MORTON, HR ORCID: 0000-0002-8524-2695
(1995)
THE COLORED JONES FUNCTION AND ALEXANDER POLYNOMIAL FOR TORUS KNOTS.
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 117 (1).
pp. 129-135.
ISSN 0305-0041, 1469-8064
Text
ColouredJonesAlexanderTorusKnot.pdf - Author Accepted Manuscript Download (233kB) |
Abstract
<jats:title>Abstract</jats:title><jats:p>In [2] it was conjectured that the coloured Jones function of a framed knot <jats:italic>K</jats:italic>, or equivalently the Jones polynomials of all parallels of <jats:italic>K</jats:italic>, is sufficient to determine the Alexander polynomial of <jats:italic>K</jats:italic>. An explicit formula was proposed in terms of the power series expansion <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" mimetype="image" xlink:type="simple" xlink:href="S0305004100072959_inline1" />, where <jats:italic>J<jats:sub>K, k</jats:sub>(h)</jats:italic> is the <jats:italic>SU</jats:italic>(2)<jats:italic><jats:sub>q</jats:sub></jats:italic> quantum invariant of <jats:italic>K</jats:italic> when coloured by the irreducible module of dimension <jats:italic>k</jats:italic>, and <jats:italic>q = e<jats:sup>h</jats:sup></jats:italic> is the quantum group parameter.</jats:p><jats:p>In this paper I show that the explicit formula does give the Alexander polynomial when <jats:italic>K</jats:italic> is any torus knot.</jats:p>
Item Type: | Article |
---|---|
Uncontrolled Keywords: | 4902 Mathematical Physics, 4903 Numerical and Computational Mathematics, 4904 Pure Mathematics, 49 Mathematical Sciences |
Depositing User: | Symplectic Admin |
Date Deposited: | 23 Jan 2017 10:09 |
Last Modified: | 06 Dec 2024 23:41 |
DOI: | 10.1017/S0305004100072959 |
Related URLs: | |
URI: | https://livrepository.liverpool.ac.uk/id/eprint/3005308 |