Translational Research Initiative) through funding provided by the Government of Ontario (Ministry of Research and Innovation); the Canada Foundation for Innovation; Pancreas Canada; NCI grant P50 CA102701 (Mayo Clinic SPORE in Pancreatic Cancer), a Canadian Cancer Society Research Institute grant (#702316), and a charitable donation from the Canadian Friends of the Hebrew University (Alex U. Soyka). FN is supported by a fellowship award from the Canadian Institutes for Health Research (CIHR). LDS, JDM, VF, PB, BW and SG are recipients of Fellowships, Investigator or Clinician-Scientist Awards from the Ontario Institute for Cancer Research. DD was supported by CIHR grant MOP-84297. The ESPAC Trials and the Liverpool Cancer Trials Unit are funded by Cancer Research UK. JPN is a Senior NIHR Investigator.

AAC, RED, GHJ, SNK, GW, MACSY, VF, JPN, MB, DD, PB, LBA, FN, LDS and SG conducted and are responsible for the data analysis. LDS had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

We acknowledge the technical contributions of the following individuals for their roles in Production Sequencing and Genome Sequence Informatics at the Ontario Institute for Cancer Research: Karolina Czajka, Jenna Eagles, Jeremy Johns, Xuemei Luo, Faridah Mbabaali, Jessica Miller, Danielle Pasternack, Michelle Sam, Morgan Taschuk, as well as the contributions of Dianne Chadwick, Sheng-Ben Liang and Sagedeh Shahabi at the University Health Network BioBank.

JPN has the following declarations:

Payment for Lectures: Amgen, Mylan
Research Grants: Taiho Pharma (Japan); KAEL GemVax (Korea); AstraZeneca; Clovis Oncology and Ventana; Pharma Nord
Consultancy: Boehringer Ingelheim Pharma GmbH & Co. KG; Novartis Pharma AG; KAEL GemVax; Astellas
Educational Travel Grants: NUCANA
References Cited

ASCO University. http://meetinglibrary.asco.org/content/147076-156.

Figure 1

SNV Signatures:
- 3: DSBR
- 1,5: Age Related
- 2,13: APOBEC/REV1
- 6,20,26: MMR
- 8: C>A (Unknown)
- 17: Unknown
- 18: Reactive Oxygen

Mutational Loads:
- 0 SNVs
- 0 Neoantigens
- >150 Neoantigens
- 0 Indels
- 0>3bp Dels
- >60>3bp Dels
- 0>3bp Dels
- >150 Del SVs

Moffitt Tumour Class:
- Classical
- Basal-like
- Unknown

Collisson Class:
- Classical
- Quasi-mesenchymal
- Exocrine-like

Bailey Class:
- Squamous
- ADEX
- Pancreatic progenitor
- Immunogenic
Figure 2
Proportion of DSBR cases with biallelic inactivation (n=27)

Proportion of Age Related cases with biallelic inactivation (n=169)

Figure 3
Discovery
- Age Related, n = 112
- Signature 17, n = 1
- APOBEC, n = 2
- DSBR, n = 16
- MMR, n = 3
- Signature 8, n = 14

Replication
- Age Related, n = 56
- Signature 17, n = 2
- APOBEC, n = 3
- DSBR, n = 9
- Signature 8, n = 17

$p < 2.2e-16$
$R = 0.921$
Pearson correlation
Figure 5

A

PD-L1

high

low

CD8

B

PD-L1 expression
CD8A expression
cytolytic activity
CD8 IHC positive cell count

- median
- interquartile range

FPKM

absolute cell count

PD-L1 immuno score