J/ψ suppression at forward rapidity in Pb–Pb collisions at √s_{NN} = 5.02 TeV

ALICE Collaboration

Abstract

The inclusive J/ψ production has been studied in Pb–Pb and pp collisions at the centre-of-mass energy per nucleon pair √s_{NN} = 5.02 TeV, using the ALICE detector at the CERN LHC. The J/ψ meson is reconstructed, in the centre-of-mass rapidity interval 2.5 < y < 4 and in the transverse-momentum range p_T < 12 GeV/c, via its decay to a muon pair. In this Letter, we present results on the inclusive J/ψ cross section in pp collisions at √s = 5.02 TeV and on the nuclear modification factor R_{AA}. The latter is presented as a function of the centrality of the collision and, for central collisions, as a function of the transverse momentum p_T of the J/ψ. The measured R_{AA} values indicate a suppression of the J/ψ in nuclear collisions and are then compared to our previous results obtained in Pb–Pb collisions at √s_{NN} = 2.76 TeV. The ratio of the R_{AA} values at the two energies is also computed and compared to calculations of statistical and dynamical models. The numerical value of the ratio for central events (0–10% centrality) is 1.17 ± 0.04(stat) ± 0.20(syst). In central events, as a function of p_T, a slight increase of R_{AA} with collision energy is visible in the region 2 < p_T < 6 GeV/c. Theoretical calculations provide a good description of the measurements, within uncertainties.
1 Introduction

When heavy nuclei collide at ultrarelativistic energies, a state of strongly-interacting matter is formed, characterised by high temperature and density, where quarks and gluons are not confined into hadrons (Quark–Gluon Plasma, QGP \[1\]). A detailed characterisation of the QGP is the object, since more than 15 years, of an intense research activity at the BNL/RHIC \[2–5\] and CERN/LHC \[6\] ion colliders. Charmonia and bottomonia, which are bound states of charm-anticharm (c\(\overline{c}\)) or bottom-antibottom (b\(\overline{b}\)) quarks, respectively \[7\], are among the most sensitive probes of the characteristics of the QGP. A suppression of their yields in nucleus–nucleus (A–A) collisions with respect to expectations from proton–proton (pp) collisions was experimentally observed. For the \(J/\psi\) meson, the ground c\(\overline{c}\) state with quantum numbers \(J^{PC} = 1^{-+}\), a suppression was found at both RHIC, in Au–Au interactions at the centre-of-mass energy per nucleon pair \(\sqrt{s_{NN}} = 0.2\) TeV \[8,9\], and at the LHC in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV \[10,11\]. Theoretical calculations predict \(J/\psi\) suppression to be induced by the screening of the colour force in a deconfined medium and to become stronger as the QGP temperature increases \[12,13\].

The LHC results, integrated over transverse momentum \((p_T)\) down to \(p_T = 0\), show a suppression of the \(J/\psi\), quantified through the ratio between its yields in Pb–Pb and those in pp, normalised to the number of nucleon–nucleon collisions in Pb–Pb (nuclear modification factor, \(R_{AA}\)). However, the observed suppression is smaller than at RHIC \[14,15\], in spite of the higher initial temperature of the QGP formed at the LHC \[16\]. The effect is particularly evident for head-on (central) collisions. In order to explain these observations, theoretical models require a contribution from \(J/\psi\) regeneration via a recombination mechanism \[17,18\] between the c and \(\overline{c}\) quarks, during the deconfined phase and/or at the hadronisation of the system, which occurs when its temperature falls below the critical value \(T_c \sim 155\) MeV \[19\]. The strength of this regeneration effect increases with the initial number of produced \(c\overline{c}\) pairs relative to the total number of quarks and, therefore, increases with the collision energy, explaining the reduced suppression at the LHC. Since the bulk of charm-quark production occurs at small momenta, recombination should be more important for low-\(p_T\) \(J/\psi\), as observed in the LHC results \[15\].

An important test of the suppression and regeneration picture of \(J/\psi\) production at the LHC can be obtained by comparing the centrality and \(p_T\) dependence of the \(J/\psi\) \(R_{AA}\), measured at \(\sqrt{s_{NN}} = 2.76\) TeV, to that obtained at \(\sqrt{s_{NN}} = 5.02\) TeV, the highest energy available up to now in nuclear collisions. The suppression effects related to colour screening should become stronger when increasing the collision energy, due to the higher QGP temperature, and also the recombination effects should become stronger, due to the expected increase of the \(c\overline{c}\) production cross section. The two effects act in opposite directions and the comparison of the \(R_{AA}\) at the different energies can provide insights in the evolution of the relative contribution of the two processes.

In this Letter, we present the first results on the \(J/\psi\) \(R_{AA}\) measured by the ALICE Collaboration in Pb–Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV and the integrated and \(p_T\) differential \(J/\psi\) production cross section in pp collisions at the same energy. In both Pb–Pb and pp collisions, the \(J/\psi\) is reconstructed via its dimuon decay channel at forward rapidity, \(2.5 < y < 4\) and for \(p_T < 12\) GeV/c. The measurements refer to inclusive \(J/\psi\) production, that includes both prompt \(J/\psi\) (direct \(J/\psi\) and feed-down from higher-mass resonances) and non-prompt \(J/\psi\) (from decay of beauty hadrons). The nuclear modification factor is obtained by normalising the \(J/\psi\) yield in Pb–Pb collisions to the product of the nuclear overlap function times the corresponding \(J/\psi\) cross section measured in pp, at the same energy and in the same kinematic window. The results on \(R_{AA}\) are presented as a function of the \(J/\psi\) \(p_T\) and of the centrality of the collision.

2 Experimental apparatus and data sample

The ALICE detector design and performance are extensively described in \[20\] and \[21\]. The analysis presented here is based on the detection of muons in the forward muon spectrometer \[22\], which covers the pseudo-rapidity range \(-4 < \eta < -2.5\). In addition, the Silicon Pixel Detector (SPD) \[23\] is used.
to reconstruct the primary vertex. The V0 detectors provide a minimum-bias (MB) trigger and are used to determine the centrality of the collision, while the T0 Cherenkov counters are used for the luminosity determination in pp collisions. Finally, the Zero Degree Calorimeters (ZDC) are used to reject electromagnetic Pb–Pb interactions. A brief description of these detectors is given hereafter.

The muon spectrometer contains a front absorber, made of carbon, concrete and steel, placed between 0.9 and 5 m from the Interaction Point (IP), which filters out hadrons, thus decreasing the occupancy in the downstream tracking system. The latter is composed of five stations, each one consisting of two planes of Cathode Pad Chambers (CPC). The third tracking station is placed inside the gap of a dipole magnet with a 3 T·m field integral. Two trigger stations, each one equipped with two planes of Resistive Plate Chambers (RPC), are located behind a 7.2 interaction length iron wall, which absorbs secondary hadrons escaping the front absorber and low-momentum muons. The muon trigger system delivers single-muon and dimuon triggers with a programmable transverse-momentum threshold. Finally, throughout its entire length, a conical absorber around the beam pipe (θ < 2°) made of tungsten, lead and steel shields the muon spectrometer against secondary particles produced by the interaction of large-η primary particles in the beam pipe.

The primary vertex is reconstructed using hit pairs in the two cylindrical layers of the SPD, which have average radii of 3.9 and 7.6 cm, and cover the pseudo-rapidity intervals |η| < 2 and |η| < 1.4, respectively.

The two V0 detectors, with 32 scintillator tiles each, are placed on each side of the IP, covering the pseudo-rapidity ranges 2.8 < η < 5.1 and −3.7 < η < −1.7. The coincidence of the signals from the two hodoscopes defines the MB trigger. Beam-induced background is reduced by applying timing cuts on the signals from the V0s and ZDCs. The latter are positioned along the beam direction at ±112.5 m from the IP. Finally, the T0 detectors, made of two arrays of quartz Cherenkov counters, are placed on both sides of the IP, covering the pseudo-rapidity intervals −3.3 < η < −3 and 4.6 < η < 4.9.

In Pb–Pb collisions, the centrality determination is based on a Glauber fit of the total V0 signal amplitude distribution as described in. A selection corresponding to the most central 90% of the hadronic cross section was applied; for these events the MB trigger is fully efficient.

For both Pb–Pb and pp data taking, the trigger condition used in the analysis is a µµ-MB trigger formed by the coincidence of the MB trigger and an unlike-sign (US) dimuon trigger. The latter has a trigger probability for each of the two muon candidates that increases with the muon pT, is 50% at 1.0 GeV/c in Pb–Pb (pp) collisions, and saturates at pT ≈ 2.5 GeV/c, where it reaches a value of about 98%. Like-sign dimuon triggers were also collected, mainly for background normalisation purposes in the Pb–Pb analysis.

The data samples used in this analysis correspond to an integrated luminosity L_{int}^{Pb-Pb} ≈ 225 µb⁻¹ for Pb–Pb and L_{int}^{pp} ≈ 106 nb⁻¹ for pp collisions.

3 Data analysis

The analysis procedure was very similar for the two data samples described in this Letter. In the following paragraphs, the Pb–Pb analysis is first presented, followed by the description of the pp one.

The J/ψ candidates were formed by combining pairs of US tracks reconstructed in the geometrical acceptance of the muon spectrometer using the tracking algorithm described in. The same single-muon and dimuon selection criteria as in previous analyses were applied, and tracks in the tracking system were required to match a track segment in the muon trigger system (trigger tracklet).

The J/ψ raw yields were determined from the invariant mass distribution of US dimuons using two methods. In the first one, the US dimuon invariant mass distributions were fitted with the sum of a signal
and a background function. In the second approach, the background, estimated using an event-mixing technique and normalised using the like-sign dimuon distributions \([15]\), was subtracted and the resulting spectra were fitted with the sum of a signal function and a (small) residual background component.

Various shapes were considered for the signal and background contributions. For the \(J/\psi\) signal either an extended Crystall Ball (CB2) function or a pseudo-Gaussian with a mass-dependent width were used \([29]\). The non-Gaussian tails of the signal functions were fixed either (i) to the values obtained in Monte Carlo (MC) simulations, where simulated \(J/\psi \rightarrow \mu^+\mu^-\) are embedded into real events to account for the effect of the detector occupancy, or (ii) to the values obtained in a high-statistics pp collision sample at \(\sqrt{s} = 13\) TeV, collected under similar detector conditions. The tail parameters exhibit a dependence on the \(p_T\) and rapidity of the \(J/\psi\) and a mild dependence on the centrality of the collision. The small contribution of the \(\psi(2S)\) signal was taken into account in the fits, its mass and width being tied to those of the \(J/\psi\) \([30]\). For the background, when the US dimuon mass spectrum was fitted, a variable-width-Gaussian with a mass-dependent width or the ratio of a 2nd to a 3rd order polynomial were used.

When considering the US dimuon distributions after subtraction of the background obtained with the event-mixing procedure, a small dimuon continuum component is still present and was fitted using the sum of two exponentials. Several fitting sub-ranges, within the interval \(2 < m_{\mu\mu} < 5\) GeV/c\(^2\), were used for both signal extraction procedures.

Figure 1: (colour online). Invariant mass distributions of US dimuons with \(2.5 < y < 4\) and \(p_T < 12\) GeV/c. The top (bottom) row shows the distribution before (after) background subtraction with the event-mixing technique. The left panels correspond to the most central events (0–10%) while the right panels to a peripheral (70–80%) centrality range. The fit curves shown in blue represent the sum of the signal and background shapes, while the red lines correspond to the \(J/\psi\) signal and the grey ones to the background.
the two fitting approaches, the various parametrisations of signal and background and the different fitting ranges, while the corresponding systematic uncertainties were defined as the RMS of these results. A further contribution to the systematic uncertainty was estimated by using a different set of resonance tails obtained using in the MC simulation a different particle transport model (GEANT4 [31]) instead of GEANT3 [32]). The total number of J/ψ, integrated over centrality, p_T and y, is $N_{J/\psi} = 2.77 \pm 0.02 \text{(syst)} \pm 0.05 \text{(syst)} \cdot 10^5$. The systematic uncertainty ranges from 1.6% to 2.8% as a function of centrality and from 1.2% to 3.1% as a function of p_T.

The nuclear modification factor, as a function of the centrality class i of the collision and for the J/ψ transverse-momentum interval Δp_T, is calculated as

$$R_{AA}^i(\Delta p_T) = \frac{N_{J/\psi}^{i}(\Delta p_T)}{BR_{J/\psi \rightarrow \mu^+\mu^-} \cdot N_{\text{MB}}^i \cdot \langle T_{AA}^i \rangle \cdot \sigma_{pp}^{\psi}(\Delta p_T)},$$

where $N_{J/\psi}^{i}(\Delta p_T)$ is the number of extracted J/ψ in a given centrality and p_T range, $BR_{J/\psi \rightarrow \mu^+\mu^-} = 5.96 \pm 0.03\%$ is the branching ratio of the dimuon decay channel [33], N_{MB}^i is the number of equivalent minimum-bias events, $\langle T_{AA}^i \rangle$ is the average of the nuclear overlap function, and $\sigma_{pp}^{\psi}(\Delta p_T)$ is the inclusive J/ψ cross section for pp collisions at the same energy and in the same kinematic range as the Pb–Pb data.

The $A\varepsilon$ values were determined from MC simulations, with the generated p_T and y distributions for the J/ψ adjusted on data, and separately tuned for each centrality class using an iterative approach. Unpolarised J/ψ production was assumed [15]. For the tracking chambers, the time-dependent status of each electronic channel during the data taking period was taken into account as well as the misalignment of the detection elements. The efficiencies of the muon trigger chambers were determined from data and were then applied in the simulations. Finally, the dependence of the efficiency on the detector occupancy was taken into account by embedding MC-generated J/ψ into real minimum-bias Pb–Pb events.

For J/ψ produced within $2.5 < y < 4$ and $p_T < 12$ GeV/c, in 0–90% most central collisions, the $A\varepsilon$ value is $0.136 \pm 0.007 \text{(syst)}$. A relative decrease of the efficiency by 14% was observed when going from peripheral to central collisions. As a function of p_T, $A\varepsilon$ has a minimum value of about 0.12 at $p_T \approx 1.5$ GeV/c, and then steadily increases up to about 0.4 at the upper end of the considered range. The following sources of systematic uncertainty on $A\varepsilon$ were considered. A first contribution of 2% due to the input MC p_T and y distributions was estimated by (i) varying the input shapes that were tuned on data within their statistical uncertainties and (ii) taking into account the effect of possible $p_T - y$ correlations by comparing, as a function of centrality, the $A\varepsilon$ values with the corresponding result of a 2-D acceptance calculation in classes of p_T and y. A second contribution comes from the tracking efficiency and it was estimated by comparing the single-muon tracking efficiency values obtained, in MC and data, with a procedure that exploits the redundancy of the tracking-chamber information [15]. A 3% systematic uncertainty on the dimuon tracking efficiency is obtained and is approximately constant as a function of centrality and kinematics. The systematic uncertainty on the dimuon trigger efficiency represents the third contribution and it has two origins: the intrinsic efficiencies of the muon trigger chambers and the response of the trigger algorithm. The first one was determined from the uncertainties on the trigger chamber efficiencies measured from data and applied to simulations and it amounts to 1.5%. The second one was estimated by comparing the p_T dependence, at the single-muon level, of the trigger response function between data and MC and it varies between 0.2% and 4.6% as a function of p_T. Combining the two sources, a systematic uncertainty ranging from 1.5% to 4.8% as a function of the J/ψ p_T is obtained. Finally, there is a 1% contribution related to the choice of the χ^2 cut used in defining the matching between the reconstructed tracks and the trigger tracklets.

The normalisation factor to the number of equivalent MB events was obtained as $N_{\text{MB}}^i = F^i \cdot N_{\mu\mu-\text{MB}}$, where $N_{\mu\mu-\text{MB}}$ is the number of $\mu\mu$-MB triggered events, and F^i is the inverse of the probability of
having a dimuon trigger in a MB event in the centrality range i. The F^i values were calculated with two different methods, by applying the dimuon trigger condition in the analysis on minimum-bias events, or from the relative counting rate of the two triggers [34]. The obtained value, in the 0–90% centrality class, is $F = 11.84 \pm 0.06$, where the uncertainty is dominated by a systematic contribution corresponding to the difference between the results obtained with the two approaches. As a function of centrality, $F^i = F \cdot \Delta^i$, where Δ^i is the fraction of the inelastic cross section of a given centrality class with respect to the whole 0–90% centrality range (e.g. 0.1/0.9 for 0–10% centrality and so on).

The values for $\langle T_{AA}^i \rangle$ and for the average number of participant nucleons $\langle N_{\text{part}}^i \rangle$ were obtained via a Glauber calculation [27, 35]. The systematic uncertainty is 3.2% for the 0–90% centrality range and was obtained by varying within uncertainties the density parameters of the Pb nucleus and the nucleon–nucleon inelastic cross section [36].

Finally, the effects of the uncertainty on the value of the V0 signal amplitude corresponding to 90% of the hadronic Pb–Pb cross section were estimated by varying such a value by $\pm 0.5\%$ [27] and redefining correspondingly the centrality intervals. The systematic effect on R_{AA} ranges from 0.1% to 6.6% from central to peripheral collisions.

The J/ψ cross-section values in pp collisions at $\sqrt{s} = 5.02$ TeV, both integrated and p_T differential, were obtained with an analysis procedure similar to the one described in the previous paragraphs for Pb–Pb. In particular, the same criteria for single-muon and dimuon selection were adopted.

The signal extraction was then performed by fitting the spectra with the sum of a signal and a background contribution, using shapes similar to those adopted for the Pb–Pb analysis. The background subtraction was obtained with an analysis procedure similar to the one described in the previous paragraphs for Pb–Pb. The background subtraction via the event-mixing technique was not used, as the signal-over-background ratio is larger by a factor ~ 40, in the p_T-integrated spectra, with respect to central Pb–Pb collisions, making the influence of the background estimate much less important in the determination of the uncertainty on $N_{J/\psi}^{pp}$. The value $N_{J/\psi}^{pp} = 8649 \pm 123(\text{stat}) \pm 297(\text{syst})$ is obtained, with the systematic uncertainty determined as for the Pb–Pb analysis.

The determination of $A\varepsilon_{pp}$ was carried out via MC simulations. Since no appreciable dependence of the tracking efficiency as a function of the hadronic multiplicity can be seen in pp, a pure MC (i.e., without embedding) was used. The input p_T and y distributions were obtained from the measured ones via an iterative procedure, and unpolarised J/ψ production was assumed [37]. The obtained value is $A\varepsilon_{pp} = 0.243 \pm 0.007(\text{syst})$, with the systematic uncertainties on the tracking, trigger and matching efficiency calculated as in the Pb–Pb analysis. Because of the limited pp statistics, the systematic uncertainty on the MC inputs was not obtained through a 2-D acceptance calculation, as done in the Pb–Pb analysis, but it was determined comparing the $A\varepsilon$ values obtained using J/ψ p_T (y) distributions evaluated in various y (p_T) intervals in pp collisions at $\sqrt{s} = 7$ TeV [38].

The integrated luminosity was calculated as $L_{\text{int}}^{pp} = \langle N_{\mu+\mu}^{pp} \cdot F^{pp} \rangle / \sigma_{\text{ref}}^{\mu+\mu}$, where $\sigma_{\text{ref}}^{\mu+\mu}$ is a reference-trigger cross section measured in a van der Meer scan, following the procedure detailed in [39], and F^{pp} is the ratio of the reference-trigger probability to the $\mu+\mu$ MB trigger probability. The corresponding numerical value is $L_{\text{int}}^{pp} = 106.3 \pm 2.2(\text{syst})$ nb$^{-1}$, where the quoted uncertainty reflects the van der Meer scan uncertainty.

Finally, the inclusive J/ψ cross section in pp collisions at $\sqrt{s} = 5.02$ TeV was obtained as

$$\frac{d^2\sigma_{J/\psi}^{pp}}{dy dp_T} = \frac{N_{J/\psi}^{pp}(\Delta p_T)}{BR_{J/\psi \rightarrow \mu+\mu} \cdot L_{\text{int}}^{pp} A\varepsilon_{pp}(\Delta p_T) \Delta p_T \Delta y}.$$ (2)

Table 1 summarises the systematic uncertainties on the measurement of the nuclear modification factors and $d^2\sigma_{J/\psi}^{pp}/dy dp_T$.

[1] This is a placeholder for the actual table content. The table should include the systematic uncertainties for each measurement.

6
The R_{AA} values presented in the following refer to inclusive J/ψ production, i.e., include both prompt and non-prompt J/ψ. Since beauty-hadron decays occur outside the QGP, the non-prompt J/ψ R_{AA} is related to the nuclear modification of the beauty-hadron p_T distributions. The difference between the R_{AA} of prompt and inclusive J/ψ can be estimated as in [15], using the fraction F_3 of non-prompt to inclusive J/ψ in pp collisions and assuming two extreme cases for the $R_{AA}^{non-prompt}$ of non-prompt J/ψ, namely no medium effects on b-quarks or their complete suppression. F_3 was obtained by an interpolation of the LHCb measurements in pp collisions at $\sqrt{s} = 2.76$ and 7 TeV [38, 40, 41]. The quantitative effect on the inclusive J/ψ R_{AA} is provided in the following along with the results.

4 Results

The p_T-differential inclusive J/ψ cross section in pp collisions at $\sqrt{s} = 5.02$ TeV, in the region $2.5 < y < 4$, is shown in Fig. 2. The cross section value, integrated over the interval $2.5 < y < 4$, $p_T < 12$ GeV/c is $\sigma^{pp}_{J/\psi} = 5.61 \pm 0.08(\text{stat}) \pm 0.28(\text{syst})$ mb. These results are used as a reference in the determination of the nuclear modification factor for Pb–Pb collisions. Both the differential and integrated pp cross section values are consistent with those obtained via an interpolation [40, 42] of the measured values at $\sqrt{s} = 2.76$ and 7 TeV [43, 44], which were used for the determination of the nuclear modification factor in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [34, 42, 43].

The nuclear modification factor for inclusive J/ψ production in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, integrated over the centrality range 0–90%, and for the interval $2.5 < y < 4$, $p_T < 12$ GeV/c is $R_{AA}(p_T < 12 \text{ GeV/c}) = 0.65 \pm 0.01(\text{stat}) \pm 0.05(\text{syst})$, showing a significant suppression of the J/ψ with respect to pp collisions at the same energy. When restricting the p_T range to 8 GeV/c, corresponding to the interval covered in the $\sqrt{s_{NN}} = 2.76$ TeV results, one obtains $R_{AA}(p_T < 8 \text{ GeV/c}) = 0.66 \pm 0.01(\text{stat}) \pm 0.05(\text{syst})$. The ratio between the latter value and the corresponding one at $\sqrt{s_{NN}} = 2.76$ TeV, $R_{AA}(p_T < 8 \text{ GeV/c}) = 0.58 \pm 0.01(\text{stat}) \pm 0.09(\text{syst})$ [14], is $1.13 \pm 0.02(\text{stat}) \pm 0.18(\text{syst})$. When calculating the ratio, the quoted uncertainties on the two values are considered as uncorrelated, except for the $\langle T_{AA} \rangle$ contribution.

Figure 3 shows the centrality dependence of R_{AA} at $\sqrt{s_{NN}} = 5.02$ TeV. The results are compared to the values obtained at $\sqrt{s_{NN}} = 2.76$ TeV [14], and correspond to the same transverse-momentum range,
Fig. 2: (colour online). The differential cross section $d^2\sigma_{J/\psi}/dp_T$ for inclusive J/ψ production in pp collisions at $\sqrt{s} = 5.02$ TeV. The error bars represent the statistical uncertainties, the boxes around the points the uncorrelated systematic uncertainties. The uncertainty on the luminosity measurement represents a correlated global uncertainty.

Fig. 3: (colour online). The nuclear modification factor for inclusive J/ψ production, as a function of centrality, at $\sqrt{s_{NN}} = 5.02$ TeV, compared to published results at $\sqrt{s_{NN}} = 2.76$ TeV [14]. The error bars represent statistical uncertainties, the boxes around the points uncorrelated systematic uncertainties, while correlated global uncertainties are shown as a filled box around $R_{AA} = 1$. The widths of the centrality classes used in the J/ψ analysis at $\sqrt{s_{NN}} = 5.02$ TeV are 2% from 0 to 12%, then 3% up to 30% and 5% for more peripheral collisions.
$p_T < 8 \text{ GeV}/c$. The centrality dependence, characterised by an increasing suppression with centrality up to $N_{\text{part}} \sim 100$, followed by an approximately constant R_{AA} value, is similar at the two energies. A systematic difference by about 15% is visible when comparing the two sets of results, even if the effect is within the total uncertainty of the measurements. The R_{AA} of prompt J/ψ would be about 10% higher if $R_{AA}^{\text{non-prompt}} = 0$ and about 5% (1%) smaller if $R_{AA}^{\text{non-prompt}} = 1$ for central (peripheral) collisions.

An excess of very-low p_T J/ψ, compared to the yield expected assuming a smooth evolution of the J/ψ hadro-production and nuclear modification factor was observed in peripheral Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}$ \cite{46}. This excess might originate from the photo-production of J/ψ and could influence the R_{AA} in peripheral collisions. To quantify the expected difference between the hadronic $J/\psi R_{AA}$ and the measured values the method described in \cite{15} was adopted. The hadronic $J/\psi R_{AA}$, for $0 < p_T < 8 \text{ GeV}/c$, is estimated to be about 34%, 17% and 9% smaller than the measured values in the 80–90%, 70–80% and 60–70% centrality classes, respectively. The variation decreases to about 9%, 4% and 2%, respectively, when considering the R_{AA} for J/ψ with $0.3 < p_T < 8 \text{ GeV}/c$, due to the remaining small contribution of photo-produced J/ψ. Figure 4 shows R_{AA} as a function of centrality, for $0.3 < p_T < 8 \text{ GeV}/c$.

Comparing the results of Fig. 3 and Fig. 4, a less pronounced increase of R_{AA} for peripheral events can indeed be seen when such a selection is introduced. The same extreme hypotheses as in \cite{15} were made to define upper and lower limits, represented with brackets on Fig. 4. Thus, the selection of J/ψ with $p_T > 0.3 \text{ GeV}/c$ makes the results more suitable for a comparison with theoretical models that only include hadronic J/ψ production.

We start by comparing the results to a calculation based on a statistical model approach \cite{47}, where J/ψ are created, like all other hadrons, only at chemical freeze-out according to their statistical weights.
In this model, the nucleon–nucleon c± cross section is extrapolated from LHCb pp measurements at \(\sqrt{s} = 7 \) TeV \([53]\) using FONLL calculations \([54]\), obtaining \(d\sigma_{c\bar{c}}/dy = 0.32 \) mb in the \(y \) range covered by the data. The nuclear modification of the parton distribution functions (shadowing) is accounted for via the EPS09 NLO parameterisation \([55]\). A 20\% uncertainty on \(d\sigma_{c\bar{c}}/dy \) is assumed when calculating the uncertainty bands for this model. The results are also compared to the calculations of a transport model (TM1) \([50, 51]\) based on a thermal rate equation, which includes continuous dissociation and regeneration of the \(J/\psi \) both in the QGP and in the hadronic phase. The inclusive c± cross section is taken as \(d\sigma_{c\bar{c}}/dy = 0.57 \) mb, consistent with FONLL calculations, while the \(J/\psi \) production cross section value in N–N collisions is \(d\sigma_{J/\psi}/dy = 3.14 \) \(\mu \)b. The results of this model are shown as a band where the upper limit corresponds to the case of no shadowing effects and the lower limit to a shadowing obtained from the EPS09 NLO parameterisation for central Pb–Pb collisions. The results are then compared to the predictions of a second transport model (TM2) \([52]\), which implements a hydrodynamic description of the medium evolution. The input nucleon–nucleon cross sections for c± and \(J/\psi \) are taken as \(d\sigma_{c\bar{c}}/dy = 0.82 \) mb, corresponding to the upper limit of FONLL calculations, and \(d\sigma_{J/\psi}/dy = 3.5 \) \(\mu \)b. Also for this model the band corresponds to the choice of either no shadowing, or a shadowing effect estimated with the EPS09 NLO parameterisation. Finally, the data are compared to a ‘co-mover’ model \([48, 49]\), where the \(J/\psi \) are dissociated via interactions with the partons/hadrons produced in the same rapidity range, using an effective interaction cross section \(\sigma_{c\bar{c},J/\psi} = 0.65 \) mb, based on calculations that described lower energy experimental results. Regeneration effects are included, based on \(d\sigma_{c\bar{c}}/dy \) values ranging from 0.45 to 0.7 mb, which correspond to the uncertainty band shown for the model. Shadowing effects, calculated within the Glauber-Gribov theory \([56]\), are included and are consistent with EKS98/nDSg predictions \([57, 58]\). Finally, the contribution of non-prompt production is taken into account in the transport models TM1 and TM2, while it is not considered in the other calculations.

The data are described by the various calculations, the latter having rather large uncertainties, due to the choice of the corresponding input parameters, and in particular of \(d\sigma_{c\bar{c}}/dy \). It can be noted that for most calculations a better description is found when considering their upper limit. For transport models this corresponds to the absence of nuclear shadowing, which can be clearly considered as an extreme assumption for primary \(J/\psi \), considering the \(J/\psi \) measurements in p–Pb collisions \([42, 45]\).

A correlation between the parameters of the models is present when comparing their predictions for \(\sqrt{s_{NN}} = 2.76 \) and 5.02 TeV. Therefore, the theoretical uncertainties can be reduced by forming the ratio \(r = R_{AA}(5.02 \text{ TeV})/R_{AA}(2.76 \text{ TeV}) \). Concerning data, the uncertainties on \(\langle T_{AA} \rangle \) cancel. In Fig. 5 the centrality dependence of \(r \), calculated for \(0.3 < p_T < 8 \) GeV/c, is shown and compared to models. For prompt \(J/\psi \) the ratio \(r \) would be about 2\% (1–2\%) higher if beauty hadrons were fully (not) suppressed by the medium. The transport model of Ref. \([50, 51]\) (TM1) predicts a decrease of \(r \) with increasing centrality, due to the larger suppression effects at high energy, followed by an increase, related to the effect of regeneration, which acts in the opposite direction and becomes dominant for central collisions. The other transport model (TM2) \([52]\) also exhibits an increase for central collisions, while for peripheral collisions the behaviour is different. In the co-mover model \([48, 49]\), no structure is visible as a function of centrality, and the calculation favours \(r \)-values slightly below unity, implying that in this model the increase of the suppression effects with energy may be dominant over the regeneration effects for all centralities. Finally, the statistical model \([47]\) shows a continuous increase of \(r \) with centrality, dominated by the increase in the c± cross section with energy. The uncertainty bands shown in Fig. 5 correspond to variations of about 5\% in the c± cross section at \(\sqrt{s_{NN}} = 5.02 \) TeV. The data are, within uncertainties, compatible with the theoretical models, and show no clear centrality dependence. The ratio for central collisions and \(0.3 < p_T < 8 \) GeV/c is \(r^{0-10\%} = 1.17 \pm 0.04 \text{ (stat)} \pm 0.20 \text{ (syst)} \).

Finally, the study of the \(p_T \) dependence of \(R_{AA} \) has proven to be a sensitive test of the presence of a regeneration component which, in calculations, leads to an increase at low \(p_T \). Figure 6 shows, for the centrality interval 0–20\%, \(R_{AA} \) as a function of transverse momentum, compared to the corresponding
J/ψ suppression at forward rapidity in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

Fig. 5: (colour online). The ratio of the inclusive J/ψ R_{AA} for $0.3 < p_T < 8$ GeV/c between $\sqrt{s_{NN}} = 5.02$ and 2.76 TeV, compared to theoretical models [47–52], shown as a function of centrality. The model predictions do not include the p_T cut, which was anyway found to have a negligible impact, since they only include hadronic J/ψ production. The error bars represent the statistical uncertainties, the boxes around the data points the uncorrelated systematic uncertainties, while the correlated global uncertainty is shown as a filled box around $r = 1$.

results obtained at $\sqrt{s_{NN}} = 2.76$ TeV, and to theoretical models. The region $p_T < 0.3$ GeV/c was not excluded, because the contribution of J/ψ photo-production is negligible with respect to the hadronic one for central events [46]. In the same figure the p_T dependence of r is also shown. A hint for an increase of R_{AA} with $\sqrt{s_{NN}}$ is visible in the region $2 < p_T < 6$ GeV/c, while the results are consistent elsewhere. The prompt J/ψ R_{AA} is expected to be 7% larger (2% smaller) for $p_T < 1$ GeV/c and 30% larger (55% smaller) for $10 < p_T < 12$ GeV/c when the beauty contribution is fully (not) suppressed. Assuming that $R_{AA}^{\text{non-prompt}}$ does not vary significantly between the two collision energies, the ratio r appears to be less sensitive to the non-prompt J/ψ contribution. The effect is negligible for the case of full suppression of beauty hadrons, while it varies from no increase at low transverse momentum up to a maximum increase of about 15% for $5 < p_T < 6$ GeV/c if no suppression is assumed. The transport model of Ref. [50, 51] (TM1) describes the data at low p_T, but the overall shape of the p_T dependence is steeper in the model, which tends to underestimate the data at intermediate p_T ($3 < p_T < 7$ GeV/c).

5 Conclusion

We reported the ALICE measurement of inclusive J/ψ production in pp and Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV at the LHC. A systematic difference by about 15% is visible when comparing the R_{AA} measured at $\sqrt{s_{NN}} = 5.02$ TeV to the one obtained at $\sqrt{s_{NN}} = 2.76$ TeV, even if such an effect is within the total uncertainty of the measurements. When removing very-low p_T J/ψ ($p_T < 0.3$ GeV/c), the R_{AA} shows a less pronounced increase for peripheral events, which can be ascribed to the removal of a large fraction of electromagnetic J/ψ production [46]. These results, as well as those on the ratio of the nuclear modification factors between $\sqrt{s_{NN}} = 5.02$ and 2.76 TeV, are described by theoretical calculations, and closer to their upper limits. The p_T dependence of R_{AA} exhibits an increase at low p_T, a feature that in the model which is compared to the data is related to an important contribution of regenerated J/ψ. A hint for an increase of R_{AA} between $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV is visible in the region $2 < p_T < 6$ GeV/c, while the results are consistent elsewhere. The results presented in this paper confirm that also at the highest
energies reached today at the LHC, data on J/ψ production support a picture where a combination of suppression and regeneration takes place in the QGP, the two mechanisms being dominant at high and low p_T, respectively.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC); Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community’s Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the ‘Region Pays de Loire’, ‘Region Alsace’, ‘Region Auvergne’ and CEA, France; German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary; Council of Scientific and Industrial Research (CSIR), New Delhi; Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo
J/ψ suppression at forward rapidity in Pb–Pb collisions at √sNN = 5.02 TeV

ALICE Collaboration

Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; National Research Foundation of Korea (NRF); Consejo Nacional de Ciencia y Tecnología (CONACYT), Dirección General de Asuntos del Personal Académico (DGAPA), México, Amerique Latine Formation academique - European Commission (ALFANCE) and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Pontificia Universidad Católica del Perú; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; Joint Institute for Nuclear Research, Dubna; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economía y Competitividad (MINECO) of Spain, Xunta de Galicia (Consellería de Educación), Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand; Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio.

References

J/ψ suppression at forward rapidity in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

14
J/ψ suppression at forward rapidity in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

[38] LHCb Collaboration, R. Aaij et al., “Reference pp cross-sections for J/ψ studies in proton-lead collisions at $\sqrt{s_{NN}} = 5.02$ TeV and comparisons between ALICE and LHCb results, LHCb-CONF-2013-013, ALICE-PUBLIC-2013-002,”.

[40] ALICE and LHCb Collaborations, “Reference pp cross-sections for J/ψ studies in proton-lead collisions at $\sqrt{s_{NN}} = 5.02$ TeV and comparisons between ALICE and LHCb results, LHCb-CONF-2013-013, ALICE-PUBLIC-2013-002,”.

J/ψ suppression at forward rapidity in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

A The ALICE Collaboration

J/Ψ suppression at forward rapidity in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration
J/ψ suppression at forward rapidity in Pb–Pb collisions at √s_{NN} = 5.02 TeV

ALICE Collaboration

7 Central China Normal University, Wuhan, China
8 Centre de Calcul de l’IN2P3, Villeurbanne, France
9 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
10 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
11 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
12 Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
13 Chicago State University, Chicago, Illinois, USA
14 China Institute of Atomic Energy, Beijing, China
15 Commissariat à l’Energie Atomique, IRFU, Saclay, France
16 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
17 Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
18 Department of Physics and Technology, University of Bergen, Bergen, Norway
19 Department of Physics, Aligarh Muslim University, Aligarh, India
20 Department of Physics, Ohio State University, Columbus, Ohio, United States
21 Department of Physics, Sejong University, Seoul, South Korea
22 Department of Physics, University of Oslo, Oslo, Norway
23 Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN Rome, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
25 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
26 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
28 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
29 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
30 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
31 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and Gruppo Collegato INFN, Alessandria, Italy
32 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
33 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
34 Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
35 Eberhard Karls Universität Tübingen, Tübingen, Germany
36 European Organization for Nuclear Research (CERN), Geneva, Switzerland
37 Excellence Cluster Universe, Technische Universität München, Munich, Germany
38 Faculty of Engineering, Bergen University College, Bergen, Norway
39 Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
40 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
41 Faculty of Science, P.J. Šafárik University, Košice, Slovakia
42 Faculty of Technology, Buskerud and Vestfold University College, Vestfold, Norway
43 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
44 Gangneung-Wonju National University, Gangneung, South Korea
45 Gauhati University, Department of Physics, Guwahati, India
46 Helmholtz-Institut für Strahlen- und Kerntechnik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
47 Helsinki Institute of Physics (HIP), Helsinki, Finland
48 Hiroshima University, Hiroshima, Japan
49 Indian Institute of Technology Bombay (IIT), Mumbai, India
50 Indian Institute of Technology Indore, Indore (IITI), India
51 Indonesian Institute of Sciences, Jakarta, Indonesia
52 Inha University, Incheon, South Korea
53 Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France
54 Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
55 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
56 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
57 Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3, Strasbourg,
J/ψ suppression at forward rapidity in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

France

58 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
59 Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
60 Institute for Theoretical and Experimental Physics, Moscow, Russia
61 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
62 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
63 Institute of Physics, Bhubaneswar, India
64 Institute of Space Science (ISS), Bucharest, Romania
65 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
66 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
67 iThemba LABS, National Research Foundation, Somerset West, South Africa
68 Joint Institute for Nuclear Research (JINR), Dubna, Russia
69 Konkuk University, Seoul, South Korea
70 Korea Institute of Science and Technology Information, Daejeon, South Korea
71 KTO Karatay University, Konya, Turkey
72 Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France
73 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
74 Laboratori Nazionali di Frascati, INFN, Frascati, Italy
75 Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy
76 Lawrence Berkeley National Laboratory, Berkeley, California, United States
77 Moscow Engineering Physics Institute, Moscow, Russia
78 Nagasaki Institute of Applied Science, Nagasaki, Japan
79 National Centre for Nuclear Studies, Warsaw, Poland
80 National Institute for Physics and Nuclear Engineering, Bucharest, Romania
81 National Institute of Science Education and Research, Bhubaneswar, India
82 National Research Centre Kurchatov Institute, Moscow, Russia
83 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
84 Nikhef, Nationaal instituut voor subatomaire fysica, Amsterdam, Netherlands
85 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
86 Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rež u Prahy, Czech Republic
87 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
88 Petersburg Nuclear Physics Institute, Gatchina, Russia
89 Physics Department, Creighton University, Omaha, Nebraska, United States
90 Physics Department, Panjab University, Chandigarh, India
91 Physics Department, University of Athens, Athens, Greece
92 Physics Department, University of Cape Town, Cape Town, South Africa
93 Physics Department, University of Jammu, Jammu, India
94 Physics Department, University of Rajasthan, Jaipur, India
95 Physik Department, Technische Universität München, Munich, Germany
96 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
97 Purdue University, West Lafayette, Indiana, United States
98 Pusan National University, Pusan, South Korea
99 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
100 Rudjer Bošković Institute, Zagreb, Croatia
101 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
102 Saha Institute of Nuclear Physics, Kolkata, India
103 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
104 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
105 Sezione INFN, Bari, Italy
106 Sezione INFN, Bologna, Italy
107 Sezione INFN, Cagliari, Italy
108 Sezione INFN, Catania, Italy
109 Sezione INFN, Padova, Italy
J/ψ suppression at forward rapidity in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ ALICE Collaboration

110 Sezione INFN, Rome, Italy
111 Sezione INFN, Trieste, Italy
112 Sezione INFN, Turin, Italy
113 SSC IHEP of NRC Kurchatov institute, Protvino, Russia
114 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
115 SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
116 Suranaree University of Technology, Nakhon Ratchasima, Thailand
117 Technical University of Košice, Košice, Slovakia
118 Technical University of Split FESB, Split, Croatia
119 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
120 The University of Texas at Austin, Physics Department, Austin, Texas, USA
121 Universidad Autónoma de Sinaloa, Culiacán, Mexico
122 Universidade de São Paulo (USP), São Paulo, Brazil
123 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
124 University of Houston, Houston, Texas, United States
125 University of Jyväskylä, Jyväskylä, Finland
126 University of Liverpool, Liverpool, United Kingdom
127 University of Tennessee, Knoxville, Tennessee, United States
128 University of the Witwatersrand, Johannesburg, South Africa
129 University of Tokyo, Tokyo, Japan
130 University of Tsukuba, Tsukuba, Japan
131 University of Zagreb, Zagreb, Croatia
132 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France
133 Università di Brescia
134 V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
135 Variable Energy Cyclotron Centre, Kolkata, India
136 Warsaw University of Technology, Warsaw, Poland
137 Wayne State University, Detroit, Michigan, United States
138 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
139 Yale University, New Haven, Connecticut, United States
140 Yonsei University, Seoul, South Korea
141 Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany