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Abstract

The traditional power system includes the centralised paye@eration, high
voltage AC power transmission and three phase energy cqism Electric en-
ergy conversion systems (ECSs) have been applied to ther g@neration, energy
storage and power consumption to convert energy betweealéeric form and
other forms. In the future power system, the ratio of distiélol power generation
and storage will have a rapid increment with the developroépbwer electronic-
s technology. Thus, the robustness and stability are signifito the ECSs in the
future power electronics enabled power system. This thoesads with the design
and analysis with theoretical contribution, and the impdeatation of a perturbation
estimation based nonlinear adaptive control (NAC) on EG8s,the wind turbine
(WT), the energy storage system (ESS) in converter basewgnid (MG), and the
induction motor (IM), respectively, in simulation and exipgental validation.

The wind turbine is one of the most promising distributed poweneration
resources. The challenge in controlling a wind turbine ssnibnlinear behaviour
of aerodynamics under random wind speed. This makes it diffio obtain the
optimal control performance operating under the time-weyyind speed via con-
ventional linear control method. In addition, as the futposver system including
plenty of distributed generation and consumption, typycal MG application, the
ESS is necessary to balance the power difference betweeergmmeration and
consumption. Due to the low stiffness and inertia of an d&hMG, the chal-
lenge is the stability problem and power quality of MG undekmown disturbance
and unbalanced power demand. Moreover, other than therlobstce from power
generation side, plenty of unknown disturbance also agpeathe power consump-
tion. The most popular workhorse for industrial applicatis the induction motor
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(IM), which is affected by the disturbance of unknown loadjtee under operation.
The IM has highly coupled states and nonlinear interactletsveen states. The
conventional vector control depending on the flux positegansitive to parameter
changes. And the use of a speed encoder increases the itekli speed drive in
the electric vehicle application.

To cope with these challenges in the ECS applications, thenbation estima-
tion based control method is studied and applied to imprbeerdbustness of the
ECSs for power generation, storage and consumption of tieefypower system.
In the control method, a state and perturbation observesad to estimate the per-
turbation term, which includes the nonlinear interactibesveen states, external
disturbance, parameter changes and unmodeled dynamitise WT pitch angle
control, a nonlinear Pl-based controller is designed wigiedurbation observer to
estimate and compensate the system nonlinearities andlgisce of WT system.
In the ESS voltage control of islanded MG, a voltage corgra designed for the
ESS in MG via estimating and compensating the unknown diatwee to reduce
the voltage unbalance rate. In the IM speed drive, an NACdapeed controller
is investigated to control the IM directly under the statipnframe to improve it-
s robustness under disturbance and parameter uncertAimbgher contribution is
to propose a speed sensorless NAC controller with a comiSif€al to control the
IM without the dependency of a speed sensor. The proposddotomethods are
compared with the conventional methods regarding theitrobperformance.

The results show that the perturbation estimation basedodetan improve the
robustness of ECS under disturbance and parameter umtgriaithe renewable
power generation, MG bus voltage regulation, and IM speae diHowever, the
great observer bandwidth can amplify the sensor noise ahtteethe robustness
and stability of the closed loop system. In the study, theenles and controller
bandwidth is set greater than the controller bandwidth ameet than the sensor
noise bandwidth, with optimised bandwidth tuned via polcpment method and
the closed loop stability of the ECS systems is analysedyusiapunov theory.
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Chapter 1

Introduction

1.1 Background

An energy conversion system (ECS) is to transform the enteogy one form
to another. Examples include the turbine, electric maghand chemical cell, etc.
In the power system, the energy conversion process covergaiver generation,
storage and consumption in the power system. The followewgi@ns introduce
three kinds of ECSs: the wind power generation system (WPB&gnergy storage
system (ESS) in microgrid application, and induction motor

1.1.1 Wind Power Generation System

Due to the energy shortage and environmental concern, edslevenergy has
a great attention of researchers and industry in recentdéscaThe total power
generation of renewable energy systems (RES) is contityibosming [6]. The
main advantages of using renewable sources are reducihgiméul emissions and
the inexhaustible resources of the conventional energifewtte main disadvantage
is the uncontrollability of renewable energy sources’ kaality, which exhibits
strong daily and seasonal patterns [7].

As one of the most promising renewable energy sources, wineephas re-
ceived tremendous progress in the past decades, as showa glpbal installation
capacity in Figure 1.1. Wind turbine is an energy conversiggiem, converting the
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Figure 1.1: Global wind energy installation capacity [1].

kinetic energy of wind to the mechanical energy of the rotowmd turbine, and
finally the mechanical energy in wind turbine to electricrgiye

Most wind power generation systems use variable speed witihes (WTSs)
with variable pitch to achieve an efficient and reliable amsion of wind power to
electrical power.

Wind turbine architectures

There are a large number of choices of architecture availabthe designer
of a wind turbine, and most of these have been explored oeeyehrs [2, 8—-10].
Machines of large size and capacity tend to operate at Jarggieed to accept a
wider wind range, whereas smaller, simpler turbines arexetifspeed.

e Fixed-speed wind turbine

Fixed-speed wind turbines are electrically fairly simpévides without a pow-
er converter interface. It consists an aerodynamic rotwirdy a low-speed shatft,
a gearbox, a high-speed shaft and a squirrel cage inducéinargtor (SCIG), as
shown in Figure 1.2(a), which is coupled to the grid througraasformer. The ro-
tational speed of the generator is determined by the grgu&acy and the number
of poles of the stator winding. Thus, at different wind spedtie generator oper-
ating slip variation is generally less than 1%, this type ofduurbines is normally
referred to as fixed speed [2,11,12].

¢ Variable-speed wind turbine
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Comparing with the fixed-speed wind turbine, the varialgleesl operation in-
creases the energy conversion efficiency and reduces nieahsainess caused by
wind gusts. The main drawback of variable-speed wind twlénthe need for a
power converter interface to control the generator spegdl {33, 14]. Currently the
most common variable-speed wind turbine configurationsairfellows:

Doubly fed induction generator (DFIG) wind turbine. The DFIG wind tur-
bine uses a wound-rotor induction generator whose statating connected to grid
through a transformer and rotor winding fed through a vaedikequency power
converter, as shown in Figure 1.2(b). A DFIG system can defpower to the grid
through the stator and rotor, while the rotor can also abpovker depend on the
rotational speed of the generator [9].

Full-capacity power converter (FPC) wind turbine based on asynchronous
or induction generator. The generator is connected to the grid via a FPC whose
power rating is normally the same as that of the generatariri®t cage induction
generators, wound rotor synchronous generators (WRS@)parmanent magnet
synchronous generators (PMSGSs) are all applied in thisa§penfiguration [2], as
shown in Figure 1.2(c). The power converter splits the ACnamtion of generator
and grid by a DC link, which enables the independent confrgeoerator-side and
grid-side converters.

Control objectives of wind turbine

According to the wind speed range, a wind turbine has thregabipn modes,
as shown in Figure 1.3 [3]. In each region, for a variableesperiable-pitch wind
turbine, the controller has different control objectiveRegion | starts the wind
turbine from the cut-in wind speed to the wind speed whendtw speed reaches its
rated value. In this region, the control objective is to capthe maximum available
power from the wind flow [15]. The controller is to control thator or generator
speed of the wind turbine to catch the optimized speed, mieiggwthe pitch angle
of blades is kept at O degree to have the best wind power eapapability. Region
Il is the buffer region between the wind speed when the ropeed reaches its
rated value and the wind speed when the output power reaishegad value [16].
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Figure 1.2: Different types of wind turbine. (a) SCIG base@dispeed wind tur-
bine, (b) DFIG based variable-speed wind turbien, (c) FP§ebavariable speed

wind turbine [2].

Yaxing Ren



1.1 Background 5

Py

Power (kW)

Vim (m/s)

—~

I 1 11

— e —y
- ——_—_—— -

Vrnin Vb N 1YN .Vrn ax

pe

Figure 1.3: Wind turbine operation modes versus wind sp8gd [

Region Il ranges from the rated wind speed and to the cutvnd speed, in which
the wind power forced on the blade is larger than the nomiaakgated power of
the wind turbine. The control objective in this region is bmit the pitch angle
and, meanwhile, to minimize the load stress on drive-traaftsby a pitch angle
controller [15, 16]. Under the pitch angle control, the robo generator speed of
wind turbine is normally kept as a constant. When the windedge lower than
the cut-in speed and higher than the cut-out speed, the wihéhe is stopped by
mechanical brake and the pitch angle is adjusted to 90 degree

Efficient and reliable operation of a wind power generatigatam (WPGS)
heavily relies on the control systems applied on the WT dpegat different re-
gions. This thesis only considered the high speed regiogi@Rdll) in which the
pitch angle control is applied to limit the wind power cagaiby the wind turbine.

1.1.2 Power System with More Power Electronics - Microgrid

Application

In traditional power systems, the power is produced by ssorabus generator
based power plants of traditional energy sources, suchehspmiroleum and natural
gas, and the generated power is transferred toward lorgndistransmission lines.
However, the power system is changing, a large number ofildis¢d resources
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Figure 1.4: Power-electronics for the future power system.
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(DRs) are being developed [7]. This leads the wide-scaleofig®wer electron-
ics in the power generation, the power transmission/distion and the end-user
application [6], as shown in Figure 1.4.

In the power generation of DR, the power electronic techgylaays a signif-
icant role to match the characteristics of the DR units amdréguirements of the
grid connections, including voltage, frequency, phaséiy@a@nd reactive power,
harmonics minimization, etc [7]. The DRs include both theewgable energies,
such as the wind energy, solar energy and tidal energy, ametnewable energies,
such as the chemical fuel, and bio-fuel, etc. Power eleidsdoring in significant
performance improvements for the DRs to let them act likeetely controllable
generation units being able to much better integrate theibtBshe power grid [17].
In the power transmission, the latest resurgence of deneogs is the high-voltage
dc (HVDC) transmission. And the performance, reliabilagd affordability of the
power converters over 10 MW power levels still need furtimepriovements [18].
In the power consumption, the converter based AC motor daind the typical DC
load, such as the DC network, energy storage system andipkigetric vehicle,
act as the modern power demand.

Therefore, the power electronic technology plays an ingmrtole in the field
of modern electrical engineering in the future power systgml9, 20]. The power-
electronics-enabled power systems are applied in the nhectie aircraft [21-23],
the ship board power system [19], and the low-voltage (LV) irogrid (MG)
[24-27]. In this thesis, a LV-MG is studied in facing the dbabe of the future
more power-electronics based power systems.

The Energy Storage System in Microgrid

The MG can be defined as a LV network, including a cluster maxdygnerations
and loads, operated in both the grid-connected mode ordistazde. In the grid-
connected mode, the bus voltage is maintained by the ugitit and all devices in
the grid-connected AC MG stay synchronized with the voltage frequency of the
utility grid. But in the island mode, the AC MG is isolated fincthe utility grid and
no external voltage reference to be synchronized. This mtileislanded MG has
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much lower stiffness and inertia than the transmissionsg@8—27]. It requires the
DRs in the AC MG to have the capability of maintaining the agk amplitude and
frequency of the electric network.

In addition, as the renewable energy is unpredictablerraitre resources are
needed when the renewable energy DRs cannot supply enowgdr pwthe load.
The controllable micro-sources, such as micro-turbineisfaal-cells, are good al-
ternative resources, but their response speed are notrfasgle to face the fast-
changing disturbance. They can be used as the auxiliargg®kources to balance
the power demands in steady states. The energy storagens¢iS&S), such as
battery, flywheel and supercapacitor, are commonly useth&itransient power re-
sponse in MG due to their particular features of fast respapeed, bi-direction
power flow, and weather independency [28—-36].

The voltage source converters (VSCs) are commonly usedtoldehe output
voltage from the RES and ESS to be synchronized with the biizgeof AC MG
before connecting to the grid. The VSC based ESS are useditvainethe voltage
and frequency of the AC MG when it faces the sudden distusssanacluding load
and generated power changes and short-circuit faults 125, 2

In an islanded MG, all parallel connected DRs are expectethéoe the active
and reactive power demand without centralized control ical communication
among them [37]. Thus, the power droop control for the VSC &sDs often
applied to reach this target and avoid the circulating cusrdoetween converter
based DRs [27,37-39].

In the MG, both the three-phase devices and single-phasessgasould be con-
nected due to different requirements. The single-phastslaad power generations
are the major causes of voltage unbalance, which not onlysnmore power loses
and instability to the MG but also results in damaging the¢hphase equipments
installed in the MG. Therefore, the objectives of ESS cdlgras to recover the
transient power difference between power generation anthdd, meanwhile, to
absorb the three-phase unbalanced power flow in the MG.

Yaxing Ren



1.1 Background 9

Figure 1.5: Induction motor structure.

1.1.3 Induction Motor

The electric machine is a significant energy conversionpgant that converts
between the electric energy and mechanical energy. Irmuptotor (IM) is one of
the most commonly used electric machine that not only thelyidsed workhorse
in industrial processes and transportation applicatidf§ljut also one of the most
appropriate electric motor candidates and widely accept@ice for most of the
EVs and HEVs manufacturing companies [41,42], such as Matars. The reason
is its features of ruggedness, simple structure, smallmeland lightweight, low
cost, high efficiency and operational reliability [43]. Eflec propulsion system is
an integral part of electric vehicle (EVs) and hybrid electehicles (HEVS) [44].
Performance of the traction motor drive plays an importafg in the evolution of
alternative energy vehicle and electrified transport itigusComparing with other
motor candidates, the IM can easily operate in the speechiflan the rated via
field weakening [45].

The main difficulties in controlling of an IM are its nonlinedynamics, mo-
tor parameter variations during operation, and unmeassiads (rotor currents
and fluxes) [46], as shown in Figure 1.5. The IM traction drigguires high per-
formance control in order to get the fast transient resp@amskeenergy optimiza-
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tion [47,48].

1.2 Control Methods for ECSs

In the conventional control systems of ECSs, linear colers| such as the PI
based control, are commonly designed based on the modeiezrized systems.
However, the real ECS systems are normally nonlinear systerpractical world.
To control a nonlinear system, the most commonly used mathtmllinearize the
nonlinear system based on a chosen operating point, andléségn a linear con-
troller based on the linearized system. However, the matlesiyn via linearization
approach is valid only in a neighborhood of a single opegapoint. When the
real operating points deviate the designed point, the linead system cannot well
present the dynamic response of the nonlinear system, ardkigned linear con-
troller cannot acquire the desired performance [49-51].

The nonlinearities for a nonlinear system can be classifiezithe continuous
nonlinearities and the discontinuous nonlinearities. toatinuous nonlinear sys-
tem, its input-output characteristics can be describednayyéic functions and are
continuously differentiable. In a discontinuous nonlinsgstem, its input-output
characteristics cannot be modeled by analytic functiomsthe derivatives of out-
put with respect to input contain singularities. The digowrous nonlinearities are
commonly produced by elements with their saturation, deaelZdor deadspace),
absolute value detector, ideal relay, relay with deadzqoantization, hysteresis,
backlash, friction, etc [49].

Therefore, the real challenge is to maintain the controfgoerance in the p-
resence of system nonlinearity and uncertainty, incluttiegdynamical uncertainty
and parametric uncertainty.

To maintain the performance of controlling a nonlinear eystvhen its operat-
ing points are changed, two most commonly used methods aesemed to solve
the nonlinear problem. One method is using the gain-scireglabethod to pro-
vide an uniform performance via adjusting the controllengd&®ased on measurable
operating conditions. The other method is calculating thilinear changes from
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the system input-output relationship and states feedlzaxkcompensate the effect
caused by the operating points changing, which is calledetb@back linearization
control method. These two methods are reviewed and analpzée following
sections, and then a developed perturbation estimatiadmtrol method will be
discussed.

The ECSs used in this thesis are the IM, WT, and VSC based DRcirogrid.
The induction motor is developed from the 1880s, and thedsped torque control
of IM still attracts researchers’ attention even today. Toetrol of wind turbine is
studied from the 1980s. With the improvement of the wind inglinstallation in
the past decades, the control of wind turbine attracts astngg more attention of
researchers. In recent years, with the development of r&plevenergy and power
electronics technology, the microgrid techniques obtaowing concerns from re-
searchers, especially the control of DR for sharing the pol@mand in a microgrid.

In this thesis, the conventional Pl-based control appro#oh feedback lin-
earization control and the perturbation estimation basetrol with different kinds
of observers that applied on the WT, VSC based DR in microgmd IM and are
reviewed in the following parts.

1.2.1 Pl and Gain Scheduling Pl Control

In the wind turbine pitch angle control, the Pl-type corlgpis the most basic
method that controls the pitch angle based on the regulati@m of output power,
or rotor speed, with its reference value as in [3,52].

In the microgrid application, the energy storage systengjESused to maintain
the bus voltage and frequency via balancing the power flowdsn generation and
demand. The control of the ESS-VSC is implemented using #s&ch/f control
method, which is with a cascade-PIl based control loop: aaricarrent control
loop cascaded in an outer voltage control loop, with usingd®trollers to regulate
the voltages and currents [26,53].

In the IM speed control, the most commonly used techniqueeifield-oriented
control or vector control (VC). The VC method uses the Paakgform to decouple
the torque and flux and make them related to the d- and g-arierts separately
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[54], and controlled by two independent Pl controllers. §titbhe VC control method
achieves a good dynamic response of the controlled IM coatfeato those of the
dc motors [55, 56].

However, the linear PI controller with fixed gains cannotyiie consistently
satisfactory performance in the whole operating regiochsas the wind turbine
with strong aerodynamic nonlinearities operating undeetvarying wind speed
[57,58]. To tackle this problem, the gain scheduling Pl (@®Bntrol method is
presented to use the pre-scheduled control gains for theiapt performance in
the whole operating region.

The 'gain-scheduling’ means that the gain or other pararsefea controller can
be self-adjusted to suitable or optimized values from miedde operating condition
changes [51]. The gain scheduling method can be employed pswerful linear
design tools based on linear parameter-varying plant nsooielsolving difficult
nonlinear problems [59]. For general nonlinear trackirgppems, a family of linear
dynamic controllers can be designed as a gain scheduliregllmaslinearization of
the system on operating points [60].

The purpose of the gain scheduled controller is to provideraform perfor-
mance for the nonlinear design when the gain schedulingsisiple to parameterize.
Linear controllers can be designed for operating condstinrtheir neighborhood re-
gions indexed by the scheduling parameters. The gain sthgdanethod has many
different design notions, such as switching gain valuesmltieg to operating con-
ditions, controller switching, and controller blendind.]5

The procedure of gain scheduling design is as follows [50]:

e The first step is to obtain a linear model of the nonlinear plesed on lin-
earization approach about a family of operating points.

e The second step is to design a family of linear controllerdlie linearized
system model at each operating points or region.

e The third step is to involve implementing the family of limeantrollers, such
that the controller gains are scheduled according to theesticondition of
the scheduling variables.
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e The fourth step is performance assessment, such as theiltgpafrapid
response to changing operating conditions and the clage-4tability and
robustness during gain switching.

The whole operating region is divided into some small regj@md a family of
linear controllers are designed for each operating regibns the control system in
whole operating region can be seen as a nonlinear contrajpglication studies of
the GSPI used in WT pitch angle control are presented in 3,52

1.2.2 Feedback Linearization Control

Feedback linearization theory provides methods that dance nonlinearities
of the system through feedback. The basic idea is to tramséononlinear system
into a fully or partially linearized system, and then a cohiér can then be designed
for the system using the powerful linear design techniqd8s [

As mentioned in the previous sections, the feedback linatoin control (FLC)
can linearize the system by canceling the nonlinearitiesutljh feedback, it can e-
liminate the nonlinear problems that the linear Pl-typetaaler cannot achieved.
In the wind turbine application, the FLC is used in [61] an8][fo control pitch
angle of wind turbine with optimized performance in the wehalind speed region.
In the microgrid application, the FLC method is used to conthee secondary volt-
age control to a linear second-order tracker synchromiagiroblem [62]. And in
the IM speed drive, the nonlinear control methods to deeti@ coupling nonlin-
earities such as the adaptive input-output linearizingrabOLC) with parameter
estimation [63], and the exact feedback linearization methith rotor flux angle
estimation [64] are used to solve the effect of nonlineaaityl uncertainty in the
IM system. In the recent researches, the FL approachesdsedtin direct-torque-
controlled IM to improve the robust stability [65], thedrell framework and conse-
guent application of FLC technique to IM [66], and considgnmagnetic saturation
effects of using FLC on IM [67], etc.

Although feedback linearization has been used to solve apumf practical
nonlinear problems, it still has an obvious drawback thé&t tulnerable to handle
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the presence of parameter uncertainty or external distedsa[49]. The inaccura-
cy of the model and parameters will lead to an unacceptaatkitrg error in the
previous energy conversion systems. Because of which, sesearchers use the
observers to estimate the unavailable parts of the systeto, estimate and com-
pensate the inaccurate parameters to the controllers.

To eliminate the problem of parameter uncertainties in dezlback lineariza-
tion control, the adaptive feedback linearization contAd#tLC) was studied under
global Lipschitz condition on the nonlinearities multiply unknown parameter-
s [63,68-71]. The AFLC method use the on-line parametemesitbn to estimate
the unknown parameters, or compensate the effect of pagamwatiations in the
conventional feedback linearization control. The AFLCiaehs the fully decou-
pling in system states and estimate the true parametersvédue better control
performance. However, the AFLC can only estimate the constaslowly chang-
ing parameters. If the system parameters are fast chartg@@FLC will have a
poor estimation performance, and that will finally lead to@se control result than
before. Thus, the AFLC is an imperfect solution to reach #nget of controlling a
nonlinear system as simple as that of a linear system.

1.2.3 Perturbation Estimation based Control

In recent years, the problem of controlling uncertain nogdir dynamical sys-
tems has been a topic of considerable interest. Many worktssrfield have been
undertaken by employing robust and adaptive control methed an observation
mechanism is designed to estimate disturbances or unaegior both, and then
use the estimate to compensate the corresponding systémnitBe perturbation
estimation based control approaches, a number of obsemtatthniques have been
proposed, such as perturbation observer [73], extendésl @vaerver (ESO) [74],
uncertainty and disturbance estimator (UDE) [75, 76], e@jent input disturbance
based estimator [77], disturbance observer (DOB) [78],gartkralized proportion-
al integral observer (GPIO) [79]. Among those perturbasietimation approaches,
DOB and ESO are the most extensively investigated methoderRlg, intelligent
DOBs has been developed and widely investigated, such ag @Bs [80] and
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neural network DOBSs [81].

In the application of VSC control, the unknown disturbance estimated and
compensated by an extended state and perturbation obge8R0), which can be a
linear or nonlinear observer, as the active disturbaneetien control (ADRC) used
in [82] and [83]. In the wind turbine control applicationeetESPO is implement-
ed using nonlinear observer [84, 85] based on the controryhieom [74, 86, 87],
linear observers [88, 89], fuzzy observers based on [8@],reural-network-based
observers [81]. In the IM application, the perturbationraation and compensa-
tion, or an alternative name is disturbance rejection, ogktlsing a linear observer
in [90-92] or nonlinear observer in [93-95] to get a bettarainic performance and
robustness against the modeling uncertainty and exteistakdance.

1.2.4 Other Nonlinear Control Methods

Other advanced control methods for the wind turbine pitajlecontrol have
been applied with digital robust control [96], neural-netk#based control [97],
model predictive control [98], etc. Some advanced contrethods for VSC of
DRs in microgrid were presented as the robust high bandvpcitictive curren-
t control [99], and hybrid variable-structure control [J@thder balanced voltage
condition; and a voltage unbalance and harmonics compensstategy [101], a
distributed negative sequence current sharing method,[id2ust control strategy
designed with a convex linear matrix inequality conditid®3], model predictive
control technique to minimize the voltage unbalance [10éiempresented for the
unbalanced voltage condition. In the IM speed drive, presmorks used some ad-
vanced control methods to improve the robustness, suchagsiae control [105],
sliding mode control [106], nonlinear sliding-mode torquantrol strategy [107],
adaptive back-stepping sliding-mode control method [108]zy control method-
s [109, 110], and neural network based robust control sch¢iid, 112].
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1.3 Objectives and Motivation

The conventional control methods of ECS expose the dravebaicthe robust-
ness against disturbance and parameter variations. Therlpetion estimation
based nonlinear adaptive control method used in this tlagsis to improve the ro-
bustness of ECSs. The objective of this thesis is to desigmtanpation estimation
based control method to improve the robustness of targétregs and implement
the control method in the ECSs depending on their charatityi

The motivation of this thesis is to cope with the challengiethe controller de-
sign for ECSs in the future power system as follows. In the Wadhpangle control,
the main challenge is the aerodynamic nonlinearities of Wd #he random and
time-varying wind speed cause the difficulties of obtainihg optimized perfor-
mance for WT in a wide operating region. In the voltage cdraf&SS in MG, the
main challenge is the disturbance and unbalanced powerrdkfoathe MG which
has low stiffness and inertia cause its weak robustness utisteirbance. And in
the IM speed drive, the main challenge is the nonlinear dyessand coupled states
lead the difficulties in controlling the flux and torque segialy, and the parameter
sensitivity and flux position dependency problem of conweral control method
causes the weak robustness under parameter uncertaintg. ddtailed objectives
for the controller design of each ECSs are given as below:

¢ In the wind turbine pitch angle control, as the wind speediywg in a wide
range, the conventional PI based pitch angle controllem@igorovide the op-
timized control performance when the operating point cleangTherefore,
the objective of the controller design is to use a pertudmabbserver to esti-
mate and compensate the nonlinearities during the opgrptimt changing
for having an optimized control performance in the wholedwspeed region.

¢ In the voltage and frequency maintenance of an islandedogniict by con-
trolling the VSC control of ESS, the objective of the propbsentroller is
to design a perturbation observer to estimate and competisatinbalanced
perturbation, which includes both the positive- and negasequence distur-
bance, to eliminate the unbalanced voltage in the microdyd in a hybrid
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ESS, a coordinate controller is designed to control the reapacitor as an
energy buffer to filter the transient power and unbalancedepaemand that
is to reduce the unnecessary usage of the battery in thedyB%$ and extend

its longevity.

e In an IM system, the flux and torque is coupled together anchaafully
decoupled by the Park transform in the conventional veatatrol. The ob-
jective of the proposed speed controller is to control thedik&ctly under
the stationary frame which aims to improve the performaridbespeed re-
sponse and robustness under disturbance via fully decmugtie flux and
torque without the dependency on the flux position and sygtarameters.
And in the speed sensorless control, the new controllersgyded by replac-
ing the PI regulator with a state and perturbation observardpeed observer
with the objective of estimate the speed and its perturbatimultaneously,
which is to reduce the computation load and improve the rtless of the IM

system.

1.4 Major Contributions

The thesis reports the research work undertaken based dimeamadaptive
control via perturbation estimation that is applied on tbetool of ECSs for the fu-
ture power system. The major contribution is the implemtoaof the perturbation
estimation based control method for the application of E@S8d the most suit-
able controller bandwidth depending on the charactesistidCSs. More detailed
contributions for the ECSs application are summarized ksis:

e Due to the nonlinear behaviour of aerodynamics of wind nehinder ran-
dom wind speed, the conventional linear controller canmovide the opti-
mized control performance in a wide wind speed range. A peation esti-
mation based nonlinear Pl (N-PI) controller has been agpdiewind turbine
pitch angle control under time-varying wind speed in RedibnThe pro-
posed N-PI based pitch angle controller is investigatedstanly one set of
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Pl parameters to provide an optimal performance under wpegd changes
via the perturbation estimation and compensation withieeréquirement of
accurate model. The simulation results on both the simglified detailed
wind turbine model have shown that, comparing with the cativeal Pl and

gain-scheduled PI controller, the N-PI controller progthetter dynamic per-
formance of power regulation, load stress reduction angbéot usage. And
the N-PI has better robustness against of model uncesdsaittian the feed-
back linearization control.

e Due to the low stiffness and inertia of an islanded MG, a mobeist voltage
control for the ESS is required to maintain the bus voltagk@ower quality
if the MG under unknown disturbance and unbalance power ddma per-
turbation estimation based NAC is investigated for the VB&he microgrid
application with considering the voltage unbalance pnobl&he SPO is de-
veloped to estimate both the positive- and negative-sexueerturbations to
compensate the voltage unbalance that is caused by sihgkeplisturbances
in an islanded MG. The simulation results have shown thaptbposed con-
trol method has better performance in eliminating the distnce and voltage
unbalance in the islanded MG.

e As the energy storage devices in ESS has different propesiieh as the bat-
tery has high energy capacity and the SC has high power giearsit more
recycling times, the challenge is to optimize the contrélhe ESS consider-
ing the properties of different devices. A coordinated ocordtrategy for the
VSC of a battery-supercapacitor based hybrid energy stasgstem (HESS)
for both improving the transient performance of MG bus \gétand reducing
the battery loss. In this control strategy, the battery rgmled to provide the
balanced power in steady-state while the SC is controllgeterate transien-
t power and compensate the unbalanced power demand. Sonulesults
have shown that the transient response of MG bus voltager uheeinbal-
anced load disturbance has been improved. Simultaneovugiythe SC acts
as an energy buffer to filter the transient and unbalancedepdie battery
loss is reduced with lower discharge depth and higher efiogie
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e Due to the high coupled states and nonlinear interactiohsdsn states of
IM, the conventional control method is depending on the flogifoon, which
is parameter sensitive and cannot fully decouple the dyosofithe flux and
torque. A novel NAC based controller for the IM speed drive haen inves-
tigated to improve the performance of speed and flux trackimter unknown
load disturbance and uncertainties under the stationargdrto reduce the
dependance on rotor flux position and system parametersst@hbgity of the
close-loop system with the proposed NAC controller is itigeted via Lya-
punov theory, and its dynamic performance is verified by Isatiulation and
experimental studies in comparison with conventional mmhethods, such
as the vector control and model-based input-output lirgagicontrol. The
results have shown that the NAC provides faster responsé&easdegulation
error in rotor flux and speed tracking, and better robustteedisturbance and
parameter uncertainties.

e Due to the risk of using a speed encoder in IM speed drive, rspagd sen-
sorless method is to add an additional speed observer tottieber, which
increase the complexity of the control system structure.péesl sensorless
NAC (SSNAC) controller for IM speed drive in electric veledEV) appli-
cation has been investigated which uses a combined SPO uoedlde use
of Pl regulator in a MRAS speed observer for estimating bbéhspeed and
its perturbation for fully linearizing the IM system withtspeed sensor. The
stability of the close-loop system with the SSNAC is provéa Mapunov
theory. The performance of the SSNAC are validated in batiukition study
and experiment validation with the driving profiles of theeg reference and
load torque are from the operation conditions of EV, and carag with that
of the conventional vector control with MRAS speed observene results
have shown that the SSNAC provides a reliable and effectigisn for the
high performance robust speed sensorless control of IM Yoajplication.

In this thesis, the NAC for the wind turbine pitch angle coh&ind for induction
motor speed control are validated in simulation using MAB/8imulink, while the
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NAC for the voltage and frequency control of VSC in the miardgpplications are
validated in simulation using PSCAD/EMDTC. The hardwarglementation of
NAC based speed controller for the induction motor is in tS€ACE environment.

1.4.1 Publication List

The publications produced from this research work aredigtethis section as
follows:

1. Yaxing Ren, Liuying Li, Joseph Brindley, and Lin Jiang,Miaear PI control
for variable pitch wind turbineControl Engineering Practicevol. 50, pp.
84-94, May 2016.

2. Yaxing Ren, Lin Jiang, Jian Chen, Yihua Hu, Chuan-Ke Zhamg Yong
He, Perturbation Estimation Based Nonlinear Adaptive @drior Induction
Motor Speed Control with Improved Robustnd&EE Transaction on Power
Electronics 2016. (Under review)

3. Yaxing Ren, Lin Jiang, Saqgib Jamshed, Yihua Hu, and Hgiien, Speed
Sensorless Nonlinear Adaptive Control of Induction Motar Electric Vehi-
cles via a Combined Speed and Perturbation ObsdEEE Transaction on
Mechatronics2016. (Under the" review)

4. Yaxing Ren, Jian Chen, Lin Jiang, and Saqib Jamshed RamtijiBation Esti-
mation Based Nonlinear Adaptive Control to CompensateagatUnbalance
and Disturbance in Islanded MicrogridEEE Transaction on Sustainable En-
ergy, 2016. (Submitted)

5. Yaxing Ren, Shuaihu Li, Lin Jiang, and Pingliang Zeng, dowated Control
for Battery and Supercapacitor in Hybrid Energy Storagete3gsn Micro-
grid, International Power Electronics and Motion Control Cordace (IPEM-
C) - ECCE Asia2016.

6. Jian Chen, Yaxing Ren, Lin Jiang, Wei Yao, and Chuan-Kengh&obust
Maximum Power Point Tracking Control of PMSG-Based Windbine via
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Perturbation Observation Based Nonlinear Adaptive Cdietrdnternational
Journal of Electrical Power & Energy Systen2016. (Under review)

7. Wei Zhang, Jian Chen, Yaxing Ren, Liuying Li, Wei Yao and liang, Non-
linear adaptive control of induction motor with sliding neélux observer,
17th International Conference on Electrical Machines agdt&ms (ICEMS)
pp. 2738-2742, Oct. 2014.

1.5 Thesis outline

The thesis is organized as follows.

Chapter 2: Review of Perturbation Observer Based Nonlinear Adaptwet(®|

This chapter introduce the feedback linearization methadithe perturbation
estimation method. The perturbation estimation methodoeatiesigned using dif-
ferent observers, such as the linear high-gain observalinear observer, sliding-
mode observer, and finite-time observer. Then the diffevbaervers are compared
for estimating the perturbation of a simple second-ordstesy as an example.

Chapter 3: Nonlinear PI Control for Variable Pitch Wind Turbine

The renewable energy, especially the wind energy, is thd prosnising dis-
tributed power generation in the future power system. Tarobthe WT with non-
linear aerodynamic under random wind speed, this chaptgroge a perturbation
estimation based nonlinear PI (N-PI) controller for wintbine pitch angle control.
The N-PI based pitch angle controller is investigated to/jol® an optimal perfor-
mance under wind speed changes using only one set of Pl parsnaed estimated
perturbation without the requirement of accurate modeé Jimulation verification
is based on a simplified two-mass wind turbine model and alddtaero-elastic
wind turbine simulator FAST. The results show that the N-¢ttooller can provide
better dynamic performance of power regulation, load stregluction and actu-
ator usage, comparing with the conventional Pl and gaiedualed PI controller,
and better robustness against of model uncertainties bigafeedback linearization
control.
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Chapter 4: Autonomous Control of Power Electronics Enabled Microgial
Nonlinear Adaptive Control

Beside the distributed generation, the ESS is anotherfgignt devices in the
the future power system due to the low inertia and unbaladcgdrbance in the
MG. This chapter proposed a perturbation estimation baskdge controller em-
ploying an SPO to estimate both the positive- and negaggersnce perturbations to
solve the voltage unbalance problem caused by single-ghstsebances in island-
ed MG. The proposed control scheme is validated in PSCAD/EM Bimulation
with the single-phase impedance load and distribute resotonnected to the MG
as the unbalanced disturbance. Simulation results denadeghat the proposed
controller eliminates the voltage unbalance and disturbamith less voltage dip
and voltage unbalance rate of the bus voltage in the islantfed

Chapter 5: Coordinated Control for Battery and Supercapacitor in ty/&n-
ergy Storage System in Microgrid

To further develop the control system of ESS with considgtive different prop-
erties of energy storage devices, this chapter presentspe@tive control strategy
for a battery-supercapacitor based hybrid ESS (HESS) fibr ibgproving the tran-
sient performance of MG bus voltage and reducing the battey. The control
strategy is to distribute the power generated from diffedavices in HESS, as bat-
tery is controlled to provide the balanced power in steddyesvhile supercapacitor
is controlled to generate transient and unbalanced poweanfanbalanced load de-
mand. Simulations are implemented in the PSCAD/EMTDC saxfévenvironment,
and the results show that the transient response of MG btisgeohas been im-
proved and the battery loss is reduced by the proposed ¢tattategy with lower
depth of discharge, less internal power loss, and highereeetfficiency than the
conventional control method in MG applications.

Chapter 6: Nonlinear Adaptive Control for Induction Motor Speed Cahtrith
Improved Robustness

The disturbance of the future power system also comes fraptiwver con-
sumption side, such as an IM speed drive under load torquarb@ice. This
chapter investigates a novel NAC based speed controlléh&tM to improve the
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performance of speed and flux tracking under unknown anecfestging load dis-
turbance and uncertainties. The control method is desidiredtly under the s-
tationary frame to reduce the dependance on flux positiorsgsttm parameters.
State and perturbation observers are designed to estihepetturbations, and the
estimates are used to adaptively compensate the real lpstiirs. The stability
of the close-loop system with proposed NAC is investigatedLyapunov theory,
and its dynamic performance is verified by both simulatioth@xperimental studies
in comparison with that of the conventional vector contraodl anodel-based input-
output linearizing control. The results show that the NAGdzhspeed controller
provides improved performance with faster response arslrkggulation error in
rotor flux and speed tracking, and robust to load disturbamceparameter uncer-
tainties.

Chapter 7: Speed Sensorless Nonlinear Adaptive Control of Inductiaravl
for Electric Vehicles via a Combined Speed and Perturbdlibserver

To further develop the speed controller of IM with reducimg tdependence
of a speed sensor, this chapter proposes a speed sensoklesohtroller for IM
speed drive in EV application. The SSNAC uses a combined $R€ptace the PI
regulator in a model reference adaptive system (MRAS) spbsdrver for estimat-
ing both the speed and its perturbation for fully lineangthe IM system without
speed sensor. The stability of the close-loop system walStBNAC is investigated
via Lyapunov theory. The performance of the SSNAC are coatpaith the con-
ventional VC with MRAS speed observer in both simulatiordgtand experiment
validation, where the driving profiles of the IM speed refexe and the load torque
are from the operation conditions of EV. The results showttn@a SSNAC provides
reliable and effective solution for the high performandeust speed sensorless con-
trol of IM for EV application.

Chapter 8: Conclusions and Future Work

The thesis has concluded with a summary of the results amtadesuggestions
for future work. The suggestions for future work will higiht the unsolved prob-
lems that remained.
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Chapter 2

Review of Perturbation Observer
Based Nonlinear Adaptive Control

The perturbation estimation based nonlinear adaptiverabig proposed in
[113, 114]. A multi-input multi-output (MIMO) system is tnaformed as inter-
acted subsystems via input-output linearization at firbierTfor each subsystem, a
perturbation term is defined to include all subsystem nealiities, interactions be-
tween subsystems and uncertainties. A fictitious statdrnsdaced to represent the
perturbation and a state and perturbation observer (SR{@signed to estimate the
perturbation and other system states based upon the meesurd he estimates of
perturbations are used to compensate the real perturbatizen the original non-
linear system can be controlled using a linear controllethe schematic diagram
shown in Figure 2.1. The following sections present theitbetaexplanation by

formulas in steps.

2.1 Feedback Linearization

Feedback linearization theory provides methods that ¢atfee nonlinearities of
the system through feedback. The basic idea is to transfaroménear system into
a fully or partially linearized system, and then a contnotlan then be designed for
the system using the powerful linear design techniques.f@éback linearization
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r =+ e Linear
C) controller

-A

u %
Y | = Nonlinearity P(x)
»| Estimator

Figure 2.1: Schematic diagram of the disturbance obseaszdcontrol method.

method helps to convert many intractable nonlinear problérto simpler linear
problems. The theory can be divided into two kinds of appneac the input-out
linearization, and the input-state linearization [49].

¢ Input-output linearization (IOL) is to linearize the inpotitput map from sys-
tem input to output even if the state equation is only pdytialearized. The
IOL approach is easy to obtain and requires little more nurabiémes to dif-
ferentiate the output. However, this approach may resuhahsome internal
dynamics cannot be controlled from an input-output pointiefv, which is

called the zero dynamic problem.

e Input-state linearization is to linearize the full statauation, which means
it is not generally possible with a given system. If the solutof the par-
tial differential equation is possible, a state transfdroraand a linearizing

feedback can be found.

The system input-output relationship is nonlinear and #stesn is controlled
by a linear controller based on a constant operating poirtt,the nonlinearity is
calculated and compensate the system nonlinearity is cosaped to obtain the
optimized performance in the whole operating region of thelinear system [49].

A MIMO nonlinear system is considered as

(2.1.1)
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wherexz € R" is the state vector, € R™ is the control input vectoly € R™ is the
output vectorf(x), g(x) andh(z) are smooth vector fields.

2.1.1 Input-State Linearization

System (2.1.1) is fully-linearizable if there exists a edmorphismb;: U — R"
such thatD = ¥,;(U) € R™ and the state transformatian= ,(z) transforms the
system into the form:

o (2.1.2)
Yi = Uz

{ Z = Az + Blou(x) + Bi(x)us)
where A and B are the system parameter matrix(x) is the system nonlinearity
andg;(z) is the input gain function;4, B) is controllable and;(z;) is nonsingular
Vz; € D. With the system in form (2.1.2), we can linearize it exatiyythe state
feedback control

up = (—oy(2) +vi)/Bi(z2) (2.1.3)

to obtain the linear system

{ 4= At By, (2.1.4)
yi = Cz
whereu; is the control of linearized systerd;, B andC are given by
(010 --- 0| [0 | R
001 0 0 0
A= 1t . |, B=|:|, Cc=]": (2.1.5)
000 -1 0 0
(000 -0 1 0

Consider the nonlinear system (2.1.1) having the relategreer = n, i.e.,
exactly equal to the dimension of the state space, at the pgirn this case, the
change of coordinates is required to construct the nornnal fe exactly given by

&, (z) = (I>i2:(x) _| @ (2.1.6)
D, () L;ﬁ_lhi (x)

Yaxing Ren



2.1 Feedback Linearization 27

whereL’;h;(z) is theky, order Lie derivative of;(z).
i.e. by the functiom(x) and its firstn — 1 derivatives alongf(z). In the new
coordinates
zip = ¢p(x) = L} h(z), 1<r<n, (2.1.7)

the system (2.1.1) will be described in the following form:

Zin = Zi2
' (2.1.8)
Zi(n—1) = Zin

Zin = o;(2) + Bi(2)u

wherez = (21, ..., zin) %, ai(2) = L?hi(x)|x:q,;1(z), andg;(z) = LgL?_lhi(xﬂx:q,;l(z).
Recall that at the point of’ = ®,(z,), and thus for alk; in a neighborhood of;,

the functiong;(z) is nonzero. Now, if we choose the state feedback control law
(2.1.3) which indeed exists and is well-defined in a neighbod ofz,.

2.1.2 Input-Output Linearization

The input-output linearization of a MIMO system is obtairnveal differentiating
the outputy; of the system until the input; appears. Thus, assuming thats the
smallest integer such that at least one of the inputs eXglagppears iryi(”)

y" = Lhi +3 " Ly, L™ ha (2.1.9)
j=1

whereyi(”) is thei*"-order derivative ofy;, ngL’]}i‘lhi(x) # 0 for at least ong.
Performing the above procedure for each outpyields

i Ly Uy
b= : +B(z) | (2.1.10)
yon L by, U,
Lo Ly Yy -+ Ly, LY 'hy
B(z) = : : (2.1.11)
Lo Ly hyy o Ly, Ly hyy,
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where B(z) is am x m control gain matrix. IfB(z) is invertible, the FLC of the
the MIMO nonlinear system can be obtained as

—L?hl U1
u=B(z)™* : + | (2.1.12)
—L;’”hm Upn

wherev; are new inputs of the system. Now the input-output relatamesgiven by

" =, (2.1.13)

)

At this point, desired dynamics can be imposed on the sysyaiimenew system
inputs.

2.1.3 Perturbation Term Definition

If the system input gain matri®(x) is unavailable or variable with states, the
nominal control gain can be used and the variable part wildegned into the
lumped perturbation. For system (2.1.2), assume all neatities are unknown,
define the system perturbation as

U,(x,u,t) = Ly(z) + (B(x) — By) u (2.1.14)
then the last equation of system (2.1.2) can be rewritten as
T = V(z,u,t) + Boyu (2.1.15)

whereB, is the nominal constant control gain.

For thei'" subsystem, defining state variablesas= y;, - - -, 2, = yi(”_l) and
a virtual state to represent the perturbatign .,y = ¥;, the state equation of the
i'" subsystem in system (2.1.1) can be represented as

p

it = Zig
(2.1.16)
’éim = ZZ'(TZ'-FI) + BOiu
[ Zigro+1) = 2
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whereB,, is thei'" row of the By, andB,,; is thei" row ;" column element of the
By.

2.2 Perturbation Estimation using State and Pertur-

bation Observers

2.2.1 Extended-Order Perturbation Observers

A MIMO system is transformed as interacted subsystems yatioutput lin-
earisation at first. A fictitious state is introduced to reyerg the perturbation and
an perturbation observer is designed to estimate the pattan and other system
states, based upon the measurement only. The estimatedwipéons are used
to compensate the real perturbations, then an adaptivarigagion and decoupled
control of the original nonlinear system will be implemeaht&€omparing with the
parameter estimation investigated in most adaptive cbatttemes, the technique
used in the proposed control strategies can be consideraduastion estimation
method. For system (2.1.16), several types of perturbatiservers, such as slid-
ing mode observer, high gain observer and linear Luenbergeerver, have been
proposed [114].

High-Gain State and Perturbation Observer

This chapter picks up high gain observer as an example to gimaesign pro-
cedure, while other types observers can be designed dinilar

( X ~ ~
Zi1 = Zio+la(za — 2i1)

) (2.2.1)
Zir, = Zip, + lir,(zi1 — Zi1) + Bo,u

L éi(ri-i-l) = li(ri-i-l)(zil - 5i1)7
wherel;; andl;; are gains of the high gain observer. Throughout this chapter
represents the estimate of. .
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By choosing
=2, lo=", (2:22)

2

wheree;, 0 < ¢; < 1is a positive constant to be specified and the positive cotssta
a;j, 7 = 1,2, are chosen such that the roots of

82 + 18 + Qo = 0 (223)

are in the open left-half complex plane. Throughout thisotlaz;,, represents the
estimate of;,.,.

The gains of the the high-gain observer can be chosen usrgpthe method as
in (2.2.2) and (2.2.3).

Nonlinear Extended State Observer

As an alternative, a nonlinear function is proposed by Hath wie active dis-
turbance rejection control (ADRC) in [74] as follows:

Saay s <6
fal(e, ., 6) :{ 50 el (2.2.4)

le|* -sgn(e) e[ >4
that sometimes provides surprisingly better results inpra. In the nonlinear func-
tion, e is the tracking errorq is the precision index from O to b,is the width of
linear area of the nonlinear function.
With linear feedback, the tracking error approaches zeraofinite time with
nonlinear feedback of the form

u = l|e|” - sgne) (2.2.5)

the error can reach zero much more quickly in finite time, with< 1. Sucha
can also help reduce steady state error significantly, texent that an integral
control, together with its downfalls, can be avoided. It écause of such efficacy
and unique characteristics of nonlinear feedback that Hapgse a systematic and
experimental investigation [74].
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Then an extended state observer with nonlinear equatiorbeactonstructed
based on system (2.1.16) in the form of

(

e = 21— 2
Z1 = Zy+ Pie
: (2.2.6)
2 = Zna1+ Brfal(e, 0.5 8) + Bou
Zs1 = Pryifal(e,0.570)

There are many ways to select the observer gainfor a particular problem.
As an example, for a third-order system, the observer gaifs2.6) can be selected

as [74]
1 2

Por=1  fo= 5705 Bos = EoTAE) (2.2.7)

Sliding Mode State and Perturbation Observer

The sliding-mode observer potentially offers advantagesherent robustness
to parameter uncertainty and external disturbances [165, 1t is a high-performance
state estimator with a simple structure and is well suiteduftcertain nonlinear
systems [117-119]. The integration of the perturbatioimegton into the sliding-
mode observer structure can reduce substantially the adelof the driving term
of the state-observer error dynamics and result in a slidiogle perturbation ob-
server, which is able to provide much better state-estonatcuracy [120]. How-
ever, the defined perturbation term is approximately esdchand its application is
restricted to second-order nonlinear systems.

In this section, a sliding mode state and perturbation oleséSMSPO) is de-
signed when only one state of the system is measurable.

Taking z; as the measured system output, a sliding mode observer $tersy
(2.1.16) is designed as follows:

Z = Zy+ajer + isgrier)
) (2.2.8)
’27‘1' = ’27‘1'4-1 +aper + angr(el> + BOiu

éri—i—l = ap,11e1 + Br,41509Meq)
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wheree; = z; — z; is the estimation error of the state and perturbation olesgtive
constantsy; are chosen as in a Luenberger observer as in (2.2.3).
From (2.1.16) and (2.2.8), the error dynamic of the obseraarbe obtained as:

(

€1 = ey —aje; — [150ne;)
(2.2.9)
ém = Er41 — Q€1 — Bn‘sgr(€1>
L bri1 = —Qp 161 — Br41S0Ner) + ‘1’()

The sliding surface of the observer is definedbés) = e¢; = 0. Introducing the
functionV = (1/252), the sliding surface is attractive ¥ < 0 fore ¢ S. The
condition for the existence of sliding mode is

< B+ if > 0
@=hitma 1T (2.2.10)
ey > —61 + 161 if e1 <0
Such a condition can be guaranteed by chooginas
51 2 |€2‘max (2211)

Note that the choice of gaify, depends on the estimation erroregf Under the
above condition, it is guaranteed that the system will eimtier the sliding surface
att > t, and thereafter remaif = 0, V¢t > t,. It follows that the switch function
satisfiesS(e) = 0, Vt > t,, which in turn implies thak(e) = 0, V¢ > t,.

Considering the designed sliding-mode observer (2.2:8) strte;) term is a
discontinuous input which enforces sliding mode to stay lading surface. The
discontinuous input can be considered as the combinatiafosi-frequency control
term and a high-frequency switching term. An 'equivalenttcol’ is defined as the
average value of the discontinuous control which mainttiessliding motion on
sliding surface [121]. Thus, by solving the first equatiosystem (2.2.9), replacing
S(e) andS(e) by zero, the equivalent control of the ggp) term can be obtained as
follows:

= ieg (2.2.12)

tea =
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2.2.2 Reduced-Order Perturbation Observer

In this section, the reduced-order perturbation obseREQ) technique is dis-
cussed. The RPO is constructed rather than ESO to enhamratést precision
and also enable easier practical implementation [122].

A reduced-order perturbation observer for estimating tetitbancei(t) in sys-
tem (2.1.8) is given by

(

Zy = —Pi(f+ Biz) + 23+ forn
é’ri = —fBr-1(Z2+ Brz1) + Zrig1 + Br,21 + Boju (2.2.13)
3’ri+1 = —f,,(%2+ Biz1)
L = H+bia, F=tt B
wheres; (i = 1,2,--- ,r;) is the observer gaing;(i = 2,3,---,r; + 1) are state

variables of observet; and f are estimations of, and f, respectively.

2.2.3 Finite-time Disturbance Observer

In this section, the finite-time disturbance observer teplmis discussed. This
observer employs the high-order sliding mode differeatiééchniques. The esti-
mation error of observer will converge to zero in finite timéyich shows a much
faster convergence rate than other types of disturbancaabs.

A finite-time disturbance observer for estimating distumtEd(t) in system
(2.1.8) has been proposed in [123], given by

( A . A [ri+1] A
ep = 21—21, € =2 —2%, ... €, 1=2" = —Z,41— Bou
3 A 1/r;+1 Ry
21 = 2o+ )\0/ ! |€1 TZ/TZ—HSgr(el)
A 2/7”i+1

rtrisgn(es)

Z9 = 23 + )\0 |62

Z%n-—l = ZA/n-+)\Si_l/ri—’_l|6m—1|2/3sgr(6m—1)
G = G AN e ] V2sgn(er,) + Bogu

| 21 = osOrley,)
(2.2.14)
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where )\, > 0 is the observer coefficients to be designedz, ..., 21 are the
estimates of, z, ..., z2'"1, respectively.
The dynamics of observer estimation error are obtained;iwéiie governed by

(. 1/ri+1

€1 = e9+ )\0 |61 ”/”Hsgr(el)
ég = e3+ )\g/mﬂ\eg "i_l/”sgr‘(eg)
(2.2.15)
b = e+ N e V2sgrtey,)
| Erit1 = AoSOner41)

It follows that observer error system (2.2.15) is finite-istable, that is, there
exists a time constan > ¢, such that;(t) = 0 (i = 0,1,...,!1) (or equivalently
z(t) = z(t) fort > t;) [78].

2.3 Nonlinear Adaptive Control

Using the estimated perturbatian,, = ¥, from any observer as in (2.2.1),
(2.2.6), and (2.2.8) to compensate the real system petitonhghe original nonlin-
ear system can be linearized to a simple linear system. Ttesodntrol inputy;,
for the linearized system is designed using the linear cbntethod

0 ki(zh —21) o k(T —20)
= : : : (2.3.1)
Ui hna(z = Zm1) o k(= 2
where[k;, - - -, ki,y] are the linear feedback control gairag,_”* are the references
of then — 1** derivative of states;.
The final control law of the NAC can be obtained as
_\ijl U1
u= Byt R (2.3.2)
U, U

whereuw is the real system control input, while the are the control input of the
linearized subsystems.
The control scheme of NAC is shown in Figure 2.2.
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o

dr

Figure 2.2: Block diagram of the nonlinear adaptive contngthod with linear
high-gain observer.

2.4 Comparison among Different Perturbation Ob-

server based Control Methods

As an example of a nonlinear second-order system

i1(t) = x2(t)
io(t) = —(24sin(zy))a? — 5(3 + cogmay))sin(zy)+ (2.4.1)
(0.5sin(z1) + 1)u(t) + d(t)

For system (2.4.1), the perturbation is defined as
U(z,u,t) = f(z)+d(t) + (b(z) — Bou
= —(2+sin(z;))z} +d — 5(3 + comxy))sin(zy)+

(—1 4 0.5sin(z1))u
3la1|® + 1.5]u| + |d

(2.4.2)

IN

whereB, = 2.

Assume: is the estimation of. The perturbation observer of system 2.4.1 can
be designed using the estimation methods above. The caopamong the high-
gain SPO based NAC, nonlinear SPO based ADRC, sliding-mB@elssed NAC,
and finite-time control are given below.

A) High-gain SPO
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A linear high-gain (HG) observer can be designed based @il{2for system
(2.4.1), and it is shown as

.
€1 = 1 —x
Z = zm+3x10%-e
! ? ! (2.4.3)
Z9g = 23—|—2u—|—3><104'61

23 = 1X106‘€1

B) Nonlinear SPO
A nonlinear observer in ADRC can be designed based on (2f@r&ystem
(2.4.1), and it is shown as

.
€1 = IT1— 2

Z1 = 2z9+25X 10% - €1
Zo = 2z3+2u+4Xx 103 - fal(el, 05, 0001)
Z3 = 2.6 x 10*- fal(e1,0.25,0.001)

(2.4.4)

\
C) Sliding-mode SPO
A sliding-mode (SM) observer can be designed based on j2f@:8ystem
(2.4.1), and it is shown as

(
€1 = 11—~

Z1 = Z3+3X 102'61+2 X 10_3'Sgr(61)
Zo = 2z3+2u+3 X 10%- er +0.3- Sgr(el)
z3 = 1X 106 - e + 20 - Sgr(61)

(2.4.5)

D) Reduced-order SPO
A reduced-order perturbation observer (RPO) can be desigased on (2.2.13)
for system (2.4.1), and it is shown as

{;:2 = 2XA0 (B 2X 00T a) S IX A0 a2

Zy o= —1x10% (5% +2x10%-z)

E) Finite-time SPO
A finite-time observer can be designed based on (2.2.14y&tem (2.4.1), and
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Figure 2.3: Regulation error of system output controlledllfferent controllers.
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Figure 2.4: Regulation error in % of system output contoblley differen-

t controllers.

itis shown as

(
€1

21
Zo

23

Ty — 21, €3=1IT1 — 29,
2 + 3013 - |ey|?/3 - sgn(e;)
23 + 3023 - ey |2 - sgn(ey) + 2u

30 - sgn(es)

63:i'1—23—2u

(2.4.7)

The different SPOs are used for comparison to estimate ttierpation of sys-

tem (2.4.1) under disturbance. The regulation errors desy®utputs and absolute
percentage error are compared in Figure 2.3 and 2.4. Theat&in error and ab-
solute percentage estimation error of different SPOs ucolestant disturbance are

compare in F

igure 2.5 and 2.6. The results show that the agpérformance of
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Figure 2.7: Control performance indices comparison in miaxn error and IAE.
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Figure 2.8: Perturbation estimation comparison in maxineurar and IAE.

Table 2.1: Performance indices of different disturbancgeoler based controls

Method | NAC with ADRC NAC with | Finite-time | RPO based
Indices HG-SPO SM-SPO Control Control
Control performance
Maximum error 0.0644 0.0656 0.0711 0.0909 0.0679
IAE 0.343 0.343 0.346 0.413 0.344
Perturbation estimation performance

Maximum error 2.509 2.749 3.71 5.156 3.059
IAE 8.741 9.363 10.33 8.167 10.48
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different disturbance observer based control methodsianiéasin the maximum
regulation error and IAE (integrated of absolute error).tAé controller regulation
error is less than 2%, and the perturbation estimation &tess than 10%.

To further compare the control and perturbation estimapieriormance in in-
dices, Table 2.1 shows the maximum error and IAE in numergad Figure 2.7 and
2.8 shows the bar chart to compare the indices. From the atsopaesults, the
control and estimation performance of different distudsmabserver based control
methods have not huge difference. As the SH-SPO is simplieuntare and easy
in the gain turning for stability analysis, it has the potahto be popularized in
industrial application and thus used in this thesis.

2.5 Conclusion

Among the four SPOs, the performance of different SPOs hasithilar per-
formance. The HG-SPO is simple in structure. However, itseoler gain is very
high and its performance is easy to be disturbed by noise. ADRC uses the
nonlinear extended-order observer, which is complex ingilesOther extended-
order observers also can be used in this control method.éheeed-order observer
require less calculation, but they are complex in designgaid turning. The HG-
SPO is simple in structure and easy in the gain turning psobasgets the similar
performance comparing with other types of disturbancemkse. Considering the
simplification in observer design and stability analysig high-gain observer is
used in the following chapters.
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Chapter 3

Nonlinear Pl Control for Variable
Pitch Wind Turbine

3.1 Introduction

Wwind power is one of the most promising renewable energycesuand has
received tremendous progress in the past decades. Mostpeindr generation
system uses variable speed wind turbine with variable padcchieve an efficient
and reliable conversion of wind power to electrical power.

Efficient and reliable operation of a WPGS heavily reliestmndontrol systems
applied on the WT operating at different regions. At the hsgleed region, pitch
angle control is applied to limit the wind power captured bg wind turbine. Nu-
merous control methods have been applied to design pitde aagtrollers, such as
Pl-type controller [3,52]. The wind turbine is a highly nbnear system due to its
nonlinear aerodynamics [57,58]. As the wind turbine corgatrong aerodynamic
nonlinearities and operates under time-varying wind paivgtiurbance, the linear
P1 with fixed gains cannot provide consistently satisfacfmerformance in the w-
hole wind speed region. Advanced control methods have hgaied to tackle this
problem, such as the gain scheduling Pl (GSPI) [3, 52], aigdbust control [96],
neural-network-based control [97], model predictive coln©8], and feedback lin-
earization control [58, 61]. However, some control methadgh as the feedback
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3.1 Introduction 42

linearization control, are designed based on the accuratdtwrbine model, which
is difficult to be obtained accurately in practical.

Extended-order state and perturbation (or disturbancegrebr (ESPO) has
been proposed to estimate system state and perturbation wdrich can be rep-
resented as nonlinearities and disturbances of nonliysgera. By defining pertur-
bation as a lumped term to include all unknown nonlineajtm@arameter uncertain-
ties and external disturbance [124], ESPO can be implerdersi@g nonlinear ob-
server [74, 86, 87], linear observers [113, 125], slidinglsmobservers [126], fuzzy
observers [80], and neural-network-based observers [BEPO-based controller
use the estimation of perturbation to compensate its realifpation and achieve
the adaptive feedback linearizing control, without reopgra detailed and accurate
system model in conventional feedback linearization (Fantool [58, 61]. They
have been applied in robotic systems [127], power syste@\sL&B], PMSM sys-
tems [124], induction motor [94], doubly-fed induction geator wind turbine [84].

This chapter designs a Nonlinear Pl (N-PI) controller fonaviturbine pitch
angle control. It consists of an ESPO and a classic Pl cdetrolThe ESPO is
used to estimate the unknown time-varying nonlinearities disturbance, which
are defined in a lumped perturbation term. The N-PI uses ttmaed perturba-
tion to compensate the real one for linearizing the nonlisgatem. The procedure
is similar to the feedback linearization (FL) method, whielquires a detailed and
accurate system model to calculate the nonlinearitie$[g8,The N-Pl is proposed
to provide wide range and consistent optimal performancesache whole oper-
ation range only based on one set of Pl gains tuned around ¢ae wind speed,
and avoid the rapid switching of gains of the GSPI type cdieire. Two types of
gain scheduled PI controllers, wind speed switching archpaingle switching ones
are compared using simulation tests based on a simplifiedrtags model and a
detailed aero-elastic wind turbine simulator, FAST [128].

The remainder of this chapter is organized as follows. 8Bc3i2 presents a
simplified two-mass model of wind turbine. Section 3.3 riscalconventional Pl
and GSPI for comparison, respectively. The extended-atdée and perturbation
observer based Nonlinear PI (N-PI) controller is desigme8action 3.4. Simula-
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3.2 Nonlinear Wind Turbine Modeling 43

tion test results are given in Section 3.5 based on the dieghinodel and a more
detailed FAST model. This chapter is finally concluded int®ec3.6.

3.2 Nonlinear Wind Turbine Modeling

The configuration of a simplified two-mass model of wind taband its non-
linear power coefficient, is shown in Figure 3.1. The model is presented in a
generalized nonlinear form as follows [129]:

(Al o
. f2 0
=F Bu = 3.2.1
x (x) + Bu . + . u ( )
i Ja i | 94 ]

The state vectax, control inputu and nonlinear vectdF (x) are defined as:

X=|w wy; ¢ B]T

(3.2.2)
u=p
r f 7 M P,.(xl,j4,V) B xBDS “]’38 . x;}Ks T
F [N
F(x) = — 979 979 N 99 g (3.2.3)
I3 Ty — N,
L A] o -

wherew, is rotor speedy, is generator speed,is twist angle, and is pitch angle;
x; to x4 are the state variables of vectey 75 is time constants of pitch actuator,
and g3, is the pitch angle controlT}, is generator torque/, and.J, are rotor and
generator inertia)V, is gear ratio,D, and K are drive-train damping and spring
constant, respectively.

The mechanical powe?, captured by the wind turbine is:

1
P. = iﬂpR2V3Cp(x1, x4, V) (3.2.4)
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Figure 3.1: Two-mass variable speed wind turbine model amdimear power co-
efficient Cp.
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where R is the rotor radiusp is the air density}’ is the wind speed.C, is the
power conversion coefficient of wind turbine and is a nordirfeinction of3 and\.
This chapter uses Controls Advanced Research Turbine (ChR@ted at National
Renewable Energy Laboratory USA and its function is givefb@g

C, = 0.22(116)\, — 0.4z, — 5)e~ 125 (3.2.5)
where
\ 1 ~0.035
PTNH0088 B3+1
wrR
A=
%

where) is tip-speed ratio and; is an intermediate variable.

Control objective of this chapter is to design a nonline&tpangle control for
wind turbine operating at Region lll, to maintain the rototation speed,, or the
system output power., at its rated value by limiting the power captured by the
wind turbine.

3.3 Conventional Pl and Gain-scheduled PI Controller

3.3.1 PI Controller

The conventional P1(D) based pitch angle controller is useégulate the rotor
speed or the output power of wind turbine [52]. To get therapticontrol gain
under the rated operating point, particle swarm optimiza(PSO) method is used
[130, 131]. The integral time absolute error (ITAE) of rogpeed is used as the
optimization objective and defined as

ITAE - /Oot\e(t)\dt (3.3.1)
0

The PSO method is implemented following the reference [13@]. The the
velocity for searching a new best position of each swarm i@ BSjiven as:

V= w-v—+cy ranC(Q, N) X (Pl,bcst - Pcurront)

(3.3.2)
+02 . ran(i27 N) X (Pg,best - Pcurrent)
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where N is the number of unitsyw is the momentum or inertia of PS@, y.q; IS
the local best position?, 1,.«; iS the global best position, an,.... is the current
position; rand?, N) is to generate & x N matrix with random values;; andc,
are the coefficient for random values. The special parasetePSO used in this
chapter are given a§ =50,w =0.9,¢; =0.12 and:, = 1.2.

Control gains of the PI controller is optimized at the norhioperation point
under mean wind speed, whérg= 18 m/sw,q = 2.1428 rad/s, and, = 25°. The
optimized gains of the PI pitch controller dg= 140 andk; = 52, respectively.

3.3.2 Gain Scheduled PI Controller

Due to the high aerodynamic nonlinearities of wind turbine ame-varying
wind speed, the PI controller using one set of gains optichizased on one op-
eration point cannot provide consistent optimal perforceanhen operation points
shifts from that normal point. To tackle this problem, gatheduled P1 pitch control

has been proposed [3].

Wind-speed Based Switching

A GSPI controller requires the wind speed measuremeassohealule the con-
troller gains [129]. An anemometer can be used but it can ordgsure the wind
speed at a special point, which is not accurate for repreggttie effective wind
speed in large wind turbines. To achieve a more accurataa&stin of the effective
wind speed, the wind turbine itself can be used as a sensaharektimation can
be solved by Newton-Raphson method [58].

The wind speed estimator is realized by minimizing the castfionJ(¢, V)

J(t,V) = (Po(t) — f(V))? (3.3.3)
(V) = %waW?’Cp(ﬁ, A) (3.3.4)

where P,(t) is a measurement of rotor power at timewhich is assumed known;
f-(V') is the aerodynamic power function of wind spdéd
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The problem is equivalent to find the solution of
I(t,V) = P.(t) — %wazv?’Cp(ﬁ, A) =0 (3.3.5)

From the partial derivative equation

0P,

AP, =
ov

AV (3.3.6)

the iteration form of the estimator can be written as:

~ —1
V =AP, (%) (3.3.7)

where
57 = 27rpR V=C,(5,N) 27rpR 1% 5y

oC, _0.22 178.5 — 1450A; + 514 _19 5y,

oV w,R (A +0.0824)2
At time ¢, using the measured rotor power(t), the iteration will be performed

until
I(t, Vi) = Po(t) — (Vi) <& (3.3.8)

wheres is a small value. The estimation of wind speed at tiriethenV/,.

Since the rotor poweP, is unmeasurable in practice, the assumption is made
that the rotor power is equal to electrical powr which is measurable, divided by
the wind turbine power conversion efficiengyThen the estimated wind speed can
be used in the GSPI controller to switching the schedulenlsgay look-up-table for
the pitch controller.

Pitch-angle Based Switching

As wind speed based switching requires a complex estimafiogal-time wind
speed and also may result in fast switching between gainsodihe fast change of
wind speed, an improved GSPI based on pitch angle switctasgoeen proposed
in [132-134]. The control block diagram of the Pl and GSPItcater is shown in
Figure 3.2(a), where th&; is set to be 1 in the PI controller. Under different wind
speeds, optimal gains are obtained using the PSO methodtvatperformance
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Figure 3.2: Block diagram of (a) conventional Pl or GSPI colter, (b) proposed
Nonlinear P1 (N-PI) controller.
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Table 3.1: Optimal Gains under Corresponding Wind SpeedPaicti Angle using
PSO Optimization Method

V(M/S) Bratea(®)  kpopt(>-Slrad ki o (°-S*rad)

12 3.6 186 70
14 14.1 178 66
16 20.6 160 60
18 25.1 140 52
20 28.6 124 46

index of ITAE. The optimal gains of, andk; under different wind speed and the
correspondent pitch angle are given in Table 3.1.

To obtain a continuous pitch angle based switching, thedsdbed gain pairs
are obtained as the product of a constant Pl gain pair migdijply a scheduled gain
K () which is a function of pitch angle [133]. The scheduled g&i(t) is proposed
to compensate the variation of the aerodynamic sensitivity/03, and is obtained
using the trend line of the optimal gains versus pitch arggven as [133]

ki
u=K(3) (k:p + ?) (21 — wy) (3.3.9)
where
1.6, for —1°<pB<0°
K(B) =4 —0.00132 +0.013 + 1.6, for 0°< < 30° (3.3.10)
1, for 8 > 30°

and the constant proportional and integral galps= 116, andk; = 42.

3.4 Nonlinear Pl based Pitch Angle Controller

3.4.1 Input-output Linearization

The input-output relationship between the system outhetrdtor speed ag=
x1, and the system input, the pitch angle controkias (,, can be obtained using
differentiating the output till the control input appeafsom system (3.2.1)-(3.2.3),
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the rotor speed dynamic is given as:
Pr($1,$4,V) [L'le xZDs x3Ks

L, = 34.1
o 21 J, g TN, (34.1)
Its second-order derivative can be obtained as
d2$1
Tl Ly(x)+ Ly(x)u (3.4.2)
where
4
_ ofr .\, 9
L(x) = ; (axi fz> o7V
(91’1 N Jrl’l |:l’1 —I—O.llﬂ'pR v ()\—1—0.081’4)2 JT
ofi _ D,
(91’2 N Nng
oh _ K
8953 B J,»
ofi _
8954

0.11mpR2V3 —0.08 0.105z2 _19.5)
T {(178.5 — 1450\ + 5 —04 DAt
1‘1:],» ( 8 0 et 1’4) ()\ + 0.081‘4)2 + ((ﬂi + 1)2 0 ¢

ofi _ 011mpR*V
oV Jr (A +0.0874)2
Of

Ly(z) = 8—95494

0.11mpR2V3 —0.08 0.105z3 _12.5)
= (1785 — 1450\ + 5 —0.4 DA
21J,75 ( ) (N1 0.0822)2 | (3 1 1)2 ‘

(178.5 — 1450\, + bxg)e 125N

whereV is the derivative of wind speed.
When nonlinearitied.;(x) and system input gaiti,(x), and wind speed dy-
namicV are known, a feedback linearized control (FLC) can be obthas

1
u= . (v—Ly(x)) (3.4.3)

where L,(z) # 0 for all operation points ana is the control of the linearized

second-order system
dzl'l
dt?
and is designed as PI-type controller in this chapter, fercttmvenience of compar-

= (3.4.4)

ison with Pl-type controller and GSPI controller.
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3.4.2 Perturbation Definition and Extended-order State Spee
Model
Assume all nonlinearities represented/a$z) and L,(x) in system (3.4.2) are

unknown, define a perturbation tefrix) to include all system nonlinearities, time-
varying dynamics, and external disturbance as:

U(x) = L¢(z) + (Ly(x) — bo) u (3.4.5)

whereb, = L,(x) is the nominal constant gain of system input which can beamos
as the mean value df, (z). Then system (3.4.2) becomes

dzl’l
dt?

= () + bou (3.4.6)

3.4.3 Extended-order States and Perturbation Observer

Definez; = x1, 2o = #; and an additional state variablg = ¥(x, z), an
extended-order model is obtained as:

21 = 29
7;’2 =23+ bou (347)
23 = \II(.Z’, t)

Definez; = z; — z;, alinear ESPO is designed as:

G =4+ kak
ég = 23 + b(]u + ]{30251 (348)

Z3 = ko1

wherez;, i = 1,2, 3, is the estimate of;; andz, is the estimation error of;. kq; are
observer gains that can be parameterized as [94]:

(ko1 koo kos] = [3a0 30 of] (3.4.9)

whereq is the observer bandwidth and the only parameter to be tuned.
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Similarly, to improve the estimation performance, a noeinESPO (NESPO)
can also be designed based on [74] as follows:

5 =%+ kns
2y = 25 + bou + koo fal (71, 0.5, h) (3.4.10)
23 = ]{Zogfal(gl, 025, h)

2

fal(x,o,h) = { i X Xl <h (3.4.11)
sgrix) - o?[x|” [x| > h

wherey is the input error of the nonlinear functiom,is the precision index from 0

to 1, h is the width of linear area of the nonlinear function.

Comparing with the linear ESPO, the NESPO can accelerategtimation
speed, with the cost of a complex nonlinear observer, whickeases the difficul-
ties of stability analysis of the closed-loop system. Nbt bther types of ESPO,
such as sliding mode observer, can also been applied, thbeglhll provide similar

performance [113].

3.4.4 N-Pl based Pitch Angle Controller

By using real-time estimate of perturbatiém:c) from the third-order ESPO to
compensate the real perturbation, the control inpcan be obtained as

= % (v - xif(x)) (3.4.12)

wherev is the control of the linearized second-order system anessgded as a
classic Pl controller with error between rotor speed refeees’ and the system

outputzx;:
v = <kp + &) (wr —x1) (3.4.13)
S
Finally, the N-PI pitch angle control can be expressed as
1 k; 1.
u=—ky+— | (W —21) — —¥(x) (3.4.14)
bo S bo

The N-PI control diagram is given in Figure 3.2(b), and theckldiagram of
N-Pl based pitch angle controller for WT is given in Figur8.3Note the N-PI
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Figure 3.3: Block diagram of N-PI based controller for WTcpiangle control.

controller uses only one pair of gains rather than sevet@dded gain pairs like
GSPI, due to the compensation of all system nonlinearitiesdasturbances. The
control gains can be chosen using the same optimizationadeth in Pl and GSPI

in previous sections.

3.4.5 Stability Analysis

Stability analysis of the observer (3.4.8) and the closeghIsystem including
controller and observer can be investigated by using Lyapwtability similarly
to [126]. Thus only stability results are summarized in ttligpter and detailed
steps can follow [126]. Error dynamics of the observer caoliiained from system
(3.4.7) and (3.4.8) as:

,:&':1 _k(n 1 O 21 0
ZH | =] —kpe 0 1 L+ 0 (3.4.15)
% —kos 0 0 % ()

Define tracking error of rotor speed as = w — x4, its integration ag; =
fot(w;f — x1)dt, and its differentiation as; = w* — ;. From (3.4.6) and (3.4.14),
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the dynamics of the closed-loop system is represented hyableing errors as

€1 0 1 0 e 0
el=10 0 1]]el|+]0 (3.4.16)
é3 ]{52 ]{?p 0 €3 23

A

wherez; = ¥(-) — U(-) is the estimation error of the perturbation.
Based on [126], assume perturbation functidts) and¥(-) are bounded over
the domain of interest as:

W) <m T ()] <7 (3.4.17)

wherey; and~, are positive constants; then the error dynamic of ESPO1S)4nd
the closed-loop system (3.4.16) are ultimately boundedthEtmore, if perturba-
tions W (-) and¥(-) are locally Lipschitz in their arguments, the observer rear
the closed-loop tracking error can be obtained exponeraiaterged as well.

The internal dynamic of the nonlinear system is analysedgusero-dynamic
technigue. When the rotor speed and its time derivative ak aontrolled, i.e.
es = 0 andes = 0, then the corresponding states are controlled to theirgrte
values, such a8 = §*, w, = w}, w, = 0 andP.(w}, 5*) = P* = P’ /n, wheren is
the entire output power efficiency. A relation expressiomloa obtained as

wyDs
Wy Ny
then the other two dynamics can be obtained as

P*
S wiD, — 6K, =0 (3.4.18)

Dy =0 (3.4.19)
: _P/n
Jm oft) = Tk (3.4.20)

The zero-dynamic of the internal system is stable, and thergthe closed-loop
system error dynamic is stable.

3.5 Simulation Results

The simulation tests were performed based on a real expetanegind turbine,
CART, located at National Renewable Energy Laboratory US4 whose param-
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eters are given in Table 3.2. The CART is a flexible, variapkeesl and pitch con-
trolled wind turbine with 1.5 MW nominal power rating. Thisrbine was modeled
using a two-mass model and a validated aeroelastic sinmdalied FAST: fatigue,
aerodynamics, structures, and turbulence [128]. As dssxlis Chapter 1, in differ-
ent wind speed region, the controller are designed witledfit control objectives.
This thesis only considered one region that wind speed ath@veated. The wind
speed is chosen in the range from 12 m/s to 24 m/s with diffenean value and tur-
bulence intensity in Region lll. The wind parameters areegated from TurbSim,
which is a stochastic, full-field, turbulent-wind simulatmd numerically simulates
3-dimensional wind velocity vectors by time series at pointa vertical rectangular
grid [135]. The proposed N-PI, a conventional Pl and a GS@tested based on the

Table 3.2: Two-mass model parameters of the 1.5 MW expeteahemnd turbine.

Wind Turbine Parameters: Value:

Rotor radius ) 35m

Air density (o) 1.225 kg/m
Rotor inertia (/;) 2.96x10° kg-m?
Generator inertia.f,) 53.0 kgm?

Drive-train spring factor &) 5.6x10° N-m/rad
Drive-train damping factor);) 1.0x10” N-m-s/rad
Gearbox ratio {V,) 87.965

Pitch actuator time constant) 1s

Nominal power output®.) 1.5 MW

Rated rotor speedx ;ated) 2.1428 rad/s
Rated generator torquéy(,atea) 8376.6 Nm

Pitch angle limit G, 10 fnax)  —1°1090°

Pitch rate limit () +10°/s

Wind turbine efficiency ) 0.95

simplified two-mass model of the CART at first. Due to the NdRIsing a high-gain
SPO, the large observer gains will enlarge the sensor noigevand disturbance.
Thus, the observer bandwidth is set greater than the c@artit@ndwidth and low-
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er than the sensor bandwidth, with potimised bandwidthduna pole placement
method. The parameters of the N-PI controller are given biera.3.

Table 3.3: Parameters of controllers.

Parameters: Value:
PI Proportional gain (173: %, 140
Pl Integral gain (1/s)k; 52
GSPI constant Proportional gain (3)/sk, 116
GSPI constant Integral gain (1/3); 42
FLC/N-PI Proportional gain (17§ %, 6.3
FLC/N-PI Integral gain (1/s)k; 0.26
ESPO equivalent input gaif-§*/rad): b, -0.04
ESPO nonlinear coefficient (rad/s): 0.001
ESPO observer bandwidth; 40
ESPO estimation gain (1/s}i, 1.2 x 10?
ESPO estimation gain (s ko, 4.8 x 103
ESPO estimation gain (£ ko3 6.4 x 10%

3.5.1 Simplified Two-mass Wind Turbine Model
Step Wind Speed Test

The pitch angle controller is designed to maintain the refmeed under wind
disturbance. The performance of the three controllersimétaunder step wind
disturbance is shown in Figure 3.4, which is simulated onstheplified two-mass
model. When wind speed is increased in steps, it is cleartti®Pl controller
(dotted line) cannot provide consistently optimal dynapecformance when wind
speed changes. The GSPI controller (dashed line) with thieeergion optimal
gains can eliminate the effect of the shift of operating pooaused by the change
of wind speed. The N-PI (solid line) provides better transresponse with smaller
overshoot and faster settling time, over the whole opanaaoge.

Furthermore, dynamic response under step wind speed clieamgel2 m/s to
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Figure 3.4: Response of Pl, GSPI and N-PI under step wind (astwind speed,
(b) rotor speed, (c) drive train shaft twist angle.
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24 m/s are compared in terms of settling time, overshoot aAdE Ifor different
controllers. As shown in Figure 3.5, it can be found that thBINhas about 18%
less settling time, 15% less overshoot, and 20% less ITA&eviddan the other two
when the wind speed above 16 m/s. At lower wind speed, the peRbrms better
than the PI but no obvious improvement than the GSPI. OvetadlN-PI has the
best performance with the least ITAE value among the thre&clbers.

The performance of the ESPO in N-PI is given in Figure 3.6. eNibiat the
observer needs a short period to track the variation of tleeatimg point depending
on the bandwidth of the observer. It will have transient ietnoder step wind, but
will eliminate to zero in a short time period. There is no dieatate error between
the real perturbation and the estimated value.

Random Wind Speed Test

The simulation results under random wind with 18 m/s meardpad 15% tur-
bulence intensity are presented in Figure 3.7, which costaind speed, response
of rotor speed, and drive train shaft twist angle. All coliérs control the pitch
angle and the generator torque is held as a constant in &g value. The control
performances are compared under cases with combinatioiffefetit mean wind
speed and turbulence intensity, based on the RMS value odgjodation error of the
following four dynamic variables: the rotor speed for the control performance,
the changes of twist angleas the second control objective, the actuator usage in
terms of the pitch acceleratigh and the controller output change rate Their per-
formances are presented using bar chart in Figure 3.8. TherRioller performs
worst under the random wind speed as shown in the compareochlarts. This is
because that the PI controller is a linear controller witcintrol gain is optimized
at one operation point, while the other three controllees rawnlinear controller-
s whose control gains are suitable for the whole wind spegidme based on the
cancellation of nonlinearities or gain scheduled techaiqu

On the other hand, the GSPI gain pairs are switching rapiddietuthe random
wind speed. Its entire control performance is not as goodhe@$LC and the N-
PI. Due to the system model and parameters are known adgurasgmulation, the
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Figure 3.5: Performance comparison in metrics of: (a) isgttime (s), (b) over-
shoot (rad/s), and (c) ITAE (ras) under step change wind speed.
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Figure 3.6: Perturbation estimation result under step wmekd. a) Real and esti-
mated perturbation comparison; b) Estimation error in @etage.
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Figure 3.7: Response of N-PI compared with Pl and GSPI uraledlam wind
speed. (a) Random wind speed, (b) rotor speed, (c) drive steift twist angle.
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Figure 3.8: Performance comparison for Pl, GSPI, FLC and Nréer random
wind speed with different mean value (m/s) and turbulentenisity (%). (a) RMS
Rotor Speed Error; (b) RMS Twist Angle Change; (c) RMS Pitdtuator Usage;
(d) RMS Controller Output Acceleration.
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FLC has absolutely the best performance among the fouraters. N-PI performs
as good as FLC, but the perturbation observer has a smaltighag and estimation
error by the ESPO estimation before compensating the res. ofhe rotor speed
regulation error of N-Pl is 20% less than the PI controlled 40% less than the
GSPI. The reduction of twist angle change is 12% better tharPt and GSPI. In
addition, the actuator usage of N-PlI is 4% less than that d&?I@G8d 9% less than
that of FLC, in terms of the pitch change rate and control oufgceleration.

The estimation performance of the linear ESPO in the N-Ptrodiar is shown
in Figure 3.9, whose average estimation error is around .7.5%

Due to the high change rate of the random wind speed with hidiutence, the
estimated perturbation from ESPO should be filtered befsesl o compensate
the real perturbation. Moreover, the N-PI controller usammgonlinear ESPO is
compared a N-Pl with a linear ESPO. As the observer gains tif BEPOs are
chosen to be far greater than the upper bound of the timeadimavof perturbation,
there is no obvious improvement obtained by the nonline®®S hus this chapter
uses a high-gain linear ESPO for perturbation estimati@é][1

The proposed N-PI pitch controller has better control pennce in the whole
wind speed region, especially at high turbulence intensityreover, to extend the
service life of equipment, high actuator usage should bé&ladoin practise. The
GSPI requires to tune several set of gains around severatopgpoints, while the
N-PI only needs to tune one pair of gains of Pl the whole wirgksiregion, which
make it be much easier to comprise the control performandeheactuator usage.

Robustness of Model Uncertainties

When the accurate system model is available, the FLC previtebest results.
However, in practical application, there are many modeleuainties, such as air
density change caused by different weather condition, dfistt [136], and ice
accretion [137] [138], which will affect the aerodynamicwmr coefficient of the
wind turbine. Figure 3.10 shows the dynamic response whepalver coefficient
is reduced to 70% of its rated value. As the FLC requires anrate model and
parameters, it cannot maintain the rated rotor speed. ABliRébased controller
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Figure 3.9: Perturbation estimation result under randondveipeed. a) Real and
estimated perturbation comparison; b) Estimation errqeircentage.
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Figure 3.11: Configuration of test N-PI pitch angle congrolising FAST.

FAST Nonlinear Wind Turbine

do not need the accurate system model and can compensatztilmdation caused

by the variation of system model uncertainties, it can gtewvnuch better and robust
response. The Pl and GSPI can also provide similar robufsirpgance than the N-

Pl and their results are not presented.

3.5.2 Validation on FAST Simulator

As the two-mass model is a simplified wind turbine model treglects many
dynamic behavior, the N-PI controller is also validated an@e detailed model,
the FAST model, which is capable of predicting both the erzeand fatigue loads
of two and three-bladed horizontal-axis wind turbines amitable for verification
and testing of wind turbine control. Figure 3.11 shows thdiguiration of the N-PI
and the FAST in Simulink.

As suggested in the FAST user manual, the FAST model doesaoidie the
pitch angle actuator dynamics and the blade base can rot#te reference angle
without delays. An additional actuator dynamic block iseditb regulate the pitch
angle. Furthermore, the FAST model has no direct outputetihst angle value
like in the two-mass model, as it uses a full flexible dynamadel with segmented
elastic model in the entire drive train shaft. The low spdsftsdamage equivalent
load (LSS DEL) is used to display the equivalent performasfade twist angle of
the drive train shaft.
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Figure 3.12: Simulation verification result on FAST modal) Wind speed, (b) rotor
speed, (c) LSS DEL.
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In the simulation on the FAST model, the RMS value of the fwlltg two vari-
ables are used to compare the controller performance: tbe speed regulation
error, and the pitch acceleration of the pitch angle’(g). The dynamic responses
under random wind input with 18 m/s mean speed and 15% turbelmtensity is
presented in Figure 3.12.

Comparing with the response of two mass model, the FAST sitioul result
includes many authentic dynamics and high frequency ndise to the observer
bandwidth is chosen less than the noise bandwidth, the wrsperformance will
not be affected by the noise. In addition, the wind turbingtem has large inertia
to damp the impact from noise, the N-PI controller is not ge@sto noise in the
wind turbine application. The comparison performance elihr chart shows that
the N-PI has the rotor speed regulation error 25% to 30% hessthe Pl and 5% to
15% less than the GSPI as shown in Figure 3.13(a). And in th& RM.SS DEL,
the N-PI has approximate 7% less than both the PIl and the G3#Ploavn in Figure
3.13(b).

In the FAST simulation, the pitch angle response time cartstepends on many
conditions, such as wind speed at different height, yawegreghd tower shadow,
etc. Therefore, the pitch angle control response in FASTUkition is worse under
higher wind speed and greater turbulence intensity as sio#igure 3.13(c).

Nevertheless, the results under both low and high turbelanid show that the
N-PI controller has approximate 13% less actuator usage tthea GSPI and gets
about 10% better performance, and it has approximate 6% auwvator usage to
get a 28% improvements comparing with Pl controller in widbine pitch control.

3.6 Conclusion

A Nonlinear PI (N-PI) pitch angle controller has been des@jto regulate the
wind turbine to capture the rated wind power when the windedpexceeds the
rated value. Based on the two-mass nonlinear wind turbindeman extended-
order state and perturbation observer is designed to dstifmaunknown and time-
varying nonlinearities and external disturbances. Thaneséd perturbation dy-
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namic is used to compensate the real unknown dynamics antypdtontroller is
designed for the linearized system. Only one set of Pl patensieeed to be tuned
for covering the whole operation region. The N-PI avoidsrdgiirement of tuning
and switching of controller gains in GSPI and the requirehoéraccurate system
model in the feedback linearization control (FLC). The megd N-PI pitch angle
controller is verified on the two-mass simplified model areldietailed FAST simu-
lator under step and random wind speed tests. Simulatioitseshow that the N-PI
based pitch angle controller performs better in constawgpoegulation and drive-
train stress minimization, with less actuator usage comgavith the conventional
Pl and gain-scheduled PI controllers, and better robustiies) FLC in the model

uncertainties.
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Chapter 4

Autonomous Control of Power
Electronic Enabled Microgrid via
Nonlinear Adaptive Control

4.1 Introduction

Growing interests of connecting the small generation unitecal LV networks
make the proposition of the MG concept to provide a new pgradif distribut-
ed generation [24]. The MG can be defined as a LV network, dwstya cluster
modular generations and loads, operated in both the gndexied mode or island
mode. In the grid-connected mode, the bus voltage is maedady the utility grid,
and all devices in the grid-connected MG stay synchronizid thie voltage and
frequency of the utility grid. In the island mode, the MG isleted from the utility
grid and no external voltage reference to be synchronizba makes the islanded
MG has much lower stiffness and inertia than the transmmsgrads [25-27]. It
requires the DRs in the MG to have the capability of maintagrthe voltage ampli-
tude and frequency of the electric network. Under the imgizat large amount of
DRs and loads are connected to the LV networks, a fast-regpaitage controller
is required to enhance the robustness of the islanded MG.

In an islanded MG, all parallel connected DRs are expectethéoe the active
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and reactive power demand without centralized control ical communication
among them. Thus, the power droop control is often appliesttoeve this target
and avoid the circulating currents between converter bB$i[27, 37]. The main
idea of the droop control is to emulate the behaviour of syorobus generators op-
erated parallelly in large power system: active power \&feeguency and reactive
power versus voltage magnitude.

The DRs use droop control to distribute the power demand fwaadllelly con-
nected DRs without centralized control or critical comnuation among them [37].
The droop control is implemented using the basic voltagd=uiency (Vf) control
method with a cascade-PI based control loop: an inner duccertrol loop cascaded
in an outer voltage control loop, with using PI controllessrégulate the voltages
and currents [26, 53]. Moreover, advanced control methaas been proposed to
control the converters in MG under balanced voltage camlisuch as the feedback
linearization control [62], robust high bandwidth predietcurrent control [99], and
hybrid variable-structure control [100].

On the other hand, both the three-phase devices and sihgkepmevice could
be connected due to different requirements in the MG. Thglsiphase loads and
power generations are the major causes of voltage unbalahazh not only incurs
more power loses and instability to the MG but also resul@gamaging the three-
phase equipments installed in the MG. The voltage unbalprod#dem has been ad-
dressed with different methods, such as filtering the negatequence voltage via
the power filter device in series with distribution line [13@ual synchronous refer-
ence frames (SRF) based on the positive- and negative1seggieurrents control to
eliminate the negative-sequence currents [140], imbalanmpensation droop con-
trol to compensate the voltage unbalance in the controltifiptl], direct voltage
reference change method which is to compensate voltagdandeain the refer-
ence of voltage control loop for a droop-controlled MG [L42)voltage unbalance
and harmonics compensation strategy [101], a distribudgative sequence current
sharing method [102], robust control strategy designeth witonvex linear ma-
trix inequality condition [103], model predictive contri@chnique to minimize the
voltage unbalance [104]. However, the previous unbalancepensation method
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cannot fully linearize the system to completely elimindte effect of voltage un-
balance and disturbance.

This chapter designs a nonlinear adaptive control (NAC)hwetwith using
a state and perturbation observer (SPO) to estimate tharpation in both the
positive- and negative-sequence frames, and use the éstiperturbation to com-
pensate the disturbance and voltage unbalance to imprevebstness of the MG
system against all kinds of disturbances. As the lumpedigdsation term is de-
fined to include both the balanced and unbalanced distuehamanlinearities and
parameter uncertainties, all disturbances can be comigehaad the original sys-
tem is fully linearized without the dependence of an aceusgstem model and fast
changing disturbance.

This chapter is organized as follows. Section 4.2 preséetstructure of MG
and the dynamic model of converter based DR. Section 4.@wevthe standard
droop control for the DRs used in islanded MG and a unbalanogpensate ref-
erence method. Section 4.4 presents the design of NAC-laieeg controller for
energy storage system and PV system. The cases analysisimithation results
are presented in Section 4.5 and the whole chapter is caettlirghlly.

4.2 Dynamic Model of Voltage Source Converter based

Distributed Resources

The scheme of VSC based distributed resources in a micragsisbwn in Fig-
ure 4.1

The current and output voltage dynamics of the VSC with L@#jltransformed
in Park’s d-g frame which synchronized with angular speedan be represented
as follows [62,143]:

p

Mt — Ly g + WiLg — £Vod + 104
Qo — &-iLd + Wloq — rlod
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wherev,q, voq, %04 @andi,q are the d- and g-axis output voltages and curreits;
irq are the currents flowing into the inductor of LC filter; and v, are the d-q
voltage control inputk,, L, andCy are the equivalent resistance, inductance and
capacitance of the LC filter.

The output current dynamic is represented as

died _ _ Rg; ; 1 _

o = —T2lod + Wioq + 7 (Vod — Uba) 4.2.2)
dioy _ Ry, : 1 o
ot = — 1 loq — Wied + L—Z(qu — Ubq)

wherewv,q and vy, are the d- and g-axis bus voltage of M@, and L, are the
resistance and inductance of the output impedance

4.2.1 Distributed Power Sources in Microgrid

The photovoltaic (PV) system is one of the most promisinggwable energy
sources in MG, due to its features of low cost, low voltagghhieliability, and
environmental friendly operation [25]. Only the grid-camted PV converter model
is used in this chapter to test the penetration of renewaldegg for DR [144]. The
PV power generation model used in this chapter is a singéselircuit presented
in [145]. The nonlinear model of PV cell and array are not id&r®d and replaced
by an adjustable dc voltage source. Assuming the PV geneaatay is always
working at its maximum power level, and its grid-connectvarter operates the PV
system as a current source that tracks the bus voltage td ayailable active power
into the grid [25, 144].

4.3 Conventional Control Structure for Converter-based
Distributed Resources with Unbalance Compen-

sation

The control structure of a DR system includes an outer logeteerate the refer-
ences of voltage amplitude and phase, and an inner loop téeteghe voltage and
frequency of output voltage. The outer loop is using the \Aketbwn droop control,
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which depends on the output active and reactive power. litiadda compensation
loop is added to compensate the fundamental negative segjueactive power to
eliminate the voltage unbalance.

4.3.1 Outer Loop: Power Droop Control

In an islanded MG, all parallel connected DRs are expectethéoe the active
and reactive power demand without centralized control bicat communication
among them. Thus, the power droop control is often appliedach this target and
avoid the circulating currents between converter based[RPR87]. The main idea
of the droop control is to emulate the behaviour of a singlechyonous generator
in large power system: active power versus frequency anctiveapower versus
voltage magnitude.

To regulate the active and reactive power outputs, the DIRd te provide the
frequency (or phase) and amplitude of voltage referencés [Bhe references are
based on two sets of droops as

W =wo—m- P(t) (4.3.1)
E*=FEy—n-Q(1)
wherew* and E* are the angular frequency and magnitude of the output wltag
referencew, and E,, are their rated values, respectivelyand( are the active and
reactive powerin andn are the proportional droop gains. The gains are to maintain
the system synchronization, and below the voltage stglifitits [27]. The droop
gains can be designed as follows:

m = Aw/ Ppax
n = AEi/cgmax

(4.3.2)

P..x andQ,,., are the maximum active and reactive power delivered by trexter;
Aw and AE are the maximum deviations of frequency and amplitude, whie
mostly designed at 2% and 5%, respectively, as acceptahlesvgpb3]. The outer
loop power droop control adjusts the frequency and amminefierences of output
voltage, and provides the references to the inner voltagé&aquency control loops.
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4.3.2 Output Impedance Compensation

In MG, the distributed voltage sources are commonly coratetd the bus by
transmission lines and sometimes with a transformer, wtéchbe seen as the cou-
pling output impedance of the converter. As the output edrdgnamic in (4.2.2),
the output impedance will cause voltage drop on the outppethance when cur-
rent flowing from DRs to the MG bus. Thus, the voltage drop edusy output
impedance can be compensated in the voltage control loofsa-Mased DRs. As
the differential block is not commonly used in practical ftsr high sensitivity to
noise, the compensation only considered the steady-stétiege drop on output
impedance. The compensated voltage reference can begrfmess:

Uy = Ryioq — W Lylog (4.3.3)
Uy = Ryioq + w*Lyiog
wherev;, andv;, are the compensation voltage references.

The inverter output voltage references in d-q axis are desigs the sum of two
components: the voltage droop referenégsfrom (4.3.1), and output impedance
compensation as follows

vry = B+ v
¢ d (4.3.4)

wherev;; andv;, are the reference voltages for the inner voltage contrgd.loo

4.3.3 Inner Loop: Conventional Voltage and Frequency Contol

and Unbalance Compensation

The control objective of the inner loop is to regulate thepotivoltage produced
by the VSC to track the voltage reference given by the outmp.larhe most com-
monly used method is the cascaded-PI based voltage ancfregaontrol, which
uses two control loops: a voltage controller to regulateotitput voltage via adjust-
ing the current reference, and a current controller to egguhe current of converter
via generating the command voltage vector synthesized byIPWSVM modula-
tion [26,53,99, 142].
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To eliminate the voltage unbalance, the fundamental negagquence (FNS)
reactive power can be used for unbalance compensation.[T41 instantaneous
FNS reactive power can be calculated as

wherevy,, vy, inq andig, represent negative-sequence voltage and current in d-q
axis, respectively.

Then the unbalance compensation reference (UCR) can gneesas [142]
UCR = LPF(s)- Q™ -V, - UCG (4.3.6)

whereV represents the vector of the FNS output voltadgée'G is the unbalance
compensation gain which is a constant that should be sdletfer’(s) represents
the low-pass filter to apply virtual inertia of microgrid tieet disturbance [37].

4.4 Nonlinear Adaptive Controller Design

The proposed NAC controller is based on perturbation esitimawhich is
used to adaptively compensate the total perturbationjdaty interactions between
subsystems, parameter uncertainties, disturbances analtfage unbalance. The
input-output linearization of the system is to help desigra perturbation observer.
The system dynamics can be fully decoupled to two subsystemsl, 2) depend-
ing on outputs in d-q axis, each of which includes both thetpes and negative-
sequence components. The linearized subsystems can béylinentrolled by a
simple linear control law [88, 146]. The inner current cohtoop is unnecessary in
this control method as shown in the final control output eggian.

4.4.1 Model of Converter-based DR in Dual Synchronous Refer

ence Frames

The original model (4.2.1) can be generically understooa asimmation of
balanced positive-, negative- and zero-sequence comimondie positive- and
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negative-sequence components are considered under mtmgateference frames:
dq™ rotating with positive synchronous speedand angular positiof; and dq~
rotating with negative synchronous speed@ and angular positior-0 [147]. The
rotating speed of positive-sequence voltage componentbeabtained by the de-
tector proposed in [148]. The DR model can be rewritteagri and dq~ refer-
ence frame, which are presented with supersegrgitdn for positive- and negative-

sequence, as.

4 —
A7 0 B’ 0
x(t) = x(t) + u(t) +d
0 A" 0 B”
n (4.4.1)
C 0
y(t) = x(t)
0 C
where
PO e S BT I
&z 0 0 w &z 0 0 -w
0 & —w 0 0 & w 0
1 T
= 0 00 0010
B’ =B" = |’ ,C =
0 £ 00 0001

T
— | 4P P p D T i n n
X [lLd 7’Lq Vod qu Ud ZLq Uod qu]

T T
— p D n n — p V4 n n
Y= |:'Uod ’qu Vod ’qu} ,u [Ud ’Uq Vq ’Uq}

d=1(0 0 igd iog 0 0 iod iog r
- TG Cs TG G

where A?, A", B? and B” are the gain matrices of states and system inputs for
positive- and negative-sequence variables, respectiely the output gain matrix

of statesx, y, u are the system states, outputs, and inputs veaibisthe system
disturbance, which is depending on the load.
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4.4.2 Input-output Linearization

Consider a MIMO system, differentiates the system ougpuintil the system
inputw; first decoupled with other states in the differential ordey,0From system
(4.4.1), the input-output relationship between the systetputsy; and inputsu; is
obtained in its second-order derivatives, which are repmesl as:

] (@] [, o o o] [
i I (2 0 L, 0 0] |u
I e ’ : (4.4.2)
iy L}‘l(x) 0 0 L, O ul
n| (L@ [0 0 0 L] |u]
where
Rs . 2w 1
Li)cl(l’) = —Elid + aliq — <E + W2) ’Ugd
W dw 1 digy
Cloa T Voa gy T G Ty
Ry . 2w 1
Gate) =~ gt it (£ ) o
i P g d_(A) _ idlgq
o ted Tl T E

n RS ‘n 20} -n ]‘ n
L (z) = —ﬁzm - aqu - (m + W2) Uoq
L, dw 1 diyy

w n aw 1
totea T oa Ty

Ly (x) = —ii” + 2—wz" — (L +w2> oy

12 L, M oM\ LG °q
w o, . dw 1 digy

- a%d + Vod gy — Cat

1
- LC,

Ly

L;;(x) are the nonlinearities, interactions between states, atedral distur-
bance, which can be defined as the perturbation of the lrehgubsystems. The
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lumped perturbation that is presented by the positive- @&gative-sequence pertur-
bation is as follows

Lji(z) = Li)q (z) + L}H () - e92

Lys(x) = L?”Q('r) + L?Q('r) - eIt

(4.4.3)

The perturbation terms can be obtained using the state ahadpation observer-
s (SPOs).

4.4.3 State and Perturbation Observer

As both the positive- and negative-sequence perturbatiande estimated in-
dependently, only the positive-sequence perturbatiotisiasons are given here,
and the negative-sequence perturbations are estimated gaime way.

Definez}, = 2?, 25, = ¥ and an additional state variablg = L".(x) (i = 1, 2)

, an extended-order model of one subsystem is obtain as:

)
Yi =z
=2

b (4.4.4)

b P p
Zio = ziz T Lgu;

=18

The SPOs can be designed on the basis of derived input-olitpatization
function (4.4.4). There are several types of perturbatibseovers, such as slid-
ing mode observer and linear Luenberger observer etc. $nctiapter, high-gain
observers are used in the SPOs design.

DefineZ!] is the estimated value af), the observer function can be expressed
as:

é’fl = Ziy + Ly} — 1)
Bl = BB+ ln(y? — 28) + Lgu? (4.4.5)
2’53 = lis(y} — 2})
The estimation gaify; of the high-gain SPOs can be expressed as [88]:
Q5

7
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wheree; is a small positive parameter specifies to represent thedynamics be-
tween the observer and the real system. The parametease chosen such that the
roots of

ST+ ST+ - 4 @S + Qi) = 0 (4.4.7)

To simplify the tuning process, the observer gains can banpaterized for a
third-order SPO as:
T
[Oéﬂ Qo Oél'g] = [30[0 302 af (4.4.8)
whereq is the observer bandwidth and is the only parameter thatsteduk tuned.
From (4.4.3), the lumped perturbation estimations thaluohe both positive-
and negative-sequence components are presented as

5. __ 5P sn —j2wt
Zi2 Zi2 + Zig * €

5. __ 4b sn —Jj2wt
ZZ3_ZZS+ZZ3'6 J

4.4.4 Design of NAC

After the perturbation terms of subsystems are compendsteéde estimated
ones, the contral; of the linearized second-order subsystems can be designed a

d2yz’
dt?

(4.4.10)

Each subsystem can be controlled independently. To syl controller de-
sign, all subsystems are designed to have the same dynaspanse in this chapter.
The linear control law can be designed as:

Vi = k1(Yiwert — Yi) + k2(Uiret — Zi2) + Yirer (4.4.11)

wherey; ,.r andys s are from the outer loop droop control.

By using the real-time estimated perturbation terms froemSROs to compen-
sate the real perturbations, the control inputs in posiavel negative-sequence can
be obtained as:

u; = L (v; — 257 (4.4.12)
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Control Loop
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Figure 4.2: Block diagram of the nonlinear adaptive cotrol

Combining (4.4.9) and (4.4.11) into (4.4.12), the lumpedtoa input that in-
clude both the positive- and negative-sequence compoiseoiiéained as:

U; = L;1 (k1 (Yiret — Yi) + Ko (Ui vet — Zi2) + Uivet — Zi3] (4.4.13)

The schematic block diagram of the proposed NAC is showngar€i4.2. The
final control outputs from the NAC controller representedobysical variables are
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given as:
Vq = LSCS[—7313 + ]{51 (E* + 'UZd — Uod)“—

ko(B* 4 0% — 219) + E* + 02 (4410
Uq = LSCS[—223 + k‘l (,UZq — qu)+

\ ko (0 — Za2) + V7]
NAC only requires the nominal value d@f, and C, and measurements ofy
andu,q, all other states and parameter changes, including\theadjusted by the

outer loop power droop control, are included in the estich@irturbation terms.

4.4.5 Stability Analysis

The closed-loop system has been investigated via Lyapusiaiity theory.
Firstly, define the estimation erret;, = =, — 2z}, ef, = 28, — Z,, andel, =
wP(.) — ZF. The positive-sequence error function of the SPOs in (}dab be
rewritten in

[€7] = [A7)[e7) + [W7] (4.4.15)

where[A?] is non-singular in both SPQs = 1, 2).

For the estimation error system (4.4.15), consider the Wwygap functionV;; =
[e']T P [ef]. The high gains of SPOs (4.4.5) are determined by requidng.g)
holds, which meand? is Hurwitz. One can find a feasible positive definite solution
Py, of Riccai equatiorfA?]" P, + P,[A?] = —I. Similarly, define the Lyapunov
function of negative-sequence error functiorvas= [e7]T P[]

Secondly, define the tracking error of the subsystemgas- y; ., — 2, and
€y = Ui ret — %o- The linear control algorithm in (4.4.11) can be presented a

Vi = ki (Yiret — 2i1) + Ki2(Givet — 2i2) = knea + kinesn (4.4.16)
From (4.4.10), (4.4.12) and (4.4.16), the dynamics of tbeedl-loop error equation

is obtained as
éil 0 1 €i1
= +
€i2 —kin —kio €i2

0 ] (4.4.17)
—&
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where; = &b, + &%, - e772t (i = 1,2), which includes the positive- and negative-
sequence estimation error of the lumped perturbation.
Rewrite system (4.4.17) in

le:] = [Mi][e;] + [Ad] (4.4.18)

and define its Lyapunov function &§; = e Pse;, whereP is the positive definite
solution of the Lyapunov equatioW ' Ps + PsM; = —1.

Calculating the derivative df; along the solution of closed-loop system, and if
€1l = 71, [I€7]] = va and|les]| > s, it yields

Vi = el (ALPi+ PiAn) el + WP Pl + &7 PV
el (AP + PoA) €7 + W P! + el W
+e;T (MiTpg + Pst') € + AfTP?’ei +ei' Py

< —llef P+ 20l WP P = e 1 +
2/l W 1P = Nleall® + 2llesll - 1Al - [1P5]]
< =&l bl =2l Pl = el (led Il = 22l P2ll)

—llesll (llesll = 2s]| P5ll) (4.4.19)

ThenV; < 0 when||?|| > 2v||P1]| and||e?']| > 27|/ P||. One can find that
19| < || Killys with || K;|| based on|el™(t)]| < (12. Thus there exist$), 15, and
T3 such that

e ()] < &G = 2mll P, Vt > Ty
[ ()] < G2 = 27| 2], vt > T (4.4.20)
lei(D) < 23| Pl < Ay || KG[[ || Pral || Psll,  VE > T

SettingT = maxX{T},T», T3}, it lead to that the error system is globally uniformly
ultimately bounded (GUUB) within the time period ot
Moreover, if W?" are locally Lipschitz in their arguments, it will guarantee
the exponential convergence of the observation error avskdHoop tracking error
into [126]
lim e2™(t) =0 and tllglo ei(t) =0

t—o00
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Then it proved that the closed-loop system is stable withgigihe nonlinear
adaptive controller. The power stage and control systerh@MNAC-based droop
control the the DR is shown in Figure 4.3.

4.5 Simulation Results

The LV MG operating in island mode is simulated in PSCAD/EMT Boftware
environment with detailed switch model of VSCs. The proplosentrol method is
validated in an islanded MG system which includes ESS, sipylase PV resources,
and impedance load. The bus voltage and frequency of the M@&amtained by
the converter-based ESS, which is controlled by the prapd&C-based droop
controller. To validate the dynamic response and stapititsy MG system operates
under unbalanced impedance load disturbance, and sihgkegime-varying PV
power generation disturbance. The performance compasgsamong three control
method: the cascade-PIl based droop control without unbaleempensation, the
cascade-PI based droop control with the FNS reactive poasedUCR method,
and the proposed NAC based droop control method. The pasesradtthe MG sys-
tem are given in Table 4.1 and the controller parameters & N#hose parameters
are tuned using the pole placement method to get the opthpedormance, are
given in Table 4.2.

45.1 Three-phase Motor Load

During the induction motor (IM) start-up, it influences thalslity of MG via
absorbing large currents. The transient procedure neddsdsictive power for flux
excitation and active power to overcome its rotationaltinerThe motor load is a
3-phase induction motor that is chosen from the PSCAD hbveith its nominal
power around 20kVA. Its start-up power is nearly four timssiominal power.

The simulation results of the cascade Pl based controlléM&C controller
under motor load disturbance are compared in Fig. 4.4. Hmsient response of the
bus voltage controlled by NAC has about 7% voltage dip andweostoot, as shown
in Fig. 4.4(a). The entire transient response time last ab@®3s. As a comparison,
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Figure 4.3: The power stage of an inverter based DR and itsal@ystem.
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Figure 4.4: Comparison of (a) RMS bus voltage (kV) and (b) foeguency (Hz)

under induction motor startup.
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Table 4.1: Parameters of MG System

Parameters Values

MG rated bus voltage (rms/line-to-line) v, = 0.4 kV

MG rated bus frequency fr, =50 Hz
DC link voltage of DR Vge = 650V
PWM frequency of DR frwnm =2 kHz

Converter filter inductance (per phase) Ls=2.4mH
Converter filter resistance (per phase) R =0.01Q2
Converter filter capacitance (per phase) Cs=290uF

Output transformer voltage ratio ny = 1.5/4
Output transformer impedance (p.u.) xi, = 0.04
Output Inductance L,=0.53mH
Output resistance R,=0.1Q

P-w Droop gain m = 0.126 rad/kWs
Q-V Droop gain n = 0.14 V/kVar

the cascaded PI controlled MG system has about 12% dip and/é#shmot in bus
voltage. The response time last about 0.15s, five times st iif using NAC-based
droop controller. In Fig. 4.4(b), the steady-state freqyerhange is controlled by
the Pw droop. Comparing with the cascade PI based controller, ¢nfopnance
of the NAC based droop control has less influence under thmsigmat impact of
motor load. The negative-sequence perturbation tetmsand Ly, are both zero
under the balanced 3-phase motor load. The positive-sequserturbationg. ;;
and L, that estimated by the SPOs in the NAC controller are showrign £.5.
The estimated perturbations have a transient error unakitesudisturbance and
track the real perturbation in steady states.

To further comparing the control performance numericalig,indices of maxi-
mum voltage dip and the IAE of voltage regulation is givenhia Table 4.3.
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Figure 4.5: Comparison of the real and estimated pertuwbatrms. (a) the first
perturbation term, (b) the second perturbation term.
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Table 4.2: Parameters of NAC
Item Symbol (=1,2) Values

lil 6 X 105
SPOs Li 1.2 x 10°
lig 8 X 1010
ki1 1000
Controller
kio 5.7

Table 4.3: Performance indices comparison under threeephasor load
Method

_ Cascade PI NAC
Indices

Maximum voltage dip (kV)| 0.04899 0.02987
\oltage IAE (kV-s) 2.366x1073 | 1.105<1073

4.5.2 Unbalanced Impedance Load

The unbalanced network conditions are significant in a palcscenario of
MG as unbalanced generators and loads might be included .cdriteoller of the
converter-based DR have to eliminate the voltage unbaleniséanded MG when
the unbalanced disturbances occurred. The impedanceAbath is the most com-
monly used equivalent load, can be seen as a transientimisice to the MG system.
The droop control is to reduce the reference of the frequandyoltage amplitude
when active power and reactive power is absorbed by the teagectively. In this
case, a single-phase impedance load, which includes bsigtive and inductive
elements, is connected to the MG bus.

Figure 4.6 shows the RMS value of bus voltagé inthat is comparing among
the cascade-PI based droop control without and with the UERadl, and the NAC
method. The frequency tracking performance and instantanéhree-phase bus
voltage are shown in Figure 4.7 and 4.8, respectively. Fiwarbus voltage wave-
form, it is obviously to find the difference of the unbalandbdee-phase voltage
among the three control methods. In addition, the voltagelamce factor (VUF)
of the MG bus voltage is compared as the index of power qualitye VUF is
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Figure 4.6: Comparison of RMS bus voltage amplitude undéalanced load a-
mong (a) the conventional control method without unbalarwrepensation, (b) the
conventional method with UCR, and (c) the proposed NAC.

defined as follows [142, 149]:

n

,Ub(rms)
p

,Ub(rms)

VUF = x 100% (4.5.1)

wherevy o anduy,, . are the positive- and negative-sequences of bus voltage in
RMS value. The VUF comparison are shown in Figure 4.9 amoadghitee control
methods.

The comparison results are summarized in Table 4.4 in tefsig performance
indices: the maximum voltage dip, voltage IAE, the maximuegtiency regulation

error, frequency IAE, the maximum VUF, and average VUF iragdyestate. The
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Figure 4.7: Comparison of bus frequency under unbalancad &mong (a) the

conventional control method without unbalance compeosatb) the conventional
method with UCR, and (c) the proposed NAC.
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Figure 4.8: Comparison of bus voltage waveform under umicald load among (a)
the conventional control method without unbalance comaigms, (b) the conven-
tional method with UCR, and (c) the proposed NAC.
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Figure 4.9: Voltage unbalance factor comparison underlanbead load.
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Figure 4.10: Comparison of real and estimated perturbaéionsL s, and its esti-
mation errorA L, under unbalance impedance load.

RMS bus voltage comparison result shows that the NAC has¥6%8s voltage
dip and 62.5% less IAE than the cascade-PIl based controlochethder sudden
unbalanced impedance load disturbance, the maximum fnegezror and IAE are
80.3% and 79.5% less, respectively. The index of VUF showsttie cascade-
PI based droop control without unbalance compensationigagisant impact by
the unbalanced load and cannot eliminate the unbalancéatyeohwhich has about
22% VUF in steady state. The UCR method compensates thegeoltabalance
obviously, whose maximum VUF is 17.3% when the unbalanced lkkonnected
and then eliminated to 5.3% at steady state. The NAC hag fasigonse speed and
better performance in eliminating the VUF. The maximum aeddy state VUF are
4.7% and 1.0%, respectively.

The estimation results of the two perturbation terms fron©0Sk NAC are
shown in Figure 4.10 and 4.11. At 0.35s, the unbalance impedimad is connect-
ed to the MG bus, and the SPOs estimate the perturbationsegtitive-sequence
components, which are the ac terms in twice the foundativequency seen from
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Figure 4.11: Comparison of real and estimated perturbaéionsL s, and its esti-
mation errorA L r, under unbalance impedance load.

the positive-sequence frame. The estimated perturbat@ict up the real pertur-
bation terms with the estimation error less than 10%. Thenes¢dL ;; andL, are
used to compensate the real perturbation terms to elinsinlagevoltage unbalance
and disturbance in the bus voltage of MG system.

4.5.3 Single-phase PV Power Generation to the Microgrid

In this case, the controller is validated under the sindlase power generation
from a PV resource in the MG. The solar power input is given éisna-varying
dc current source in the grid-connected PV system, and the-¥arying power
disturbance is injected by the single-phase PV to the MG.

The performance of RMS value of bus voltage, frequency tragland instanta-
neous three-phase bus voltage comparing among the thregelsoathod are shown
in Figure 4.12, 4.13 and 4.14, respectively. The harmomcdheé bus voltage is
higher than that in the load disturbance due to the powetreldc devices in the
PV power generation system bring more harmonics in its dygpwer to the MG.
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Figure 4.12: Comparison of RMS bus voltage amplitude unuigjles-phase power
generation among (a) the conventional control method withimbalance compen-
sation, (b) the conventional method with UCR, and (c) theppsad NAC.

The performance indices are chosen the same with that inrthedise and given in
Table 4.4. Comparing between the NAC and the method of caseadith UCR,
the RMS voltage of using NAC has 69.1% less maximum voltage @nd 79.6%
less IAE under single-phase power generation, the maxinmaquéncy error and
IAE of NAC are 63.4% and 65.8%, respectively, less than tlseade-P1 with UCR
method.

The VUF comparison result in Figure 4.15 shows that the NAGopms the
best in eliminating the unbalanced voltage. Both the UCRMAG has obvious
effectiveness in eliminating the unbalance voltage unihgle-phase power gener-
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Figure 4.13: Comparison of bus frequency under single-glpasver generation
among (a) the conventional control method without unbadacmmpensation, (b)
the conventional method with UCR, and (c) the proposed NAC.
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Figure 4.14: Comparison of bus voltage waveform under siphlase power gener-
ation among (a) the conventional control method withoutalatice compensation,
(b) the conventional method with UCR, and (c) the propose@€NA
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Figure 4.15: \oltage unbalance factor comparison undegleiphase power

generation.
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Table 4.4: Performance indices comparison under unbalaadelisturbance

Method .
ndices without UCR NAC
Case: Unbalance load disturbance
Maximum voltage dip (kV) 0.0321 0.0314 0.0127
\oltage IAE (kV-s) 1.64x1073 | 1.32x1073 | 0.495< 1073
Maximum frequency error (Hz) 0.164 0.0450 0.00884
Frequency IAE (Hz) 6.78x107% | 5.37x1073 | 1.10x1073
Maximum VUF (%) 22.7 17.3 4.73
Average VUF (%) 22.1 5.25 1.03
Case: Single-phase power generation
Maximum voltage error (kV) 0.0384 0.0385 0.0119
Voltage IAE (kV-s) 1.55x1072 | 1.77x1072 | 0.361x 1072
Maximum frequency error (Hz) 0.0338 0.0325 0.0119
Frequency IAE (HB) 1.63x1072 | 1.73x1072 | 0.592x 1072
Maximum VUF (%) 27.4 9.37 5.81
Average VUF (%) 11.2 4.45 2.76

ation. And the bus voltage controlled by NAC has about 38% \d43F than that of
the UCR unbalance compensation method. The Pl based corgtbbd is using the
cascaded loop to regulate the current in the inner loop ahdgein the outer loop.
While the NAC is estimating the lumped perturbation whicbliles the dynamic
of input and output and disturbance and compensate therpation to the system
input. This makes the control performance of NAC far bettantthat of the cascad-
ed PI control. However, at 0.81 s in Figure 4.14 (c) and 414& NAC has affected
by the harmonics because of the high-gain perturbationrebses sensitive to the
noise, which is the main drawback of using a high-gain oleseivhus, the observer
bandwidth needs to be turned to filter the sensor noise fopaimal performance.
The estimation results of the perturbations as shown inrEigul6 and 4.17.
The ac components is from the negative-sequence voltagehwicreases with
the rising of generated power from the single-phase PV resouThe unbalance
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Figure 4.16: Comparison of real and estimated perturbaéionsL s, and its esti-
mation errorA L s, under single-phase power generation condition.
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Figure 4.17: Comparison of real and estimated perturbaéionsL s, and its esti-
mation errorA L s, under single-phase power generation condition.
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Figure 4.18: Indices comparison between BESS and HESS ibubeoltage (a)
IAE, (b) VUF, and battery performance (c) accumulate DOD) afeerage efficiency.

power generation disturbance is time-varying which makesdstimated pertur-
bation terms has time-varying estimation error. Nevee$®l the effectiveness of
the compensation is demonstrated that the estimated patitom terms from SPOs
compensates the real perturbations and eliminate therigstoe and voltage unbal-
ance.

4.6 Conclusion

In this chapter, a nonlinear adaptive controller for theagé source converter-
based distributed resource has been designed to improvetthstness of an island-
ed microgrid by compensating the voltage unbalance andrbetces. Based on the
dynamic model of converter-based DR in dual synchronowseate frames, the s-
tate and perturbation observers have been designed toagstthre unknown and
time-varying nonlinearities, external disturbances aolthge unbalance, which are
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defined in the lumped perturbation terms. The estimatedigition dynamics
are used to compensate the real perturbations for linegritie system, and the
linearized system is controlled by a linear control law. TW&C controller has
been validated in an islanded MG under unbalanced impedaadeand single-
phase PV generation in PSCAD/EMTDC simulation environmeimulation re-
sults show that, comparing with the cascaded Pl based dienttbe NAC maintain-
s the bus voltage with less voltage dip and faster voltagalanlobe compensation
under single-phase disturbance in the MG. The parametartanaty, such as the
change of resistance, inductance and capacitance of sysiéiroe considered in
the future work.
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Chapter 5

Coordinated Control of a Hybrid
Energy Storage System with Battery
and Supercapacitor for Microgrid

5.1 Introduction

Modern power system is developed with a large number of DRduding
both the renewable energy generations, such as wind tuwhand wave genera-
tion, and nonrenewable generations, such as fuel cell antbrturbine [7]. This
leads the increased use of power electronics in the powegrggon, transmis-
sion/distribution and end-user stage [6]. Those powestedaics-enabled power
systems (PEEPS) have been applied in the more electriaftifzt—23], ship board
power system [19], and the LV-MG [24-27]. The MG is a typicgl BEEPS with
more renewable energy resources, which makes the MG wealtlinits stiffness
and inertia comparing with the utility power grids [25-27].

Due to the renewable energy is unpredictable, alternatiseurces are needed
when the renewable energy DRs cannot supply enough powee tdG. The con-
trollable micro-sources, such as micro-turbines and éedlk, are good alternative
resources. But their response speed are not fast enoughdtehibe fast-changing
disturbances, and they are uni-directional power sourgelwdan only output pow-
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er to the grid. Thus, the micro-sources can be only used aathkary sources. The
energy storage system (ESS), such as battery, flywheel gedcsypacitor (SC), are
used for balancing the power difference between generatdmand demand side
due to their particular features of fast response speediyédtion power flow, and
weather independency [28-36], as shown in Figure 5.1. @enshat the battery
has a high energy capacity while low in power density, andBGehas much higher
power densities and extremely high cycling capability viiss maintenance, a hy-
brid energy storage system (HESS) combining battery and§€ther can provide
both high power density and energy capacities [150, 151§ Ouime-varying and
unpredictable renewable power generation, large amouDRs in the MG cause
the frequent charging-discharging cycles of ESS, whicheiases the accumulate
depth of discharge (DOD) and reduces the lifetime of batigd@], and thus it is
not economical to use battery for energy storage in a MG.

The battery-supercapacitor based HESSs have been applééctric vehicle
[28, 29, 152], wind power generation system [30], PV genenatystem [31], other
renewable energy sources [34], and DC microgrid [32, 153)m& coordinated
control strategies for the HESS in an AC microgrid are pressknsuch as using
fast fourier transfer to decompose the low-frequency agt-fiequency power of
fluctuant loads [154]; using the SC to compensate the haeorard unbalance of
current outputs from battery to enhance the power quali]letc. The previous
coordinated control strategies have not been designecitootthe battery and SC
individually with different purposes for optimizing theisage efficiency based on
their features.

This chapter proposes a coordinated control strategy éHIESS that controls
the battery and SC with different objectives based on thegitures in order to im-
prove the transient response of the MG bus voltage and redea@ecumulate DOD
of battery. The battery and SC are interfaced with indiviMM#Cs connecting to the
MG. The proposed control strategy controls the SC to bal#medast unbalanced
power whereas the battery to produce the balanced activerpovgteady state for
less unnecessary loss.

The remainder of this chapter is organized as follows. 8edi2 presents the
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Figure 5.1: Scheme of microgrid including renewable povesource, customer
load, and energy storage system.

Yaxing Ren



5.2 Model of Energy Storage System 107

dynamic model of battery, supercapacitor, and VSC. Seé&idpresents the design
of coordinated control strategy for battery-SC based HEH®®.simulation valida-
tion result of the proposed control strategy is presentetkiction 5.4. The chapter
is finally concluded in Section 5.5.

5.2 Model of Energy Storage System

5.2.1 Battery model and state of charge

The electrical models of battery used in literatures canibieed into two cat-
egories: the low-power application that neglects the tla¢efiect, and high-power
application that includes the impact of temperature indsgtperformance [156].
This chapter use the electrical model of battery without tdraperature impact
as the temperature is not a direct control objective thasicened in this chap-
ter. The terminal voltage of a battery is presented from thevénin battery model
depending on the open circuit voltage (OCW).,, the internal resistancg;, and
the paralleled RC circuit as shown in Figure 5.2(a). Thedpatiransient behaviour
corresponding to the load change is represented by thadrdrt®ntact resistance
Rt with a paralleled capacitart. The battery OCV is depending on its actual s-
tate of charge (SOC) with a non-linear equation. This terpmegents a non-linear
voltage that changes with the amplitude of the current aadatiiual charge of the
battery [4].

The dynamic model of battery is presented as [157]

Vi=Vocv — Ri- I — Vg (5.2.1)
where
Vooy = By — K—20 4 go(-5s1) (5.2.2)
Qo — [idt
1 VCT
Ve=— [ (I-==dt 5.2.3
= ( o ) (5.2.3)

whereVr is the voltage over the parallel transient resistor and @agar), is the
nominal battery voltagey), is the rated charge capacity, is the polarization volt-
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Figure 5.2: Equivalent circuit of (a) battery [4], and (bjpsucapacitor [5].

age, A and B are the exponential zone amplitude and time constant iayees
spectively. In different types of batteries, the batteryapaeters are variable [157].
This chapter is not considering the battery aging, whichrekeses the battery fully
charged capacity.

The SOC is defined as the ratio between the charge left in erpaihd its rated
capacity, and the DOD equals to the change of SOC in one digeltgcle. The
SOC and DOD are presented as [151]

_Q
S0C = - (5.2.4)
1
DOD = ASOC = / I(t)dt (5.2.5)

where() is the amount of charge at a given momdnis the discharge current, and
Qo is the nominal capacity of the battery, which is a fixed value.
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5.2.2 Supercapacitor Model

The SC is a high power density energy storage device with gffadency and
much higher recharging cycles than batteries. The SC hasydast dynamic re-
sponse in charging and discharging operations. Its outpitage simultaneously
reaches its steady state when it switches from maximum oiltayrrent to the
maximum discharging current [158]. Thus, it is one of the remsnmonly used
energy storage device for short-term power exchange.

Within the linear working region, the SC can be model by a fixatlie ca-
pacitance and equivalent series resistance (ESR) aclgunatieout considering the
effect by temperature and other operation conditions [Bf Thevenin equivalence
circuit of SC is shown in Figure 5.2(b), whose dynamic modgiresented as

Vie =Veo — Ci /Zdt — Rpg -1 (526)

whereV,, is the terminal voltage of SA., is its initial open circuit voltage, is the
discharging current; and Rxs are the capacitance and equivalent series resistor
of SC.

5.2.3 Model of voltage source converter

The VSCs are used to rebuild the output voltage from the E®8 synchronized
with the bus voltage of MG before connecting to the grid. THeCvbased ESS
are used to maintain the voltage and frequency of the AC MGnwhéaces the
sudden disturbances, including load and generated powegels and short-circuit
faults [25, 27]. The model of VSC with a LC filter consideringetcurrent and
voltage dynamics in d-q axis is the same with that given inpite¥ious chapter in
(4.2.1). The d-q frame bus voltage references are defineg,andv;, and their
tracking error are defined ag(t) = voa(t) — v24(t), eq(t) = voq(t) — v3,(t). Then
it gives the control objective that is to obtain = 0 ande, = 0 ast approaching to
infinite under sudden unbalanced load disturbance.
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5.3 Control Strategy for HESS

The proposed coordinated control method is designed tohassupercapacitor
as an energy buffer for the battery which filters the trartspenver and/or unbal-
anced power demand to reduce the overuse of battery. Theottenfor VSC base
HESS is aiming at both improving the transient performaridd® bus voltage and
reducing the battery loss. In this control strategy, thedpatis controlled to pro-
vide the balanced power in steady-state while the supectapéSC) is controlled
to generate transient power and compensate the unbalapeed demand. Un-
der unbalanced voltage condition, the steady state oparatiSC is to provide the
oscillated power with the mean value of zero. The batteryepes the balanced
power while the SC compensates the unbalanced power to imathe recharging
operation in the battery.

5.3.1 Controller for Battery VSC

Inthe HESS, the battery is to generate balanced power untdatanced voltage
condition in MG. The controller only focuses on the positaenponents of grid
voltage to generate the reference of output current forackest inner loop current
controller that are presented as
ki

gy = (kp + ?) (Vdret — Vod+) — WCVoqt (5.3.1)

oy = (kp + %) (Varet — Voqt) + wWCody (5.3.2)
If the output current of battery VSC is controlled followitige positive curren-
t reference above, the effect of the negative-sequencagelvill make the out-
put power with oscillation components that injected inte MG. Under the un-
balanced voltage condition, the most common way for dedogghe sequence
components is to synchronize them in the same frequencyaopiiosite different
direction, i.e. the positive-sequence frame rotates wgftequency ofs, while the
negative-sequence frame rotates with the frequeney.fDue to that the controller

is designed under the rotating frame that is synchronizetegositive-sequence
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voltage, the negative-sequence components also need tarséetrred to the same
coordinate. Then the negative-sequence components @igesitand currents are
presented in periodical sine-wave signals with the frequeat 2w, twice the bus
voltage fundamental frequency of MG.

The instantaneous active power function has been studigeuious literatures
for power quality analysis of transmission power grid [1Z8]d this chapter uses the
similar method for the controller design. The instantarseamtive power function is
represented as

p =Vodld + 'qu'iq
=(Vodt + Vod—)(fat +da-) + (Voqt + Voq—)(fqs + iq-)

:Zjod+7;d+ + qu+7;q+ + Vod—ta— + qu—iq—l—i_ (533)

P

Vod+td— F Vod—Td+ F Voqtlq— + Voq—lq+
NS >

-~

p

whereP andp present the average power and oscillation power comporesysc-
tively; voda+, voq+, 24+ andiq, are the positive-sequence components of output volt-
age and current in d-g axissq—, voq—, 4 andi,_ are the negative-sequence com-
ponents of output voltage and current in the reference frahpositive-sequence
d-axis.

To eliminate the power oscillation, |Igt= 0, and assume,,; = 0 in steady
state, the d-axis negative-sequence current can be pedsent

. Vod— . 'qu— .
lg- = — far — ——lqt (5.3.4)
Vod+ Vod+

Then the reference d-axis current reference can be desagned

% % UO — ok UO — ek
iq =lgy tig_ = (1 o ) tag — —qlq+ (5.3.5)

Vod+ Vod+

Similarly, the instantaneous reactive power can be obdzase

q= qu+7;d+ - Uod+7;q+ =+ qu—id— + Uod—iq— +
Vv

Q

(5.3.6)

Uog—2d+ — Vod—1q+ + Voq+td— — Vod+lq—
A - -

'

q
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Figure 5.3: Block diagram of the controller for the VSC ofteay.
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and the reference g-axis current can be designed as

% % % Vod— % 'qu— -

_ — (1= 2= A 5.3.7
g = lgp T g < Uod+> gt T Vods Lo+ ( )

The reference current of the battery VSC is presented as
Vod— Voq—

i e e

1= et A I (5.3.8)

Zq o 1— 7'OH-

Vod+ Vod+

The controller block diagram of VSC based battery is showigure 5.3.

5.3.2 Controller for VSC of Supercapacitor

Due to the SC is a high power density devices with less enesggaaty than
battery, it cannot be used for long-term (tens of minutesaars) power supply.
Therefore, no integral part is used in the positive-seqgei@nttage controller design
of SC. Only the proportional gain is used for a rapid dynamsgponse in eliminating
the transient regulation error.

However, due to its characteristic of low energy capachg $C needs to be
recharged to its nominal DC voltage level for the next transpower response.
An additional control loop is added to the whole control t&gy for charging the
SC. The control algorithm of output current from the SC isigiesd under dual
synchronous reference frames (SRF) considering both tegiye and negative-
sequence components, and is presented as

igse =Fm(Varet = Voay) = WCoqs + kac(Vae — Vi) (5.3.9)
id % =k (Vgret — Voq) + wCoas (5.3.10)
igte = — knvoa— + wCvoq— (5.3.11)
Tgse = — FnVoq— — wCoq- (5.3.12)

wherez; ., andi ., are the positive-sequence reference current with syneingn

frequencyw; ij . andi; . are the negative-sequence reference current of super-
capacitor VSC with synchronizing frequeneyw; k,, andk, are the proportional
control gain for positive- and negative-sequence voltagespectively;k,. is the

recharging control gain of SC DC voltagg..
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The current references calculated from the previous cbalgorithm are feed-
ing the cascaded inner loop current controller, which udesoRtrollers, for the
regulation of output current. The final control output is tieéerence voltage in
d-qg axis, which is transformed back to the stationary framéhle inverse Park’s
transformation. The final control output of the referenckage are presented as

[ Up Vg~ ]
cos(f) —sin(0) ] [ Va ]
sin(f)  cos(0) Vgt

N [ cos(f)  sin(h) ] [vd_ ]
—sin(#) cos(0) Vg

whereuv,, vg are the reference voltage control signal in stationary &am, , v,

-1 Vd+

dqt

-1
+ Tt
Vq+

(5.3.13)

vq— andv,_ are the reference voltage from the output of current coletroi positive-
and negative-sequence control loop, respectiv?:i[)ﬁ,r and T&f_ are the positive-
and negative-sequence inverse Park transform matrix.

The space vector modulation (SVM) is used to produce dutiedyased on the
voltage reference that drives the VSC. The control schentleeo8C VSC is given
in Figure 5.4.

5.4 Simulation Results

The HESS in an island MG under unbalanced condition is sitadia PSCAD/EMTDC

software environment. The simulation validation of thegmeed coordinated con-

trol method is in PSCAD/EMTDC software environment. A batt8C based HESS
system is used to balance the power generation and demandisiaad MG, as the
power stage shown in Figure 5.5. As the control system of tB8%lis designed

to use battery and SC for different objectives, the simafatiases are to test their
performance of cooperative operation performance and tiwdeneffectiveness un-

der unbalanced disturbance, including the single-phapedance load and variable
power generation. The method has compared with the battdyynoethod to vali-

date the improvement of using supercapacitor to extendatterly longevity. The
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Figure 5.4: Block diagram of the controller for the VSC of stgapacitor.
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MG parameters used in simulation are given in Table 5.1, ha@dntroller param-
eters are given in Table 5.2.

Table 5.1: Parameters of MG and HESS.

Parameters: Value:

MG rated bus voltage (RMS/line-to-line)yrvs)) 0.4 kV
MG rated bus frequencyf{) 50 Hz
Battery nominal DC link voltageH;) 480 V
Battery internal resistance?() 0.005%
Battery thermal resistancé() 0.0052(2
Battery thermal capacitancé'{) 0.52F
Battery polarization voltageX() 0.00876 V
Battery exponential zone amplitudé)( 0.468 V
Battery exponential zone time constant inverBg ( 3.529 Ah~!
Battery rated charge capacit{) 2800 Ah
Battery initial SOC 50 %

SC nominal DC link voltageW.o) 0.4 kV

SC equivalent series resistandg:) 0.692

SC capacitance(s) 0.58 F
VSC PWM frequency fpw) 2 kHz
VSC filter inductance - per phasé 2.4 mH
VSC filter resistance - per phasgi,| 1 mQ
VSC filter capacitance - per phasg.] 290 uF

5.4.1 Single-phase impedance load

The unbalanced disturbance will lead more power loss duddonegative-
sequence voltage components. To reduce the accumulateddd@Bnhance the
average efficiency of battery, the unbalance power is dedigo be absorbed by
the SC. When the single-phase load is connected to the MGuhe&oltage drops
immediately. The SC responds rapidly to produce transiewep output and com-
pensate the unbalanced power demand, and the battery ltagest sbsponse speed
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Figure 5.5: The power stage of a VSC based HESS and its cayst@m.
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Table 5.2: Controller parameters of HESS

Voltage Controller| Current Controller,
]{Z ]{71 ]f ki
Battery P P
0.5] 50 5 1000
km | kn kqe ky ks
SC
20 | 50 5 5 1000
24 15
| Load demand
18 U m\! LR “ 1
o | Load demarid "X | s I \mﬂm\w TRt
2 - Battery Z 5 W‘ ]
E: 6 | E; 'M\ W Sgﬂ?l'_capacnor
0 | 0 ¢ D A
~ Super-capacitor . !3attery .
Y 1 15 2 -
time (s)
30 (a)
Battery
= sy I
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=
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-30
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Figure 5.6: Simulation results of the HESS with its power fiwd current outputs
under single phase load. (a) Active power flow in kW; (b) re@cpower flow in

kVar; (c) output current from the battery; and (d) outputreat from the SC.

on producing balanced power to eliminate the steady stade @n bus voltage, as
shown in Figure 5.6 (a) and (b). The steady state operatitimeo$C is to produce
the oscillated active and reactive power with its averagegr@utput equals to ze-
ro under unbalance load condition. That is to use the SC &gjuient discharging
usage to reduce the discharging cycles of battery, and ¢thiuggrove its longevity.

The three-phase output current from the battery and SC axersim Figure 5.6 (c)

and (d). From which it is clear to find that the output curreonf the battery is

balanced, while that from the SC is to satisfy the unbalamceent demand from
the single-phase load.
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Figure 5.7: Comparison results between the BESS and HES@&sinditage tran-
sient response and battery performance under single pbade (a) Bus voltage
with using the battery ESS; (b) bus voltage with using therityBSS; (c) RMS bus
voltage comparison in p.u.; (d) bus voltage unbalance fa(#d battery accumulate
DOD; and (f) battery instantaneous efficiency.
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Figure 5.7 (a) and (b) show the bus voltage waveform of theeational battery
based ESS (BESS) and the HESS with proposed control metha®t unbalanced
load disturbance. To have a more distinct comparison of tisevbltage, the RMS
voltage in p.u. and the voltage unbalance factor (VUF) aesl iis the comparison,
as shown in Figure 5.7 (c) and (d). The VUF is defined as the ddtihe negative-
sequence voltage over the positive-sequence voltage aslex[i142]:

v
VUF = 289 5 100% (5.4.1)

Uh®rMS)

whereuv) yq) andu, gy are the positive- and negative-sequences of bus voltage
in root-mean-square (RMS) value.

Under the single-phase load, the bus voltage is maintaigedeoVSC of ESS
to balance the power demand and generation. Beside to imphevtransient re-
sponse of bus voltage, another objective of using the SCaH&SS is to extend
the longevity of the battery. As discussed in previous sestithe battery longevity
is affected by the ambient temperature and equivalent fules, which is repre-
sented as the accumulate DOD. In addition, the power dissipan the internal
resistance of battery will not only decrease the efficienayabso increase the am-
bient temperature. The higher the battery efficiency, tee the power dissipation
and the longer the life cycle of battery. The efficienciesmyicharge and discharge
are defined as

Pstored
charge — (542)
Mlch . Pinput
Poutput
ischarge — 75 (543)
discharg P, generated

which can be combined into a formula to the ratio between timenum value and
the maximum value of battery terminal power and the cell powe

min (|Pt0rm‘7 ‘PCOHD

5.4.4
max (‘Ptorm‘ ) ‘PCOH |) ( )

Thvattery =

To validate the performance, the accumulated DOD and poffieieacy is used
to represent the usage of battery, as shown in Figure 5.7n¢e)fa To further
validate the performance improvement of using a SC in a HB&S & BESS, the
indices are compared in Figure 5.10 and Table 5.3.
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From the bar chart in Figure 5.10, it is obviously to find tHa HESS with
the proposed control strategy performs better than theerdional BESS in bus
voltage IAE and VUF in both cases. The battery accumulate D Dsing the
HESS is less than that of using the BESS, and the batteryesféigiof HESS is
higher than that of the BESS under both the single-phasedamue load and power
generation disturbance.

From the simulation results, the maximum voltage dip in a BbB&sed MG is
0.258, while using a HESS the maximum voltage dip is 0.0394/% less than the
former. The regulation IAE of the MG bus voltage maintaingdhe HESS is about
72.7% less than the BESS based MG. The maximum VUF and avetdgef the
bus voltage that controlled by a HESS are 91.9% and 74.0%hessthe BESS,
respectively.

In addition, the battery usage is compared with three irgjittee internal pow-
er loss, the accumulate DOD, and the battery average efficigdomparing with
the BESS, the HESS with SC improve the effective usage othatith 48.2%
less internal power loss, 18.5% less accumulated DOD, &fP®higher battery

efficiency in average.

5.4.2 Single-phase power generation

As the renewable energy is unpredictable, its generate@ipoannot always be
equal to the power demand load from customer side. In this, ¢hs ESS, which is
used to balance the power difference, can both be used toagem®wer to the grid
or absorb power from the grid depending on the power comdifitne output power
in both active and reactive power of the battery and SC in tB&%l are shown in
the Figure 5.8 (a) and (b). And the output current from theeogatand SC in the
HESS are given separately in the Figure 5.8 (c) and (d).

The comparison between the battery ESS and hybrid ESS irs teirthe RMS
bus voltage, VUF, battery accumulated DOD, battery efficyeand the instant bus
voltage, which are shown in Figure 5.9, and the numericacexlare compared
in Figure 5.10 and Table 5.3. The maximum voltage regulagimar and voltage
IAE with using the HESS are 83.7% and 66.3% less than thatiofjube BESS,
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Figure 5.8: Simulation results of the HESS with its power fiwd current outputs
under single-phase power generation. (a) Active power flowW; (b) reactive

power flow in kVar; (c) output current from the battery; andl @dtput current from

the SC.
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Figure 5.9: Comparison results between the BESS and HES@&sinditage tran-
sient response and battery performance under single-giuager generation. (a)
Bus voltage with using the battery ESS; (b) bus voltage wdingithe hybrid ES-
S; (c) RMS bus voltage comparison in p.u.; (d) bus voltagealarize factor; (e)
battery accumulate DOD; and (f) battery instantaneous efioy.
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Table 5.3: Performance indices of Battery ESS and Hybrid iBS8nulation

Method :
ndices Battery ESS| Hybrid ESS| Improvements
Case 1: Single-phase impedance load
Maximum voltage error (p.u.) 0.258 0.0394 84.7% less
\Voltage IAE 0.131 0.0357 72.7% less
Maximum VUF (%) 38.39 3.09 91.9% less
Average VUF (%) 5.38 1.40 74.0% less
Internal power loss (W) 514.5 266.3 48.2% less
Accumulate DOD &107°) 1.73 1.41 18.5% less
Battery Average Efficiency (% 98.86 99.08 0.22% higher
Case 2: Single-phase power generation
Maximum voltage error (p.u.) 0.165 0.0269 83.7% less
\oltage IAE 0.0974 0.0328 66.3% less
Maximum VUF (%) 42.73 2.21 94.8% less
Average VUF (%) 6.88 1.35 80.4% less
Internal power loss (W) 62.4 22.5 63.9% less
Accumulate DOD &107°) 0.678 0.313 53.8% less
Battery Average Efficiency (% 99.54 99.74 0.2% higher

respectively. The maximum and average VUF of bus voltagesbyguthe HESS are
94.8% and 80.4% less than that of using the BESS.
With the use of the SC in a HESS, the SC is designed to compena#iahe
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oscillation power flow, which can be used as a power buffemtoath the output
power from battery, and then reduce the unnecessary usdgdtefy. Thus, during
the frequent discharging cycles, the battery in a HESS viiéhproposed control
strategy has less accumulate DOD and higher efficiency thaBESS as shown in
Figure 5.9 (e) and (f). The internal power loss and accuraulé®D of the battery
in a HESS are 63.9% and 53.8% less than that in a BESS, regggctAnd the
battery average efficiency in a HESS is 0.2% higher than that BESS. These
results show that the SC used in a HESS with the proposed hatifwoves the
performance of bus voltage maintaining, and reduce thetyatisage frequency to
extend the longevity of a battery.

5.5 Conclusion

In this chapter, a coordinated control strategy has beesepted for a battery
and supercapacitor (SC) based hybrid energy storage syiste85) to improve the
transient response of bus voltage in an island microgrid lsi@&l reduce the accu-
mulate depth of discharge (DOD) of the battery. As a SC hasymare recharging
cycles than a battery, the SC is controlled to generate ptavehe transient and
unbalanced power demand, while the battery is controllgutdeide the balanced
active power in steady state. The coordinated control nietias been verified on a
HESS in an island MG in simulation using PSCAD/EMTDC. Theaufessshow that
the transient response of MG bus voltage has been improwktharbattery loss has
been reduced with lower accumulate DOD and higher averdigesaty.
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Chapter 6

Nonlinear Adaptive Control for
Induction Motor Speed Control with
Improved Robustness

6.1 Introduction

IMs are widely used in industrial processes, transpomeadjaplication, and elec-
tric vehicles, such as Tesla Motors, due to their ruggedrsasple structure, small
volume and lightweight, low cost, high efficiency and opienaal reliability [43].
The main difficulties in controlling of an IM are its nonliredynamics, parameter
variations during operation, and unmeasured states (cotoents and fluxes) [46].
The most commonly used technique in IM speed control is thé-fisented con-
trol or vector control (VC), as shown in Figure 6.1(a), whatdcouples the torque
and flux to achieve a good dynamic response of the controeddmparable to
those of the dc motors [55,56]. The VC transforms the IM gystiem stationary
frame to rotating frame with the requirement of accurat@apeaters to decouple the
flux and the torque and control them separately [54]. Howeraeal-time imple-
mentation, the VC is sensitive to the system uncertaintigsch include external
load disturbances, inaccuracy and changes of motor eguiveircuit parameters,
and unmodeled system dynamics [93, 160-162]. The det&doren current dis-

127



6.1 Introduction 128
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Figure 6.1: (a) Scheme of conventional vector control forsipéed drive; (b) Vector
control under inaccurate flux position.

tribution (4 andis,) reduces the torque capability, which is a significant intpac
especially in the field-weakening region and efficiency mjtation [48, 163, 164].
In addition, when the load disturbances are present, theoptional-integral (PI)
regulators based VC scheme may have a longer recovery gé&hd

In the past few decades, many previous works aimed to sobsetproblems.
One method is to on-line estimate the parameters as reviewj@@5], such as the
stator resistance adaptation law [166]; adaptive inpapatiinearizing control (I-
OLC) with parameter estimation [63]; on-line stator anaraesistances estimation
using artificial neural networks [167]. But the parameteinegtion methods are d-
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ifficult to estimate the rotor resistance under constamrrbix [168], and complex
to identify the inherent dependency with other parame®@5% [Another method is
to design the robust controller, which is independent wyttesm parameters, such
as a nonlinear sliding-mode torque control strategy [18@adaptive back-stepping
sliding-mode control method [108]; exact feedback linestion method with rotor
flux angle estimation [64]; fuzzy control methods [109, 2 I®§ural network based
robust control schemes [111, 112], and perturbation riejectharacteristics based
analysis scheme [169]. In the robust control methods, akdesturbance observer
based approaches have been proposed to estimate systeraiaties, including
nonlinear observer based active disturbance rejection@dADRC) [93, 95, 170]
to estimate disturbances, and extended state observe) (ES€d controller [91] to
estimate the mismatched uncertainties, etc. On the otinek, h@ost control methods
for IM speed drive were designed to decouple the flux and tlipieo(or speed) dy-
namics by Park transformation, which requires to obtairatigular position of rotor
flux by using a phase lock loop (PLL). However, if the paramseteere changed or
the unbalanced disturbance occurred, the conventionaldahhot obtain the accu-
rate flux position, and that will bring new disturbance to disributed currents and
reduce the robustness of the system, asthge and Ai,, are caused byAd shown
in Figure 6.1(b).

In order to decouple the flux and torque with less dependendjua position
and system parameters, this chapter designs a nonlinggaiiedeontroller (NAC)
for IM speed control in stationary frame, with estimating therturbation terms
to fully decouple flux and speed dynamics and to linearizeottiginal nonlinear
system, without acquiring the rotor flux position and theusiate system model.
The NAC employs a linear high-gain observer to estimate #mtupbation terms
and the estimated perturbation is applied to cancel itsvaake and thus improve
the robustness in the presence of parameter uncertaimtedisturbances, and to
remove the dependence of an accurate system model reqyithe model based
IOLC. Moreover, due to the NAC has fully decoupled the flux apded dynamics
and controlled them independently, the NAC has improvectheiency through a
better flux control under time-varying load disturbance.
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The remainder of this chapter is organized as follows. 8edi2 presents the
dynamic model of IM system in stationary frame. Section G&spnts the design
of the proposed NAC with SPOs. Sections 6.6 and 6.7 providesitinulation and
experimental results, respectively. And the chapter idlfi@ncluded in Section
6.8. The stability of the closed-loop system is proved ugsipgpunov theory as
given in Appendix.

6.2 Induction Motor System

The dynamic model of a three-phase induction motor in statip statora-3
reference frame, with neglecting the iron losses and magsaturation, can be
described as [107] [171]:

r = f(z) + Bu (6.2.1)

where

T
Tr = |:'L.sa isﬁ 77br04 wrﬁ wm]

T T
u = [ul Ug] = [Usa USB:|

i _ Ry L2 ; Ly npmem
(O’LS + oLsz‘m lsa + OLSILerr wra oLsLy wrﬁ

—_ & ern ; L npUJmLm
<0LS T ontm ) st Vs — onr, Yre

Lm - wra npwmwrﬁ

ﬂZ-SB - T_rwrﬁ + npwmwra

Tr

3npL : . T
;L})Lin (wroﬂsﬁ - Q/)rﬁlsa) - 7L

1 T
s |70 000]
0 =000
and the system output vectgis
T T
v=lmw] = [v?w] (6.2.2)
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wherei,, iss and,, ¥,z are the stator currents and the rotor flux linkages in
fixed stationary frame, respectively,, andv,sz are the stator voltages as system
control inputs, andw,, are the rotor electrical and mechanical speed, where
nywm; Ny, J and1y, are the number of pole pairs, rotor inertia and load torque
disturbanceR,, R, andL,, L, are the resistances and the inductances of stator and
rotor, respectively; and.,, is the mutual inductancer, = L,/R, represents the
rotor time constant, and = 1 — L2 /L L, is the leakage coefficient. The rotor flux
squarey; is obtained ag)? = 2, + 2.

The rotor current can be expressed by the states shown as

. 1 Lo -
lra = L_Swra - L_Tlsa

(6.2.3)

ing = 1-¥rs — Pis
Moreover, the reference rotor flux square and mechanica&dspee defined as
¥*? andw;,, respectively, and their tracking error are defineccas= ? — 2,
€2 = Wy — Wy .
The objective of work presented in this chapter is to desiyA&@ speed control
algorithm to achieve the tracking (i.e;, ande, tend to 0) in the presence of various
uncertainties such as variable speed reference, stepraeevéirying load distur-

bances, system parameter uncertainties and other unkndemal disturbances.

6.3 Rotor Flux Optimization to Minimize Power Loss

6.3.1 Rotor Flux Estimation

In the real-time implementation, the rotor flux of IM is nobvalys available due
to it requires the installation of external hall sensor dmat will increase the total
cost. One alternative way is to estimate the rotor flux usnegcurrent model of IM.
The model is based on rotor circuit equation, in order tawetie the rotor flux with
the stator current feedback as follows:

dra _ L 1,7 p
d;a - T_Irnlsa - g@bra - wrwrﬁ

ds _ Ly p 1,
a TIrn 1sp + wrwra - T_rwrﬁ

(6.3.1)
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The rotor flux can be obtained as follows:

] = \/02, + 92 (6.3.2)

The estimated rotor flux is used as feedback for rotor fluxtation in both the
conventional vector control and the proposed nonlineaptagacontrol.

6.3.2 Power Loss Minimization

IMs are normally designed to operate at its rated flux coowlito provide fast
response in torque. However, the industrial applicationstiy drives the IMs in
light loads. The rated flux will cause unnecessary core apge&olosses under the
light loads condition and result in poor efficiency in driyé32]. The efficiency of
the IM is defined as [173].

Pout . 11, - Wi

= 6.3.3
P Da + Pb + De ( )

’]7:

wherep,, p, andp, are the average electric power consumption in phase a, b,and c
and can be calculated ps = 1/T-f0T vaiadt, whereT is the time period.

The loss minimization can be achieved by different methesdsh as model
based method to set the loss derivative to zero [174], gedod-observe techniques
[175], etc. The loss model based method is used in this chdpédine theP,,.; as
the total loss, where the copper and iron losses dominateueerll power loss
[174]. The core loss includes the eddy currents and hyssdoess in the rotor core,
and it is presented with an equivalent core resistafcelhe copper loss is due to
the flow of current through stator and rotor windings. The eoless function is

given by

3 (welt])?
2 R,

In steady-state condition, since the speed and load araibcttanged, the elec-

3
jjloss = 5 (|is‘2Rs + ‘7:1»‘2Rr) + (634)

tromagnetic torque is a constant, and the rotor flux is rélatgh stator current,
which are represented as

_ 3npLn
TeO - Lr

5 wr||i8|sm(5)
|¢r| = Lm|’is|COS(5)

(6.3.5)
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whered is the position difference between the vector of statorentri, and rotor
flux Jr.
Eliminated in (6.3.5) and the stator current can be represented as

|» ‘2:Te20 1 |¢r|2
TR L

(6.3.6)

whereK = 3n,L,,/2L,. Substitute (6.2.3) and (6.3.6) into (6.3.4) to elimindte t
stator and rotor current states, the power loss can be mpsEsas a function of

rotor flux as

3

T2 1
Ploss = 5 (M -

K2 [

5 + N|¢r|2) (6.3.7)

where

12
M =R+ 75 R,

2 2
_ R 1 _ 1 We
N=Ft(L-1) R+i

Differentiating the loss with respect to rotor flux and &8, /d|,| = 0 to
minimize the power loss. Then optimal rotor flux can be oladias

A M . .
w:,opt = \/N (wralsﬁ - wrﬁlsa)Q (638)

6.4 Nonlinear Adaptive Controller for IM Speed Track-
ing
The NAC has been proposed in [126] and applied on power syg8n89].
In the first step, a nonlinear system is transformed intoraatied subsystems by
input-output linearization. Both the nonlinearities amtertainties are defined in a
fictitious state and known as perturbation terms. The IOL@hoekcan only calcu-
late the certain perturbation terms from a detailed mathiem@odel and accurate
parameters. In this chapter, the perturbations are estdrat the designed SPOs

and used to adaptively compensate the real perturbatidnshwncludes both the
nonlinearities and the uncertainties.
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6.4.1 Input-output Linearization

From the IM model given in Section 6.2, chose outputs of syg@2.1) as

(6.4.1)
hZ(x) = Y2 = Wn

{hl(f) =y = p, + U

Then the input-output linearization of system (6.2.1) canbtained from its second-

order derivative as

. U
[yl(x) - (@ + g(x) [u1] (6.4.2)
Ja(x) Uy (x Uy
where
212 . . .
Uy (z) = ) (Zga + 25/3) — wr(fsa¥rg — tsp¥ra)
2L, , Ry 1420, .
- oT. (fs + . )(Zsawra + Zsﬁ¢rﬁ)
2(1 +
2 720)( o i) (6.4.3)
3n, L R 1
v = L - sarB — 1s8Ura
2(7) 2L, <0LS mr)(@ Prp — GspVPra)
Wy Ly . :
—O'LSLr (Q/)Ea + wfﬁ) - wr(lsawra + 'Lsﬁwrﬁ)]
T,
e 6.4.4
. (6.4.4)
2mera 2Lm'¢}r6
g11 912 oLsTy oLsTr
g(z) = [ ] ol (6.4.5)
921 922 - 250L5er 250’[115[/?

As det[g(x)] # 0 when|y,| # 0, theg(z) is non-singular for all nominal operating
points. Then the system input can be designed as
) (6.4.6)

o] =

wherewv; andwv, are the linear control inputs, which are designed usingitieat

—\Ifl(llf)
—Us(x)

(%
+ 1

V2

control theory.

Yaxing Ren



6.4 Nonlinear Adaptive Controller for IM Speed Tracking 135

6.4.2 Definition of Perturbation and SPO Design

For theith (i=1,2) subsystem in (6.4.2), defining state variablesas v;, z;» =
7; and a fictitious state to represent the perturbatign= V¥, theith subsystem is
represented as:

Zi1 = Zio
Zio = Zi3 + i1 + GioUo (6.4.7)
i =V,

The change of paramet&; affects the perturbatiow; and the time constant
in g; in (6.4.5). The new perturbation becomes:

223 = \IJZ + ARr (aR + 8gRl U1l 8gR2 UQ)

whereAR; is the mismatched rotor resistance comparing with the naiwalue.

(6.4.8)

For system (6.4.7), several types of state and perturbabservers (SPOs) have
been proposed, such as high-gain observer [88], slidingenobderver [126], and
nonlinear observer [170]. In this chapter, two high-gaiservers are used to es-
timate the perturbations. Other types of observer can bigrmks$ similarly, and
used for comparing the performance with the high-gain oleseén observer based
control methods in Section 6.6.

When the system outpuis are available, two third-order SPOs are designed to
estimate the subsystem states and perturbation as:

20 = Zin + lir(zin — 2a)

Zip = Zis + gy + giouz + lin (201 — Zan) (6.4.9)

21‘3 = li3(zi1 - éil)
wherez;; (j=1,2,3) are the estimations of; and/;; the observer gains, which are
defined ag,; = «;/¢’, and0 < ¢ < 1 is a small positive parameter to be specified

to represent times of the time-dynamics between the obsangethe real system.
The parameters; are chosen such that the roots of

S+ s +ass+az3=0 (6.4.10)

are in the open left-half complex plane.
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6.4.3 Nonlinear Adaptive Controller

For subsystems, two third-order SPOs are designed to dstthestates;;, z;-
and perturbations/;. By compensating the real perturbations using the estuate
ones, the original nonlinear system is linearized from.@.4nd (6.4.12), where,
are the fictitious inputs that are defined using the lineatrobalgorithm as follows:

vi = ka(yi — Zi1) + ko (95 — 2i2) + 4 (6.4.11)

The original system inputs are finally transformed backaisin

() e

where
O'LsTrwra _ZJULerwTB
([L‘)_l . 2Lm(¢?a+¢§5) 3anIn(w12(¥+w12'/8)
g O'LsTrer 2JoLg Lrwra

W (P20 t075) 37p Lan (V2 T075)
which is using the nominal values of system parameters.
The final control law to be represented by physical varigldiesh as inductance,

inertia, rotor flux and mechanical rotation speed, is given a

o LsTtbra —2JoLs Letpep
Vsar 2Lm (V20 +17s) 3npLm(Via+17s)
USB O’LST{(ZJM-} 2J0’L5Lr1/1ra

2Lm (wr2a +w35) 3TLme (wr2a +1/)r2ﬁ)
y [kn(w:? — 511) — kiobia — 413 6.4.13)

kzl(w; - 221) — kooZog — Zo3

6.5 Stability Analysis

This section analyzes the stability of the closed-loopeyseéquipped with the
perturbation estimation based NAC designed in the preseaton.

At first, both the estimation error system and the trackirgresystem are ob-
tained. On one hand, by defining estimation eregrs= z;1 — Z;1, €2 = zi2 — Zi2,
ande;3 = z; — Z;3, and subtracting (6.4.9) from (6.4.7), the following esdtian

error system is yielded:
éi = AZ—&' + ;i (651)
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Eil _lil 10 0
€= |enl|, Ai=|—lp01]|, =10
€3 —li300 U,

On the other hand, define the tracking errorgpe= y — z;; ande;s = ¥ — z;».
It follows from (6.4.7) that

i1 = €2
And, it follows from z;, = v;, (6.4.2), (6.4.11), and (6.4.12) that
io = —kirein — kin — ki€in — kg — €3
Thus, the tracking error system can be summarized as

€i1 0 1 0
y Mz — 5 191 -
€i2 —Fki1 —kio _gi

with & =k;16;1 + kioei0+¢;3 being the lumped estimation error.

where

€, =

The stability analysis of the closed-loop control systertrassformed into the
GUUB of error systems, and the following theorem is sumneatiz

Theorem 1. Consider the IM system (6.2.1) equipped the proposed NALCL®.
with two SPOs (6.4.9). If the real perturbatidn(z, ) defined in (6.4.8) satisfying

Wiz, 0)|| < 7 (6.5.3)

then both the estimation error system (6.5.1) and the tragkirror system (6.5.2)
are GUUB, i.e.,

e < 2nllAll eI < 4nl[EGH[| Pl Pl VE =T (6.5.4)

whereP;, i = 1,2 are respectively the feasible solutions of Riccati equestit P, +
PA; = —Tand M;' P, + P,M,; = —1I; and || K,|| is a constant related t&;;, j =
1,2.
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Proof. For the estimation error system (6.5.1), consider thewoitig Lyapunov
function:

Vii(ei) = 5?13152‘ (6.5.5)

The high gains of SPOs (6.4.9) are determined by requiritg 168) holds, which
means4; is Hurwitz. One can find a feasible positive definite solutiBn of Riccati
equationA} P+ P, A; = —I. Calculating the derivative df;; (¢;) along the solution
of system (6.5.1) and using (6.5.3) yield

Vil({fi) = 52‘T(AiTPl + Py Aj)e; + n;fplgi + €iTP1m
< —llesll* +2lleall - [Imall - 112l
< —lleill(llesll = 2mllAl) (6.5.6)

ThenV;,(e;) < 0 when||g;|| > 27| P1||. Thus there exist$; > 0 such that
lei@®)]] <2 =20, Vt=T (6.5.7)

For the tracking error system (6.5.2), one can find that| < ||K;||y. with
|| K;|| based one;(t)|| < 2. Consider the Lyapunov functiovis(e;) = e} Pae;.
Similarly, one can prove that, there exists an instantthe following holds

lea ()] < 20Kl el Pl < Al KA P2l Yt > T (6.5.8)

Using (6.5.7) and (6.5.8) and settifig=max{7},7} } lead to (6.5.4).

Moreover, if W; is locally Lipschitz in its arguments, it will guarantee thg-
ponential convergence of the observation error [126] aased-loop tracking error
into

tliglo gi(t)=0 and tliglo ei(t) =0 (6.5.9)

After the statesv,, and? and their derivatives are stable that controlled by
NAC, the decoupling makes one state unobservable (zerawdghand that is the
rotation angle of the flux vector [63], which is always staibleycles.

The parameter variation is considered in the error systef@.t11) and (6.5.2),
and the error system is proved as converged to zero in (6.9.Bjs guarantees
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Table 6.1: System parameters of IM

R R, Ly L,
0.1607%2 0.169012 6.017 mH| 5.403 mH
Ly, J Np
5.325 mH| 0.000145 kgm? 2

that the estimated perturbations track the extended ddafesed in (6.4.8), which
includes the uncertainties affected by the parameterti@n® and compensated the
control input in (6.4.12). Then the linearized subsystent6id.7) is independent
with the parameters and disturbance.

6.6 Simulation Results

The NAC speed controller is validated in simulation usingAB/Simulink.
The speed tracking performance of NAC is compared with tieeational VC and
the IOLC. Both the VC and the NAC use the same rotor flux obsdovestimate
the rotor flux. The conventional VC uses the estimated fluxtioosto transform the
voltage and current from stationary frame into rotatingrfea The NAC controls the
IM system directly under fixed stationary frame, and its soheliagram is shown in
Figure 6.2. The parameters of IM used for the simulation psepare given in Table
6.1. Controller parameters of NAC controllers and the SR@g@&en in Table 6.2.

6.6.1 Constant speed test for loss minimization

In the simulation test, the motor was running with a conssgeed of 100 rad/s
(0.3 p.u.) under a constant load torque of 0.IMN0.2 p.u.) and with the rated
flux current with the NAC speed controller. Att =1 s, the roflux smoothly
switched from its rated value to the optimal value calculdtem the power loss
minimization algorithm. The results are shown in Figure, &ich includes the
speed regulation, flux tracking, and input power. The ressitow that the loss
minimization algorithm for NAC reduced the input electfipawer with about 20%
less than that of using rated flux under light load condition.
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6.6 Simulation Results
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Figure 6.2: The NAC control scheme for IM speed drive.
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Table 6.2: Controller parameters

Nonlinear Adaptive Controller

lll =6 X 103 l12 =1.1x 107

Flux SPO
l13 =5.6 X 109

lyy = 1.8 X 103 | Ipg = 9.7 x 10°

Speed SPO
l23 =45 X 108

Flux Controller | ky; =1 x 10° | kg =4 x 10°

Speed Controller ko = 8 x 10° | koo = 4 x 10?

101,
»
s 10
35 995
9 ] ‘
8'5 L Time (s) L5 2
(a)
0.03
= 003 X —Start to track optimal |
=3 flux
w- 0.025 i
0.0 ‘ ‘
0.5 L Time (s) L5 2
(b)
23 ;
— 217 <——L0ss minimization
= start
= 19
a7
15 ‘
0.5 Time (s) 1.5 2

(©

Figure 6.3: Efficiency optimization test under constargérefhce speed and load dis-
turbance in simulation. (a) Mechanical rotor speed; (bmétx; (c) input power.
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6.6.2 Step Load Disturbance

In the simulation test, the motor starts up to a constantdspe£00 rad/s under
rated rotor flux and no load. At= 3 s, a step load disturbance of 0.4Mis applied
to the IM system. The simulation tests compare the high-ghserver based NAC
with the conventional VC and other perturbation observeseldacontrol methods,
such as the nonlinear state and perturbation observer (N6&§&d ADRC, and
sliding mode state and perturbation observer (SMSPO) bamatiol. The control
performance of different control methods is compared imfgd.4 with the tracking
performance of rotor flux), and mechanical rotor speed, and their regulation
errors in percentage.

The results show that the NAC has less regulation error astdrfeecovery speed
in both flux and rotor speed. The IOLC performs the best urfteassumption that
all the conditions are known in simulation. To further idgnthe improvement of
NAC numerically, the control performance of VC and NAC arenpared with the
following indices: the maximum flux and speed regulatiooetheir recovery time,
and their integral-absolute-error (IAE) in regulation. eTperformance indices are
summarized in Table 6.3, in which it is shown that the NAC hi&and 67% less
regulation error in flux and speed tracking, respectivelfre Tlux recovery time,
which is defined as the time period to eliminate the trackingreinto 5% of the
maximum error, of VC is 1.3 s while that of NAC is 0.2 s, and tpeed recovery
time of VC is 1.5 s while that of NAC is 0.2 s, which shows the Nixiproved the
speed of eliminating the error. In addition, the flux and sidéde in NAC are 10%
less than that in VC. The regulation performance of NAC hasas improvement
than the conventional control method.

The perturbation estimation performance of different s/plobserver are shown
in Figure 6.5 with the performance comparison and theiresgion error. The re-
sults show that the estimated perturbations track the resd with steady state esti-
mation error keeps zero. The HGSPO has the maximum estimetior of approxi-
mate 0.7 WB/S? and 1x10* rad/s, which are less than 7% of the real perturbations.
Other perturbation observers got the similar results itupleation estimation but
with much more complex structure.
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Figure 6.4: Dynamic response of rotor flux and speed, and tégulation error of
different disturbance observer based control methods.
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Figure 6.5: The performance of perturbatin, ¥, and their estimation errak W,
and AW, under step load disturbance in simulation.
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Figure 6.6: Dynamic response of rotor flux and speed as walheis regulation
error under time-varying load torque in simulation.

6.6.3 Time-varying Load Disturbance

The second case is the constant speed regulation with umktiove-varying
load disturbance. In this case, the induction motor start® .00 rad/s with a ramp
load disturbance from 0 to 0.2-M. Att¢ = 2.0 s, a sinusoidal load disturbance
oscillated between 0 and 0.4 is applied to the motor. The load disturbance and
reference speed are given in Figure 6.6 (a) and (b). The flotoend mechanical
speed tracking performance and their tracking errors afaaltrollers are compared
in Figure 6.6 (c) to (f).

Due to the disturbance is estimated in the perturbation antbensated in the
system, the time-varying disturbance has less impact toN&@ than that of the
VC. In addition, the IOLC gets the best performance undetithe-varying distur-
bance as it is assumed that all the system dynamics andlzisite are available to
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the controller. The control performance indices of VC andONdre compared in
Table 6.3. The results in the table show that the NAC has eisiyamprovement
in control performance with about 64% less flux error and 78%s lIAE in flux

tracking, and about 72% less speed error and 64% less |IAEegOspacking under

time-varying load disturbance.

Table 6.3: Performance indices of VC and NAC in simulation
Method

VC NAC Improvementsg

Indices

Case: Speed regulation under step load disturbance

Maximum flux error (Wb) | 2.7x1073 | 7.7x10~* 71% less

Flux recovery time (s) 1.3 0.2 85% less
Flux IAE (Wb-s) 1.2x1073 | 8.5x107° 93% less
Maximum speed error (rad/s) -4.3 -1.4 67% less
Speed recovery time (s) 15 0.2 87% less
Speed IAE (rad) 2.8 0.14 95% less

Case: Speed regulation under time-varying load distudanc

Maximum flux error (Wb) | 1.6x1073 | 5.7x10~* 64% less
Flux IAE (Wb-s) 2.5x1073 | 6.3x10* 75% less
Maximum speed error (rad/s) 3.05 0.86 72% less
Speed IAE (rad) 5.0 1.8 64% less

The perturbation estimation performances under timetwgripad disturbance
are shown in Figure 6.7. The results show that the maximuimmason error is less
than 8% of the real perturbations, and the estimated pediocmtracks the real one
in a good performance. And from its profile, the load distad®ais estimated and
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Figure 6.7: The performance of perturbatin and ¥, as well as their estimation
error AV, andAW, under time-varying load disturbance in simulation.

included in the lumped perturbation as expected in design.

The efficiency of the IM is tested versus different magnitatighe time-varying
load, from 0 to 1.4 p.u., and operating speed, 50 rad/s, 108 eand 150 rad/s. The
comparison of efficiency is among three different controllmd: the NAC with flux
optimization, the VC with flux optimization, and the NAC witated constant flux.
The result of efficiency comparison is shown in Figure 6.8mParing between the
NAC with flux optimization and NAC with rated flux, it can be fod that the flux
optimization algorithm has obviously improvement in e#fiety when IM operates
with light load. Comparing between the NAC and VC both withfaptimization
algorithm, it is obviously to find that the NAC always has hegkefficiency than VC.
That is because of the NAC has fully linearized the flux anadpe obtain a much
better control performance in tracking the optimal flux coamah than VC.

6.6.4 Parameter Variation Performance

In the IM systems, the rotor resistance is possible varigthduhe operation,
especially in the wound-rotor IMs [95]. The step variatidrite rotor resistance is
chosen to evaluate the NAC scheme under the worst operatiahton. Figure 6.9
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Figure 6.8: Comparison of motor efficiency among VC and NA@Ghwvoss mini-
mization algorithm, and NAC with rated flux under differepegd and time-varying
load.

shows the comparison results among VC, IOLC and NAC whendtoe resistance
steps up and down in simulation. At 4 s, the rotor resistance steps up from its
nominal value to twice the nominal value, and steps downstmdminal value at
the end. The result shows that the NAC is more robust thandheentional VC,
and the IOLC is seriously impacted by the parameter vanatihich shows that
the IOLC requires the detailed system model and accurasaers to get a good
performance.

The response curves of the mechanical speed controlled by d@AC in the
presence of different rotor resistance, which includeswimmatchedr, with 0.5,
0.8, 1.2, 1.5 and 2.0 p.u., are shown in Figure 6.10. Theteshbw that the PI
controller based VC is particular sensitive to rotor resise variation. The NAC
is much more robust than VC under mismatched parametens affealmost flat
response, which illustrates the adaptive capacity of tbpgsed control scheme.
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6.7 Experiment Results

In this section, the DSP-based electric drive system in 8fACE environment
is used for hardware implementation. The dSPACE real-timmellsitor can trans-
form the MATLAB/Simulink block diagrams to the C code langesautomatically
in the embedded controller.

6.7.1 dSPACE Platform

In dSPACE, a discrete controller is used to control the caus systems with
the sampling time period df. Figure 6.11 shows the connections between the sys-
tem and its controller. To transfer between the voltageaigndigital, the analog-
to-digital converters (ADC) is needed to read the informabf the sensors, and the
digital-to-analog converters (DAC) is also needed to apipdycontrol commands.

In the system, the DS1104 controller board, as shown in Eigut2, is used
to monitor the input signal, such as motor voltage, currersipeed command, and
produce the control signal during every sampling step. $tdaeal-time interface
of the producing program which is embedded inside the basinslate the MAT-
LAB/Simulink controller model to C code. The CP1104 I/O mbaran input-output
interface board between the Power Electronics Drive Boadd2S1104 controller
board. In the motor control experiment, the speed and cusignals are measured
from the ADC inputs of DS1104, and the command generated éyextremum
seeking is the pulse duration which applied to the input efR6MVM generator. And
the digital PWM signals are transmitted by CP1104 from D31@0ntroller Board
to the power electronic drive board [176].

The power electronic drive board is supplied by a 42V DC sewntd has the
feature to generate two different voltage sources (A1B1@d A2B2C2) because
there are two independent three-phase PWM inverters orbtasd as shown in
Figure 6.13. Thus, the two machines in the coupling systembeadriven respec-
tively. In addition, the phase current provide to the maehialso can be controlled
with speed and torque command. The output PWM voltage isralted by the
PWM signals, which is the various digital command signalddétermine the duty
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Figure 6.11: Block diagram of dSPACE control system.
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Figure 6.12: The DS1104 control panel of dASPACE with ADC/DiAtrface.

cycle of the switches, and then control the magnitude andgbbBAC current from
the source. The PWM signals are generated by the DS1104 R&Dr&@ler board
inside the computer [176].

The electric-drive experimental setup shown in Figure &adsists of a 200
W, 2 pole-pairs, three-phase induction motor from Motoregla power electronic
converter unit; a DS1104 controller with interface boardg ahe dSPACE based
control desk. The motor bench has a mechanical couplinggeraent, a target IM
for motor driving coupled with a DC motor to produce load toeq

The interface of dSPACE is shown in Figure 6.15 as an examigie. control
desk is a user designed interface to monitor the signal segdifrom ADC.
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Figure 6.13: The power electronics board suitable for dASPAS1104.

6.7.2 Step Load Disturbance

The experimental validation for speed regulation undgy kiad disturbance is
set to be the same with that in simulation. At 10 s, a step load disturbance
of 0.4 N-m, which is produced by the coupled DC motor via control iteent in
experiment, is applied to the IM when it is operating at theespof 100 rad/s. The
experimental results, as in Figure 6.16, show that the NACIdss regulation error
and shorter recovery time under load disturbance. The pedoce indices are
compared in Table 6.4, in which maximum flux error and spe@diniNAC are
69% and 76% less than that in VC, and their recovery time, wisaefined the
same as in the simulation section, in NAC are about 85% lessttiat of VC. And
the flux IAE and speed IAE in NAC are only 11% and 28% of them mWC. The
stator current waveform of IM using both controllers areegivn Figure 6.17, which
shows that the NAC has less current magnitude in both peaktaady state value.

6.7.3 Time-varying Load Disturbance

In the experiment case of constant speed regulation un#@owm time-varying
load disturbance, the operating states are chosen to drévéM under constant
speed of 100 rad/s with optimal flux tracking. At 11.5 s, a load disturbance of
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Figure 6.14: Experimental platform of NAC for IM drive.
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Figure 6.15: The interface of dASPACE control desk.

0.4 N'm time-varying torque is applied on the motor. The flux andesipieacking
performance under load disturbance are shown in Figure 6. IBe performance
indices of the two controllers compared in Table 6.4 showithBAC the maximum
flux error, maximum speed error, flux IAE and speed IAE are 68%p, 74%, and
78% less than them in VC, respectively. The NAC performsaoeiian the VC with
faster response and less regulation error in speed anddickiig in all the indices.
The stator current waveforms are given in Figure 6.19. Tlad garrent magnitude
of NAC is less than that in VC, which shows that the NAC has td&sge of over-
current than VC in practice.

In the experimental validation, the efficiency of IM is testender different mag-
nitude of time-varying load and speed. The comparison dfieffcy results shown
in Figure 6.21 is in the same performance as in simulatiore dterage efficien-
cy is less than that in simulation due to the external lossénhardware platform.
The results show that the NAC improves the efficiency conmgawith VC, espe-
cially under the time-varying load disturbance, in bothgismion and experimental
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Figure 6.16: Constant speed regulation under step loadrbatce in experiment.
(a) Load torque, (b) rotor speed.
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Figure 6.17: Stator current of IM controlled by (a) VC, andINAC under step load
disturbance in experiment.
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Figure 6.18: Constant speed under time-varying load diatuze in experiment. (a)
Load torque, (b) rotor speed.

Yaxing Ren



6.7 Experiment Results 158

L h |
L 1
LI L L L LB DL BN LN Illlllllllllllllllll

OO Y‘WW M ﬁ i

A
sidiy (CH 3 7NiAC)é

=t

) CH1 Y:5 Addiv T: 20 §
‘CH2 "r' SﬂudwT Z0 l's;FHﬁ.r"";

(b)

Figure 6.19: Stator current of IM controlled by (a) VC, andl RRAC under time-
varying load disturbance in experiment.
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Figure 6.20: Indices comparison of VC and NAC in the (a) maxmflux error, (b)
maximum speed error, (c) flux IAE, and (d) speed IAE.
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Table 6.4: Experimental performance indices comparistnwdrn VC and NAC
Method

_ VC NAC Improvements
Indices

Case: Speed regulation under step load disturbance

Maximum flux error (Wb) | 4.8x1073 | 1.5x1073 69% less

Flux recovery time (s) 1.3 0.2 85% less
Flux IAE (Wb-s) 4.7x1073 | 0.5x1073 89% less
Maximum speed error (rad/s) -5.8 -1.4 76% less
Speed recovery time (Ss) 1.4 0.2 86% less
Speed IAE (rad) 2.5 0.7 72% less

Case: Speed regulation under time-varying load distudanc

Maximum flux error (Wb) | 3.1x1072 | 1.0x1073 68% less

Flux IAE (Wb-s) 5.5x107% | 1.4x107* 74% less
Maximum speed error (rad/s) 3.3 1.0 70% less
Speed IAE (rad) 5.1 1.1 78% less

validation.

6.8 Conclusion

This chapter has proposed a nonlinear adaptive contrallefiix and speed
tracking of induction motors without acquiring the positiof rotor flux and re-
quiring accurate model of induction motors. The NAC conéroltilizes state and
perturbation observers to estimate the states and petitmbavhich are defined to
include fast varying nonlinear dynamics, parameter uaggres and external dis-
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Figure 6.21: Average efficiency under different speed ame-varying load distur-
bance in experiment.

turbances. The estimate of perturbation is used to comeetigareal perturbation
for fully linearizing the induction motor system and impnog robustness to pa-
rameter uncertainties and external load disturbancespiidposed controller is de-
signed under stationary frame. Both simulation studiessxperiment verifications
are carried out to verify the control performance in conmgariwith the conven-
tional vector control under rotating frame and model-baspdt-output linearizing
control. The results showed that the NAC controller haselbgierformance with
faster dynamic response, less tracking error and impraMagstness under step and

time-varying load disturbances.
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Chapter 7

Speed Sensorless Nonlinear Adaptive
Control of Induction Motor for

Electric Vehicles via a Combined
Speed and Perturbation Observer

7.1 Introduction

Electric propulsion system is an integral part of EVs and 14§44, 177]. The
performance of the traction motor drive plays an importale in the evolution of
alternative energy vehicle and electrified transport itigusAn IM is not only the
workhorse of different kinds of domestic and industrial leggiions [40] but also
one of the most appropriate electric motor candidates adélwaccepted choice
for most of the EVs and HEVs manufacturing companies [4148R, However,
the controlling of IM drive has difficulties because of itsiaear dynamics, motor
parameter variations during the operation and the undoiiijeof rotor currents and
flux measurement [46]. As the conventional vector controheoa fully linearize the
nonlinear IM system, for a better decoupled dynamics betvike flux loop and
the speed loop under nonlinearity and disturbances, a hlegnmance controller
is required for IM traction drive to achieve the fast transieesponse and energy
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optimization [47, 48, 63]. Chapter 6 has studied the robastrol method for the
IM in the flux and speed tracking.

On the other side, due to the cost of the rotor speed and @osénsor and
the problem of sensor electrical noise, sensorless contrimh estimates the rotor
speed instead of installing a speed encoder is preferredlingerformance IM and
EV applications [178]. The sensorless control methodsNbaie possible after the
rapid developments in the field of power electronics andtaligignal processing
[179-181].

The speed sensorless control has received great effodis,asuMRAS speed
observer [105, 182, 183], MRAS-fuzzy logic observer [1&4iding mode observ-
er [185], unscented Kalman filter [186], and artificial ndun@twork speed observ-
er [187], etc. Among them, rotor flux based MRAS speed obséswme of the most
applied schemes. The currently two widely used control oasHor IM are VC and
direct torque control [47]. As the standard VC techniquesaaly achieve asymp-
totically decoupling of the flux and speed dynamics and asnsitive to parame-
ter uncertainties [93, 162], many advanced control metlaoelroposed to reduce
the effect of parameter uncertainties and load disturlbarsteh as adaptive input-
output linearization control [63], nonlinear exact feedbhanearizing control which
can fully decouple the flux and speed dynamics [64], paranogtdine estimation
techniques [105, 106] and sliding mode control [188—19i4z¥ control [109,110],
and auto-disturbance rejection control [93, 95], etc. Hmuegparameter estimation
based controls can only deal with unknown constant or slawyiag parameter-
s [63]. Moreover, most speed sensorless solution are aahiga augmenting an
additional speed observer to the designed speed conisaligh as the conventional
VC controller with MRAS speed observer in Figure 7.1, while tombined design
of the speed observer with the original control system haseen considered.

This chapter designs a speed sensorless nonlinear adeptitreller (SSNAC)
which estimate and compensate the perturbation using a SB@ier to linearize
the IM system, and further reduce the complexity via usinglmned SPO to
replace the PI regulator in the MRAS speed observer.

As the vector control can only achieve asymptotic inpuipatitinearization of
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Figure 7.1: The controller scheme of conventional vectoiticd with MRAS speed

observer.
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the IM system, in which the flux amplitude is regulated to tbestant reference
value at first and then rotor speed dynamics can be regulatiegpendently, it can
be improved via exact input-output linearization conti@L(C) [63]. The IOLC
can achieve fully decoupling of the speed and the flux dynsuard thus the speed
and the flux can be regulated/controlled instantaneoudiyctwis useful for flux
weakening for high speed operation and efficiency improvenag dynamically
adjusting the flux level for light load and fast changing @fdaonditions (which is a
typical for EV application). However, one main disadvamtafthe IOLC is that the
accurate system model and parameter is required, whichg@sa complex control
law, weak robustness and is not practically feasible sucth@dime-varying of
rotor/stator resistances. This stimulates the applinaifahe proposed perturbation
estimation and compensation method [88, 114] in this cmaptéch employs the
online estimation and compensation of all nonlinear dyrmamiogether with the
external disturbance and parameter uncertainties, arglrdgeequire the accurate
system model of the induction motor.

The SSNAC employs the estimates of the rotor speed and the&Ipation to re-
place/compensate their real values and thus improves hustroess in the presence
of disturbance without the dependence of an accurate sysatael.

The remainder of this chapter is organized as follows. 8rcti2 presents the
vehicle dynamic model and IM dynamic model in d-q frame. Bect.3 presents
the design of the proposed SSNAC controller. In Section thd,stability of the
closed-loop system is proved using Lyapunov theory. Thectffe application of
NAC is validated in simulation and presented in Section 1h& ealidated experi-
mentally in Section 7.6. Finally the chapter concludes ictisa 7.7.

7.2 Model of Induction Motor Based Vehicle

7.2.1 Vehicle Dynamics of Motion

The model of vehicle dynamics and required tractive forcentwe the vehicle
forward is discussed in [192,193]. The acceleration dyeaqguation of the vehicle
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can be expressed as [193]

av
MV% = (Fy + Fy) — (B, + Fy + Fy) (7.2.1)

wherel, is the vehicle mass, aridis the vehicle speed;; andF;, are the tractive
force from front wheels and rear wheels; is the rolling resistance of tires,, is
the aerodynamic drag, arfd is the grading resistance during hill climbing. When
vehicle moves up on a sloped surface with angléhe main load is the grading
resistance caused by its weight as [193]

Fy, = M,gsina (7.2.2)

whereyg is the gravitational acceleration.

7.2.2 Induction Motor Model

A three-phase IM is transformed to the stationery 5 frame via Clark trans-
formation and then to the rotatinb— ¢ frame via Park transformation, based on the
rotor flux angled, obtained from the MRAS described— 3 frame in section 7.3.4.
Dynamic model of an induction machine is modelled in a ratatl — ¢ frame as
follows [171, 194]:

= f(z) + Gu (7.2.3)

where

T
T = |:isd isq wrd qu Wm

[ (R, | R : RyLu wilw o]
<0LS oL.13 ) bsd T Welsq + 57 73 Vra + 77V

RL2\ - : wrL R.L
J— S m — — rim rL/m
<0LS + aLSL3> lsq = Welsd = 571~ Vrd + oL, L2 Urq

_%wrd + (we - wr)¢rq + RrL[;m isd
_% rq (we - wr),@brd + RrLL;mZ.sq

: . . T
%LL/: (wrd'lsq - r(/)rq'lsd) - 7L
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the system output vectgris as

T

Y= [|vh] waml” (7.2.4)

Wr‘ Y. r2d +¢r2q

and the rotor currents are expressed as

where

bt = 7,0~ e (7.2.5)
g = iqu - LL_I:isq

whereigq, isq andi,q, ¥rq are the stator currents and the rotor fluxes in d-q frame,
respectivelyysq andug, are the voltage control inputsy, w, andw,, are the syn-
chronous speed, rotor electrical and mechanical speedhvgatisfiesy, = Pw,y;
P andJ are the number of pole pairs and rotor inerfig;is the load torque dis-
turbance;R,, R, and L,, L, are the stator and rotor resistances and inductances,
respectively, and.,, is the mutual inductance. Parameter 1 — L2 /L L, is the
leakage coefficient.

Moreover, the reference rotor flux and mechanical speedefmeed as); and
w? , respectively, and their tracking error are defined,as ¢, — ¢, e; = wy, —wy,.

The objective of the work presented in this chapter is togiesaisensorless speed
controller in the presence of various uncertainties anaidhances.

7.3 Speed Sensorless Nonlinear Adaptive Controller

This section applies the perturbation observer basedmeariadaptive control
(NAC) for speed and flux regulation of induction motor [88,894], then combines
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the mostly used rotor-flux based MRAS speed observer for adspensorless con-
trol. The nonlinear IM system is transformed into two intdeal flux and speed
subsystems via input-output linearization at first. Théisydtem unknown nonlin-
earities, uncertainties and interactions between twoystibss are defined as per-
turbation terms. A MRAS speed observer and two state andnbation observers
(SPOs) are designed to estimate unmeasured states andatotus. A combined
SPO with MRAS is designed to estimate the speed and the pation by replac-
ing the conventional Pl regulator in the MRAS speed obsesittrthe SPO, which
can reduce the duplicated estimation of the rotor speedestimated perturbations
are used to compensate their real value and thus to achievelibst and adaptive
linearization of the original nonlinear IM.

7.3.1 Input-output Linearization

The controller design is based on tthe- ¢ frame IM model in Eqg. (7.2.3), in
which the d-axis is aligned with the rotor flux direction amdi$,, = ., and
rq = 0[95,194]. This shares the similar idea as the VC becausedventage of
variables in thel — g frame is slow time-varying [95]. Note thdi. is not required to
be regulated to the reference value like the VC and it istgtilé-varying variable.

Choose outputs of system (7.2.3) as:

Y1 = hi(z) = ¥ — o

Yo = hz(x) = Wm — Wmo

(7.3.1)

Differentiate the output of the system (7.2.3) until itsutgappear, then obtain
the input-output relationship as [88, 89]:

[@71 _ [Lfl (z)
U2

Lys(x)

“1] (7.3.2)
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where

R? [2R? LoR?  LnRR. .
Lfl( ) L2 + L L3 "/’r - 0_L2 _I_ ULSLr ZSd

L
R Woisq (7.3.3)
3PL )
Lf2 2JL |i ( ) wrzsq wewrlsd
P i = 2 | - S (7.3.4)
Bia) — Bi(z)| |5~ 0
(93)— B o 3PLmy:(x)
2() 0 S5orr.

wherer, = L, /R, is the time constant of rotor windings.
As det[B(x)] # 0 whent, # 0, the B(z) is non-singular for all nominal oper-
ating points. Then the system input can be designed as

[Zl — B () ([_Lﬂ(x) ) (7.3.5)

—Lya()
7.3.2 Definition of Perturbation and Fictitious State

(%
+ 1

U2

wherev, andwv, are the linear control inputs.

As B(z) in (7.3.2) is a gain that related to the motor parametersneéfiio
perturbation terms considering its parameter variatidefine By = B()|,=z(0)
as the nominal control gain at rated value. The defined deatiom terms to rewrite

(7.3.2) as:
. U
[g./.l _ M) g - [m] (7.3.6)
Y2 ‘1’2($ U2 Uy
where
\ L
i S i BRC RN u]
‘I’g(l’) Lfg(l’) U9
Lo
oLsty
By = 0 3PLm1/;r0]
2JoLsLy
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where,q is chosen as the nominal value of the rotor flux under the rgpedation
condition. Asy, is usually a non-zero constant to make sureffhés nonsingular,
when the rotor flux),(t) is regulated from a small value close to zero to its rated
value, the control law (7.3.6) still works.

Defines state variables for system (7.3.6kas= v, zi» = ¥;, and a fictitious
state to represent the perturbatign = V;, =1, 2 for subsystem 1 and 2, system
(7.3.6) can be represented as:

Zi1 = Yi
Zi1 = Zi2 (1=1,2) (7.3.7)
Zio = 2i3 + Biou;
Several types of state and perturbation observers (SP@s)Yleen proposed for
subsystems (7.3.7), such as high-gain observers [88inglitode observer [126]

and nonlinear observer [170]. As those observers can paidilar performance,
high-gain observers are designed in this chapter [126].

7.3.3 Design of States and Perturbation Observer

When the output of the subsystems = y; are available, two third-order SPOs
can be designed for system (7.3.7) as:

2a = Zin + lin(zi1 — 2a)
i = Ziz + lio(zi1 — 2n) + Biou, (7.3.8)
éz’?; = li3<Zi1 - 2@1)

wherez;; are the estimations af; and/;;, l;2, ;3 are the observer gains, which can

be parameterized as [195]

[l L 1is] = |30 303 | (7.3.9)

whereqy is the observer bandwidth and a tuning parameter which iallysde-
signed to make observer dynamic faster than the controjlstg [195]. Howev-
er, a high observer bandwidth will amplify the sensor noi€mn the other hand,
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observer with bandwidth lower than the sensor noise willeact filter to sensor
noise [196]. Thus, it is usually to set the observer bandwigteater than the con-
troller bandwidth and lower than the sensor noise bandwidth

7.3.4 Conventional Rotor-flux MRAS Speed Observer

Rotor flux based MRAS speed observer adjusts the estimagedi sp an adap-
tive model to track the rotor flux of the reference model [11&2]. The stator circuit
eguation based on stator voltages and currents is given as:

A Ly L. Rs . oLsL, dig,,

e Lmvsa I lsa T (7.3.10)
L L L,L,di

dwrﬁ o r rRs- N O LigLiy Algp (7311)

dat L. T L ST T L Tat

The adaptive model is based on the rotor circuit equatiod 2, [L84]:

dpra  Lw. 1 - . -

= - — — 7.3.12
dt T lsa 7_r’(/}roz wrwrﬁ ( 3 )
s L. . - 1 -
7 = Trlsﬁ -+ wrlpra — ?rwrg (7313)

Error signak, the difference between the imaginary components of tlezeate
and the estimated rotor fluxes, is defined as:

€ = Prgthra — Pratles (7.3.14)

Then the adaption mechanism is using a PI regulator to efitha rotor speed
as [184]:
ki
Wm = (k:p + ;) € (7.3.15)
Using the rotor speed and the rotor flux estimated from the IBRA(7.3.10),
(7.3.11) and (7.3.15), as the system outputs, two thiréto&POs in (7.3.8) are

designed to estimate the two perturbations.

7.3.5 Combined MRAS Speed and Perturbation Observer

This section proposes a new combined speed and perturtwdgsrver which
uses a third-order SPO as an adaption mechanism to rep&@aBé¢tbgulator (7.3.15)
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in the conventional MRAS speed observer. In fact, two SP@sbeadesigned for
state and perturbation estimation, one for the speed lodmaa for the flux loop;
and one conventional MRAS for the speed estimation, in wttietestimated speed
from the MARS is used as the measurement speed for the sp&ediSireduce the
complexity of the speed loop, the speed SPOs and the MRASH&ere combined
by replacing the Pl regulator in the MARS with the speed SP@egign a combined
speed and perturbation observer. The separate and therwadesign procedure
are shown in Figure 7.2. The stability of the combined de@gjiven Section 7.5.
The MRAS uses the same equations in (7.3.10)-(7.3.13) fenadaption mech-
anism is driving by the error signal Definey, = 2z9; = w,,, USee as input of the

rotor speed SPO, we have
)

Wm = Zo1 + lgo€

= e (7.3.16)

Zog = Zog + Bagug + lage

223 = ly3e€

The observer gains;, 2, lo3 are obtained via the same method in (7.3.9). Besides,
the proportional gair,, is determined via pole placement to improve the stability
of the observer. The stability of the combined speed andigeation observer can
be proved using the same method as in [182], which gives #dalisy proof of
the conventional MRAS speed observer with PI regulator. ddrebined speed and
perturbation observer consists of equation (7.3.10)-{4)3and (7.3.16), which can
estimate, the rotor speed, the speed loop perturbationaedthe rotor flux. After
the estimation error of the rotor flux converges to zero, Sterated staté,; tracks
the real rotor speed and can be used for the speed contrdie Aaime time, thé,;
tracks the rotor speed perturbation, which is used to linedhe nonlinear system
in the SSNAC controller.

7.3.6 Speed Sensorless Nonlinear Adaptive Controller

A third-order SPO like (7.3.8) is designed to estimateand perturbatiorn;
of the flux subsystem, and a combined SPO from (7.3.14) aBdl@).is designed
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Figure 7.2: The design steps of using a combined SPO to eethad’| regulator in
a MRAS speed observer.
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to estimatez,, andz,; of the speed subsystem. By compensating the real perturba-
tion terms with their estimates, and using the estimatedd&pbe speed sensorless
nonlinear adaptive control law can be obtained as:

[“1 — B! ( “] _ [Z“”D (7.3.17)
U2 U2 223

oLstr
B— 1 — Lim 0
0 0 2JoLsL:

3P Lmro

where

andv; are control of the linear systems
Vi = Zitp + kin(zinr — 2i1) + kio(Zir — 2i2) (7.3.18)

Control law of the linearised system can be obtained by ttte Imear system
methods, such as optimal control and pole placement tegéniq this chapter, the
pole placement technique is used to determine gains ofrlcedroller. For a given
pole locationn, k;; = n?, ks = 2-n,4 = 1,2. Same gains are used for the flux
loop and the speed loop controller. For a given transienadya requirement, i.e.
settling time and rise time, the pole location of the secordakr linear system can
be directly obtained. Figure 7.3.5 shows the power stageantiol scheme of the
SSNAC for IM in EV applications.

7.4 Stability of the Closed-loop System

The closed-loop system includes a flux SPO, a flux contr@leambined speed
and perturbation observer, and a speed controller. Deftmaason error of the flux
SPO as;1 = z;1 — Zi1, €i2 = Zi2 — 2, @ndez = V,(+) — Z;3, and subtract (7.3.8)
from (7.3.7), the estimation error system of the flux SREe:

éll —l11 10 €11 0
512 = —llg 01 €12 + 0 (741)
€13 —l1300] |e13 0y ()
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As the speed SPQOis designed together with the MRAS speed observer, the
error equations are obtained with the flux error defined i8.{A4). The differential
equation of (7.3.14) is calculated from the rotor circuitations (7.3.10) - (7.3.13)

as
€ = arje + as(wm — W) + a3 (7.4.2)
where
2
a = ——
Tr

ag = P(¢rcﬂ&ra + wrﬁqﬁrﬁ)
L 7 Lm 7 .
<¢rﬁ - ¢rﬁ)isa — T(¢ra — ¢ra>zsﬁ

m
Tr

ag =

Then use the same method in (7.4.1) to obtain the estimation gystem of

SPQ as

€ | -CL1 —lgoCLg CLQOO- [ € ] [ as ]
€ —1 010 € 0

21 _ 21 21 + (743)
€92 —lpn 001 €22 0

523_ i —lgg 00 0_ _623_ _‘1’2(')_

Secondly, define the system tracking erroeas= y; — z;; ande;s = g — 2.
Then the linear control algorithm in (7.3.18) can be presegiais:

v = kit (yf — za + zin — Zi1) + ko (Y] — zio + zia — Zi2)

= ki (eq + i) + k(e + ciz) (7.4.4)

From (7.3.6) and (7.4.4), the tracking error system is oleichias

L)) e
€i2 —ki1 —kio €i2 —&;

where&; = kjein + kisein + €3 (1 = 1,2), which is the estimation error in the
closed-loop system.

Based on [126], it can prove that the estimation error sygiedl) and (7.4.3),
and the tracking error system (7.4.5) are GUUB. The intetiyakmic of the IM
system can also be analysed using a zero dynamic technique.
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Table 7.1: System parameters of IM

R R, Ly L,
0.1607%2 0.169012 6.017 mH| 5.403 mH
Ly, J P
5.325 mH| 0.000145 kgm? 2

Table 7.2: Controller parameters of SSNAC
lll =9 X 103 l12 =2.7 X 107

Flux SPO

l13 = 2.7 X 109

l20:2><103 l21:6><103

Speed SPO
log = 1.2 x 107 | Iy =8 x 10?

Flux Controller | ky; = 1.5 x 10* | k5 = 2.5 x 102

Speed Controller %y =1 x 10* | kgo = 2 x 102

7.5 Simulation Results

The simulation validations are carried out at differentespprofiles of vehicles,
such as the forward and reverse motoring on a slope, andactrsgieed cruise on
an unsmooth surface condition. IM parameters used for thalation and experi-
mental purpose are given in Table 7.1. The parameters ofSNAS and SPOs are
listed in Table 7.2.

7.5.1 Comparison of the separated speed SPO and combined

SPO based Speed Sensorless Control

Comparison of simulation results of the separated speeda®E@he combined
SPO is shown in Figure 7.4, which demonstrates that the agtimperformance
are similar. The speed estimation performance and the $pskdng performance
of both the separated SPO and combined SPO are almost thevemé¢he speed is
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Figure 7.4: Comparison of the control performance with gshe separate speed
SPO and combined SPO.

increasing from 0 to 150 rad/s. Therefore, only the resutietombined SPO based
SSNAC have been presented in all other case studies of gionudnd experiment
validation.

7.5.2 Forward and Reverse Motoring on a Sloped Surface

The first case is the forward and reverse motoring operati@ndeV driving
on a sloped surface. When an EV is driven facing to the slophasn in Figure
7.5(a), assuming the road surface is smooth, the load is stantrpositive torque
due to its weight and the angle of the slope. When the EV isxadown on the
same slope, the load is a negative torque to the motor.

Fromt=1.0s tot=2.0s, the induction motor speeds up from 0 rad/s to 80 rad/s
and then maintain the speed afte2.0s. Att=4.0s, the EV is driven above the
peak point of the slope, which applies a negative load distuce on the IM. At
t=6.0s, the speed reference is reduced to 0 and then reverstltad/s and repeat
the operation in the opposite direction. Load torque is shmwFigure 7.6(a). The
rotor flux tracking performance and error of both contradlare compared in Figure
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(b)

Figure 7.5: (a) EV operation case of forward and reverse nmgmn a sloped
surface; (b) EV operation case of constant speed cruise ananooth surface.

7.6(b) and 7.6(c), together with the actual mechanicaldjpee the tracking error
in Figure 7.6(d) and 7.6(e). It can be found that the SSNACpranide better flux
and speed tracking performance than the VC in both positidereegative speed.
Moreover, to further identify the improvement of SSNAC nuically, Table 7.3
summarises the comparison of the two controllers: the maxirand the integral-
absolute-error (IAE) of the flux and speed regulation erfsom the summarising
table, the SSNAC has 98% and 81% less maximum regulation @md has 99%
and 81% less IAE in the flux and speed tracking than the commadtVC with
MRAS speed observer.

The two lumped perturbation terms and their estimationrereme shown in
Figure 7.7. The results show that the estimated pertum&tions from both SPOs
track the real ones under speed and load changes. The maxstumation errors
of perturbation are less than 3% in both perturbation terms.

7.5.3 Constant Speed Cruise on an Unsmooth Surface

In the second case, the vehicle speed keeps constant urides-garying load
disturbance. As shown in Figure 7.5(b), when an EV is crgigin an unsmooth

Yaxing Ren



7.5 Simulation Results 180

) 0.5
=3
2z o \
g -
| _0. | | | | |
1 3 5 Time (s) 9 11 13
(a)
. 0028 —r—
gg e
£= 0-026 " c+Mras N/ . |
S 0024 SSNAC | ‘ .
B 3 5 Time(s) 9 11 13
o (b)
S & . ‘ |-VC+MRAS]
o, ‘| -ssnac |
ST ; .
=) | . ;
= 2— ‘ ]
L nJ h Lo et | Seed [
01 3 5 Timé (s) 9 11 13
(©
9 9 I B LT T
OZ Lo / -~VC+MRAS)
i%g o —SSNAC |
g £ —-45 /
=7 - ‘ 9 11 13
3 5 Timk (s)
(d)
O ! 1
5S : --VC+MRAS |
== o} 7 [-SSNAC
] T S s N B TS W R e W hralis,
3 5 Time (s) 9 11 13
(e)

Figure 7.6: Simulation results of IM forward and reverse onioig on a sloped sur-
face. (a) Load disturbance, (b) rotor flux, (c) flux trackimgpe (d) speed response,
and (e) speed tracking error.
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Figure 7.7: Perturbation term estimatidn and¥,, their estimation erroAW¥; and
AW, of IM forward and reverse motoring on a sloped surface.
road surface, the load disturbance is variable while thedpeference is fixed.
The unloaded IM reaches the speed of 100 rad/s and rotor flkgpsat a fixed
value of 0.0266 Wb. From=4.0s tot=9.0s, a time-varying load torque, as shown
in Figure 7.8(a), is applied on the IM. The flux and speed fragkerformance of
both controllers is compared in Figure 7.8(b) and 7.8(d)leuheir tracking errors
are given as shown in Figure 7.8(c) and 7.8(e). Due to theigzation terms are
estimated by SPOs and compensated in the controller, thexl qperformance of
SSNAC has obvious predictive compensation and less reguletror than the VC.
The summarised performance indices are given in Table\8hich it shows that
the SSNAC is 99% and 87% less in maximum regulation error,9%8d and 88%
less in IAE in the flux and speed tracking, respectively.

The SPOs estimate the two lumped perturbation terms defm#teiprevious
section and their estimation errors as shown in Figure ©%heé simulation, due
to that, all the conditions are known, the real perturbatian be calculated and
compared with the estimated ones. The results show thatRBs $erform well to
estimate the perturbation with the estimation error leas 8%, which is used to
compensate the real perturbation and fully linearize thiplaal states in the nonlin-

ear system.
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Figure 7.8: Simulation results of IM constant speed crgigin an unsmooth sur-
face. (a) Load disturbance, (b) rotor flux, (c) flux trackimgpe (d) speed response,
and (e) speed tracking error.
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AV, of IM constant speed cruising on an unsmooth surface.

Table 7.3: Tracking Performance Comparison of VC with MRAS SSNAC

Method

Indices

VC with MRAS

SSNAC

Improvements

Case: Forward and Reverse Motoring on a Sloped Surface

Maximum Flux Error 7% 0.12% 98% less
Flux IAE (x1073Whb:s) 8.2 0.1 99% less
Maximum Speed Errof 8% 1.7% 79% less

Speed IAE (rad) 20.4 3.8 81% less

Case: Constant Speed Cruise on an Unsmooth Surface

Maximum Flux Error 3.7% 0.052% 99% less

Flux IAE (x1073Wb-s) 3.0 0.0042 99% less

Maximum Speed Errof 2.2% 0.29% 87% less

Speed IAE (rad) 6.3 0.77 88% less
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Figure 7.10: Experimental setup of IM speed sensorlessaont

7.6 Experiment Results

7.6.1 Experimental Platform

The electric-drive experimental setup shown in Figure €drisists of a 200W, 2
pole pairs, three phase IM from Motorsolver, a 42V powertetesc converter unit,
and a DS1104 controller with interface board. The motor heras a mechanical
coupling arrangement, an IM for motor driving coupled with@ motor to produce
the expected load torque.

7.6.2 Forward and Reverse Motoring on a Sloped Surface

In the experimental validation, the speed reference ardldesurbance profiles
are set to be the same with that in the simulation. The spe#depis forward and
reverses motoring while the load torque shown in Figure ()lis produced by a
coupled DC motor via control its current. The speed estiomagierformance and
estimation error are shown in Figure 7.11(b) and 7.11(ck fEsults show that the
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Figure 7.11: Speed estimation results of IM forward and n&venotoring on a
sloped surface in experiment. (a) Load disturbance, (lnestd speed, and (c)
speed estimation error.

estimated speed tracks the real speed accurately in higld sjBeit there could be
some obvious estimation error in low speed and zero speeidhwha traditional

problem of the MRAS speed observer in IM application andstilba popular topic

in recent research studies.

Figure 7.12 shows the experimental results of the flux anddp@acking per-
formance. The SSNAC has less regulation error and IAE thanv/t with speed
observer in both flux and speed tracking. The performancieesdare compared
in Table 7.4, in which the maximum flux and speed regulatioaresf the SSNAC
are 29% and 13% less than that in the conventional VC metHatkglecting the
estimation error of speed when it crosses zero, the flux aeddsfracking perfor-
mance of SSNAC is more evident better than the VC. The IAE of 8od speed
tracking in the SSNAC are 77% and 75% less than that in VC.dtlmobserved
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that the experimental tests don’t demonstrate the samedéiraprovement of the

reduction of tracking error as the simulation tests. Ondefrhain reason is the pa-
rameter uncertainties of the IM in experimental tests hgsatked the performance
of the speed MRAS as it requires the accurate IM parametechvaine assumed be

available in the simulation test.

7.6.3 Constant Speed Cruise on an Unsmooth Surface

In the experiment case of EV with constant speed cruise omsmaoth surface,
the IM is kept at a speed of 100 rad/s. Figure 7.13(a) showsrtieevarying load
torque. The flux and speed tracking performance, as wellasrgulation error,
are shown in Figure 7.13. The performance indices compabistween the SSNAC
and the traditional VC with MRAS are given in Table 7.4. Theulés show that the
SSNAC has 79% and 33% less maximum error, and 80% and 28%AEss lthe
flux and speed regulation, respectively.

7.7 Conclusion

This chapter has presented a speed sensorless nonlinptivadantrol for the
speed regulation of induction motor used in electric vehagiplications. By design-
ing a combined speed and perturbation observer, the prdS&AC can adaptive-
ly compensate the fast time-varying and unknown nonlingaathics, and the ex-
ternal load disturbances, without requiring the accuratdehof the IM. Moreover,
the SSNAC replaces the PI regulator in the MRAS speed obseiitie an SPO to
estimate the perturbation and speed for reducing the complef the controller.
The operational performance is verified by the simulatioigtand experiment im-
plementation with the speed and load profiles from the ojmerabnditions of EV.
Simulation and experimental results comparing SSNAC aedctinventional VC
with an MRAS speed observer show that the SSNAC has bettemadigs of speed
tracking under the time-varying load disturbances whiehtgpical in EV applica-

tions.
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Figure 7.13: Experimental results of constant speed dyi@man unsmooth surface.
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speed tracking error.
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Table 7.4: Experimental performance indices of VC with MR##] SSNAC
Method

. VC with MRAS | SSNAC | Improvements
Indices

Case: Forward and Reverse Motoring on a Sloped Surface

Maximum Flux Error 18.3% 13% 21% less
Flux IAE (x1073Whb-s) 9.3 2.1 77% less
Maximum Speed Errof 4.2% 2.8% 33% less

Speed IAE (rad) 31.0 7.7 75% less

Case: Constant Speed Cruise on an Unsmooth Surface

Maximum Flux Error 3.7% 0.78% 79% less
Flux IAE (x1073Whb-s) 2.3 0.46 80% less
Maximum Speed Errof 3.2% 1.6% 52% less

Speed IAE (rad) 8.9 6.4 28% less
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Chapter 8
Conclusions and Future Work

This chapter has summarized the obtained results of thessthad contributions.
The suggestions for future investigations are also listed.

8.1 Conclusions

In this thesis, the application of perturbation estimabased nonlinear adaptive
control on electric energy conversion systems for future/grosystem has been
studied and implemented. As the future power system areetkeas a more power
electronics enabled, more robust control system are red|tirimprove the control
performance and stability on the generation side, storidgeand consumption side
of future power system.

In the power generation side, the WT is difficult to be coélobtaining the
optimal control performance on its nonlinear aerodynantéciés, which operate
under random and time-varying wind speed in a wide rangeguailinear con-
troller. An N-PI controller has been investigated for th&cpiangle control of a
wind turbine system to capture the rated wind power to gea@awer to the power
system. In the energy storage side, due to the low stiffnedsireertia of an is-
landed MG, the unknown disturbance and unbalanced poweamnmman lead to
stability problem of the MG, which requires an ESS with a theontrol system
to balance the power generation and demand. An NAC contnwith an SPO to
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estimate the unbalanced disturbance has been designegltatesthe bus voltage
and frequency to improve the robustness of the islanded Migmuisturbance and
unbalanced load. In the consumption side, one of the mostlyigsed industrial
workhorses is the IM, which has highly coupled states andimesr dynamics. To
cope with the problem that the conventional control metis@gnsitive to parameter
changes and dependent on the accuracy of flux position, anii&€d speed con-
troller has been investigated to control the IM directly enthe stationary frame,
which aims to reduce the dependency of flux position and ingtbe robustness
of load disturbance and parameter uncertainty. To furtb@éuce the dependency of
speed encoder, a speed sensorless NAC controller has begneatefor the IM us-
ing a combined SPO to reduce the complexity of conventiooairol method with
an additional speed observer.

The ECS in power generation, storage and consumption sithe dfiture power
system have been studied to be controlled by the perturbasitmation based con-
trollers. Both the N-PI and NAC use the HG-SPO for estimathrey perturbation
term, which includes the nonlinear interactions betweatest external disturbance,
parameter changes and unmodeled dynamics. The resultsmpelfat the perturba-
tion estimation based method has improved the robustnéiss BICS systems under
disturbance and parameter uncertainty. However, due thigjregain of SPO used
in NAC, the control methods are sensitive to noise and carifntipe sensor noise
when the observer bandwidth is high. Thus, the observer antiatler bandwidth
can never be concluded as the higher the better, even ugnggh-gain SPO. It
is usually to set the observer bandwidth greater than theater bandwidth and
lower than the sensor noise bandwidth. In the thesis, thenapbbserver and con-
troller bandwidth of ECSs have been tuned using the poleepiaat method, and
their stability has been proved in Lyapunov theory.

8.2 Future Work

The possible future work are listed based on the followireasl

¢ In Chapter 3, the pitch angle controller is designed for apsitad single-
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input single-output wind turbine. However, as the real asdestic wind tur-
bine is a multi-input multi-output (MIMO) system, both th&gh angle con-
trol and generator torque control can be used simultangotible wind tur-
bine controller can be designed as a MIMO controller to coaigly control
both the pitch angle and generator torque for multi contbpéctives: reduce
the regulation error of generated power and simultaneaeslyce the load
stress of the drive train. In addition, as the large wind ingkalways using
a three-blade architecture, the blades can be individealtyrolled for elim-
inate the effect of wind turbulence from different directiand tower shadow
to further reduce the load stress of drive train shaft. TluMIMO NAC
based individual pitch angle and generator torque coetrédir wind turbine
will be designed and validated using FAST simulator in therfe.

¢ In Chapter 4, the voltage controller of the voltage sourceeder is designed
to maintain the bus voltage of a low voltage (LV) islanded noggid under
unbalanced disturbances. Thus, in the future work, therabmtethod can be
validated on a high voltage microgrid, such as a HVDC powamdmission
system of an offshore wind farm under single-phase faulditamm. And
the modular multilevel converters (MMC) are the most prangsievices for
the future HVDC system for offshore wind farm. It leads thquieement of
designing the controller for the MMC based HVDC system fdslodre wind
farms.

¢ In Chapter 6, the speed and flux tracking is validated in btiukation and
experimental studies under unknown disturbance. The ninardaage of the
NAC controller is it can fully decouple the interaction anghdmic between
the torque and flux. In previous result, the flux is controlieé constant at
its rated value. However, in the efficiency optimization diett-weakening
region control, the flux is to be changed for different cohtdgectives. And
under the time-varying load disturbance, both the torquefarx command
changes quickly. The conventional method, such as vectoirap cannot
fully decouple the torque and flux and control them indepatigevith perfect
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performance. Thus, the NAC controller will be further valied.

In addition, as the system parameter is variable during pleeation, the con-
ventional loss-model based efficiency optimization mettenahot always get
the best efficiency point. The fuzzy logic method can be usedrline
optimize the flux command to search for the maximum efficieriByt the
searching period is very long when using the fuzzy logic rodttvith poor
initial condition. Thus, a novel method can be presentedonflmning the
loss-model to calculate the initial flux condition, and these the fuzzy log-
ic to search for the optimized efficiency. With using the lossdel method
to initialize the starting condition in fuzzy logic methathe searching peri-
od will be greatly reduced. This makes the faster searclpegdto find the
optimized efficiency point in IM speed drive.

In the future work, the NAC controller combined with fuzzyglo search-
ing method will be further validated in the efficiency optration and field-
weakening region to test the efficiency improvement of the IM

¢ In Chapter 7, the speed sensorless control method are @esiging a com-
bined SPO in a MRAS speed observer for the IM flux and spee#itrgén
electrical vehicle (EV) application. In the future workhet types of speed
observer can be used, such as the sliding mode observendexgté&alman
filter, and neural-network based speed observer, and ceulirese speed
observers with the NAC based speed observer for EV tracking dpplica-
tion.

e Moreover, this thesis has studied the control of wind powaregation, en-
ergy storage system, and induction motor individually. He future work,
the relationship between the three energy conversionmegsaad their effec-
t to the power system will be studied, such as the impact oédain wind
power generation to the power system, the optimal sizinghefgy storage
system in power system for economical purpose, and the diésida control
of grid-connected electrical vehicle to balance the povasy fietween power
generation and demand, etc.

Yaxing Ren



References

[1]

[2]

[3]

[4]

L Fried. Global wind statistics 201%5lobal Wind Energy Council (GWEC):
Brussels, Belgiun016.

Bin Wu, Yonggiang Lang, Navid Zargari, and Samir Koutf@ower conver-
sion and control of wind energy systendshn Wiley & Sons, 2011.

Fernando D Bianchi, Hernan De Battista, and Ricardo Jt#lafind turbine
control systems: principles, modelling and gain schedutiesign Springer
Science & Business Media, 2006.

K. c. Bae, S. c. Choi, J. h. Kim, C. y. Won, and Y. c. Jung. é/©4 dynamic
battery modeling for battery simulator. Industrial Technology (ICIT), 2014
IEEE International Conference gpages 354—-358, Feb 2014.

[5] W. Liand G. Joos. A power electronic interface for a batteupercapacitor

[6]

[7]

hybrid energy storage system for wind applications.2008 IEEE Power
Electronics Specialists Conferengages 1762—-1768, June 2008.

F. Blaabjerg, Y. Yang, and K. Ma. Power electronics - keghnology for

renewable energy systems - status and futurdzléatric Power and Energy
Conversion Systems (EPECS), 2013 3rd International Cenéer on pages

1-6, Oct 2013.

F. Blaabjerg, Zhe Chen, and S. B. Kjaer. Power electmaig efficient in-
terface in dispersed power generation systeiflBEE Transactions on Power
Electronics 19(5):1184-1194, Sept 2004.

194



REFERENCES 195

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Thomas Ackermann et alVind power in power systemglume 140. Wiley
Online Library, 2005.

Olimpo Anaya-Lara, Nick Jenkins, Janaka Ekanayakel] Blirtwright, and
Michael Hughes. Wind energy generation: modelling and controlohn
Wiley & Sons, 2011.

Siegfried Heier.Grid integration of wind energy: onshore and offshore con-
version systemslohn Wiley & Sons, 2014.

L. Holdsworth, X. G. Wu, J. B. Ekanayake, and N. Jenkif@omparison
of fixed speed and doubly-fed induction wind turbines dupogver system
disturbanceslEE Proceedings - Generation, Transmission and Distritati
150(3):343-352, May 2003.

A. Roln, F. Crcoles Lpez, S. Bogarra, L. Monjo, and J.iRRe®educed-order
models of squirrel-cage induction generators for fixedesp@ind turbines
under unbalanced grid condition&EEE Transactions on Energy Conversjon
31(2):566-577, June 2016.

S. Muller, M. Deicke, and R. W. De Doncker. Doubly fed uadion generator
systems for wind turbineslEEE Industry Applications Magazin&(3):26—
33, May 2002.

Vladislav Akhmatov, Arne Hejde Nielsen, J Kaas Pederaed Ole Nymann.
Variable-speed wind turbines with multi-pole synchronpesnanent magnet
generators. part i: Modelling in dynamic simulation todénd Engineering
27(6):531-548, 2003.

Boubekeur Boukhezzar and Houria Siguerdidjane. Carspa between lin-
ear and nonlinear control strategies for variable speed wirbines.Control
Engineering Practicel8(12):1357-1368, 2010.

Lucy Y Pao and Kathryn E Johnson. Control of wind turlsineControl
Systems, IEEE1(2):44—62, 2011.

Yaxing Ren



REFERENCES 196

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

F. Blaabjerg and K. Ma. Future on power electronics fandmurbine sys-
tems. IEEE Journal of Emerging and Selected Topics in Power Ebeits
1(3):139-152, Sept 2013.

D. Boroyevich, I. Cvetkovic, R. Burgos, and D. Dong. drgrid: A future
electronic energy networkPEEE Journal of Emerging and Selected Topics
in Power Electronics1(3):127-138, Sept 2013.

T. El-mezyani, R. Wilson, M. Sattler, S. K. Srivasta@,S. Edrington, and
D. A. Cartes. Quantification of complexity of power eleciicmnbased sys-
tems. IET Electrical Systems in Transportatip@(4):211-222, December
2012.

X. Wang, Y. Pang, P. C. Loh, and F. Blaabjerg. A seriefHered active

damper with grid disturbance rejection for ac power-etautrs-based power
systems. |IEEE Transactions on Power Electronjc30(8):4037-4041, Aug
2015.

M. A. Maldonado and G. J. Korba. Power management artdlalision sys-
tem for a more-electric aircraft (madmel)EEE Aerospace and Electronic
Systems Magazin&4(12):3-8, Dec 1999.

J. A. Rosero, J. A. Ortega, E. Aldabas, and L. Romeral.vikig towards
a more electric aircraftiEEE Aerospace and Electronic Systems Magazine
22(3):3-9, March 2007.

P. Wheeler and S. Bozhko. The more electric aircrafthimlogy and chal-
lenges.|IEEE Electrification Magazing?(4):6—12, Dec 2014.

R.H. Lasseter. MicroGrids. IiEEE Power Engineering Society Winter Meet-
ing, 2002 volume 1, pages 305-308 vol.1, 2002.

J.A. Peas Lopes, C.L. Moreira, and A.G. Madureira. De§rcontrol strate-
gies for microgrids islanded operatid&EE Transactions on Power Systems
21(2):916-924, May 2006.

Yaxing Ren



REFERENCES 197

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

G. Diaz, C. Gonzalez-Moran, J. Gomez-Aleixandre, andi&z. Complex-
valued state matrices for simple representation of largeramous micro-
grids supplied by pg and vf generatidBEE Transactions on Power Systems
24(4):1720-1730, Nov 2009.

J.M. Guerrero, J.C. Vasquez, J. Matas, L.G. de Vicud, MnCastilla. Hi-
erarchical control of droop-controlled ac and dc microgrd®14;a general
approach toward standardizatidEEEE Transactions on Industrial Electron-
ics, 58(1):158-172, Jan 2011.

M. B. Camara, H. Gualous, F. Gustin, A. Berthon, and Bky@aa DC/DC

converter design for supercapacitor and battery power geanant in hybrid
vehicle applications - polynomial control strategyEEE Transactions on
Industrial Electronics57(2):587-597, Feb 2010.

M. B. Camara, B. Dakyo, and H. Gualous. Polynomial conhinethod of
DC/DC converters for DC-bus voltage and currents managembattery
and supercapacitorsEEE Transactions on Power Electronjc7(3):1455—
1467, March 2012.

W. Li, G. Joos, and J. Belanger. Real-time simulatioraofvind turbine
generator coupled with a battery supercapacitor energgigesystemEEE
Transactions on Industrial Electronic§7(4):1137-1145, April 2010.

N. R. Tummuru, M. K. Mishra, and S. Srinivas. Dynamic gjyemanage-
ment of hybrid energy storage system with high-gain PV cdeve IEEE
Transactions on Energy Conversid@0(1):150-160, March 2015.

H. Zhou, T. Bhattacharya, D. Tran, T. S. T. Siew, and A.Khambadkone.
Composite energy storage system involving battery andaafacitor with
dynamic energy management in microgrid applicatiof&EE Transactions
on Power Electronic26(3):923-930, March 2011.

G. Zhang, X. Tang, and Z. Qi. Research on battery supawitor hybrid

Yaxing Ren



REFERENCES 198

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

storage and its application in microgrid. Bower and Energy Engineering
Conference (APPEEC), 2010 Asia-Pacifiages 1-4, March 2010.

S. D. G. Jayasinghe, D. M. Vilathgamuwa, and U. K. MadawaDiode-
clamped three-level inverter-based battery/supercapadirect integration
scheme for renewable energy systeniSEE Transactions on Power Elec-
tronics 26(12):3720-3729, Dec 2011.

C. Zhou, K. Qian, M. Allan, and W. Zhou. Modeling of thest@f EV battery
wear due to V2G application in power systeti&EE Transactions on Energy
Conversion26(4):1041-1050, Dec 2011.

C. Alaoui. Solid-state thermal management for Lithilmn EV batteries.
IEEE Transactions on Vehicular Technolo@®g(1):98-107, Jan 2013.

E. Barklund, N. Pogaku, M. Prodanovic, C. Hernandeamburo, and
T.C. Green. Energy management in autonomous microgricyusambility-
constrained droop control of inverter$EEE Transactions on Power Elec-
tronics, 23(5):2346—-2352, Sept 2008.

X. Yu, A. M. Khambadkone, H. Wang, and S. T. S. Terence. ni@un
of parallel-connected power converters for low-voltagenmgrid - part i
A hybrid control architecture. IEEE Transactions on Power Electronjcs
25(12):2962-2970, Dec 2010.

E. Rokrok and M. E. H. Golshan. Adaptive voltage droopesue for volt-
age source converters in an islanded multibus microghi€ll Generation,
Transmission Distribution4(5):562-578, May 2010.

Kyusung Kim and A. G. Parlos. Induction motor fault dmgis based on
neuropredictors and wavelet signal processlBfcE/ASME Transactions on
Mechatronics7(2):201-219, Jun 2002.

Mehrdad Ehsani, Yimin Gao, and Ali Emadilodern electric, hybrid elec-
tric, and fuel cell vehicles: fundamentals, theory, andigies CRC press,
2009.

Yaxing Ren



REFERENCES 199

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Igbal Husain Electric and hybrid vehicles: design fundament&&C press,
2011.

M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo. Electmotor drive selec-
tion issues for hev propulsion systems: A comparative stlElyE Transac-
tions on Vehicular Technolog$5(6):1756—1764, Nov 2006.

C.C. Chan. The state of the art of electric, hybrid, anel fcell vehicles.
IEEE Proceedings95(4):704—718, April 2007.

H. J. Van de Straete, J. De Schutter, and R. Belmans. #aiegft procedure
for checking performance limits in servo drive selectionl aptimization.
IEEE/ASME Transactions on Mechatronid$4):378—386, Dec 1999.

J.W. Finch and D. Giaouris. Controlled AC electricalves. IEEE Transac-
tions on Industrial Electronics55(2):481-491, Feb 2008.

H. Rehman and Longya Xu. Alternative energy vehiclagedsystem: Con-
trol, flux and torque estimation, and efficiency optimizatitEEE Transac-
tions on Vehicular Technology§0(8):3625-3634, Oct 2011.

Y. Liu, J. Zhao, R. Wang, and C. Huang. Performance imgneent of induc-
tion motor current controllers in field-weakening regionétectric vehicles.
IEEE Transactions on Power Electronj@8(5):2468—-2482, May 2013.

Ken Dutton, Steve Thompson, and Bill Barracloudine Art of Control En-
gineering Addison-Wesley, 1997.

P. Apkarian and P. Gahinet. A convex characterizatibgamn-scheduled h
infin; controllers.IEEE Transactions on Automatic Contrdl0(5):853—-864,
May 1995.

Wilson J Rugh and Jeff S Shamma. Research on gain sehgdéilitomatica
36(10):1401-1425, 2000.

Yaxing Ren



REFERENCES 200

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Morten H Hansen, Anca Daniela Hansen, Torben J Larseg,@/e, Poul
Sgrensen, and Peter Fuglsa@gntrol design for a pitch-regulated, variable
speed wind turbine2005.

J.M. Guerrero, L. Garcia De Vicuna, J. Matas, M. Castiind J. Miret. A
wireless controller to enhance dynamic performance oflighiaverters in
distributed generation system3$EEE Transactions on Power Electronjcs
19(5):1205-1213, Sept 2004.

L. Amezquita-Brooks, J. Liceaga-Castro, and E. Liee&mgstro. Speed and
position controllers using indirect field-oriented cotitrd classical control
approach. IEEE Transactions on Industrial Electronic61(4):1928—-1943,
April 2014.

Felix Blaschke. The principle of field orientation aspéped to the new
transvektor closed-loop control system for rotating fielacimnes. 1972.

Rong-Jong Wai and Kuo-Min Lin. Robust decoupled condfadirect field-
oriented induction motor drivdEEE Transactions on Industrial Electronics
52(3):837-854, June 2005.

Brice Beltran, Tarek Ahmed-Ali, and Mohamed El Haché®enbouzid. S-
liding mode power control of variable-speed wind energywension systems.
Energy Conversion, IEEE Transactions, @3(2):551-558, 2008.

A Kumar and K Stol. Simulating feedback linearizatianérol of wind tur-
bines using high-order modelg/ind Energy 13(5):419-432, 2010.

P. Apkarian and R. J. Adams. Advanced gain-schedukebniques for un-
certain systemdEEE Transactions on Control Systems Technol6gy):21—
32, Jan 1998.

Douglas A Lawrence and Wilson J Rugh. Gain schedulingadatyic linear
controllers for a nonlinear planAutomatica 31(3):381-390, 1995.

Yaxing Ren



REFERENCES 201

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

DJ Leith and WE Leithead. Implementation of wind turbicontrollers.In-
ternational Journal of Contrgl66(3):349-380, 1997.

A. Bidram, A. Davoudi, F.L. Lewis, and J.M. Guerrero. dixibuted coop-
erative secondary control of microgrids using feedbac&dnzation. IEEE
Transactions on Power Syster28(3):3462—3470, Aug 2013.

Riccardo Marino, Sergei Peresada, and Paolo Valigiapiige input-output
linearizing control of induction motorsAutomatic Control, IEEE Transac-
tions on 38(2):208-221, 1993.

T. K. Boukas and T. G. Habetler. High-performance irtcrt motor speed
control using exact feedback linearization with state dateslerivative feed-
back.|IEEE Transactions on Power Electronjd®9(4):1022-1028, July 2004.

C. Lascu, S. Jafarzadeh, M. S. Fadali, and F. BlaabJ@engct torque control
with feedback linearization for induction motor drivelEEEE Transactions
on Power Electronics32(3):2072—2080, March 2017.

F. Alonge, M. Cirrincione, M. Pucci, and A. Sferlazzaput-output feedback
linearization control with on-line mras-based inductaiséance estimation
of linear induction motors including the dynamic end efetEEE Transac-
tions on Industry Application$2(1):254-266, Jan 2016.

A. Accetta, F. Alonge, M. Cirrincione, M. Pucci, and Afe8azza. Feed-
back linearizing control of induction motor consideringgnatic saturation
effects. I[EEE Transactions on Industry Applicatiori?(6):4843—-4854, Nov
2016.

S. S. Sastry and A. Isidori. Adaptive control of lineable systemslEEE
Transactions on Automatic Conty@4(11):1123-1131, Nov 1989.

[69] Wen-Jieh Wang and Chun-Chieh Wang. Speed and efficieoctrol of an

induction motor with input-output linearizatiolEEE Transactions on Ener-
gy Conversionl14(3):373-378, Sep 1999.

Yaxing Ren



REFERENCES 202

[70] H. Abootorabi Zarchi, J. Soltani, and G. Arab Markadehdaptive input-
output feedback-linearization-based torque control atkyonous reluctance
motor without mechanical sens¢dEEE Transactions on Industrial Electron-
ics, 57(1):375-384, Jan 2010.

[71] S. Shojaeian, J. Soltani, and G. Arab Markadeh. Dampfrigw frequency
oscillations of multi-machine multi-upfc power systemasbed on adaptive
input-output feedback linearization controlEEE Transactions on Power
Systems27(4):1831-1840, Nov 2012.

[72] Wen-Hua Chen, Jun Yang, Lei Guo, and Shihua Li. Distondeaobserver-
based control and related methodstan overvl&EE Transactions on Indus-
trial Electronics 63(2):1083-1095, 2016.

[73] SangJoo Kwon and Wan Kyun Chung. A discrete-time deaigh analysis
of perturbation observer for motion control applicatioSEE Transactions
on control systems technolqdhyl(3):399-407, 2003.

[74] Jingging Han. From PID to active disturbance rejectontrol. Industrial
Electronics, IEEE transactions 966(3):900-906, 2009.

[75] Qing-Chang Zhong and David Rees. Control of uncertdindystems based
on an uncertainty and disturbance estimatdournal of dynamic systems,
measurement, and contydl26(4):905-910, 2004.

[76] Qing-Chang Zhong, Alon Kuperman, and RK Stobart. Desifude-based
controllers from their two-degree-of-freedom natutaternational Journal
of Robust and Nonlinear Contrd21(17):1994-2008, 2011.

[77] Jin-Hua She, Xin Xin, and Yaodong Pan. Equivalent-tagigturbance ap-
proachtanalysis and application to disturbance rejedtodual-stage feed
drive control systemlIEEE/ASME Transactions on Mechatronid$(2):330—
340, 2011.

[78]

Yaxing Ren



REFERENCES 203

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

Hebertt Sira-Ramirez and Marco Antonio Oliver-SalaZzan the robust con-
trol of buck-converter dc-motor combination&EE Transactions on Power
Electronics 28(8):3912-3922, 2013.

Euntai Kim. A fuzzy disturbance observer and its apgtiien to control.
Fuzzy Systems, IEEE Transactions dd(1):77-84, 2002.

Jong-Sun Ko and Byung-Moon Han. Precision positionicmmof PMSM us-
ing neural network disturbance observer on forced nomilaatp In Mecha-
tronics, 2006 IEEE International Conference, gages 316—320. IEEE, 2006.

Y. Lu, K. W. E. Cheng, and S. L. Ho. Auto-disturbanceejon control for
phase-shifted resonant converti&E Proceedings - Electric Power Applica-
tions 153(5):711-718, September 2006.

R. Xu, Y. Yu, R. Yang, G. Wang, D. Xu, B. Li, and S. Sui. A re\con-
trol method for transformerless h-bridge cascaded stateiimstar config-
uration. IEEE Transactions on Power Electronj&0(3):1189-1202, March
2015.

Dixitbhai Patel and Lin Zhao. Active disturbance rejen control of doubly-
fed induction generator during voltage dip.Pmoc. ESA Annual Meeting on
Electrostaticspage 2, 2010.

X. Anjun, L. Xu, H. Shuju, L. Nianhong, and X. Honghua. &w pitch con-
trol method for large scale wind turbine based on ADRC.Materials for
Renewable Energy and Environment (ICMREE), 2013 Inteonati Confer-
ence onvolume 1, pages 373-376, Aug 2013.

Wankun Zhou, Sally Shao, and Zhigiang Gao. A stabilitydy of the active
disturbance rejection control problem by a singular pédtion approach.
Applied Mathematical Science3(10):491-508, 2009.

Xinkai Chen, Satoshi Komada, and Toshio Fukuda. Desi@monlinear dis-
turbance observemdustrial Electronics, IEEE Transactions p#7(2):429—
437, 2000.

Yaxing Ren



REFERENCES 204

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

J. Chen, L. Jiang, Wei Yao, and Q.H. Wu. Perturbatiomnesion based
nonlinear adaptive control of a full-rated converter winabine for fault
ride-through capability enhancemehEEE Transactions on Power Systems
29(6):2733-2743, Nov 2014.

Y. Liu, Q. H. Wu, X. X. Zhou, and L. Jiang. Perturbationsaver based mul-
tiloop control for the dfig-wt in multimachine power systefREE Transac-
tions on Power System®9(6):2905-2915, Nov 2014.

Lin Jiang, Qing Hua Wu, Guoping Liu, and D. Rees. Robustive control
of induction motor based on perturbation estimationlHERE International

Electric Machines Drives Conference, IEMDC 200#lume 1, pages 101
106, May 2007.

Shihua Li, Jun Yang, Wen-Hua Chen, and Xisong Chen. @dized extend-
ed state observer based control for systems with mismatcheektainties.
Industrial Electronics, IEEE Transactions 059(12):4792-4802, 2012.

S. Zhenxing, L. Shihua, and Z. Xinghua. Direct torquatcol of induction
machine using finite-time control and disturbance comp@nsaln IECON
2014 - 40th Annual Conference of the IEEE Industrial Elegits Society
pages 528-534, Oct 2014.

Guang Feng, Yan-Fei Liu, and Lipei Huang. A new robugbakhm to im-
prove the dynamic performance on the speed control of inmluatotor drive.
Power Electronics, IEEE Transactions,d®(6):1614-1627, 2004.

Zhigiang Gao. Active disturbance rejection contropaaadigm shift in feed-
back control system design. Bmerican Control Conference, 200pages
7—pp. IEEE, 2006.

Jie Li, Hai-Peng Ren, and Yan ru Zhong. Robust speedabot induction
motor drives using first-order auto-disturbance rejectiontrollers. IEEE
Transactions on Industry Applications1(1):712—720, Jan 2015.

Yaxing Ren



REFERENCES 205

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

Haritza Camblong. Digital robust control of a variallgeed pitch regulated
wind turbine for above rated wind speed€&ontrol Engineering Practice
16(8):946-958, 2008.

Ahmet Serdar Yilmaz and Zafédzer. Pitch angle control in wind turbines
above the rated wind speed by multi-layer perceptron anidlrbdsis func-
tion neural networks.Expert Systems with Applicatiqn36(6):9767-9775,
2009.

David Schlipf, Dominik Johannes Schlipf, and Martirul&i. Nonlinear
model predictive control of wind turbines using LIDARWiInd Energy
16(7):1107-1129, 2013.

Y.A.-R.l. Mohamed and E.F. EI-Saadany. Robust highdvadth discrete-

time predictive current control with predictive internabdel - a unified ap-

proach for voltage-source PWM converterlEEE Transactions on Power
Electronics 23(1):126-136, Jan 2008.

Y.A.-R.l. Mohamed and E.F. El Saadany. Hybrid varegbtructure control
with evolutionary optimum-tuning algorithm for fast gnaltage regulation
using inverter-based distributed generatiolEEE Transactions on Power
Electronics 23(3):1334-1341, May 2008.

Q. Liu, Y. Tao, X. Liu, Y. Deng, and X. He. Voltage unbatae and harmon-
ics compensation for islanded microgrid invertetET Power Electronics
7(5):1055-1063, May 2014.

L. Meng, X. Zhao, F. Tang, M. Savaghebi, T. Dragicewvlc,C. Vasquez,
and J. M. Guerrero. Distributed voltage unbalance compemsia islanded
microgrids by using a dynamic consensus algorithBEEE Transactions on
Power Electronics31(1):827-838, Jan 2016.

M. Hamzeh, S. Emamian, H. Karimi, and J. MahseredjRobust control of
an islanded microgrid under unbalanced and nonlinear loadittons.|IEEE

Yaxing Ren



REFERENCES 206

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Journal of Emerging and Selected Topics in Power Elects4di2):512-520,
June 2016.

M. S. Golsorkhiand D. D. C. Lu. A decentralized contme¢thod for island-
ed microgrids under unbalanced condition&EE Transactions on Power
Delivery, 31(3):1112-1121, June 2016.

A.V. Ravi Teja, C. Chakraborty, S. Maiti, and Y. Hori.riew model reference
adaptive controller for four quadrant vector controlleduontion motor drives.
IEEE Transactions on Industrial Electroni¢$9(10):3757-3767, Oct 2012.

A.B. Proca and A. Keyhani. Sliding-mode flux observethwonline rotor
parameter estimation for induction mototEEE Transactions on Industrial
Electronics, 54(2):716—723, April 2007.

Hsin-Jang Shieh and Kuo-Kai Shyu. Nonlinear slidngee torque control
with adaptive backstepping approach for induction motaredr Industrial
Electronics, IEEE Transactions pA6(2):380-389, 1999.

F. J. Lin, C. K. Chang, and P. K. Huang. FPGA-based adaptackstepping
sliding-mode control for linear induction motor driviEEE Transactions on
Power Electronics22(4):1222-1231, July 2007.

M. Suetake, I.N. da Silva, and A. Goedtel. Embedded Ib&ed compact
fuzzy system and its application for induction-motor V/esgp control.In-
dustrial Electronics, IEEE Transactions pB8(3):750—760, March 2011.

P.Z. Grabowski, M.P. Kazmierkowski, B.K. Bose, andBRabjerg. A sim-
ple direct-torque neuro-fuzzy control of PWM-invertedfenduction motor
drive. IEEE Transactions on Industrial Electroni¢g}7(4):863—-870, Aug
2000.

Chich-Yi Huang, Tien-Chi Chen, and Ching-Lien HuandgRobust con-

trol of induction motor with a neural-network load torqudiestor and a

neural-network identificationlEEE Transactions on Industrial Electronics
46(5):990-998, Oct 1999.

Yaxing Ren



REFERENCES 207

[112] Tien-Chi Chen and Tsong-Terng Sheu. Model referemegal network con-
troller for induction motor speed contrdEEE Transactions on Energy Con-
version 17(2):157-163, Jun 2002.

[113] L Jiang, QH Wu, J Wang, C Zhang, and XX Zhou. Robust olesebased
nonlinear control of multimachine power systems@aneration, Transmis-
sion and Distribution, IEE Proceedingssolume 148, pages 623-631. IET,
2001.

[114] L. Jiang, Q.H. Wu, and J.Y. Wen. Decentralized nordinedaptive control
for multimachine power systems via high-gain perturbabbserver.IEEE
Transactions on Circuits and Systems I: Regular Papéiq,10):2052—-2059,
Oct 2004.

[115] J-JE Slotine, JK Hedrick, and EA Misawa. On sliding eb®rs for non-
linear systems.Journal of Dynamic Systems, Measurement, and Cantrol
109(3):245-252, 1987.

[116] YiXiong and M. Saif. Sliding mode observer for nonlareincertain systems.
Automatic Control, IEEE Transactions pf6(12):2012-2017, 2001.

[117] R Sanchis and H Nijmeijer. Sliding controller-slidimbserver design for
non-linear systemszuropean journal of controi4(3):208—-234, 1998.

[118] BL Walcott, MJ Corless, and SBak. Comparative study of non-linear state-
observation techniquesnternational Journal of Contrgl45(6):2109-2132,
1987.

[119] Christopher Edwards and Sarah K Spurgeon. On the olewednt of discon-
tinuous observerdnternational Journal of contrgl59(5):1211-1229, 1994.

[120] Jairo Terra Moura, Hakan Elmali, and Nejat Olgac. i8tidnode control with
sliding perturbation observerJournal of Dynamic Systems, Measurement,
and Contro] 119(4):657-665, 1997.

Yaxing Ren



REFERENCES 208

[121] Christopher Edwards and Sarah Spurgesliding mode control: theory and
applications CRC Press, 1998.

[122] Kyung-Soo Kim and Keun-Ho Rew. Reduced order distndesobserver for
discrete-time linear system8utomatica49(4):968-975, 2013.

[123] Arie Levant. Higher-order sliding modes, differatton and output-feedback
control. International journal of Contral 76(9-10):924-941, 2003.

[124] Kyeong-Hwa Kim and Myung-Joong Youn. A nonlinear sppeentrol for
a PM synchronous motor using a simple disturbance estimatichnique.
Industrial Electronics, IEEE Transactions pf9(3):524-535, 2002.

[125] Shihua Li and Zhigang Liu. Adaptive speed control ferppanent-magnet
synchronous motor system with variations of load inerfiadustrial Elec-
tronics, IEEE Transactions 9®6(8):3050-3059, 20009.

[126] L Jiang and QH Wu. Nonlinear adaptive control via sigimode state and
perturbation observerlEE Proceedings-Control Theory and Applications
149(4):269-277, 2002.

[127] Wen-Hua Chen, Donald J Ballance, Peter J Gawthropnaed Gribble, and
John O Reilly. A nonlinear disturbance observer for two Inokotic ma-
nipulators. InDecision and Control, 1999. Proceedings of the 38th IEEE
Conference oyvolume 4, pages 3410-3415. IEEE, 1999.

[128] Jason M Jonkman and Marshall L Buhl Jr. FAST user’s guitliational
Renewable Energy Laboratory, Golden, CO, Technical RéportNREL/EL-
500-382302005.

[129] Sven Creutz ThomsenNonlinear control of a wind turbine PhD thesis,
Technical University of Denmark, DTU, DK-2800 Kgs. Lyngliyenmark,
2006.

[130] Wael M Korani, Hassen Taher Dorrah, and Hassan M EnBaaterial for-
aging oriented by particle swarm optimization strategy RéD tuning. In

Yaxing Ren



REFERENCES 209

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Computational Intelligence in Robotics and AutomationR&), 2009 IEEE
International Symposium ¢pages 445-450. IEEE, 2009.

Mahmud Iwan Solihin, Lee Fook Tack, and Moey Leap Kekuming of PID
controller using particle swarm optimization (PS@iternational Journal on
Advanced Science, Engineering and Information Technolb@y:458-461,
2011.

Endusa Billy Muhando, Tomonobu Senjyu, Naomitsu dkasAtsushi Yona,
Hiroshi Kinjo, and Toshihisa Funabashi. Gain schedulingtie® of variable
speed WTG under widely varying turbulence loadingenewable Energy
32(14):2407-2423, 2007.

Endusa Billy Muhando, Tomonobu Senjyu, Aki Uehara] dnshihisa Fun-
abashi. Gain-scheduled control for wecs via LMI technicares parametri-
cally dependent feedback part ii: controller design andi@mgntation.In-
dustrial Electronics, IEEE Transactions gB8(1):57—-65, 2011.

Tan Luong Van, Thanh Hai Nguyen, and Dong-Choon Leevahded pitch
angle control based on fuzzy logic for variable-speed winbihe systems.
Energy Conversion, IEEE Transactions, @9(2):578-587, June 2015.

Bonnie J JonkmanTurbSim user’s guide: version 1.5National Renewable
Energy Laboratory Golden, CO, USA, 2009.

Mohammed G Khalfallah and Aboelyazied M Koliub. Effed dust on the
performance of wind turbine®esalination 209(1):209-220, 2007.

Lasse Makkonen, Timo Laakso, Mauri Marjaniemi, anddfaFinstad. Mod-
elling and prevention of ice accretion on wind turbin&ind Engineering
25(1):3-21, 2001.

SA Saleh, R Ahshan, and CR Moloney. Wavelet-basedasigrocessing
method for detecting ice accretion on wind turbineSustainable Energy,
IEEE Transactions or3(3):585-597, 2012.

Yaxing Ren



REFERENCES 210

[139] D. Graovac, V. Katic, and A. Rufer. Power quality pretnls compensation
with universal power quality conditioning systemMEEE Transactions on
Power Delivery 22(2):968-976, April 2007.

[140] Hong-Seok Song and Kwanghee Nam. Dual current cost¢teme for PWM
converter under unbalanced input voltage conditidBEE Transactions on
Industrial Electronics,46(5):953—-959, Oct 1999.

[141] Po-Tai Cheng, Chien-An Chen, Tzung-Lin Lee, and S¥iean Kuo. A co-
operative imbalance compensation method for distribgakration inter-
face converters.IEEE Transactions on Industry Applicationg5(2):805—
815, March 2009.

[142] M. Savaghebi, A. Jalilian, J.C. Vasquez, and J.M. @&rer Autonomous
voltage unbalance compensation in an islanded droop-@atedrmicrogrid.
IEEE Transactions on Industrial Electronids0(4):1390-1402, April 2013.

[143] Y.A.-R.l. Mohamed and E.F. El-Saadany. Adaptive acdized droop
controller to preserve power sharing stability of parakklnverters in dis-
tributed generation microgridsPower Electronics, IEEE Transactions,on
23(6):2806-2816, Nov 2008.

[144] M.A. Mahmud, H.R. Pota, and M.J. Hossain. Dynamic #itgiof three-
phase grid-connected photovoltaic system using zero dindasign ap-
proach.lEEE Journal of Photovoltaic(4):564-571, Oct 2012.

[145] Quan Li and P. Wolfs. A review of the single phase phottaic module
integrated converter topologies with three different dik Iconfigurations.
IEEE Transactions on Power Electronic83(3):1320-1333, May 2008.

[146] L. Jiang, Q.H. Wu, J. Wang, C. Zhang, and X.X. Zhou. Rsilmbserver-
based nonlinear control of multimachine power systeiti& Proceedings-
Generation, Transmission and Distributid¥8(6):623—-631, Nov 2001.

Yaxing Ren



REFERENCES 211

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

Remus Teodorescu, Marco Liserre, and Pedro Rodrig@® converters
for photovoltaic and wind power systenvelume 29. John Wiley & Sons,
2011.

Roger C Dugan, Mark F McGranaghan, and H Wayne BeaggtEtal power
systems qualityNew York, NY: McGraw-Hill,— ¢1998@., 1996.

P. Rodriguez, R. Teodorescu, |. Candela, A.V. TimbMs,Liserre, and
F. Blaabjerg. New positive-sequence voltage detector ffiok gynchroniza-
tion of power converters under faulty grid conditions. 3rth IEEE Power
Electronics Specialists Conference, PESC 2@2@es 1-7, June 2006.

W. Li and G. Joos. A power electronic interface for atéat supercapacitor
hybrid energy storage system for wind applications. Pbwer Electronic-
s Specialists Conference, 2008. PESC 2008. |giges 1762—-1768, June
2008.

J. D. Dogger, B. Roossien, and F. D. J. Nieuwenhout. r&ftarization of
Li-lon batteries for intelligent management of distribditgrid-connected s-
torage. IEEE Transactions on Energy Conversjd26(1):256—263, March
2011.

M. B. Camara, H. Gualous, F. Gustin, and A. Berthon. iefand new
control of DC/DC converters to share energy between supeocii@rs and
batteries in hybrid vehicleslEEE Transactions on Vehicular Technology
57(5):2721-2735, Sept 2008.

P. Thounthong, S. Rael, and B. Davat. Control stratédyel cell and super-
capacitors association for a distributed generation sydteEE Transactions
on Industrial Electronics54(6):3225-3233, Dec 2007.

M. Mao, Y. Liu, P. Jin, H. Huang, and L. Chang. Energy hoated control
of hybrid battery-supercapacitor storage system in a rgito In 2013 4th
IEEE International Symposium on Power Electronics for Blistted Gener-
ation Systems (PEDGpages 1-6, July 2013.

Yaxing Ren



REFERENCES 212

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

Yixin Zhu, Fang Zhuo, and Feng Wang. Coordination oanof lithium
battery-supercapacitor hybrid energy storage system iiciegrid under un-
balanced load condition. IRower Electronics and Applications (EPE’14-
ECCE Europe), 2014 16th European Conferencepages 1-10, Aug 2014.

X. Hu, S. Lin, S. Stanton, and W. Lian. A foster netwohetmal model
for HEV/EV battery modelinglEEE Transactions on Industry Applicatigns
47(4):1692-1699, July 2011.

O. Tremblay, L. A. Dessaint, and A. |. Dekkiche. A gendyattery model
for the dynamic simulation of hybrid electric vehicles.Mehicle Power and
Propulsion Conference, 2007. VPPC 2007. IEpEges 284—-289, Sept 2007.

C. Abbey and G. Joos. Supercapacitor energy storageimaol energy appli-
cations. IEEE Transactions on Industry Applicatign$3(3):769—-776, May
2007.

Remus Teodorescu, Marco Liserre, et @rid converters for photovoltaic
and wind power systemgolume 29. John Wiley & Sons, 2011.

A. Boglietti, A. Cavagnino, and M. Lazzari. Computatal algorithms

for induction-motor equivalent circuit parameter deteration part I: Resis-
tances and leakage reactandeé<E Transactions on Industrial Electronics
58(9):3723-3733, Sept 2011.

W. M. Lin, T. J. Su, and R. C. Wu. Parameter identificataf induction
machine with a starting no-load low-voltage teHEEE Transactions on In-
dustrial Electronics59(1):352—-360, Jan 2012.

J. Guzinski and H. Abu-Rub. Speed sensorless inductiotor drive with
predictive current controllerlEEE Transactions on Industrial Electronics
60(2):699-709, Feb 2013.

C. Chakraborty and Y. Hori. Fast efficiency optimipatitechniques for the
indirect vector-controlled induction motor drivelEEE Transactions on In-
dustry Applications39(4):1070-1076, July 2003.

Yaxing Ren



REFERENCES 213

[164] R. Ni, D. Xu, G. Wang, X. Gui, G. Zhang, H. Zhan, and C. |Efficiency
enhancement of general AC drive system by remanufactumidigcition mo-
tor with interior permanent-magnet rotolEEE Transactions on Industrial
Electronics 63(2):808-820, Feb 2016.

[165] Hamid Toliyat, Emil Levi, Mona Raina, et al. A review BFO induction mo-
tor parameter estimation techniqué&snergy conversion, IEEE Transactions
on, 18(2):271-283, 2003.

[166] M. Hinkkanen, L. Harnefors, and J. Luomi. Reducedeorfiux observers
with stator-resistance adaptation for speed-sensordssiion motor drives.
IEEE Transactions on Power Electronj&b(5):1173-1183, May 2010.

[167] B. Karanayil, M. F. Rahman, and C. Grantham. Onlinéostand rotor resis-
tance estimation scheme using artificial neural networksdotor controlled
speed sensorless induction motor drivEEEE Transactions on Industrial
Electronics 54(1):167-176, Feb 2007.

[168] L. Zhao, J. Huang, H. Liu, B. Li, and W. Kong. Second-@rdliding-mode
observer with online parameter identification for senssli@duction motor
drives. IEEE Transactions on Industrial Electronio81(10):5280-5289, Oct
2014.

[169] Luis Amezquita-Brooks, Eduardo Liceaga-Castrojideésceaga-Castro, and
Carlos E Ugalde-Loo. Flux-torque cross-coupling analg$itoc schemes:
Novel perturbation rejection characteristidSA transactions58:446—-461,
2015.

[170] Jingging Han. From PID to active disturbance rejettiontrol.IEEE Trans-
actions on Industrial Electronics56(3):900—-906, March 2009.

[171] M. Habibullah and D. D. C. Lu. A speed-sensorless F& T induction
motors using extended kalman filtetEEE Transactions on Industrial Elec-
tronics 62(11):6765-6778, Nov 2015.

Yaxing Ren



REFERENCES 214

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

Shafig Ahmed Odhano, Radu Bojoi, Aldo Boglietti, Stef@deorge Rosu,
and Giovanni Griva. Maximum efficiency per torque direct fltector con-
trol of induction motor drivesindustry Applications, IEEE Transactions,on
51(6):4415-4424, 2015.

Camila P Salomon, Wilson C Sant’Ana, Luiz E Borges da&5iGermano
Lambert-Torres, Erik L Bonaldi, Levy EL de Oliveira, and dsrG Borges da
Silva. Induction motor efficiency evaluation using a new aapt of sta-
tor resistance. Instrumentation and Measurement, IEEE Transactions on
64(11):2908-2917, 2015.

M Nasir Uddin and Sang Woo Nam. New online loss-minitian-based
control of an induction motor drivePower Electronics, IEEE Transactions
on, 23(2):926-933, 2008.

Cao-Minh Ta and Yoichi Hori. Convergence improvemehtefficiency-
optimization control of induction motor drivesndustry Applications, IEEE
Transactions on37(6):1746—-1753, 2001.

Ned Mohan. Dsp based electric drives laboratory—os@rual. Department
of Electrical and Computer Engineering, University of Masota 2007.

Y. Hu, X. Song, W. Cao, and B. Ji. New SR drive with int&gd charging
capacity for plug-in hybrid electric vehicles (PHEVHEEE Transactions on
Industrial Electronics61(10):5722-5731, Oct 2014.

J. Holtz. Sensorless control of induction machineghwr without signal
injection? IEEE Transactions on Industrial Electroni¢$§3(1):7-30, Feb
2005.

A. Emadi, Young Joo Lee, and K. Rajashekara. Powetreleics and motor
drives in electric, hybrid electric, and plug-in hybrid etléc vehicles.|[EEE
Transactions on Industrial Electronic§5(6):2237—-2245, June 2008.

A. C. Lima-Filho, R. D. Gomes, M. O. Adissi, T. A. B. dal\&, F. A. Be-
lo, and M. A. Spohn. Embedded system integrated into a véisetensor

Yaxing Ren



REFERENCES 215

network for online dynamic torque and efficiency monitoringinduction
motors. IEEE/ASME Transactions on Mechatronids/(3):404—-414, June
2012.

[181] K. Rajashekara. Present status and future trendsairig vehicle propul-
sion technologieslEEE Journal of Emerging and Selected Topics in Power
Electronics, 1(1):3—-10, March 2013.

[182] C. Schauder. Adaptive speed identification for vectmtrol of induction
motors without rotational transducet&EE Transactions on Industry Appli-
cations 28(5):1054-1061, Sep 1992.

[183] K. Ohyama, G.M. Asher, and M. Sumner. Comparative yiglof experi-
mental performance and stability of sensorless inductiotomdrives.IEEE
Transactions on Industrial Electronic§3(1):178-186, Feb 2005.

[184] S.M. Gadoue, D. Giaouris, and J.W. Finch. MRAS serssrivector con-
trol of an induction motor using new sliding-mode and fuagic adapta-
tion mechanismdEEE Transactions on Energy Conversio?5(2):394-402,
June 2010.

[185] Xi Zhang. Sensorless induction motor drive using iadi vector controller
and sliding-mode observer for electric vehiclESEE Transactions on Vehic-
ular Technology62(7):3010-3018, Sept 2013.

[186] A. Ersak B. Akin, U. Orguner and M. Ehsani. Simple dative-free non-
linear state observer for sensorless ac driMEEE/ASME Transactions on
Mechatronics11(5):634—643, Oct 2006.

[187] Z. Yang X. Sun, L. Chen and H. Zhu. Speed-sensorleswwreontrol of
a bearingless induction motor with artificial neural netkarverse speed
observerlEEE/ASME Transactions on Mechatronid8(4):1357-1366, Aug
2013.

Yaxing Ren



REFERENCES 216

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

L. Wu, W. X. Zheng, and H. Gao. Dissipativity-basedlsig mode control
of switched stochastic system$EEE Transactions on Automatic Contyol
58(3):785-791, March 2013.

Jianxing Liu, Salah Laghrouche, Mohamed Harmouchd,Maxime Wack.
Adaptive-gain second-order sliding mode observer desigswitching pow-
er convertersControl Engineering Practice30:124-131, 2014.

Jianxing Liu, Salah Laghrouche, and Maxime Wack. @leebased higher
order sliding mode control of power factor in three-phaskl@aconverter
for hybrid electric vehicle applicationsinternational Journal of Contrgl

87(6):1117-1130, 2014.

J. Liu, W. Luo, X. Yang, and L. Wu. Robust model-basedtfdiagnosis for
pem fuel cell air-feed systemEEE Transactions on Industrial Electronics
63(5):3261-3270, May 2016.

A. Haddoun, M.E.H. Benbouzid, D. Diallo, R. Abdesse&n& Ghouili, and
K. Srairi. Modeling, analysis, and neural network contricho EV electrical
differential. IEEE Transactions on Industrial Electronics5(6):2286—-2294,
June 2008.

Mehrdad Ehsani, Yimin Gao, and Ali Emadvlodern electric, hybrid elec-
tric, and fuel cell vehicles: fundamentals, theory, andigies CRC press,
20009.

K Bimal. Bose.Modern power electronics and AC driyex)02.

D Yoo, SS-T Yau, and Z Gao. Optimal fast tracking obsebandwidth of the
linear extended state observémternational Journal of Contrql80(1):102—
111, 2007.

George EllisObservers in Control System&cademic Press, 2002.

Yaxing Ren



	List of Figures
	List of Abbreviations and Symbols
	Introduction
	Background
	Wind Power Generation System
	Power System with More Power Electronics - Microgrid Application
	Induction Motor

	Control Methods for ECSs
	PI and Gain Scheduling PI Control
	Feedback Linearization Control
	Perturbation Estimation based Control
	Other Nonlinear Control Methods

	Objectives and Motivation
	Major Contributions
	Publication List

	Thesis outline

	Review of Perturbation Observer Based Nonlinear Adaptive Control
	Feedback Linearization
	Input-State Linearization
	Input-Output Linearization
	Perturbation Term Definition

	Perturbation Estimation using State and Perturbation Observers
	Extended-Order Perturbation Observers
	Reduced-Order Perturbation Observer
	Finite-time Disturbance Observer

	Nonlinear Adaptive Control
	Comparison among Different Perturbation Observer based Control Methods
	Conclusion

	Nonlinear PI Control for Variable Pitch Wind Turbine
	Introduction
	Nonlinear Wind Turbine Modeling
	Conventional PI and Gain-scheduled PI Controller
	PI Controller
	Gain Scheduled PI Controller

	Nonlinear PI based Pitch Angle Controller
	Input-output Linearization
	Perturbation Definition and Extended-order State Space Model
	Extended-order States and Perturbation Observer
	N-PI based Pitch Angle Controller
	Stability Analysis

	Simulation Results
	Simplified Two-mass Wind Turbine Model
	Validation on FAST Simulator

	Conclusion

	Autonomous Control of Power Electronic Enabled Microgrid via Nonlinear Adaptive Control
	Introduction
	Dynamic Model of Voltage Source Converter based Distributed Resources
	Distributed Power Sources in Microgrid

	Conventional Control Structure for Converter-based Distributed Resources with Unbalance Compensation
	Outer Loop: Power Droop Control
	Output Impedance Compensation
	Inner Loop: Conventional Voltage and Frequency Control and Unbalance Compensation

	Nonlinear Adaptive Controller Design
	Model of Converter-based DR in Dual Synchronous Reference Frames
	Input-output Linearization
	State and Perturbation Observer
	Design of NAC
	Stability Analysis

	Simulation Results
	Three-phase Motor Load
	Unbalanced Impedance Load
	Single-phase PV Power Generation to the Microgrid

	Conclusion

	Coordinated Control of a Hybrid Energy Storage System with Battery and Supercapacitor for Microgrid
	Introduction
	Model of Energy Storage System
	Battery model and state of charge
	Supercapacitor Model
	Model of voltage source converter

	Control Strategy for HESS
	Controller for Battery VSC
	Controller for VSC of Supercapacitor

	Simulation Results
	Single-phase impedance load
	Single-phase power generation

	Conclusion

	Nonlinear Adaptive Control for Induction Motor Speed Control with Improved Robustness
	Introduction
	Induction Motor System
	Rotor Flux Optimization to Minimize Power Loss
	Rotor Flux Estimation
	Power Loss Minimization

	Nonlinear Adaptive Controller for IM Speed Tracking
	Input-output Linearization
	Definition of Perturbation and SPO Design
	Nonlinear Adaptive Controller

	Stability Analysis
	Simulation Results
	Constant speed test for loss minimization
	Step Load Disturbance
	Time-varying Load Disturbance
	Parameter Variation Performance

	Experiment Results
	dSPACE Platform
	Step Load Disturbance
	Time-varying Load Disturbance

	Conclusion

	Speed Sensorless Nonlinear Adaptive Control of Induction Motor for Electric Vehicles via a Combined Speed and Perturbation Observer
	Introduction
	Model of Induction Motor Based Vehicle
	Vehicle Dynamics of Motion
	Induction Motor Model

	Speed Sensorless Nonlinear Adaptive Controller
	Input-output Linearization
	Definition of Perturbation and Fictitious State
	Design of States and Perturbation Observer
	Conventional Rotor-flux MRAS Speed Observer 
	Combined MRAS Speed and Perturbation Observer 
	Speed Sensorless Nonlinear Adaptive Controller

	Stability of the Closed-loop System 
	Simulation Results
	Comparison of the separated speed SPO and combined SPO based Speed Sensorless Control
	Forward and Reverse Motoring on a Sloped Surface
	Constant Speed Cruise on an Unsmooth Surface

	Experiment Results
	Experimental Platform
	Forward and Reverse Motoring on a Sloped Surface
	Constant Speed Cruise on an Unsmooth Surface

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	References

