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Abstract 16 

River meander dynamics and mobility are important indicators of environmental 17 

change related to climate changes and anthropogenic activities at local and river basin 18 

scales. The aim of the present study is to identify morphological changes of the 19 

Karoon River in Iran using high accuracy maps and Landsat satellite images by 20 

analyses during the time period 1989-2008. In this study, 20 meandering reaches were 21 

analyzed over a 128-km-long river reach located in the middle part of the Karoon 22 
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River, Iran. Morphometric indicators such as: river width (W), meander neck length 23 

(L), axis length (A), radius of curvature (R), water flow length (S), and sinuosity of 24 

meander (C) were extracted for the identified meanders. The results of a paired t-test 25 

showed that river width (W) and meander neck length (L) have significantly changed 26 

during the study period (1989-2008), with an increase of +3.5 m for W and a decrease 27 

of 274 m for L. Spearman correlation analysis has shown that meander parameter 28 

changes are highly correlated to each other. The parameters that do not have 29 

significant correlation together are C with W and L, W and L, and L with S and A. 30 

During the period of the study, the flow length and river sinuosity decreased for the 31 

whole river reach, by 4.77 km and 0.11, respectively.  Analysis of land use/ land cover 32 

categories (1989 and 2008) using the support vector machine (SVM) and kernel 33 

function method served as one of the tools for interpretation of the meander parameter 34 

changes. These changes can be attributed not only to LU/LC (riparian vegetation to 35 

agriculture area ratio) but also to dam construction in the upstream part of the river 36 

that leads to major hydrological regime and sediment transfer alteration. Sediment 37 

extraction may also be an important factor.  38 

Keywords: human impact; land use; meander parameters changes; remote sensing; 39 

Karoon River 40 

1. Introduction 
41 

River meanders are typical forms of river landscapes that are formed by various 
42 

factors in fluvial systems (Hooke, 2013). This phenomenon represents 
43 

hydrogeomorphological forms induced by lateral movement of the river (Dai et al., 
44 
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2008; Yousefi et al., 2015b).  Meanders are among the important features that can 
45 

change the morphology of floodplains (Lagasse et al., 2004; Güneralp and Rhoads, 
46 

2009; Güneralp et al., 2012). The behavior of meanders can be associated with major 
47 

problems for human life, such as destroying residential and farming lands in the 
48 

floodplain areas. River geomorphic properties are key factors to identifying 
49 

environmental changes and particularly an association with changes in the river’s 
50 

marginal areas, such as different land cover types in the river sides and drainage basin 
51 

(Dai et al., 2008). These morphological changes are attributed to changes of water and 
52 

sediment load regime caused by climate, anthropogenic activities, or land use/land 
53 

cover changes (Lagasse et al., 2004; Gordon and Meentemeyer, 2006; Cserkész-Nagy 
54 

et al., 2010) 
55 

Floodplains and alluvial rivers have been historically and still are one of the most 
56 

attractive places on Earth for human life and agriculture activities (Allan, 2004; Gordon 
57 

and Meentemeyer, 2006; Boix-Fayos et al., 2007; James and Lecce, 2013). Land use 
58 

and land cover (LULC) change is an indirect human impact that could have consequences on 
59 

river morphology. The LULC change impacts on channel morphology could be considered at 
60 

catchment or river reach scales (Kondolf et al., 2002; Liébault and Piégay, 2002; Belletti et 
61 

al., 2016). Changes in the meander parameters can also be attributed to local 
62 

management activities, as for instance the urbanization expansion, levees, riprap, dam, 
63 

and road constructions (Nelson et al., 2013). In addition, meanders can naturally 
64 

evolve and change shape over time even without human intervention (Brice, 1960; 
65 

Hooke, 1984, 2013). 
66 
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During the last 30 years, different studies on meandering rivers showed that water 
67 

flow in the meander bend from centrifugal force can cause an intensive increase in 
68 

water depth and helicoidal flow in the outer arc (Blanckaert, 2003; Frascati and 
69 

Lanzoni, 2010; Chen and Tang, 2012;). Erosion and sedimentation processes have 
70 

been observed at the front edge of the  meander arcs (Frothingham and Rhoads, 2003; 
71 

Rhoads et al., 2009; Riley and Rhoads, 2012). Bank erosion along the river will be 
72 

exacerbated by human intervention in natural conditions and riparian land use changes 
73 

(Gordon and Meentemeyer, 2006; Rutherfurd and Price, 2007; Yanan et al., 2011; 
74 

Yousefi et al., 2015b). Bank erosion and channel migration can occur on different 
75 

timescales (days, years, decades; Simon and Collison, 2002; Hooke, 2004; Ahmed and 
76 

Fawzi, 2011; De Rose and Basher, 2011; Michalková et al., 2011). In recent decades, 
77 

meandering river changes and deformation (narrowing, widening, incision) have been 
78 

emphasized  as of economic, social, and environmental importance (Kondolf, 1994; 
79 

Allan, 2004; Rinaldi et al., 2005; Boix-Fayos et al., 2007; James and Lecce, 2013; 
80 

Belletti et al., 2016). In relation to meander parameters and the factors influencing 
81 

these changes, many studies have been done, especially outside of Iran (Yang et al., 
82 

1999; Timár, 2003; Chu et al., 2006; Wolfert and Maas, 2007; Ollero, 2010; Riley and 
83 

Rhoads, 2012; Ziliani and Surian, 2012; Hooke, 2013; Nabegu, 2014; Liro, 2015; 
84 

Yousefi et al., 2015b). Various classes and models of meander change have been 
85 

suggested,  but  most of these methods are empirical, derived from case studies 
86 

(Peixoto et al., 2009; Van De Wiel et al., 2011; Güneralp et al., 2012; Fuller et al., 
87 

2013; Pirot et al., 2014). 
88 
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This study deals with meander morphology changes of the large Iranian Karoon 
89 

River between two time horizons (1989 and 2008). Detection of the land use and land 
90 

cover change during the study period, based on a support vector machine (SVM) 
91 

algorithm classification with high accuracy, was key for better understanding of its 
92 

effect on the river morphology. The classification of the styles of meander change 
93 

(simple or combined) was identified. Land use and land cover (LULC) changes along 
94 

the buffer zone of the study reach were recorded. The main aims of the present study 
95 

are (i) spatio-temporal change of the alluvial part of the Karoon River (ii) effects of 
96 

two main controlling factors (land use and gravel mining) on river geomorphology. 
97 

2. Study area 
98 

The Karoon River is located in the southwest of Iran; and from a hydro-energy point 
99 

of view (dams in the upstream zone), it is the most important meandering Iranian 
100 

river, with the highest discharge, length, and catchment area among all rivers in Iran. 
101 

The Karoon River total length is about 950 km and the catchment area is about 67,500 
102 

km
2
, with a population of 3.5 million people living in the catchment. The source of 

103 

water for the Karoon River is Zagros Mountain with elevation of 4548 m asl, and in 
104 

the downstream it joins with the Arvanrood River in Khoramshahr City, at an  
105 

elevation of 12 m asl (Salarijazi, 2012). The Karoon catchment has a large range of 
106 

elevations and it covers different types of climates. The Zagros Mountains (Aghajari, 
107 

Mishan, and Bakhtyari) are geologically very heterogeneous with limestone, marly-
108 

limestone, marl, shale, sandstone, and conglomerate. The lowland areas include recent 
109 

alluvial sediments. The long-term mean annual daily discharge at the Ahvaz gauging 
110 

station over more than three decades (1972-2009) is 504 m
3
s

-1
 and maximum annual 

111 
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discharge is 2756 m
3
s

-1
. Dissolved sediment load is 10 g l

-1
. In recent decades, many 

112 

large dams were constructed for water storage, energy production, and irrigation 
113 

purposes in this area (Salarijazi, 2012).  
114 

The studied river reach of the Karoon River is 128 km long (Fig. 1). Its upstream 
115 

part is located close to one of the biggest dams in Iran, namely Gotvand Dam, built in 
116 

2003. The 180-m-high dam creates a reservoir volume of about 28.5million m
3
. The 

117 

downstream part of the river reach is located near Shoshtar City. A 3-km buffer area 
118 

was defined along the study reach to monitor wider spatial changes (49,414 ha). It 
119 

includes the cities of Shoshtar (187,337 inhabitants) and Gotvand (59,261 
120 

inhabitants). 
121 

3. Methodology 
122 

3.1. Data used 
123 

Figure 2 shows the flowchart of the methodology applied for clarifying morphological 
124 

changes using remote sensed data for measuring bend parameters and amounts of 
125 

LULC change along the 128-km channel length in the selected study reach. In this 
126 

study, different Landsat images were used (Table 1). The geometric corrections with a 
127 

nonparametric polynomial method were applied to the images according to 34 ground 
128 

control points in stable parts of the vector road and stream layers. On stable sections 
129 

of channelized river reaches and roads, 29 control points were selected. The total error 
130 

of corrections was estimated according to root mean standard error (RMSE) and gives 
131 

0.34 in each pixel (30 m). Because no clouds were present at the time of the survey, 
132 

no atmospheric correction was applied to the images. In the study reach, high 
133 
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accuracy maps (1:10,000) produced by the Geological Surveys of Iran (GSI) have 
134 

been used for identification of meander morphometric parameters. One of the most 
135 

important points in this study is the spatial resolution (30 m) of images used for land 
136 

use maps; these limits are a source of uncertainty in this study. Recent studies 
137 

(Gualtieri and Cromp, 1999; Halder et al. 2011) demonstrated that support vector 
138 

machine performs better than other algorithms to produce land cover maps, especially 
139 

when a small number of training data are available.  Obviously, the use of high-
140 

resolution images reduces the uncertainty in research, but accessibility to recent 
141 

decades of data, freely downloadable, are the main reasons to use Landsat data in the 
142 

current research. Moreover, many published papers focus on channel morphology 
143 

changes that used Landsat datas which gives us more confidence (Chu et al., 2006; 
144 

Peixoto et al., 2009; Ahmed and Fawzi, 2011; Thakur et al., 2012; Henshaw et al., 
145 

2013). As the river reach in both study dates is very important to geomorphological 
146 

analysis and to the Landsat data (TM and ETM+) we cannot reach high spatial 
147 

resolution in the present study; thus, the morphometric parameters have been extracted 
148 

based on 1:10,000 scale maps.  
149 

3.2. Land use mapping in 1989 and 2008 and their change detection 
150 

For the method of land use and land cover mapping in the study area, training samples 
151 

were prepared for each land use/land cover type (riparian vegetation, agriculture, 
152 

residential, water body, and range land) using field surveys and a global positioning 
153 

system (GPS). The training samples were divided into two parts based on a random 
154 

partition algorithm (Table 2); one part for use in image classification, and a second 
155 

class was used to evaluate the classification accuracy according to Perumal and 
156 
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Bhaskaran (2010) and Srivastava et al. (2012). In order to obtain a robust set of 
157 

training samples, especially for the first image (1989), the questionnaire responses to 
158 

the  uestion  ‘what was the land use type of your lands in 1989?’ from 118 local native 
159 

people were used (100 farmers and 18 persons that live in Shoshtar and Gotvand 
160 

cities). For the land use/land cover map of the study area the support vector machine 
161 

(SVM) algorithm was used, and the kernel function method was developed for each 
162 

image. The radial basis function (RBF) was used as the kernel function; and λin the 
163 

kernel function represents a value of 0.167, and the value of the penalty parameter 
164 

achieved 250. A pyramid level was automatically selected as 100 in ENVI 4.7 
165 

software (Yousefi et al., 2011, 2015a). In this study, detection of the land use and land 
166 

cover changes between 1989 and 2008 were cross-matched and compared using ENVI 
167 

4.7 software where the post-classification method based on classified images for both 
168 

dates was applied (Xu and Gong, 2007; Srivastava et al., 2009, 2012; Yousefi et al., 
169 

2011). 
170 

3.3. Meander parameters 
171 

For considering meander parameters, channel centerlines and bank lines of the 
172 

study river reach were digitized and divided into 20 meander loops. Meander loop 
173 

changes have been identified according to Hooke´s (1984, 2013) models of meander 
174 

changes. In this model the meander changes have been classified based on visual and 
175 

spatial changes.  In the study simple or combined types of meander changes 
176 

(translation, rotation, extension, expansion, cutoff, redevelopment, lateral movement, 
177 

irregular changes) are presented (Fig. 3B). 
178 
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The specific meander parameters represent axis length (A), meander neck length (L), 
179 

river width (W), radius of curvature (R), water flow length (S), and sinuosity (C; Fig. 3A). 
180 

Axis length is the longest distance between the internal arc and the meander neck. Meander 
181 

neck is the lowest distance between two meander loops. Water flow length is the length of 
182 

water between two meander apexes. Radius of curvature is the radius of the maximum 
183 

interior circle in a meander loop, river width (W) is an average of five cross sections 
184 

(the lowest distances between river banks) in the meander curve (Hooke, 2013). 
185 

Sinuosity (C) was calculated using the following equation: 
186 

(C = S/L)  (1) 
187 

Morphometric parameters for all meander loops in 1989 and 2008 were measured by 
188 

measurement tools in ArcGIS 10.2. and AUTOCAD 2009.  
189 

The statistical analysis of paired sample T-tests and Pearson correlations to study 
190 

the variation of meander parameters and their correlation between 1989 and 2008 was 
191 

used as the final step.  
192 

4. Results  
193 

The results of two main types of analysis are presented: first the land use and 
194 

land cover changes in the buffer zone of the study river reach; and second, the detailed 
195 

changes of meander parameters between two dates.  
196 

 
197 

4.1. LULC changes  
198 

The land use and land cover maps in 1989 and 2008 were prepared using the 
199 

SVM algorithm and kernel function method (Fig. 4). The overall accuracy and K 
200 
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coefficient of produced LULC maps were calculated and presented in Table 3. The 
201 

classification accuracy of the LULC map created for 1989 with overall accuracy of 
202 

88.18% and K coefficient of 0.7879 is lower than the LULC map created for 2008 
203 

with overall accuracy of 94.51% and K coefficient of 0.8937. The results showed that 
204 

the areas of water body, riparian vegetation, and rangeland have decreased over the 
205 

study period (Fig. 5). In contrast, agriculture and residential land cover types have 
206 

increased. However, the LULC maps with detected changes (Fig. 6) showed that 24% 
207 

of the study area has been changed (120 km
2
), and water body and riparian vegetation 

208 

areas had the highest changes in the study area, with 54% and 52%, respectively 
209 

(Table 4).  
210 

4.2. Meander parameter changes and statistical analysis 
211 

Channel centerlines of the study reach were digitized and 20 meander loops 
212 

were selected for two time horizons (Fig. 7). Morphometric parameters for all 
213 

meander loops in 1989 and 2008 were measured, and the morphological change of 
214 

meander loops were calculated (Table 5). Mean values of the river width between 
215 

1989 and 2008 indicate a decreasing trend of the river width. On the contrary, the 
216 

sinuosity (C) during the two decades increased. Results of meander morphological 
217 

variables show that the standard deviation (SD) of R and S in 1989 is higher than in 
218 

2008. On the other hand, the SD of W, A, L, and C in 2008 is higher than 1989. These 
219 

results show that the variability of river width (W) and water flow length (S) among 20 
220 

study meanders in 1989 are more than the 2008 values.  
221 

Results of meander morphological change show that in the study reach three 
222 

types of meander change (simple, double, and triple). Several meander (number 4, 5, 
223 
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7, 15, 18, 20) loops with the greatest morphological changes represent combinations 
224 

of double and triple types of change (Fig. 8). In addition, in three meander loops 
225 

cutoff and redevelopment of meanders have been observed (meanders 9, 10, and 11); 
226 

all of these meanders are located between two sand extraction mines. Besides, more 
227 

than half (11) of all studied meanders were assigned simple change represented by 
228 

translation, rotation, lateral movement, expansion, or irregular changes. 
229 

According to paired samples T-test (Table 6) for studying the variation of 
230 

meander parameters, a significant change within 5% confidence level between the two 
231 

dates for the meander neck length (L) and the meander width (W). In contrast, no 
232 

significant difference was observed for radius of curvature (R), water flow length (S), 
233 

sinuosity (C), and meander axis length (A) between the mentioned dates. 
234 

The results of the Pearson correlation between meander parameter changes are 
235 

given in Table 7. Table 7 shows that a significant correlation between sinuosity 
236 

changes (C) and radius of curvature (R), water flow length (S), and axis length (L) 
237 

changes at confidence level of 5%, 1%, and 1%, respectively. Significant correlation 
238 

was also found between change in the radius of curvature (R) with water flow length 
239 

(L), axis length (A), meander neck length, and river width changes at a significance 
240 

level of 5%, 1%, 1%, and 1%, respectively. In addition, a significant correlation 
241 

between changes in the river width (W), water flow length (L), and axis length (A) 
242 

changes at a confidence level of 1%. Also water flow length (L) has a significant 
243 

correlation at the 1% level with axis length (A) of the meander (Table 7). 
244 

 
245 

 
246 
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5. Discussion 
247 

Morphological changes in river systems relate together like a chain (Lagasse et al., 
248 

2004). Recorded changes in radius of curvature (R) caused by enlargement of the 
249 

internal arc led to an increase of water flow length (S) and enlargement of meander 
250 

neck length (L). The axis length (A) increased by this process, too. According to the 
251 

sinuosity coefficient (C), increasing values of morphometric parameters (S and L) 
252 

apparently increased the sinuosity of meander in 2008. The river width (W) changes 
253 

are inversely related to the changes of water flow length (S) and axis length (A) of the 
254 

meander. The axis length of meanders represents the transverse fluctuations. Indeed, 
255 

the consequence of factors such as geological type of the river bed, hydrological 
256 

conditions of the river, and alteration of the river bed. If meander neck length (L) 
257 

remains constant over time, the radius of curvature (R) will decrease and sinuosity (C) 
258 

of meanders increases (Crosato, 2008; Heo et al., 2009). In general, results show a 
259 

direct relationship between radius of curvature changes and changes of sinuosity, 
260 

meander neck length, water flow length, and axis length of meander (Table 7). 
261 

In the study area, the riparian vegetation, water body, and range land type areas have 
262 

decreased by 262, 351, and 214 ha, respectively. On the other hand, agricultural and 
263 

residential areas increased by 304 ha and 522 ha, respectively. Range lands, riparian 
264 

vegetation, and floodplain areas are the property of the government institution of the 
265 

National lands in Iran. Because of the low levels of land protection in National lands, 
266 

the stakeholders every year pushed to change the types of these lands to types like 
267 

residential or agricultural because of financial attractiveness. 
268 



13 
 

 In parts of the river where agriculture comes near to the river banks, river width (W) 
269 

was reduced (Fig. 9). According to Yanan et al. (2011), when river width is reducing 
270 

and a cutoff occurs, the river slope is increasing, i.e., the same amount of water 
271 

discharge is forced to flow down the river more quickly in the smaller, steeper, and 
272 

narrowed section. Increase of water velocity caused an increase of stream power and 
273 

greater bank erosion that resulted in an increase in water flow length (S) and axis 
274 

length (A) of meanders in our studied reach. 
275 

According to field surveys and assessment of land use maps in 1989 and 2008, the 
276 

study area, particularly in the river margins (i.e., 3-km buffer zone along the river 
277 

length) has been interrupted by human activities such as irrigation channels, 
278 

residential land sprawl, and sand mining. Human impact as a crucial factor of river 
279 

morphology changes is documented in several papers (Liébault and Piégay, 2002; 
280 

Zaimes et al., 2004; James and Lecce, 2013; Yousefi et al., 2015; Belletti et al., 2016 
281 

). This activity was observed with greater intensity in meanders 8 to 13 (Fig. 9), where 
282 

destruction of riparian area and conversion to agricultural land has been most 
283 

observed. The high quality of the soils in the upstream part and particularly the 
284 

alluvial banks and the riparian covers are the main reasons that encourage the local 
285 

people that live in the marginal area to plough the land and change the land to farming 
286 

area near the river banks. According to Güneralp et al. (2012), plowing the land and 
287 

destroying the natural vegetation of the river cause soil loss and therefore degradation 
288 

of the meander outer arc. Riparian vegetation is one of the most important factors that 
289 

controls bank erosion as the main process of river migration (Timár, 2003; Cabezas et 
290 

al., 2008; Ollero, 2010; Engel and Rhoads, 2012). Ahmed and Fawzi (2011a) in a 
291 
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study of the Nile River reported that in agricultural land bank erosion and river 
292 

widening is more than in riparian vegetation lands, similar to our results. 
293 

 Sand extraction on the river floodplain to obtain sand for urban and dam construction, 
294 

changes the waterway, soil stability, and cohesion by removing organic matter. 
295 

Removal of  cohesive components such as clay and organic material (wood, grass, and 
296 

roots) makes the soil more erodible (Kondolf, 1994; Rinaldi et al., 2005; Cserkész-
297 

Nagy et al., 2010; Martín-Vide et al., 2010; Gutierrez et al., 2014; Smith et al., 2016).  
298 

In the study site four active sand mining factories. Meanders that are near the 
299 

extraction sites have anabranch shapes and high changes as a consequence of river bed 
300 

disturbance (Latapie et al., 2014). Meander number 20 is affected by mines where 
301 

sand was extracted for dam construction and meanders 9, 10, and 11 are affected by 
302 

mines that were worked for building construction. According to the meander change 
303 

classification method, meander number 20 has the triple combination type of 
304 

extension, translation, and rotation processes; while in meanders number 9, 10, and 11 
305 

the cutoff process has occurred and then meanders have redeveloped. Dai et al. (2008) 
306 

have reported the effect of uncontrolled sand extraction in the Pearl River in China 
307 

over the last two decades; the abnormal changes in meanders near the sand mines 
308 

demonstrated in this study are similar to those results. Brunier et al. (2014) also 
309 

mentioned the effects of sand extraction on increasing flow paths in the Mekong delta 
310 

in Vietnam.  
311 

The Gotvand Dam is one of the largest dams in Iran and is the last downstream dam 
312 

on the Karoon River. Gotvand Dam has some impact on Karoon discharge and 
313 

sediment load as, before dam construction, the average daily discharge (1972-2002) 
314 
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was 534 m
3
s

-1
, but after the dam was constructed the average daily discharge (2003-

315 

2009) decreased to 490 m
3
s

-1
. Average daily suspended sediment load for before and 

316 

after dam construction were 16.36 and 9.12 g l
-1

, respectively. Results of meander 
317 

change classifications show that most of the study meanders have two types of 
318 

change, simple and double (16 meanders), and in most of them  the meander has a 
319 

simple combination of change in its form; this could be because of the controlling role 
320 

of Gotvand Dam. In addition, in the study area three cutoffs located between two 
321 

mining sites appeared during the study period. Gravel mining in some cases changes 
322 

the structure and form of the river bed and consequently water flow changes the 
323 

direction of the channel to more erodible sides (James, 1991; Liébault and Piégay, 
324 

2002; Batalla, 2003; Rinaldi et al., 2005; Martín-Vide et al., 2010; Belletti et al., 2016 
325 

). We suggest that further studies can be done on the rate of changes and monitoring 
326 

and evaluation in the area. 
327 

 
328 

6. Conclusion 
329 

An understanding of fluvial system response over recent decades is essential 
330 

knowledge to assess and predict effects of human disturbances on watershed areas and 
331 

fluvial systems (Latapie et al., 2014). The main aim of the current study was to 
332 

investigate and identify morphological changes in a part of the Karoon River over the 
333 

period 1989 to 2008 and the possible effects of land use on morphological changes 
334 

using remote sensing data. During the study, the river flow length and river sinuosity 
335 

decreased for the that river reach by 4.77 km and 0.11, respectively. This decrease is 
336 

mainly because of cutoffs in three meanders which are all located between two sand 
337 
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extraction sites. Gravel mining has direct effects on river morphology; in mining sites 
338 

by extracting sand and gravel, the flow of the river and the power of the water always 
339 

find the easier way to flow. Land use maps were prepared using the SVM algorithm; 
340 

and results of land use change detection showed that during two decades, 1928 ha of 
341 

water body and riparian vegetation were converted to agricultural lands. Gotvand Dam 
342 

has a controlling role on the sediment load in the study area; also this dam decreased 
343 

the average daily discharge of downstream by about 44 m
3
s

-1
. By decreasing flow 

344 

discharge, the power of flow decreased and high intensity floods were controlled by 
345 

the constructed dams; and as a consequence, the river form has adjusted in most of the 
346 

meander. However, in meanders that have been affected by sand extraction, this is not 
347 

true (Gordon and Meentemeyer, 2006; Dai et al., 2008; Lorenz et al., 2009; Ma et al., 
348 

2012; Csiki and Rhoads, 2014; Grenfell et al., 2014; Yousefi et al., 2015b). Finally we 
349 

can say that sand mining has a significant role in decreasing the flow length by 
350 

increasing the probability of cutoff events; dam building (discharge controlling) and 
351 

land use change (removal of the riparian vegetation) have an important role in 
352 

decreasing channel width in the study reach of the Karoon River.   
353 

Exploration of the meander parameters can help to predict future trends in river 
354 

morphology and meander evolution. Understanding the changing meander parameters 
355 

could help to achieve better river management and mitigation of the damages 
356 

associated with these changes. 
357 

 358 

 359 

 360 
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Figures caption 
622 

Fig. 1. Location of study area in Khozestan Province, Iran. 623 

Fig. 2. Flow chart of the used methodology based on geometric correction of remote sensed 624 

data, land use/land cover, and river features evaluation (meander parameters). 625 

Fig. 3. (A) Morphometric parameters of study meanders:  axis length (A), meander neck 626 
length (L), river width (W), radius curvature (R), water flow length (S). (B) Model of meander 627 

change based on Hooke (1984). 628 

Fig. 4. Land use maps in 1989 and 2008. 629 

Fig. 5. Areal changes in five land use/land cover types during the study period. 630 

Fig. 6. Detection of land use/land cover changes during the study period. 631 

Fig. 7. Study meanders and centerlines of the study river reach with marked areas of sand 632 

mining. 633 

Fig. 8. Morphological change of the most variable meanders in the study river reach. 634 

Fig. 9. Morphological change of the most variable meanders and land use/land cover change. 635 
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Table 1  
641 

Data used in the study area 
642 

Data Date Scale/resolution Provider 
Discharge  

m
3
 s

-1
 

TM 23/May/1989 30*30 meters USGS 569 

ETM+ 5/June/2008 30*30 meters USGS 325 

Topography 

map 
25/March/2001 1:25,000 

National 

Cartographic 

Center of Iran 

(NCC) 

550 

Geology map 10/March/2008 1:100,000 

Geological 

Surveys of  

Iran (GSI) 

413 

Active 

channel plan 
12/June/1989 1:10000 

Geological 

Surveys of  

Iran (GSI) 

518 

Active 

channel plan 
12/Juley/2008 1:10000 

Geological 

Surveys of  

Iran (GSI) 

301 
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Table 2  
654 

Training sample characteristics 
655 

Land use/land cover 

types 

Training sample 

Number of training 

samples 
Classification (ha) 

Evaluation 

(ha) 

Classification 

(pixels) 

Evaluation 

(pixels) 

Riparian vegetation 86 41.48 17.26 460 192 

Agriculture 207 469.4 137.67 5215 1528 

Residential 48 6.16 1.87 68 20 

Water body 39 6.3 1.7 70 18 

Range land 112 145.7 40.3 1618 447 
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Table 3  
677 

Coefficient classification accuracy of the produced land use/land cover maps based on 
678 

using ground control points 
679 

Kappa coefficient Overall accuracy (%) Year 

0.7876 88.18 1989 

0.8937 94.51 2008 
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Table 4 
703 

Detection of the land use and land cover changes during the study period 
704 

Land use/land cover changes between 1989  and 2008 Area (ha) Percent 

Agriculture no change 26314.8 82.64 

Agriculture to Range land 3375.1 10.6 

Agriculture to Residential 837.2 2.63 

Agriculture to Riparian vegetation 837.67 2.63 

Agriculture to Water body 479.1 1.5 

Range land no change 7107.9 65.39 

Range land to Agriculture 3477.2 31.99 

Range land to Residential 284.4 2.62 

Residential no Change 1570.9 96.05 

Residential to Water body 64.6 3.95 

Riparian vegetation no change 1448.4 47.9 

Riparian vegetation to Agriculture 1334.04 44.12 

Riparian vegetation to Residential 35.9 1.19 

Riparian vegetation to Water body 205.2 6.79 

Water body no change 920.8 45.12 

Water body to Agriculture 594.6 29.13 

Water body to Residential 124.9 6.12 

Water body to Riparian vegetation 400.7 19.63 
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Table 5  
721 

Meander parameters as river width (W), radius curvature (R), axis length (A), meander 
722 

neck length (L), water flow length (S), and sinuosity (C) measured on the study river 
723 

reach in two time horizons (1989 and 2008) and morphological change of meander 
724 

loops (SD – standard deviation) 
725 

 726 

 727 

 728 

 729 

 730 

 731 

  732 

 1989 2008 
Morphological change  (1989-

2008 ) 

Number 
W 

(km) 

R 

(km) 

A 

(km) 

L 

(km) 

S 

(km) 
C W(km) 

R 

(km) 

A 

(km) 

L 

(km) 

S 

(km) 
C 

Type of 

change 
Description 

1 0.253 1.6 4.13 5.44 10.31 1.89 0.173 1.85 3.94 5.1 10.42 2.04 Simple Translation 

2 0.217 1.41 3.2 5.4 8.31 1.54 0.183 1.23 3.17 5.58 8.51 1.53 Simple Rotation 

3 0.231 4.47 3.23 7.87 13.23 1.68 0.172 4.65 3.08 8.43 14.09 1.67 Simple 
Irregular 

Changes 

4 0.152 1.24 2.1 2.76 5.63 2.04 0.112 1.36 2.14 2.3 6.23 2.71 Double 
Extension and 

Rotation 

5 0.214 1.79 2.87 2.94 6.39 2.17 0.171 2.05 2.57 2.49 7.51 3.02 Double 
Rotation and 

Expansion 

6 0.218 0.36 1.82 3.53 4.05 1.15 0.173 0.56 1.45 2.36 5.12 2.17 Simple Translation 

7 0.196 0.51 1.56 2.46 3.25 1.32 0.174 0.57 1.26 1.41 4.37 3.10 Double 
Translation and 

Rotation 

8 0.190 1.92 2.1 3.3 7.45 2.26 0.188 1.65 2.21 3.7 6.74 1.82 Simple 
Irregular 

Changes 

9 0.179 2.57 1.58 5.38 9.56 1.78 0.212 1.11 2.42 3.32 5.18 1.56 Cutoff 
Cutoff and 

Redevelopment 

10 0.187 1.95 1.4 3.84 11.76 3.06 0.243 0.66 4.17 3.46 4.97 1.44 Cutoff 
Cutoff and 

Redevelopment 

11 0.168 0.41 0.86 2.56 3.48 1.36 0.154 1.16 1.1 2.81 3.70 1.32 Cutoff 
Cutoff and 

Redevelopment 

12 0.185 0.45 1.15 1.82 3.45 1.90 0.215 0.44 1.83 1.17 3.51 3 Simple 

Lateral 

Movement 

(Left) 

13 0.171 0.75 1.37 1.78 3.58 2.01 0.138 0.69 1.23 1.69 3.85 2.28 Simple 
Expansion 

(Decrease) 

14 0.141 0.69 1.15 2.73 3.03 1.40 0.173 0.62 1.01 2.83 3.65 1.29 Simple 
Expansion 

(Decrease) 

15 0.248 0.61 1.36 3.66 5.01 1.37 201 0.86 1.34 3.61 4.79 1.33 Double 
Extension and 

Expansion 

16 0.175 0.89 1.82 3.52 5.30 1.51 0.168 1.01 1.71 3.42 5.48 1.60 Simple 
Expansion 

(Increase) 

17 0.132 0.78 1.45 3.24 4.94 1.52 0.097 0.94 1.54 2.75 4.85 1.76 Simple 
Expansion 

(Increase) 

18 0.200 0.50 1.13 3.2 3.81 1.19 0.158 0.63 0.94 2.75 4.01 1.48 Double 
Extension and 

Expansion 

19 0.268 0.86 2.56 2.93 5.30 1.81 0.253 0.93 2.05 3.16 4.22 1.97 Simple 
Expansion 

(Decrease) 

20 0.172 1.80 2.60 4.59 7.39 1.61 0.170 2.1 2.22 4.7 8.06 1.71 Triple 

Extension, 

Translation and 

Rotation 

Mean 0.194 1.28 1.97 3.65 5.91 1.73 0.176 1.25 2.07 3.35 5.96 1.94 

---- 
Min 0.132 0.36 0.86 1.78 3.03 1.15 0.097 0.44 0.94 1.17 3.51 1.29 

Max 0.268 4.47 4.13 7.87 13.23 3.06 0.253 4.65 4.17 8.43 14.09 3.10 

SD 0.0367 0.99 0.87 1.46 2.92 0.45 0.0376 0.94 0.94 1.64 2.67 0.59 
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Table 6  
733 

Results of paired sample T-test for the parameters of the meanders between two dates 
734 

(1989 and 2008)   
735 

Meander 

parameter 

Average 

difference 

between variables 

Standard deviation T value 
Degree of 

freedom 
Sig. 

L 0.2957 0.6144 2.152 19 0.044* 

S 0.2385 1.9336 0.552 19 0.588 

W 19.9 36.201 2.458 19 0.024* 

C -0.2105 0.6827 -1.379 19 0.184 

R 0.0245 0.5075 0.216 19 0.831 

A 0.097 0.7108 0.610 19 0.549 

* Significant at 5% confidence level.  
736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

  754 
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Table 7  
755 

Results of the Pearson correlation between meander parameter changes between 1989 
756 

and 2008  
757 

 
758 

Meander 

parameter 
Statistical factor C R W L S A 

C 
r1 

a 
     

Sig.      

R 
r 0.510* 

a 
    

Sig. 0.022     

W 
r -0.367 -0.605** 

a 
   

Sig. 0.111 0.005    

L 
r -0.329 0.479* -0.219 

a 
  

Sig. 0.156 0.033 0.353   

S 
r 0.725** 0.881** -0.648** 0.327 

a 
 

Sig. 0.000 0.000 0.002 0.159  

A 
r 0.624** 0.730** 0.641** 0.219 0.919** 

a 
Sig. 0.003 0.000 0.002 0.354 0.000 

* Significant at 5% confidence level.  
759 

** Significant at 1% confidence level. 
760 

  761 

                                                           
1
Pearson corrélation coefficient. 
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