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Abstract
Real data are often given as a noisy unstructured point cloud, which is hard to visualize. The important problem
is to represent topological structures hidden in a cloud by using skeletons with cycles. All past skeletonization
methods require extra parameters such as a scale, a noise bound or weights of various quality criteria.

We define a homologically persistent skeleton, which depends only on a cloud of points and contains optimal sub-
graphs representing 1-dimensional cycles in the cloud across all scales. The full skeleton is a universal structure
encoding topological persistence of cycles directly on the cloud. Hence a 1-dimensional shape of a cloud can be
now easily predicted by visualizing our skeleton instead of guessing a scale for the original unstructured cloud.

We derive more subgraphs to reconstruct provably close approximations to an unknown graph given only by a
noisy sample in any metric space. For a cloud of n points in the plane, the full skeleton and all its important
subgraphs can be computed in time O(n logn). A general approximate algorithm has a time at most O(n3).

Categories and Subject Descriptors (according to ACM CCS): I.5.1 [Pattern Recognition]: Models—Structural

1. Introduction: motivations and our contributions

A point cloud C is a finite metric space, namely a finite set
of points with only pairwise distances. The traditional way
to visualize a shape of C is to select a scale a and join all
points of C at a distance not more than 2a. If a cloud C is
high-dimensional, choosing a suitable scale can be hard.

Topological Data Analysis resolves this difficulty by
studying data across all scales. The output is a persistence di-
agram of pairs (birth,death) encoding life spans of topolog-
ical features such as closed cycles from their birth to death.
In the persistence diagram we can select pairs corresponding
to closed cycles with a high persistence death�birth.

However, the pairs (birth,death) alone are insufficient to
actually locate cycles in a given cloud C. That is why, to
visualize the persistence of 1-dimensional cycles hidden in
C across all scales, we introduce a Homologically Persistent
Skeleton HoPeS(C) whose vertices are all points of C.

Now all 1-dimensional cycles that persist in a given cloud
C over many scales are visualized directly on C. The skele-
ton HoPeS(C) depends only on C, but contains shortest sub-

graphs that provably represent the 1-dimensional topology
of C at every continuous scale, see Optimality Theorem 9.

HoPeS(C) is obtained from a Minimum Spanning Tree
MST(C) by adding all critical edges giving birth to (homol-
ogy classes of) 1D cycles in the persistence diagram, see two
red critical edges with labels (birth,death) in Fig. 1.

Figure 1: Left: cloud C ⇢ R2. Middle: MST(C). Right: a
Homologically Persistent Skeleton with 2 red critical edges.

Assuming that a cloud C is a noisy sample of an unknown
graph G, we find another natural hierarchy of derived sub-
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graphs HoPeSk,l(C) that provably approximate G, see The-
orem 15. Starting from any unstructured cloud C, we can
visualize the full skeleton and then study its subgraphs that
contain most persistent cycles depending on integers k, l � 1,
which are easier to choose than a continuous scale a.

Here is a summary of our motivations for HoPeS(C).

• Visualize in one universal skeleton 1-dimensional cycles
hidden in a high-dimensional cloud C across all scales a.

• Extend a classical Minimum Spanning Tree MST(C) of a
cloud C to an optimal graph HoPeS(C) with cycles.

• Solve the skeletonization problem for unstructured clouds
with guarantees and without using any extra parameters.

A high-level description of our contributions is below.

• Definition 6 introduces a Homologically Persistent Skele-
ton HoPeS(C) of a point cloud C, which is the first univer-
sal structure that visualizes 1-dimensional cycles across all
scales directly on the given cloud C in any metric space.

• For any a > 0, Theorem 9 proves that HoPeS(C) contains
a reduced skeleton with a minimum length over all graphs G
having the homology of ‘thickened’ C at the scale a.

• The new Gap Search method in Propositions 11 and 13
strengthens the seminal stability of persistence diagrams by
providing bijections between natural finite subdiagrams.

• For any e-sample C of an unknown graph G, Theorem 15
gives conditions on G when subskeletons HoPeSk,l(C) have
the homotopy type of G and are within the 2e-offset of G.

• Corollary 16 proves that HoPeSk,l(C) is globally stable for
any small perturbations of noisy samples C of graphs G.

2. Comparison with related past skeletonization work

Morse-Smale complex MS( f ,M) is defined for a function
f on a manifold M (or for a discrete gradient field on a
complex). To compare MS( f ,M) with HoPeS(C), which de-
pends on a cloud C, we need more structure on C. In practice
f is a density depending on close neighbors of a point in C.
Let dC(p) be the distance from p 2 Rd to a closest point of
C. Then MS(dC,Rd) is a subdivision of a Delaunay triangu-
lation and has the 1D skeleton larger than HoPeS(C).

Forman’s discrete Morse theory for a cell complex with
a discrete gradient field builds a smaller homotopy equiv-
alent complex whose number of critical cells is minimized
by the algorithm in [LLT04]. Optimality Theorem 9 mini-
mizes the total length of a skeleton, not the number of critical
edges. Removing low persistent edges from the full skeleton
HoPeS(C) to get smaller skeletons HoPeSk,l(C) is similar
to the simplification [EHZ03] of Morse-Smale complexes,
where critical points with close heights are cancelled.

All known skeletonization algorithms for clouds seem to
require extra input parameters such as a scale a or a noise
bound e. Hence all these algorithms can not accept our min-
imal input, which is only a cloud C. That is why any experi-
mental comparison of solutions to 2 different problems will
be unfair and we compare only theoretical aspects below.

Delaunay-based skeletons. R. Singh et al. [SCP00] approx-
imated a skeleton of a shape by a subgraph of a Delaunay
triangulation using 3 thresholds: K for the minimum num-
ber of edges in a cycle and dmin,dmax for inserting/merging
Voronoi regions. Similar parameters are used in [KK02].

Skeletonization via Reeb graphs. Starting from a noisy
sample C of an unknown graph G with a scale parameter,
X. Ge et al. [GSBW11] considered the Reeb graph of the
Vietoris-Rips complex on a cloud C at a given scale a. The
Reeb graph is not intrinsically embedded into any space even
if C ⇢ R2. The reconstruction in [GSBW11, Theorem 3.1]
outputs a graph with a correct homotopy type, while all our
derived skeletons HoPeSk,l(C) also give close geometric ap-
proximations in the 2e-offset of an unknown graph G.

Metric graph reconstruction. M. Aanjaneya et al.
[ACC⇤12] studied a related problem approximating a met-
ric on a large input graph Y by a metric on a small output
graph X̂ . If Y is a good e-approximation to an unknown
graph X , then [ACC⇤12, Theorem 2] guarantees the exis-
tence of a homeomorphism X ! X̂ that distorts the metrics
on X and X̂ with a multiplicative factor 1+ ce for c > 30

b ,
where b > 14.5e is the length of a shortest edge of X . Ac-
cording to [GSBW11], the algorithm may not run on all in-
puts, but only for carefully chosen parameters. The skeletons
HoPeSk,l(C) are well-defined for any cloud C and k, l � 1.

Filamentary structures using Reeb-type graphs.
F. Chazal et al. [CHS15] defined the a-Reeb graph G of a
metric space X at a user-defined scale a. If X is e-close to an
unknown graph with edges of minimum length 8e, then the
output G is 34(b(G)+1)e-close to the input X , where b(G)
is the first Betti number of G, see [CHS15, Theorem 4.9].
The algorithm has the very fast time O(n logn) for n points
in X and needs the scale a.

Graph Induced Complex GIC. T. Dey et al. [DFW13] built
GIC depending on a scale a and a user-defined graph that
spans a cloud C. If C is an e-sample of a good manifold,
then GIC has the same homology H1 as the Vietoris-Rips
complex on C at scales a� 4e. Theorem 15 describes graphs
G that can be geometrically and topologically approximated
from any e-sample C without extra input parameters.

Skeleton for a-offsets in R2. This work extends [CK13,
Kur14b, Kur14a] from locating holes in 2D clouds to a full
skeleton. The Gap Search method in section 6 vastly im-
proves [Kur15a, Theorem 7], which was stated for one sub-
skeleton under stronger assumptions on a graph G ⇢ R2.

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.



V. Kurlin / A one-dimensional homologically persistent skeletonof an unstructured point cloud in any metric space

The key advantage of a Homologically Persistent Skele-
ton HoPeS(C) is its universal scale-independent structure.
In comparison with the persistence diagram of isolated dots
(homology classes), HoPeS(C) shows all persistent cycles
directly on a cloud C. In comparison with all algorithms that
require a scale a, the skeleton HoPeS(C) contains a hierar-
chy of derived skeletons HoPeSk,l(C) independent of a.

The derived skeletons are most persistent subgraphs of
HoPeS(C) depending on integer indices k, l � 1, which are
easier to choose a posteriori rather than a continuous scale
a a priori. We may start from the ‘simplest guess’ k = l = 1
and then try k = 2, l = 1 without re-running the algorithm,
but only selecting a different subgraph of HoPeS(C).

3. Filtrations of complexes and persistent homology

The shape of a cloud C in any metric space M is usually vi-
sualized by fixing a scale a > 0 and considering the a-offset
Ca ⇢ M that is the union of closed balls with the radius a
and centers at all points of C. When the scale a is increas-
ing, the a-offsets form the filtration {Ca} that is the nested
sequence C =C0 ⇢ . . .⇢Ca ⇢ . . .⇢C+1 = M. A cloud C
is an e-sample of a set G ⇢ M if C ⇢ Ge and G ⇢Ce.

Since Ca may have complicated shapes, but continuously
deform to simpler Čech complexes [Kur15b, Appendix A].
A faster computable filtration on a cloud C is by the Vietoris-
Rips complexes. For any scale a, the complex VR(C;a) has
a k-dimensional simplex on points v0, . . . ,vk 2 C whenever
the distance D(vi,v j) 2a for all 0  i < j  k.

Figure 2: The Vietoris-Rips complexes VR(C;1.5),
VR(C;2) and VR(C;2.5) for the point cloud C in Fig. 1.

VR(C;a) can be high-dimensional even if C ⇢ R2. Any
VR(C;a) is uniquely determined by its 1-dimensional skele-
ton VR1(C;a) whose simplices are spanned by cliques
(complete subgraphs) of VR1(C;a). The last picture in
Fig. 2 shows a plane projection of VR(C;2.5) with 2 sym-
metric tetrahedra having longest edges of length 5.

The reader may consider only the Vietoris-Rips filtra-
tion {VR(C;a)}. However, our key results work for gen-
eral complexes and require the concept of a length relative to
an ascending filtration {Q(C;a)} of complexes on C, where
Q(C;0) =C and Q(C;a)⇢ Q(C;a0) for any a  a0.

The length of the edge e between any two points of C rela-
tive to {Q(C;a)} is the doubled scale a when e enters Q(a),
so |e|= 2min{a : e ⇢ Q(C;a)}. If e doesn’t enter Q(C;a)
for any a, we set |e|=+1. The condition Q(C;0) =C im-
plies that the length of any edge between points of C is pos-
itive. For both filtrations {Ca} and {VR(C;a)}, this length
|e| coincides with the original metric on the cloud C.

The key idea of Topological Data Analysis is to study
topological features such as homology that persist across
many scales in a filtration {Q(C;a)}. The 0-dimensional
homology H0(Q) of a complex Q is the vector space for-
mally generated by connected components of Q. The 1-
dimensional homology H1(Q) is similarly formed by linear
combinations of non-trivial 1-dimensional cycles, say with
coefficients in Z2 = {0,1}, see [Kur15b, Appendix A].

For instance, VR(1.5) in Fig. 2 is one cycle, so H1 = Z2
has dimension 1. The complex VR(C;2) looks like the char-
acter q with 2 ‘independent’ small cycles, whose ‘sum’ gives
the big cycle, hence H1 = Z2 �Z2 has dimension 2. All cy-
cles in the larger complex VR(C;2.5) are contractible, hence
H1 = 0. If a complex Q is disconnected, then its homology
H1(Q) is considered as the direct sum of the 1-dimensional
homology groups of all connected components of Q.

Increasing the scale a in a filtration {Q(C;a)} of com-
plexes on a cloud C, we will watch how (homology classes
of) 1-dimensional cycles are born and die in H1(Q(C;a)).
Any inclusion f : Q(C;ai)⇢ Q(C;a j) induces a homomor-
phism f⇤ : H1(Q(C;ai))! H1(Q(C;a j)). These homomor-
phisms for ai < a j are crucial for defining life intervals
(from birth to death) of homological classes below.

For C ⇢R2 in Fig. 1 and a= 1.5, when 2 horizontal edges
of length 3 enter VR(C,1.5), a first cycle appears, so a ho-
mology class g1 is born at birth(g1) = 1.5. For a = 2, the
horizontal edge of length 4 enters VR(C,2) and the big cycle
splits into 2 smaller cycles. So a homology class g2 is born
at birth(g2) = 2. Both g1,g2 die at a = 2.5 when their repre-
sentative cycles become contractible within VR(C;2.5).

Definition 1 (births and deaths) For any filtration
{Q(C;a)} of complexes on a cloud C in a metric space, a
homology class g 2 H1(Q(C;ai)) is born at ai = birth(g)
if g is not in the full image under the induced homomor-
phism H1(Q(C;a)) ! H1(Q(C;ai)) for any a < ai. The
class g dies at a j = death(g) � ai when the image of g un-
der H1(Q(C;ai)) ! H1(Q(C;a j)) merges into the full im-
age under H1(Q(C;a))! H1(Q(C;a j)) for some a < ai.

The births and deaths from Definition 1 are all critical
scales a1, . . . ,am when the homology group H1(Q(C;a))
changes, so the induced homomorphisms H1(Q(C;a1)) !
H1(Q(C;a2)) ! . . . ! H1(Q(C;am)) are not isomor-
phisms. This sequence of homomorphisms for the com-
plexes VR(C;a) in Fig. 2 is 0 ! Z2 ! Z2 �Z2 ! 0 cor-
responding to the scales a = 0, 1.5, 2, 2.5. The persistence
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diagram below consists of the pairs (birth,death), which will
be called dots to distinguish them from points of a cloud C.

Definition 2 (persistence diagram) Fix a filtration
{Q(C;a)} of complexes on a set C. Let a1, . . . ,am be
all critical scales when the homology group H1(Q(C;a))
changes. Let µi j be the number of independent classes in
H1(Q(C;a)) that are born at ai and die at a j. The persis-
tence diagram PD{Q(C;a)}⇢R2 is the multi-set consisting
of all dots (ai,a j) 2 R2 with the multiplicities µi j � 1 and
all diagonal dots (x,x) with the infinite multiplicity.

For the cloud C in Fig. 1 and the filtration {Ca}, the ho-
mology H1 has 2 classes that persist over 1.5  a < R and
2  a < R, where R = 15

8
p

17 is the circumradius of the
largest Delaunay triangle with sides 4,

p
17,5 in Fig. 2. We

use the approximate value R ⇡ 2.577 for simplicity. Hence
the persistence diagram PD{Ca} has 2 off-diagonal red dots
(1.5,2.577) and (2,2.577) in the last picture of Fig. 3.

Figure 3: The a-offsets C1.5, C2 and the 1-dimensional per-
sistence diagram PD{Ca} for the cloud C in Fig. 1.

Using persistence for noisy data is justified by Stability
Theorem [EH10, section VIII.2] roughly saying that perturb-
ing a cloud by e perturbes the persistence diagram also by at
most e, see [Kur15b, Appendix A]. This stability is crucial
for our Reconstruction Theorem 15, while the classical me-
dial axis is unstable for noisy inputs according to [ABE09].

4. A Homologically Persistent Skeleton HoPeS(C)

To motivate the new concept of a Homologically Persistent
Skeleton in key Definition 6, we explain below the simpler 0-
dimensional case when a Minimum Spanning Tree MST(C)
nicely summarizes the single-edge clusters of a cloud C at
all scales a. In sections 4 and 5, we always fix a filtration
{Q(C;a)} of complexes on a cloud C in a metric space M.
So MST and HoPeS depend on any filtration {Q(C;a)}, but
we use the simpler notations MST(C) and HoPeS(C).

Definition 3 (MST) Fix a filtration {Q(C;a)} of complexes
on a cloud C. A Minimum Spanning Tree MST(C) is a con-
nected graph with the vertex set C and the minimum total
length of edges relative to the filtration {Q(C;a)}. For any
scale a � 0, a forest MST(C;a) is obtained from MST(C)
by removing all open edges that are longer than 2a.

A graph G spans a possibly disconnected complex Q on a
cloud C if G has the vertex set C, every edge of G belongs to

Q and the inclusion G ⇢ Q induces a 1-1 correspondence be-
tween connected components. Lemma 4 says that MST(C)
for every a > 0 contains the shortest forest that identifies all
single-edge clusters of C. The single-edge clustering of C at
a scale a > 0 means that points p,q 2C belong to the same
cluster if and only if the distance D(p,q) a.

Lemma 4 Fix a filtration {Q(C;a)} of complexes on a cloud
C in a metric space. For any fixed scale a � 0, the forest
MST(C;a) has the minimum total length of edges among
all graphs that span Q(C;a) at the same scale a.

Proof Let e1, . . . ,em ⇢ MST(C) be all edges longer than
2a, so MST(C) = e1 [ . . .[ em [MST(C;a). Assume that
there is a graph G that spans Q(C;a) and is shorter than
MST(C;a). Then the connected graph G[ e1 [ . . .[ em has
the vertex set C and is shorter than a Minimum Spanning
Tree MST(C), which contradicts Definition 3.

Our first main Theorem 9 extends Lemma 4 from MST(C)
to the skeleton HoPeS(C) with cycles summarizing all 1-
dimensional persistence of C instead of only clusters.

Definition 5 (critical edges) Fix a filtration {Q(C;a)} of
complexes on a cloud C. Each off-diagonal dot (ai,a j) 2
PD{Q(C;a)} corresponds to a homology class g that persists
in H1(Q(C;a)) over ai  a < a j. The class g was formed
(born) after adding a last edge e to Q(C;ai). This edge e is
called critical and has the associated label (ai,a j).

For a fixed scale a> 0, the above inequalities ai a<a j
describe the axes-aligned rectangle in the persistence dia-
gram PD{Q(C;a)} with the bottom right corner at the dot
(a,a). This rectangle contains (birth,death) of all classes
that are ‘alive’ at the scale a. That is why at a fixed scale a
we will ignore all critical edges e with death(e) a.

Definition 6 (HoPeS) A Homologically Persistent Skeleton
HoPeS(C) is the union of a minimum spanning tree MST(C)
and all critical edges with their labels (birth,death).

For any scale a � 0, the reduced skeleton HoPeS(C;a) is
obtained from HoPeS(C) by removing all edges that are
longer than 2a and all critical edges e with death(e) a.

If some distances between points of C are the same,
then MST(C), hence HoPeS(C), is not unique. The com-
plex Q(C;0) in any our filtration coincides with a cloud C,
so HoPeS(C;0) = C. By Definition 6 a critical edge e be-
longs to the reduced skeleton HoPeS(C;a) if and only if
birth(e) a < death(e). Hence the homology class born due
to the addition of e is alive at the scale a. Namely, any criti-
cal edge e is added to HoPeS(C;a) at a = birth(e) and will
be later removed at the larger scale a = death(e).

When a is increasing, the sequence of HoPeS(C;a) may
not be monotone. But if HoPeS(C;a) has become con-
nected, it will stay connected for all larger a. Indeed, remov-
ing a critical edge destroys only a cycle, not connectivity.

c� 2015 The Author(s)
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5. Optimality of reduced skeletons HoPeS(C;a)

In this section we prove first properties of the skeleton
HoPeS(C) including Optimality Theorem 9. Proposition 7
says that the persistence diagram PD{Q(C;a)} of isolated
dots can be turned into a graph structure on a cloud C. So
the skeleton HoPeS(C) naturally ‘structurizes’ isolated dots
in the 1-dimensional persistence diagram PD{Q(C;a)}.

Proposition 7 Fix a filtration {Q(C;a)} of complexes on a
cloud C in a metric space. The 1-dimensional persistence di-
agram PD{Q(C;a)} can be canonically reconstructed from
a full Homologically Persistent Skeleton HoPeS(C).

Proof By Definitions 5 and 6 any off-diagonal dot (ai,a j)2
PD{Q(C;a)} corresponds to a critical edge of HoPeS(C)
with the label (ai,a j). We can easily read the labels on all
critical edges of HoPeS(C) to get all off-diagonal dots in the
persistence diagram PD{Q(C;a)}.

Proposition 8 means that HoPeS(C) can be used for com-
paring point clouds up to isometries and uniform scaling in a
metric space. Indeed, the definitionof the bottleneck distance
dB between persistence diagrams in [Kur15b, Appendix A]
is easily re-stated for skeletons with labels (birth,death).

Proposition 8 The topology of a Homologically Persis-
tent Skeleton HoPeS(C) with all labels is preserved under
any isometric transformation of a cloud C. If a cloud C
is fixed and a filtration {Q(C;a)} is re-parameterized by
a 7! constant ·a, then HoPeS(C) has the same combinatorial
structure, but all labels will be multiplied by the constant.

Proof The complexes Q(C;a) are unaffected by isometries
of C. If a is multiplied by a constant, we multiply all births
and deaths in PD{Q(C;a)} by the same constant.

Theorem 9 naturally extends the optimality of MST(C)
of a cloud C in Lemma 4 from dimension 0 (single-edge
clusters of C) to dimension 1 (persistent cycles hidden in C).

Theorem 9 (optimality of reduced skeletons at all scales)
Fix a filtration {Q(C;a)} of complexes on a cloud C in a
metric space. For any fixed scale a > 0, the reduced skele-
ton HoPeS(C;a) has the minimum total length of edges over
all graphs G ⇢ Q(C;a) that span Q(C;a) and induce an iso-
morphism in homology H1(G)! H1(Q(C;a)).

Theorem 9 and all further results have proofs in [Kur15b,
Appendices B,C]. In section 8 we discuss computations and
approximations of HoPeS(C) in any metric space.

6. The Gap Search strengthens stability of persistence

In sections 6, 7 we consider 1-dimensional persistence dia-
grams only for a-offsets of a subspace C in a metric space M,
where C can be a cloud or a graph G⇢M. We strengthen Sta-
bility Theorem [EH10, section VIII.2] restricting a bijection
between original infinite persistence diagrams to a bijection
between finite subdiagrams in Propositions 11, 13.

We will use a Homologically Persistent Skeleton
HoPeS(C) to reconstruct an unknown graph G in a metric
space M from a noisy sample C. However, a full skeleton
HoPeS(C) contains too many critical edges that are in a 1-
1 correspondence with all off-diagonal dots in the persis-
tence diagram PD{Ca}. We will derive smaller skeletons
HoPeSk,l(C) by removing critical edges with (1) a low per-
sistence and (2) a high persistence and large birth times.

Critical edges of type (1) above correspond to homology
classes that die shortly after birth. Critical edges of type (2)
form cycles that live long, but are born only at large scales
a. These large cycles are not present in a graph G given by
a sample C, but are formed when distant edges of G start
overlapping with each other after a substantial thickening of
G. The diagonal gaps quantify our perception of the persis-
tence diagram, because we naturally look for a widest gap to
separate persistent features from noisy artefacts.

The persistence diagram PD{Ca} technically includes all
diagonal dots (x,x) 2 R2. Below we define smaller subdia-
grams of PD{Ca} consisting of finitely many dots.

Definition 10 (gap dgapk, subdiagram DSk, scale dsk) For
any subspace C of a metric space, a diagonal gap is a strip
{0  a < y�x < b} that has dots of PD{Ca} in both bound-
ary lines {y�x = a} and {y�x = b}, but not inside the strip.
For any integer k � 1, the k-th widest diagonal gap dgapk(C)
has the k-th largest vertical width |dgapk(C)|= b�a.

The diagonal subdiagram DSk(C) ⇢ PD{Ca} consists of
only the dots above the lowest of the first k widest dgapi(C),
i = 1, . . . ,k. So each DSk(C) is bounded below by y� x = a
and has the diagonal scale dsk(C) = a.

In Definition 10 if PD{Ca} has different diagonal gaps
with the same width, we say that a lower diagonal gap has
a larger width. If PD{Ca} has dots only in m different lines
{y� x = ai > 0}, i = 1, . . . ,m, we have exactly m diagonal
gaps dgapi(C). We ignore the highest gap {y� x > maxai},
so we set dgapi(C) = ; and |dgapi(C)|= 0 for i > m.

Figure 4: Subdiagrams DSk(C),VSk,l(C) ⇢ PD{Ca} from
Definitions 10 and 12 for the cloud C in Fig. 1.

The cloud C in Fig. 1 has the persistence diagram PD{Ca}
with only 2 off-diagonal dots (1.5,2.577) and (2,2.577).
Then dgap1(C) = {0 < y�x < 0.577} is below dgap2(C) =
{0.577 < y� x < 1.577}. So DS1(C) = DS2(C) consists of
(1.5,2.577),(2,2.577), ds1(C) = ds2(C) = 0.577 in Fig. 4.
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Definition 10 makes sense in any persistence diagram, say
for a-offsets Ga of a graph G ⇢ M. The graph q in Fig. 5
has the 1-dimensional persistence diagram PD{qa} contain-
ing only one off-diagonal dot (0,2.577) of multiplicity 2.
Then dgap1(q) = {0 < y� x < 2.577}, |dgap2(q)| = 0 and
DS1(q) = {(0,2.577),(0,2.577)} and ds1(q) = 2.577.

Stability Theorem [EH10, section VIII.2] briefly says that,
for any e-sample C of G, there is a bijection between infinite
persistence diagrams y : PD{Ga} ! PD{Ca} so that the
L1-distance ||q�y(q)||1  e for any q 2 PD{Ga}.

Proposition 11 below restricts such a bijection y to finite
subdiagrams of only finitely many dots (with high persis-
tence) above the k-th widest diagonal gap in persistence.

Proposition 11 Let C be any e-sample of a graph G. If
|dgapk(G)|� |dgapk+1(G)| > 8e, there is a bijection y :
DSk(G)! DSk(C) so that ||q�y(q)||1  e, q 2 DSk(G).

If we reconstruct cycles of G from a noisy sample C
using a close diagram PD{Ca}, we should look for dots
(birth,death) having a high persistence death � birth and
small birth. Hence we search for a vertical gap that separates
dots (birth,death) having a small birth and all other dots.

Definition 12 (gap vgapk,l , subdiagram VSk,l , scale vsk,l)
In the subdiagram DSk(C) from Definition 10 a vertical gap
is a widest vertical strip {a < x < b} whose boundary con-
tains a dot from DSk(C) in the line {x= a}, but not inside the
strip. For l � 1, the l-th widest vertical gap vgapk,l(C) has
the l-th largest horizontal width |vgapk,l(C)| = b� a. The
vertical subdiagram VSk,l(C)⇢ DSk(C) consists of only the
dots to the left of the first l widest vertical gaps vgapk, j(C),
j = 1, . . . , l. So each VSk,l(C) is bounded on the right by the
line x = b and has the vertical scale vsk,l(C) = a.

In Definition 12 if there are different vertical gaps with the
same horizontal width, we say that the leftmost vertical gap
has a larger width. So we prefer the leftmost vertical gap,
while in Definition 10 we prefer the lowest diagonal gap.

Figure 5: The graph q ⇢ R2 with the a-offset q1 and the
1-dimensional persistence diagram PD{qa}.

We allow the case b = +1, so the widest vertical
gap vgapk,1(C) always has the form {x > a}, V S1,1(C) =
DS1(C) and we set |vgapk,1(C)| = +1. If DSk(C) has dots
in m � 1 different lines {x = bl � 0}, l = 1, . . . ,m, then
DSk(C) has exactly m vertical gaps vgapk,l(C).

For the cloud C in Fig. 1, the diagonal subdiagram
DS1(C) has vgap1,1(C) = {x > 2}, vgap1,2(C) = {1.5 < x <
2}, VS1,1(C) = {(1.5,2.577), (2,2.577)} and VS1,2(C) =
{(1.5,2.577)}, so vs1,1(C) = 2, vs1,2(C) = 1.5, see Fig. 4.
Any finite cloud C has no cycles at a = 0, hence PD{Ca}
has no dots in the vertical death axis, so any vgapk,l(C) has
a left boundary line {x = a > 0} and all vsk,l(C)> 0.

Definition 12 makes sense for any persistence diagram,
say for a-offsets Ga of a graph G in a metric space. The di-
agonal subdiagram DS1(q) for the graph q in Fig. 5 consists
of the doubled dot (0,2.577). The only vertical subdiagram
VS1,1(q) is within the vertical death axis and consists of the
same doubled dot (0,2.577), so vs1,1(q) = 0.

Proposition 13 Let y : DSk(G) ! DSk(C) be a bijection
such that ||q�y(q)||1  e for all dots q 2 DSk(G) as in
Proposition 11. If |vgapk,l(G)|� |vgapk,l+1(G)| > 4e for
some l � 1, then y restricts to a bijection VSk,l(G) !
VSk,l(C) between smaller vertical subdiagrams.

7. Reconstructions by derived skeletons HoPeSk,l(C)

Definition 14 (derived skeletons HoPeSk,l) Let C be a finite
cloud in a metric space. For integers k, l � 1, the derived
skeleton HoPeSk,l(C) is obtained from a full Homologically
Persistent Skeleton HoPeS(C) by removing all edges that are
longer than 2vsk,l(C) and keeping only critical edges with
(birth,death) 2 VSk,l(C) and with death > vsk,l(C).

For the cloud C in Fig. 1, we have vs1,1(C) = 2 and
vs1,2(C) = 1.5. Hence the derived skeleton HoPeS1,1(C) co-
incides with full HoPeS(C), while HoPeS1,2(C) misses only
the middle edge of length 4. The critical scale vsk,l(C) is de-
fined in such a way that the derived skeleton HoPeSk,l(C) is
within the reduced skeleton HoPeS(C;vsk,l(C)).

Our second main Theorem 15 guarantees a reconstruction
of a good enough graph G from any noisy e-sample C up to
homotopy equivalence. The homotopy type of a connected
graph G is completely determined by its homology H1(G).
Namely, G is homotopy equivalent to a wedge of b(G) loops,
where the first Betti number is b(G) = dimH1(G).

Theorem 15 (reconstruction by derived skeletons) Let C
be any e-sample of an unknown graph G in a metric space, so
C ⇢ Ge and G ⇢Ce. Let G satisfy the following conditions.
(1) All cycles L ⇢ G are ‘persistent’, namely death(L) �
dsk(G) for some index k � 1.
(2) The width |dgapk(G)| ‘jumps’, namely |dgapk(G)|�
|dgapk+1(G)|> 8e for the same k as in (1).
(3) No cycles are born in a-offsets Ga for ‘small’ a > 0,
namely vsk,l(G) = 0 for some l � 1.
(4) The width |vgapk,l(G)| ‘jumps’, so |vgapk,l(G)| �
|vgapk,l+1(G)|> 4e for the same k, l as above.
Then we get the lower bound for noise vsk,l(C)  e and the
derived skeleton HoPeSk,l(C)⇢ G2e has the same H1 as G.

c� 2015 The Author(s)
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Conditions (1)–(4) of Theorem 15 are stated in terms of
the persistence diagram PD{Ga} for simplicity. However,
all characteristics like |dgapk(G)| and |vgapk,l(G)| can be
defined purely in terms of a-offsets Ga ⇢ M. Indeed, any
dot (birth,death) 2 PD{Ga} corresponds to the life span of
a homology class in H1(Ga) over birth  a < death.

For a fixed graph G, Theorem 15 can be satisfied by many
different indices k, l � 1. Hence, starting from only a cloud
C, we get many approximations by HoPeSk,l(C) to an un-
known graph G within the 2e-offset G2e ⇢ M. Moreover, we
can estimate the closeness of our approximation due to the
lower bound vsk,l(C) e of an unknown noise level e.

In the proof of Theorem 15 condition (1) implies that
the homology class of each cycle L ⇢ G is captured in the
subdiagrams DSk(G),VSk,l(G). The diagonal scales dsk(G)
are expected to be low, because the diagonal subdiagram
DSk(G) is above the lowest of the first k widest dgapi(G),
i = 1, . . . ,k. If we consider C in Fig. 1 as an e-sample of the
graph q in Fig. 5, then condition (1) holds, because all cycles
of q have death = 2.577 and both ds1(q) = ds2(q) = 2.577.

Let G ⇢ R2 be a distant union of 2 circles with radii
R1 < R2. Then PD{Ga} has only 2 off-diagonal dots
(0,R1),(0,R2). If R2 > 2R1, then dgap1(G) = {R1 < y�x <
R2}, so ds1(G) = R2 is larger than the death radius of the 1st
circle. Here condition (1) fails for k = 1, because the 1st cir-
cle is ‘too small’ in comparison with the 2nd circle.

However, the 2nd widest diagonal gap is dgap2(G) =
{0 < y� x < R1}, so ds2(G) = R1 and condition (1) holds.
Namely both dots (0,R1) and (0,R2) are captured in the di-
agonal subdiagram DS2(G). For radii R1 < R2  2R1, con-
dition (1) holds for both possible indices k = 1, k = 2.

Conditions (2) and (4) are the same as in Proposi-
tions 11, 13, which will imply that the vertical subdiagrams
VSk,l(G),VSk,l(C) are e-close in the bottleneck distance
dB. All diagonal gaps are ordered by their vertical widths:
|dgap1(G)| � |dgap2(G)| � . . ., where we can set the last
width as 0, say for the empty diagonal gap {0 < y�x < 0}.

So if PD{Ga} isn’t empty, we can always find different
successive widths |dgapk(G)| > |dgapk+1(G)|. Hence Con-
dition (2) holds for any e < 1

8 (|dgapk(G)|� |dgapk+1(G)|).
The same arguments apply to condition (4), which certainly
holds for l = 1. Indeed, the 1st widest vertical gap has the
infinite width |vgapk,1(G)|=+1 by Definition 12.

If a graph G is a tree without cycles, so H1(G) = 0 and
no 1-dimensional homology classes are born at a = 0, then
PD{Ga} has no dots in the vertical axis and any vsk,l(G) >
0, hence condition (3) fails. Actually, our attempt to approx-
imate a tree G from only a cloud C fails naturally, because
the dot closest to the vertical death axis in PD{Ga} is con-
sidered as a ‘noisy’ perturbation of the dot (0,death(L)) rep-
resenting a non-existing cycle L of the tree G.

For a graph G with cycles, we explain why condition (3)
isn’t restrictive. Let {0 < x < w} be the leftmost vertical gap
in the diagonal subdiagram DSk(G). Denote by lmin the min-
imum index with |vgapk,l(G)|  w. Then all further verti-
cal gaps can be only thinner, hence the leftmost of any first
l � lmin vertical gaps is {0 < x < w}, so vsk,l(G) = 0.

Corollary 16 In the conditions of Theorem 15 if another
cloud C̃ is d-close to C, then the perturbed derived skeleton
HoPeSk,l(C̃) is (2d+4e)-close to HoPeSk,l(C).

The skeletons HoPeSk,l(C) have vertices at all points of
C and are locally sensitive to perturbations of C. However,
Corollary 16 justifies that HoPeSk,l(C) are globally stable in
the most practical case for noisy samples C of graphs G.

8. Algorithms, experiments, discussion and problems

Fig. 6–8 show the derived skeletons HoPeS1,1(C), which
were computed for clouds C ⇢ R2 of n points in time
O(n logn), see details in [Kur15b, Appendix D]. This
algorithm uses a duality between 0-dimensional and 1-
dimensional persistence for a-complexes obtained from a
Delaunay triangulation Del(C) ⇢ R2 [EH10]. Starting from
Del(C), we consider all edges in the decreasing order of
length and find all critical edges when two components of
R2 �Ca merge. At the end R2 �C(a) becomes a single
component, we get MST(C) and add all critical edges. The
simplified graphs are obtained by collapsing edges of half-
lengths shorter than vsk,l(C) e justified by Theorem 15.

Figure 6: Top: cloud C of 999 points and PD{Ca}. Bottom:
derived skeleton HoPeS1,1(C) and its rough simplification.

For a cloud C of n points in any metric space, the 1-
dimensional persistence diagram is found [EH10] in time
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O(m3), where m = O(n3) is the size of the largest 2-
dimensional complex in a given filtration on C. This algo-
rithm allows us in parallel to record in all critical edges,
usually called positive, because they create 1D cycles, while
edges of MST(C) are negative, because they lead to a
merger of components. Hence the skeletons HoPeS(C),
HoPeS(C;a), HoPeSk,l(C) are found in the same time.

In Fig. 9–12 clouds C are extracted from images using the
Canny edge detector with the low threshold 150 and ratio 3.

Figure 7: Top: cloud C of 999 points and PD{Ca}. Bottom:
derived skeleton HoPeS1,1(C) and its rough simplification.

This work was supported by the EPSRC-funded
secondment at Microsoft Research Cambridge,
UK. A C++ code is at http://kurlin.org/

persistent-skeletons.php. The author thanks
all reviewers for their helpful suggestions and is open for
collaboration on problems below and any related projects.

• Simplify HoPeS(C) to get a smoother and locally stable
skeleton that has fewer vertices than C, but still guarantees a
close geometric approximation as in Theorem 15.

• Generalize Theorem 15 for unbounded noise similarly to
the recent advance in dealing with outliers [BCD⇤15].
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Appendix A: background on complexes and homology

To avoid any confusion, we continue numbering definitions,
claims and figures in the appendices below as in the paper.

Definition 17 (simplicial complex) A simplicial complex
Q with a vertex set V is a collection of finite subsets
{v0, . . . ,vk}⇢V (called simplices) such that
• any subset (called a face) of a simplex is also a simplex
and is included in Q;
• any non-empty intersection of simplices is their common
face included in Q.

Any simplex on k+1 vertices has this geometric realization:

Dk = {(t0, t1, . . . , tk)2Rk | t0+t1+ . . .+tk  1, ti � 0}⇢Rk.

We define the geometric realization of any simplicial com-
plex Q by gluing realizations of all its simplices along their
common faces. Hence Q inherits the Euclidean topology.

The dimension of a simplex spanned by k+ 1 vertices is
k. The dimension of a complex Q is the maximum dimen-
sion of its simplices. A 1-dimensional cycle in a complex Q
is a sequence of edges e1, . . . ,ek such that ei and ei+1 have
the same endpoint, where ek+1 = e1. Below we define the
homology group H1(Q) of a simplicial complex Q only with
coefficients in the group Z2 = Z/2Z= {0,1}.

Definition 18 (homology H1(Q) of a complex) Cycles of a
complex Q can be algebraically written as finite linear com-
binations of edges (with coefficients 0 or 1) and generate the
vector space C1 of cycles. The boundaries of all triangles in
Q are cycles of 3 edges and generate the space B1 ⇢C1. The
quotient space C1/B1 is the homology group H1(Q). The op-
eration is the addition of cycles, the empty cycle is the zero.

The sphere S2 has trivial H1(S2) = 0, the torus T has
H1(T ) = Z2�Z2. Even if a simplicial complex Q is infinite,
say the Vietoris-Rips complex of an infinite set, H1(Q) is
well-defined in terms of finite linear combinations of edges.

Definition 19 (homotopy equivalence) Topological spaces
are called homotopy equivalent X ⇠ Y if there is a pair of
continuous maps f : X ! Y and g : Y ! X such that both

compositions f �g : Y ! X ! Y , g� f : X ! Y ! X can be
deformed to the identities idY , idX via continuous families of
intermediate continuous maps Y ! Y , X ! X , respectively.

Definition 20 (Čech complex) Let C be any set in a metric
space M. The ambient Čech complex Čh(C,M;a) has a sim-
plex on v0, . . . ,vk 2 C if the full intersection of k+ 1 closed
balls with the radius a and centers v0, . . . ,vk has a point from
the ambient space M, see [CdSO14, section 4.2.3].

Definition 20 makes sense for any infinite subset C of a
metric space M, say for the graph q ⇢ R2 in Fig. 5. Then
Čh(q,M;a) has the homotopy type of the a-offset qa ⇢ M
by Nerve Lemma 21. Both cycles of q are born at a = 0 and
die at a = 2.577. Hence PD{Čh(q,R2;a)} has only one off-
diagonal dot (0,2.577) with multiplicity µ = 2, see Fig. 5.

Lemma 21 [Hat01, Corollary 4G.3] Let C be a subspace of
a metric space M. Then any a-offset Ca ⇢ M is homotopy
equivalent to the ambient Čech complex Čh(C,M;a).

We define the bottleneck distance dB between persistence
diagrams needed for Stability Theorem 23 below.

Definition 22 (bottleneck distance dB) For points p =
(x1,y1), q = (x2,y2) in R2, we recall the L1-distance
||p� q||1 = max{|x1 � x2|, |y1 � y2|}. The bottleneck dis-
tance between persistence diagrams PD,PD0 is defined by
dB = inf

y
sup

q2PD
||q�y(q)||1 for all bijections y : PD ! PD0.

Stability Theorem 23 below informally says that any
small perturbation of original data leads to a small perturba-
tion of the persistence diagram. A metric space M is totally
bounded if M has a finite e-sample C ⇢ M for any e > 0.

Theorem 23 [CdSO14, simplified Theorem 5.6] Let C
be an e-sample of a graph G in a totally bounded met-
ric space M. Then the 1-dimensional persistence dia-
grams of Čech filtrations on G and C are e-close, namely
dB(PD{Čh(G,M;a)},PD{Čh(C,M;a)}) e.
The same inequality holds for the filtrations of a-offsets by
Nerve Lemma 21, namely dB(PD{Ga},PD{Ca}) e.

Appendix B: detailed proof of Optimality Theorem 9

Theorem 9 will follow from Lemma 24 and Propositions 28
and 30, which require Lemmas 25, 26, 27 below. Recall that
we fix a filtration {Q(C;a)} of complexes on a cloud C, but
use the simpler notation HoPeS(C) for the skeleton.

Lemma 24 Let a class g 2 H1(Q(C;a)) be born due to a crit-
ical edge e added to Q(a). Then 2birth(g) equals the length
|e| relative to the filtration {Q(C;a)}, see section 3.

Proof By Definition 5 the critical edge e(g) is the last edge
added to a cycle L ⇢ Q(C;a) giving birth to the homology
class g at a = birth(g). The length |e| equals the doubled
scale 2a when e enters Q(C;a), so |e(g)|= 2birth(g).

Lemma 25 For any scale a > 0, the reduced skeleton
HoPeS(C;a) is a subgraph of the complex Q(C;a).

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.

http://kurlin.org/projects/hopes.pdf
http://kurlin.org/projects/hopes.pdf
http://kurlin.org/projects/persistent-skeleton.pdf
http://kurlin.org/projects/persistent-skeleton.pdf


V. Kurlin / A one-dimensional homologically persistent skeletonof an unstructured point cloud in any metric space

Proof By Definition 6, for any a > 0, the skeleton
HoPeS(C;a) consists of the forest MST(C;a) and all crit-
ical edges with lengths |e|  2a. Lemma 4 implies that
MST(C;a) ⇢ Q(C;a). Any critical edge e ⇢ HoPeS(C)
belongs to the complex Q(C;a) for 2a = |e|. Hence
HoPeS(C;a)⇢ Q(C;a).

The inclusion HoPeS(C;a) ⇢ Q(C;a) in Lemma 25 in-
duces a homomorphism f⇤ in H1. Lemmas 26 and 27 ana-
lyze what happens with f⇤ when a critical edge e is added to
(or deleted from) Q = Q(C;a) and G = HoPeS(C;a).

Lemma 26 (addition of a critical edge) Let an inclusion f :
G ! Q of a graph G into a simplicial complex Q induce an
isomorphism f⇤ : H1(G) ! H1(Q). Between some vertices
u,v 2 G let us add an edge e to both G and S that creates a
new homology class g 2 H1(Q[ e). Then f⇤ extends to an
isomorphism H1(G[ e)! H1(Q[ e).

Proof Let L ⇢ G[ e be a cycle containing the added edge e.
Then f extends to the inclusion G[ e ! Q[ e and induces
the isomorphism H1(G[ e) ⇠= H1(G)�h[L]i. Now f (L) is
a cycle in Q[ e and H1(Q[ e) ⇠= H1(S)� h[ f (L)]i. Map-
ping [L] to [ f (L)] 2 H1(Q[ e), we extend f⇤ to a required
isomorphism H1(G)�h[L]i ! H1(Q)�h[ f (L)]i.

Lemma 27 (deletion of a critical edge) Let an inclusion
f : G ! Q of a graph G into a simplicial complex Q induce
an isomorphism f⇤ : H1(G)! H1(Q). Let a homology class
g 2 H1(Q) die after adding a triangle T to the complex Q.
Let a e be a longest open edge of the triangle T . Then f⇤
descends to an isomorphism H1(G� e)! H1(Q[T ).

Proof Adding the triangle T to the complex Q kills the ho-
mology class ∂T of the boundary ∂T ⇢ G. Then H1(Q [
T ) ⇠= H1(Q)/h[∂T ]i. Deleting the open edge e from the
boundary ∂T ⇢ G makes the homology group smaller:
H1(G� e) ⇠= H1(G)/h[∂T ]i. The isomorphism f⇤ descends
to the isomorphism H1(G)/h[∂T ]i ! H1(Q)/h[∂T ]i.

Proposition 28 The inclusion HoPeS(C;a)! Q(C;a) from
Lemma 25 induces an isomorphism of 1-dimensional ho-
mology groups: H1(HoPeS(C;a))! H1(Q(C;a)).

Proof At the scale a = 0, the reduced skeleton HoPeS(C;0)
and the complex Q(C;0) coincide with the cloud C, so their
1-dimensional homology groups are trivial. Each time when
a homology class is born or dies in H1(Q(C;a)), the iso-
morphism in H1 induced by the inclusion HoPeS(C;a) !
Q(C;a) is preserved by Lemmas 26 and 27.

Lemma 29 Let a cycle L ⇢ Q(C;a) represent a homology
class g 2 H1(Q(C;a)) in the diagram PD{Q(C;a)}. Then
any longest edge e ⇢ L has the length |e|� 2birth(g).

Proof Let a longest edge e of a cycle L ⇢ Q(C;a) repre-
senting the class g have a half-length a < birth(g). Then L
enters the complex Q(C;a) earlier than birth(g) and can not
represent the class g that starts living from a = birth(g).

Recall that the forest MST(C;a) on cloud C at a scale
a is obtained from a minimum spanning tree MST(C) by
removing all open edges that are longer than 2a.

An edge e is splitting a graph G if removing the open edge
e makes G disconnected. Otherwise the edge e will be called
non-splitting and should be in a cycle of the graph G.

Proposition 30 Let a graph G ⇢ Q(C;a) span Q(C;a) and
H1(G) ! H1(Q(C;a)) be an isomorphism induced by the
inclusion. Let (bi,di), i = 1, . . . ,m, be all dots in the per-
sistence diagram PD{Q(C;a)} such that birth  a < death.
Then the total length of G is bounded below by the total

length of edges of the forest MST(C;a) plus 2
m
Â

i=1
bi.

Proof Let the subgraph G1 ⇢ G consist of all non-splitting
edges of G and e1 ⇢ G1 be a longest open edge. Removing
e1 from G makes H1(G) smaller. Hence there is a cycle L1 ⇢
G1 containing e1 and representing a class g1 2 H1(Q(C;a))
that corresponds to some off-diagonal dot in PD{Q(C;a)},
say (b1,d1). Then g1 lives over b1 = birth(g1)  a < d1 =
death(g1). Lemma 29 implies that |e1|� 2b1.
Let the graph G2 ⇢ G� e1 consist of all non-splitting edges
and e2 ⇢ G2 be a longest open edge. Similarly, find the cor-
responding point (b2,d2), conclude that |e2| � 2b2 and so

on until we get
m
Â

i=1
|ei| � 2

m
Â

i=1
bi. After removing all open

edges e1, . . . ,em, the remaining graph G � (e1 [ . . . [ em)
still spans the (possibly disconnected) complex Q(a). In-
deed, each time we removed a non-splitting edge. So the to-
tal length of G� (e1 [ . . .[ em) is not smaller than the total
length of MST(C;a) by Lemma 4.

Proof of Theorem 9. For any a > 0, the inclusion
HoPeS(C;a) ! Q(C;a) induces an isomorphism in H1 by
Proposition 28. Let classes g1, . . . ,gm correspond to all m
dots counted with multiplicities in the ‘rectangle’ {birth 
a < death}⇢ PD{Q(C;a)}. Then g1, . . . ,gm form a basis of
H1(Q(C;a))⇠= H1(HoPeS(C;a)) by Definition 2.

The total length of HoPeS(C;a) equals the total length

of MST(C;a) plus 2
m
Â

i=1
birth(gi) by Lemma 24. By Propo-

sition 30 this length is minimal over all graphs G ⇢ Q(C;a)
that span Q(C;a) and have the same H1 as Q(C;a). ⇤

Appendix C: proofs of Theorem 15 and Corollary 16

Reconstruction Theorem 15 will follow from Lemma 31,
Propositions 11, 13, 32 and will imply Corollary 16.

Proof of Proposition 11. By Stability Theorem 23 there is
a bijection y : PD{Ga}! PD{Ca} such that q,y(q) are e-
close in the L1 distance on R2 for all q 2 PD{Ga}. The
e-neighborhood of a dot q = (x,y) in the L1 distance is
the square [x� e,x+ e]⇥ [y� e,y+ e]. Under the diagonal
projection pr to the vertical death axis, this square maps to
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the interval [y� x� 2e,y� x+ 2e]. Hence any diagonal gap
{a < y� x < b} in PD{Ga} can become thinner or wider in
PD{Ca} by at most 4e due to dots q ‘jumping’ to y(q) by at
most 2e relative to the projection pr(x,y) = y� x.

By the given inequality the first k widest gaps dgapi(G)
in PD{Ga} for i = 1, . . . ,k are wider by at least 8e than all
other dgapi(G) for i > k. Hence all dots between any two
successive gaps from the first k widest can not ‘jump’ over
these wide gaps and remain ‘trapped’ between correspond-
ing diagonal gaps in the perturbed diagram PD{Ca}.

Despite the order of the first k widest gaps dgapi(G), i =
1, . . . ,k, may not be preserved under y, the lowest {a < y�
x < b} of these k diagonal gaps is respected by y as follows.
The thinner strip S = {a+2e < y� x < b�2e} has no dots
from PD{Ca} and has the vertical width |S|� |dgapk(G)|�
4e > |dgapk+1(G)|+4e � |dgapk+1(C)|.

Then the diagonal strip S = {a + 2e < y � x < b � 2e}
is within the lowest gap of the first k widest gaps dgapi(C),
i = 1, . . . ,k. Hence all dots above S remain above S under
the bijection y. By Definition 10 all these dots above S in
PD{Ga} and in PD{Ca} form the diagonal subdiagrams
DSk(G) and DSk(C), respectively. So y descends to a bi-
jection DSk(G)! DSk(C) between finite subdiagrams. ⇤

Proof of Proposition 13. The x-coordinate of any dot q 2
DSk(G) changes under the given bijection y by at most e.
Similarly to the proof of Proposition 11 each vertical gap
vgapk,l(G) becomes thinner or wider by at most 2e.

By the given inequality the first l gaps vgapk, j(G) in
PDk{Ga} for j = 1, . . . , l are wider by at least 4e than all
other vgapk, j(G) for j > l. Hence all dots between any two
successive gaps from the first k widest can not ‘jump’ over
these wide gaps and remain ‘trapped’ between correspond-
ing vertical gaps in the perturbed diagram PD{Ca}.

Despite the order of the first l widest vgapk, j(G), j =
1, . . . , l, may not be preserved under y, the leftmost {a <
x < b} of these l vertical gaps is respected by y in the fol-
lowing sense. The thinner strip S = {a+e < x < b�e} con-
tains no dots from DSk(C) and has the horizontal width |S|�
|vgapk,l(G)|�2e > |dgapk,l+1(G)|+2e � |dgapk,l+1(C)|.

Then the vertical strip S= {a+e< x< b�e} is within the
leftmost of the first l widest vgapk, j(C), j = 1, . . . , l. Hence
all dots to the left of S remain to the left of S under the bi-
jection y. By Definition 12 all these dots to the left of S
in PD{Ga} and in PD{Ca} form the vertical subdiagrams
VSk,l(G) and VSk,l(C), respectively. So y descends to a bi-
jection VSk,l(G)! VSk,l(C) between finite sets. ⇤

Lemma 31 The derived skeleton HoPeSk,l(C) is a subgraph
of the reduced skeleton HoPeS(C;vsk,l(C)).

Proof By Definition 6 all edges of the reduced skeleton
HoPeS(C;vsk,l(C)) have a half-length at most vsk,l(C) and
death > vsk,l(C) for all critical edges. Definition 14 also im-
poses the extra restriction on critical edges of HoPeSk,l(C),
namely each dot (birth,death) is in the vertical subdiagram
VSk,l(C). So HoPeSk,l(C)⇢ HoPeS(C;vsk,l(C)).

Proposition 32 (approximation by reduced HoPeS) Let C
be any finite e-sample of a subspace G in a metric space M.
Then the reduced skeleton HoPeS(C;a) for any scale a > 0
is contained within the (e+a)-offset Ge+a ⇢ M.

Proof Since the cloud C is an e-sample of G, we get C ⇢
Ge. Every edge of HoPeS(C;a) has a half-length at most a
by Definition 6. The edge between any points p,q 2 C is
covered by the balls with the radius a and the centers p,q.
Hence HoPeS(C;a)⇢Ca ⇢ Ge+a.

Proof of Theorem 15. Proposition 11 due to condition (2)
implies that there is a bijection y : DSk(G) ! DSk(C) so
that ||q�y(q)||1  e for all q 2 DSk(G). Proposition 13
due to condition (4) implies that y descends to a bijection
VSk,l(G)! VSk,l(C) between vertical subdiagrams.

In general, all cycles in a graph G give birth to correspond-
ing homology classes in H1(Ga) at the scale a = 0. These
classes may split later at a > 0, but will eventually die and
always give dots (0,death) 2 PD{Ga} in the vertical death
axis. For any cycle L ⇢ G, let death(L) be the maximum a
such that H1(Ga) contains the class [L]. The graph q in Fig. 5
has 3 cycles with the same death(L) = 2.577.

Let L1, . . . ,Lm ⇢ G be all m cycles generating H1(G).
Then the 1-dimensional persistence diagram PD{Ga} con-
tains m dots (0,death(Li)), i = 1, . . . ,m, because each class
[Li] persists over 0  a < death(Li) by Definition 2. Con-
dition (1) implies that all dots (0,death(Li)) belong to the
diagonal subdiagram DSk(G), hence to VSk,l(C).

Condition (3) vsk,l(G) = 0 means that the leftmost of the
first l widest vgapk, j(G), j = 1, . . . , l, is attached to the ver-
tical death axis in PD{Ga}, which should contain the ver-
tical subdiagram VSk,l(G). So VSk,l(G) consists of the m
dots (0,death(Li)), i = 1, . . . ,m. Then the vertical subdia-
gram VSk,l(C) for the cloud C also has exactly m dots, which
are ‘noisy’ images y(0,death(Li)), i = 1, . . . ,m. Moreover,
all these dots of VSk,l(C) are at most e away from the verti-
cal axis, so the vertical scale vsk,l(C) is at most e.

The lowest of the points y(0,death(Li)) has a death �
min

i=1,...,m
death(Li)�e�DSk(G)�e> |dgapk(G)|�e> 7e>

vsk,l(C). So the condition death > vsk,l(C) from Defini-
tion 14 is satisfied. Hence the reduced skeleton HoPeSk,l(C)
contains exactly m critical edges corresponding to all m dots
of VSk,l(C) All these m critical edges of HoPeSk,l(C) gener-
ate H1 of the required rank m. The geometric approxima-
tion HoPeSk,l(C) ⇢ G2e follows from Proposition 32 and
Lemma 31 for the vertical scale a = vsk,l(C) e. ⇤
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Proof of Corollary 16. The condition that the perturbed
cloud C̃ is d-close to the original cloud C, which is e-closed
to the graph G, implies that C̃ is (d+ e)-close to G.

Reconstruction Theorem 15 for the e-sample C and (d+
e)-sample C̃ of G says that HoPeSk,l(C) is 2e-close to G and
HoPeSk,l(C̃) is (2d+2e)-close to G. Hence HoPeSk,l(C) and
HoPeSk,l(C̃) are (2d+4e)-close as required. ⇤
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Figure 9: Left column. Top: cat.png. Bottom: cloud C of n = 14272 Canny edge points. Middle column. Top: persistence
diagram PD{Ca} with the diagonal gap for k = 1 and vertical gap for l = 1. Bottom: HoPeS1,1(C) with 14272 edges including
1 red critical edge. Despite many noisy cycles the round hat in the image is successfully detected as the most persistent cycle.
Right column. Top: simplified skeleton HoPeS1,1(C) with 645 edges. Bottom: simplified HoPeS1,1(C) with 65 edges.

Figure 10: Left column. Top: mandrill.png. Bottom: cloud C of n = 7490 Canny edge points. Middle column. Top: persistence
diagram PD{Ca} with colored gaps for k = 1 and l = 1. Bottom: persistence diagram with colored gaps for k = 7 and l = 4.
Right column. Top: simplified skeleton HoPeS1,1(C) with 177 edges. Bottom: simplified HoPeS7,4(C) with 186 edges.
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Figure 11: Left column. Top: peppers.png. Bottom: cloud C of n = 7128 Canny edge points. Middle column. Top: persistence
diagram PD{Ca} with colored gaps for k = 2 and l = 1 (two largest peppers are detected as two most persistent cycles).
Bottom: persistence diagram with colored gaps for k = 3 and l = 1 (four largest peppers are detected as four most persistent
cycles). Right column. Top: simplified skeleton HoPeS2,1(C) with 141 edges. Bottom: simplified HoPeS3,1(C) with 106 edges.

Figure 12: Left column. Top: cameraman.jpg. Bottom: cloud C of n = 3151 Canny edge points. Middle column. Top: persis-
tence diagram PD{Ca} with colored gaps for k = 1 and l = 1. Bottom: persistence diagram with colored gaps for k = 4 and
l = 2. Right column. Top: simplified skeleton HoPeS1,1(C) with 201 edges. Bottom: simplified HoPeS4,2(C) with 678 edges.

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John Wiley & Sons Ltd.


