<table>
<thead>
<tr>
<th>Name of the corresponding author</th>
<th>Dr I.Z. Mitrovic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email address</td>
<td>ivona@liverpool.ac.uk</td>
</tr>
<tr>
<td>Institution</td>
<td>University of Liverpool</td>
</tr>
<tr>
<td>Your preferred conference topic</td>
<td>Gate stack materials for high mobility substrates (Ge, SiGe, GaN, III-V)</td>
</tr>
<tr>
<td>Preferred form of presentation (oral or poster)</td>
<td>Oral</td>
</tr>
<tr>
<td>PhD Student / Regular Participant</td>
<td>Regular Participant</td>
</tr>
</tbody>
</table>
Experimental band alignment of Ta$_2$Os/GaN for MIS-HEMT applications

K. Sawangsri1, P. Das2, S.N. Supardin1, I.Z. Mitrovic1, S. Hall1, R. Mahaputra2, A.K. Chakraborty3, R. Trehanre4, V.R. Dhanak5, K. Durose4, P.R. Chalker5

1Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, UK
2Dept. of Electronics and Communication Engineering, National Institute of Technology Durgapur, Durgapur 713209, India
3Department of Physics, National Institute of Technology Durgapur, Durgapur 713209, India
4Dept. of Physics and Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF, UK
5Department of Engineering, University of Liverpool, Liverpool L69 3GH, UK

E-mail address of corresponding author: ivona@liverpool.ac.uk

1. Introduction

GaN Metal Insulator Semiconductor High Electron Mobility Transistors (MIS-HEMTs) have been used extensively for high frequency, high power and low noise applications [1,2]. A layer of GaOx can be formed on the GaN surface by reaction with oxygen even at room temperature. Surface-related defect states associated with the GaOx layer result in large leakage current and severe current collapse at high frequency, inhibiting device performance. Recently, the insertion of a dielectric layer for surface passivation has been reported to mitigate the issues above [1,3,4]. Ta$_2$Os of a dielectric layer for surface passivation has been extensively for high frequency, high power and low noise applications [1,2]. A layer of GaOx can be prepared using the techniques X-ray Photoelectron Spectroscopy (XPS) and Variable Angle Spectroscopic Ellipsometry (VASE). Note that only theoretical values of the valence (VBM) for GaN substrate (Fig. 4a), δOXIDE of Ta 4f CL and VBM for Ta$_2$Os bulk sample (Fig. 4b), and δINT of Ga 3d and Ta 4f CLs for interfacial Ta$_2$Os sample (Fig. 4c). The value of VBO from the data in Fig. 4 is 0.71 ± 0.2 eV, which with the band gap extracted by VASE gives $\delta = 0.35 \pm 0.2$ eV, illustrated schematically in Fig. 5.

4. Conclusion

This paper experimentally demonstrates the band alignment of Ta$_2$Os prepared by RF sputtering on ex-situ HCl treated GaN surface. The HCl treatment is carried out to minimize C and O contaminants on the GaN surface. The VBO of Ta$_2$Os/GaN is found to be 0.71 ± 0.2 eV from the XPS and Kraut’s method, while CBO is derived using the band gaps of GaN (3.34 eV) and Ta$_2$Os (4.4 eV) and found to be 0.35 ± 0.2 eV. The results have importance for developing future GaN based MIS-HEMTs.

Acknowledgements: The work was done under GCRF ‘Digital in India’ project funded by the EPSRC, UK.

References:
Fig. 1: (a) Background subtracted O 1s CL XPS peaks from different cleaning treatments. The HCl treatment shows the lowest intensity. (b) Cl 2p CL XPS spectrum of the GaN surface cleaned by HCl treatment.

Fig. 2: VASE data for the GaN sample (circle) and the best multiple-layer model (red line) in the wavelength range of 240–1700 nm; ∆ fit at: (a) 60°, (b) 65°, (c) 70°, (d) Ψ fit at the three SE angles (60°–75°).

Fig. 3: Photon energy dependence of parametric dielectric function, ε₁ and ε₂, for (a) as-received GaN substrate and (b) 10 nm (nominal) RF magnetron sputtered Ta₂O₅.

Fig. 4: The XPS spectra of: (a) Ga 3d CL for GaN substrate. The spectrum is fitted by 7 components. (b) Ta 4f CL for bulk Ta₂O₅ sample. The inset in (a)–(b) show the VBM estimation from valence band leading edge linear fitting. (c) The XPS spectrum of Ga 3d and Ta 4f CLs for interfacial Ta₂O₅/GaN sample showing the difference between the CLs.

Fig. 5: Band diagrams of experimentally derived band alignment for the Ta₂O₅/GaN interface; (left) Kraut’s method for VBO measurement, and (right) CBO derived using band gap energies by VASE.