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Abstract 

Mortality from cardiovascular disease (CVD) is predicted to surpass that of infectious disease in sub-Saharan 

Africa (SSA) by 2030. HIV doubles the risk of CVD in high resource settings, but the contribution of HIV and 

immune activation to the risk of CVD in SSA is unknown.  

HIV-1-infected adults with CD4<100 cells/ul were recruited 2 weeks following initiation of anti-retroviral 

therapy (ART) within the REALITY trial (NCT01825031), along with healthy HIV-uninfected adults and 

followed for 44-weeks. Acute infections (malaria, TB, cryptococcal meningitis, pneumonia, gastroenteritis) 

were recorded. Pulse wave velocity (PWV) was assessed using the Vicorder system. Flow cytometry 

identified T-cell activation (HLA-DR/CD38+), exhaustion(PD1+) and senescence(CD57+) in all participants and 

circulating microparticles(CMPs) in 72 participants. Independent predictors of PWV were identified using 

linear regression. Backwards elimination was performed with an exit of p>0.1 Variables with univariable 

p<0.2 were included (spearman-rho or Wilcoxon ranksum).   

 

279 HIV-infected adults had similar median(IQR) age [36(31-43) vs 35(3-41) years, p=0.4], but lower systolic 

BP [120(108-128) vs 128(114-134) mmHg, p<0.01], BMI [20(18-21) vs 22(20-25) kg/m2, p<0.01] and 

proportion of women [122(44%) vs 66(60%), p<0.01] than 110 HIV uninfected adults. Following adjustment 

for confounders, HIV infection was associated with a 12%-increase in PWV (p<0.01) at baseline, which 

remained at week 10 (14%-increase, p=0.02) but resolved by week 24. %CD4-PD1 and %CD8-PD1 were 

independently associated with PWV at baseline (fold change 2% and 3% per 10%increase, p=0.06 and 0.05 

respectively). A decrease in %CD4-PD1 was associated with improvement in PWV by week 44 (rho 0.20, 

p=0.02). At baseline, median (IQR) CMPs were increased in HIV infection [5.1(2.0-18.0) x106 versus 0.4(0.2-

6.0) x106, p<0.00001) and in high versus low immune activation [4.0(2.3-5.6) x106 versus 0.3(0.1-0.5) x106, 

p<0.0001)]; and were strongly related to PWV (rho 0.42, p<0.001). An acute infection during the study 

carried a 51% adjusted increase in %CD8 activated T cells at week 44 (p=0.02) and an increase in PWV at 

week 44 of 0.80m/s [versus -0.10m/s (p=0.01)] for HIV uninfected participants.  

 

These results strongly implicate HIV and immune activation in increased endothelial damage during the first 

12 weeks of ART therapy. Improvement in PWV on ART and cotrimoxazole is associated with decreases in 

immune activation. HIV and co-infections may present modifiable CVD risk factors in low resource SSA 

setting.  
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1 CHAPTER 1: INTRODUCTION 

1.1 Overview of HIV 

1.1.1 HIV virus 

Human immunodeficiency virus (HIV) was originally a zoonotic cross-species infection which belongs to the 

family Retroviridae and genus Lentivirus [1]. It exists in two separate species: HIV-1 and HIV-2. HIV-1 

infection is distributed globally compared to HIV-2 which is confined to West Africa. HIV-1 infection 

progresses rapidly to acquired immune deficiency syndrome (AIDS). The HIV-1 species is further divided into 

groups (M, O and non-MO). More than 90% of HIV-1 infections are group M, and this group is further divided 

into nine main clades A-D, F-H, J and K. Many recombinant forms also exit. The distribution of HIV-1 subtypes 

is shown in Figure 1-1 [2]. 

 

Figure 1-1 Global distribution of HIV-1 subtypes1 

 

HIV is made up of a core and an envelope. The envelope contains viral glycoproteins (gp120 and 41). It is 

gp120 that binds with the CD4 receptor and one of two accessory receptors (CCR5 or CXCR4) to effectuate a 

conformational change allowing viral entry to the cell. The core contains two single sense strands of RNA 

containing 3 structural genes (gag, pol and env) and six accessory genes (tat, rev, nef, vif, vpr and vpu). The 

pol gene is responsible for the production of HIV viral enzymes including reverse transcriptase which allows 

                                                           
1 From 2. Perrin, L., L. Kaiser, and S. Yerly, Travel and the spread of HIV-1 genetic variants. The Lancet Infectious 
Diseases. 3(1): p. 22-27. 
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the viral RNA to be copied into DNA within the host cell. Integrase then facilitates the integration of DNA 

into the host cell genome.  

 

1.1.2 Natural history of HIV infection 

Sexual transmission is the most common mode of infection for HIV and occurs across a mucosal surface [3]. 

The first cells to be infected are either CD4 T cells within the epithelium, or Langerhans cells (a type of 

dendritic cell)[4]. CD4 T cells are found closer to the surface of the epithelium during activation in response 

to a current infection [5]. During the first week of infection, there is local replication of the HIV virus within 

neighbouring CD4 T cells [6]. T cells then migrate to local draining lymph nodes before spreading out to 

secondary lymphoid organs during the second week of infection[7]. It is at this point that viral reservoirs are 

established in lymphoid tissue a well as in organs such as brain, lungs and liver [8, 9]. Simultaneously, 

activation of the immune system in response to the HIV virus leads to a large pool of CD4 T cells that are 

highly permissive to HIV infection and destruction of CD4 T cells begins [10]. A compensatory increase in CD8 

T cells results, with the development of HIV specific cytotoxic T cells [11]. It is at this point that maximal HIV 

replication occurs and peripheral blood viral loads peak and patients can often experience an ‘acute 

retroviral syndrome’, manifesting as ‘flu-like’ symptoms including fever and general malaise. The process of 

immune activation leads to systemic inflammation and ‘bystander death’ which contributes to the depletion 

of the CD4 T cell pool [12]. SIV sootey mangabey models and comparisons with HIV-2 infections demonstrate 

that the quantity of CD4 T cells is preserved despite a high viral load because of an absence of significant 

activation of the immune system. This supports the hypothesis that CD4 T cell death in HIV infection is an 

immunopathological process [13]. Continued antigenic stimulation in the context of impaired T cell renewal 

capacity due to thymic fibrosis together are likely responsible for T cell count depletion in HIV infection [14].  

T regulatory responses limit some of this heightened response, and predict the extent of immune activation 

[15]. However, the ability of HIV specific cytotoxic CD8 T cells to evade this suppression may be important in 

viral control [16]. Following this period of rapid replication, the HIV virus then enters a latent phase and the 

level of plasma viral load is referred to as the viral set point. The length of time spent in this latent phase 

varies considerably from person to person but, without treatment, generally leads to the development of 

AIDS. It was recognised early in the epidemic that HIV virus continues to replicate during this latent stage 

within lymphoid tissue [17] and that such sanctuary sites and latently infected cells would be a major 

obstacle to the eradication of HIV [18]. A summary of CD4 and viral load (VL) dynamics over the course of 

infection is given in Figure 1-2  [19].  
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Figure 1-2 Immunological, virological and clinical stages of untreated HIV infection2 

 

 

1.1.3 History of the HIV epidemic 

The acquired immunodeficiency syndrome (AIDS) was first reported in a case series of patients with 

pneumocystis carinii pneumonia published by the Centres for Disease Control and Prevention in 1981 [20]. In 

1983 The Pasteur Institute in France first identified the HIV virus, which they referred to as 

Lymphadenopathy associated virus (LAV) [21]. Soon after, Robert Gallo and colleagues also identified what 

they referred to as HTLV-III [22]. Four years later, reports of ‘slim disease’ emerged from clinics in sub-

Saharan Africa [23]. In 1985, the first serological test for detection of HIV specific antibodies was designed 

[24] and over 10 years later, quantification of HIV viral load in the plasma was made possible using PCR 

methods [25]. This not only supported efforts to diagnose HIV infection, but importantly served as an 

outcome marker to assess therapeutic interventions [26].   

Zidovudine, from the nucleoside analogue reverse transcriptase (NRTI) class, was the first anti-retroviral 

agent used to treat HIV and became popular towards the end of the 1980s [27]. Although Zidovudine 

increased AIDS free survival, this was only a short term effect and mortality remained unchanged; it was 

soon discovered that this was due to the development of resistant mutations [28]. Dual therapy was 

attempted with two agents from the NRTI class [29, 30], but again, the mortality benefit was short-lived. 

                                                           
2 From  19. Rodger, A.J., M.A. Johnson, and T.W. Mahungu, HIV/AIDS : An Atlas of Investigation and Management. 
Atlas: HIV2011, Oxford: Clinical Publishing. 
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Nevirapine was the first of the non-nucleoside analogue reverse transcriptase inhibitors (NNRTI) to be used 

to treat HIV infection. Shortly after this, a landmark paper from the INCAS group provided the first evidence 

of the benefits of triple therapy, or highly active anti-retroviral therapy (HAART), using two different drug 

classes [31]. Around the same time drugs from the protease inhibitor class became available and guidelines 

were soon released recommending a protease inhibitor as the ‘backbone’ of HAART along with two NRTIs 

[32]. Although HAART was first officially used in Uganda and Cote d’Ivoire in 1998 [33], roll-out in sub-

Saharan Africa began in earnest between 2000 and 2004 following the first ever WHO guidelines for use of 

HAART in resource poor settings: ‘Scaling up anti-retroviral therapy in resource limited settings’ [34].  

The introduction of HAART between 1995 and 1997 revolutionised the treatment of patients with HIV [35]. 

The first confirmation of this came from a report of the HIV outpatient study in 1998 which demonstrated 

that HAART decreased AIDS related mortality from 29.4 per 100 person years to 8.8 per 100 person years 

over only 2 years [36]. The timeline for the introduction of some of the most commonly used antiretrovirals 

(ARVs) today is given in Figure 1-3 [37]. In the years following the introduction of HAART, it became clear 

that some patients experienced failure of these first line drugs [38].The next HAART milestone came with 

introduction of the concept of second line regimes [39]. More recent work has shown that even short, 

planned interruptions of HAART lead to viral rebound and increased AIDS related events and mortality [40]. 
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Figure 1-3 Timeline of introduction of anti-retroviral drugs3 

 

 

During just over 3 decades of the epidemic, a total of 78 million people have been infected with HIV and 39 

million have died [41]. Antiretroviral Therapy (ART) has globally reduced progression to AIDs and HIV related 

mortality [42]. WHO first published guidelines on eligibility for ART initiation in 2002 and since then the CD4 

count threshold has steadily increased. In 2013, WHO recommended initiation of ART for anyone with a CD4 

count equal to or less than 500 cells/uL and in September 2015, this guidance was updated to recommend 

universal treatment regardless of CD4 count [43]. 15.8 million people were accessing ART at the end of June 

2015, representing 41% of those eligible [44]. 7.8 million deaths are estimated to have been averted thanks 

to ART between 2000 and 2014 [45].  

The vast majority of the global burden of HIV disease is found in sub-Saharan Africa (SSA) and efforts to roll-

out ART have focussed on the region. As of the end of 2014, 25.6 million (70%) of the 36.9 million people 

infected with HIV were living in sub-Saharan Africa [44]. Nearly 5% of adults in SSA are living with HIV. SSA 

saw 5000 new adult infections a day in 2014, which is 66% of new infections globally [46]. Although more 

people are being initiated on ART, evidence suggests that globally CD4 counts at ART initiation are not 

increasing significantly. In other words, a significant proportion of people still present with advanced 

immunosuppression. A recently published meta-analysis found that between 2002 and 2013, there has not 

                                                           
3 From 37. Palmisano, L. and S. Vella, A brief history of antiretroviral therapy of HIV infection: success and 
challenges. Ann Ist Super Sanita, 2011. 47(1): p. 44-8. 
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been a significant increase in CD4 count either at presentation or at ART initiation [47]. Although a recent 

report from Rwanda found that between 2007 and 2008 CD4 count at ART initiation increased 110 cells/uL, 

there were still clear disparities for some groups including male patients [48].  

Because of this disproportionate burden of disease, the number of people receiving ART has increased 

rapidly in SSA compared to other regions (see Figure 1-4 [46]). A stark illustration of the impact of this roll-

out of ART in SSA is demonstrated by looking at the impact in life expectancy in South East Africa, where the 

highest prevalence of HIV is found (Figure 1-5 [49]). 
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Figure 1-4 Estimated global ART coverage 2000 – 2015, by WHO region4 

 

 

 

Figure 1-5 Impact of HIV response on life expectancy in SSA5 

 

 

Despite this progress, recent estimates from WHO and UNAIDS  project that failing to widen global ART 

coverage could lead to a rise in HIV incidence to 2 million new annual infections by 2030 [49]. UNAIDS 2016-

2021 Fast track targets have been published, aiming for 90% of HIV infected people to know their status, 

                                                           
4 From  46. UNAIDS, Core Epidemiology Slides, 2015. 
5 From 49. UNAIDS, HIV TREATMENT IN AFRICA: A looming crisis, in ISSUES BRIEF2015. 
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90% of positive people to be on ART and 90% of people on ART to be virally suppressed by 2020 [50]. This 

strategy underpins new Sustainable Development Goals which aim for zero new infections and zero AIDS 

related deaths by 2030 [50].  

 

1.1.4 Epidemiology of HIV in Malawi 

In Malawi, 12% of the population – just over 1 million people - are living with HIV [51]. This accounts for 4% 

of all people living with HIV in SSA.  The epidemic is concentrated in the Southern region; Blantyre has a HIV 

prevalence of 17.8% (110,000 adults) [52].  Although the prevalence is high, the incidence of new HIV 

infections is falling: there were around 34,000 new infections in Malawi in 2014 , which has declined from 

98,000 in 2005  (see Figure 1-6) [52].  
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Figure 1-6 Distribution of HIV in Malawi in 20146 

 

 

Around 500,000 Malawians are currently alive on ART which represents 69% of the 745,000 people ever 

initiated on ART in Malawi  [51]. In all, 67% of all those currently eligible for ART are receiving it [53]. Just 

over 110,000 people were initiated on ART in 2014. ART roll out has been largely successful in Malawi with 

48,000 AIDS related deaths in 2014 representing a 51% decrease since the roll out of ART [52]. Although the 

death rate of ART patients has fallen steadily from 2005, the default rate has remained more or less static at 

around 1 – 2%. 

 

                                                           
6 From 52. AVERT. HIV AND AIDS IN MALAWI. Gap report 2014 2014  [cited 2016 31st March]; Available from: 
http://www.avert.org/professionals/hiv-around-world/sub-saharan-africa/malawi. 
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1.2 Chronic immune activation is a limitation to the success of ART 

1.2.1 Overview of chronic immune activation in HIV 

The focus in HIV care is shifting to managing HIV as a chronic disease [54]. Despite the unequivocal success 

of ART in reducing mortality related to HIV and AIDS, ART does not restore patients to full health. Under 

normal physiological conditions, immune cells are usually at rest. Activation of immune cells in response to 

most pathogens is short-lived whilst the pathogen is cleared from the host system. However, in the case of 

chronic infections such as HIV, the immune system remains activated at low levels, even in patients who are 

virologically suppressed on ART. Patients on ART have long since been recognised to have markedly elevated 

levels of activated immune cells compared to HIV negative patients [55, 56]. Activation of CD4 and CD8 T 

cells leads to complications such as immune exhaustion, poor immune reconstitution on ART and AIDS 

related illnesses [57-59]. Research conducted at the Malawi Liverpool Wellcome Clinical Research Program 

(MLW) suggests that many factors specific to resource limited settings contribute to immune dysregulation 

and that the consequences may also be unique in sub-Saharan Africa [60-63]. For example, both T cell and B 

cell functions have been shown to be predictive of pneumococcal infection even without HIV infection and 

differences have been demonstrated in mucosal immunity in children from this low resource SSA setting. 

 

1.2.2 Pathogenesis of immune activation, exhaustion and senescence 

Stimulation with HIV antigens promotes T cell differentiation and proliferation. During HIV infection, failure 

to replenish the CD4 T cell pool results from both a decreased production in cells as well as a decreased half-

life. ART allows the production of cells to increase but the half-life is still shortened  [64]. Marked expansion 

of the CD8 T cell pool occurs with 80-90% of cells exhibiting activation with CD38 expression during acute 

HIV infection (CD4 T cells show much less CD38 expression) [65]. There is both direct activation through 

recognition of specific antigens that individual T cells are primed to recognise (such as cytomegalovirus 

(CMV), Epstein Barr Virus (EBV) and HIV itself), as well as indirect, non-specific activation [65]. Immune 

activation in HIV infected patients has been demonstrated for many immune cells including NK cells, B cells, 

neutrophils and plasma DCs [66-69]. However, most of the attention has been focussed on T cells and 

monocytes which seem to represent two quite distinct inflammatory axes.  

T cell activation has been strongly associated with acute HIV pathogenesis, disease progression, AIDS related 

events and non-AIDS related events. CD38 was one of the first markers used to identify T cell activation and 

at the time was shown to independently predict HIV disease progression [70-72]. The expression of HLA-DR 

is also regarded as an activation marker on T cells and its expression has been shown to be increased in cells 

that have undergone multiple rounds of replication [73]. In addition to activation markers, HIV infection has 

been associated with the expression of inhibitory markers on the cell surface which prevent the cell from 



38 
 

being able to respond to any new stimulus. Two main processes of cell inhibition can occur: immune 

senescence and immune exhaustion.  

T cell senescence occurs when a cell has undergone many rounds of replication (which can be measured by 

telomerase length). Telomerase shortening leads to induction of the DNA damage response within the cell 

(DDR). DDR leads to growth arrest and if this goes unchecked by internal repair mechanisms ultimately leads 

to permanent growth arrest which is then irreversible. This process is likely to represent an anti-cancer 

control mechanism and would also be useful for the control of latent infections. The cells do not die, 

however, but instead remain in a state of limbo where they are unable to replicate or function.  

Upregulation of CD57 and downregulation of CD28 expression on T cells characterises highly differentiated 

cells and therefore is highly expressed on senescent cells [65, 74, 75].  Around 40% of CD8 T cells in patients 

with AIDS also express CD57, a senescence marker which heralds the inability of the cell to further divide 

[75]. Lee et al demonstrated that expression of CD57 on T cells could be reversed by early ART [76]. It should 

be noted that other chronic viral infections promote the expansion of the senescent T cell phenotype, with 

CMV being the most notable example [77]. Furthermore, CMV infection has been associated with HIV 

progression [78], non-AIDS diseases [79]  and CD4 T cell recovery on ART  [80] . 

In contrast, T cell exhaustion occurs in response to a high antigenic load. Usually either viral or tumour 

antigen leads to differentiation and upregulation of inhibitory cell surface receptors such as PD-1. A 

signalling cascade is initiated which results in growth arrest, decreased function and cell death. However, T 

cell exhaustion can be reversed as demonstrated by studies using PD-1 blockade [81]. Cockerham et al found 

that PD-1 expression on CD8 T cells was closely related to CD8 T cell activation and viral load, whereas 

expression on CD4 T cells was related to CD4 T cell activation and low CD4 counts [82]. 

Monocytes expressing CD16 were identified as a distinct subpopulation in 1989 [83]. Three monocyte 

subsets are now recognised: classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical 

(CD14+CD16+). HIV infected subjects have an expanded population of intermediate monocytes, which 

produce pro-inflammatory cytokines including TNF alpha and IL-1 [84]. It is hypothesised that TNFα 

production by monocytes drives expansion of nonclassical monocytes which in turn causes an upregulation 

of TLR4 expression on CD16+ monocytes [85]. The nonclassical monocyte subset is associated with HIV 

disease progression [86] and is more permissive to HIV infection [87]. Interestingly, expansion of the 

nonclassical monocyte population was protective against the development of tuberculosis (TB) immune 

reconstitution inflammatory syndrome (IRIS) in a South African HIV population [88]. In mice models, CD16+ 

monocytes express proatherogenic chemokine profiles and exist in higher numbers in atherosclerosis lesions 

[89]. In particular, CCR2 - the main receptor for the pro-inflammatory cytokine MCP-1 involved in the 

initiation of atherosclerosis - is upregulated in CD16+ monocytes.  
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1.2.3 Drivers of chronic immune activation in HIV 

The exact mechanisms driving chronic immune activation in HIV infection are the subject of intense research 

and have not been fully elucidated. Although several main pathways are under investigation, it is likely that 

several, or even all, of these potential mechanisms can exist in any one individual with chronic immune 

activation. Figure 1-7 gives a simplified overview of the relationship between potential drivers and the 

cellular consequences of immune activation  [90]. The three most important drivers are the effects of HIV 

itself, chronic coinfections and microbial translocation. All of the main factors contributing to chronic 

immune activation in HIV infection are likely to be more pronounced in the context of advanced 

immunosuppression. Using Ki-67 as a marker of active replication, the percentage of dividing T cells in 

untreated HIV infection in those with a CD4 count <100 is 10 fold greater than those with a CD4 count above 

100 [12]. T cell activation and senescence is closely associated with low nadir CD4 counts [91]. T cell 

activation has been associated with CD4 T cell counts in a Ugandan cohort [92]. 

 

Figure 1-7 Overview of the drivers and cellular consequences of chronic immune activation7 

 

                                                           
7 From 90. Younas, M., et al., Immune activation in the course of HIV-1 infection: Causes, phenotypes and 
persistence under therapy. HIV Med, 2016. 17(2): p. 89-105. 
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1.2.3.1 HIV-1 infection per se 

The most obvious cause for activation of the immune system during HIV infection would be the effect of HIV 

itself. There are two main ways in which the HIV virus might stimulate the immune system, even under 

virological control with ART [93]. The first theory is that viral replication continues at very low levels, below 

lower limits of detection of current assays. Viral replication can be measured by quantifying long terminal 

repeats (LTRs) within cells as a proxy marker for intracellular HIV replication [94]. The second is that HIV 

proteins may stimulate the immune system even when replication is not present. HIV-1 RNA may stimulate 

TLR pathways [95] and the presence of intracellular HIV DNA may activate caspase-1 pathways, even without 

the production of a competent virus [96]. However, the effects of HIV replication are not necessary to cause 

immune activation during HIV disease, because low CD4 counts are independently predictive of immune 

activation and are more strongly predictive than viral load [72]. Furthermore, the effects of the HIV virus 

itself are not sufficient to explain the pathogenesis of immune activation.  Activation of T cells is not 

confined to those cells infected by HIV or that are specific for HIV antigen and cells of the innate immune 

system such as NK cells, pDCs and monocytes also show high levels of activation [97, 98].  Viraemia in several 

SIV models (such as sooty mangabeys and macaques) exists without evidence of immune activation or CD4 

depletion [99]. Lastly, active viral replication with high viral loads are seen in long term non-progressors who 

do not exhibit the same degree of immune activation [100].  

 

1.2.3.2 Chronic coinfection 

Several chronic infections have been associated with increased levels of immune activation in people with 

HIV infection. These include hepatitis C virus (HCV) [101], hepatitis B virus (HBV) [102], CMV [103], herpes 

simplex virus (HSV) [104] and EBV [105]. Infection with TB is also an important contributor to immune 

activation in HIV infection [106]. Sullivan and colleagues found elevated levels of T cell activation in patients 

with latent TB in a South African cohort, but there was no TB uninfected control group [107]. A vicious circle 

exists in that inflammation in HIV is also associated with an increased risk of TB infection [108]. Evidence 

suggests that helminth infection can exacerbate immune activation in HIV and that intervening with anti-

helminths improves HIV related outcomes [109]. 

 

1.2.3.3 Microbial translocation 

The gut is now regarded as a major site in the immunopathogenesis of HIV disease. During acute SIV 

infection, there is a massive loss of CD4 memory cells in peripheral blood mononuclear cells (PBMCs) and in 

tissues, including the gut [110] and this has been confirmed with biopsies in untreated HIV-1 infected adults 

[111]. In SIV models, the loss of CD4 T cells in the gut seems to occur earlier than even loss in peripheral 
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lymph nodes and as such is a major site of immune depletion [112]. This has been confirmed in biopsies from 

HIV-1 infected adults which show that the CD4 T cell depletion in the gut is much more pronounced than in 

lymph nodes or blood samples [113]. As a result of this damage to the gut’s immune mechanisms, the gut 

mucosa becomes compromised and inflamed, and bacterial products can cross into the blood stream. LPS is 

an endotoxin which can originate from gut bacteria and can be detected in blood [114].  Markers of gut 

epithelial barrier disruption and innate immune system activation have been associated with mortality in 

cohorts where there was only a minor association found with T cell activation [115]. But other microbial 

products may directly activate T cells [116]. In a South African cohort, CD16 positive monocytes were 

associated with HIV viraemia and normalised on ART; however, LPS remained elevated despite effective ART 

[117].  

 

1.3 Immune activation is a risk factor for cardiovascular disease in people living with HIV 

1.3.1 Pathophysiology of endothelial damage 

The arterial endothelium plays a critical role in the inflammatory response to a pathogenic stimulus [118]. 

Atherosclerosis can be viewed as a pathogenic consequence of the inflammatory response, occurring when 

the immune system responds to an aggravating stimulus, usually in the form of modified LDL (oxidised, 

glycated, aggregated or opsonised) [119]. However, activated monocytes have been shown to be 

atherogenic even in the absence of LDL stimulus and other stimuli which can initiate atherosclerosis include 

free radicals, hypertension, high plasma glucose, and even chronic infections such as HSV. Endothelial cells 

are activated either directly by adherence of monocytes and T cells to receptors on the endothelial surface, 

or indirectly through the release of chemokines such as MCP-1. As a result, adherence markers such as 

VCAM-1, ICAM-1, selectins and integrins are upregulated and both endothelial cells and recruited leucocytes 

signal to attract additional T cells and monocytes [120, 121].  

Following endothelial activation, the next component of endothelial inflammation is ‘rolling’ where 

leucocytes, mainly monocytes, form low affinity bonds with endothelial markers causing them to roll along 

the endothelium from one marker to the next. VCAM-1 and selectins are the most important receptors 

involved in rolling and are essential in the early stages of atherosclerosis. Nonclassical monocytes 

preferentially express PSGL-1, a ligand for VCAM-1 and are more adept at rolling on activated endothelium 

than monocytes not expressing CD16 in mouse models [122].  

When the leucocytes encounter a high affinity bond with endothelial molecules, they become ‘stuck’. ICAM-

1 and integrins are responsible for firm tethering, providing stronger connections with molecules such as 

LFA-1 and CR3 on leucocytes. Interestingly, LFA can be induced by gp120 and is also a key determinant of 

CD4 T cell infection [123]. This leads to the process of transcytosis where monocytes cross the endothelial 

barrier to enter the subendothelial intimal layers, becoming resident macrophages. Macrophages then 
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engulf lipid molecules creating foam cells that grow in size forming a fatty streak - the earliest stage of 

atherosclerosis. Leucocyte recruitment is much more important at this early stage of atherosclerosis than 

later on in the process. Th-1 subsets, in particular, have been identified as being proatherogenic through the 

production of IFNgamma [124]. Signalling between macrophages and T cells promotes the release of MMPs 

which lead to degradation of the surrounding extracellular matrix. Eventually accumulation of foam cells in 

the intima leads to the development of plaque and vascular smooth muscle cells in the media can migrate 

into the intima and proliferate there to form a fibrous cap [125]. It is this process that leads to thickening of 

the intima-media wall that can be seen on ultrasound of the carotid artery. Many approaches now exist to 

measure endothelial damage non-invasively and include carotid intima media thickness (cIMT) which 

provides information on the arterial wall thickening and atherosclerosis, and pulse wave velocity (PWV) 

which gives a measure of arterial stiffness. These will be discussed in more detailed in the methods chapter. 

Figure 1-8 gives an overview of the four stages of atherosclerosis.  
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Figure 1-8 Representation of the four stages of atherosclerosis8 

 

 

 

 

 

 

 

 

                                                           
8 From 126. Lo, J. and J. Plutzky, The biology of atherosclerosis: general paradigms and distinct pathogenic 
mechanisms among HIV-infected patients. J Infect Dis, 2012. 205 Suppl 3: p. S368-74. 
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1.3.2 HIV and cardiovascular disease 

HIV infected participants demonstrate a profile of age related comorbidities similar to HIV uninfected adults 

who are 10 years older [127]. The risk of cardiovascular disease in people with HIV in high income settings is 

thought to be increased by about 2 fold compared to matched HIV uninfected adults [128]. In the VACS 

study, risk of myocardial infarction (MI) in prehypertensive HIV infected patients was 1.6 compared to 

healthy controls [129]. Having HIV infection doubles the risk of developing heart failure 12 months following 

an MI [130] and some reports suggest that diastolic dysfunction, in particular, is more common in HIV 

infection [131]. The number of people presenting with stroke who had HIV infection increased by 60% in the 

USA between 1997 and 2006 [132].  

More evidence for the relationship between HIV infection and cardiovascular risk comes from the use of 

physiological markers such as carotid intima media thickness and arterial stiffness measurements. Several 

studies have assessed patients without traditional cardiovascular risk factors and found that PWV was 

increased in HIV infected compared to uninfected adults, and also closely correlated with features of heart 

failure [133, 134]. An interesting study from Lekakis and colleagues compared 56 HIV normotensive, 28 HIV 

uninfected patients with hypertension and 28 HIV uninfected participants without hypertension and found 

average PWV values of 8.1, 9.0 and 6.7 m/s respectively [135], indicating that PWV values for normotensive 

patients with HIV approached those for patients with diagnosed hypertension. Furthermore, when 

comparing HIV infected patients on ART to those who were ART naïve, those on ART had higher PWV values 

(8.4 m/s compared to 7.5). Ugandans aged over 40 and on ART had nearly double the risk of an 

ankle/brachial index >1.2 when compared to healthy HIV uninfected controls [136]. A South African cohort 

showed higher cIMT and lower arterial distensibility in a small HIV infected group on ART compared to 

uninfected controls [137]. 

The main drivers for the increased risk of cardiovascular disease in HIV fall into three main groups: direct 

effects of the HIV virus, side effects of ART drugs, and immune activation. Although this thesis focusses on 

the contribution of immune activation, these effects likely overlap and it is often difficult to tease apart 

whether any increased risk is mediated by immune activation as opposed to other processes, such as 

metabolic syndrome, because HIV untreated immunosuppressed patients are not available for comparison 

[138].  

 

1.3.2.1 Direct effects of HIV virus 

HIV is able to infect endothelial cells in vitro, but leads to an abortive infection unless rescued by mononuclar 

cells or CD4 T lymphocytes [139, 140]. Entry may occur via coreceptors such as CCR5 independently of CD4 

[141]. Proteins such as gp120 and tat may also activate the endothelium [142], meaning that endothelial cells 

can be activated without direct infection and, even, in the absence of actively replicating virus. HIV has also 
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been shown to have a direct effect on the atherosclerosis process  through effects on cholesterol metabolism: 

it can block cholesterol efflux from macrophages within atherosclerotic lesions and can also block egression 

of macrophages from the intima back into the artery lumen, potentiating the formation of atherosclerotic 

plaques [143].  

The SMART study found an increased risk of cardiovascular disease in patients who were randomised to 

receive scheduled treatment interruptions on ART; this correlated with higher viral loads as well as 

inflammatory markers (C reactive protein (CRP), Ddimer and IL-6) and was highly predictive of 

cardiovascular disease (CVD) related morbidity [144]. The VACS cohort found an adjusted hazard ratio of 

1.81 for incident heart failure in adults with HIV, which increased to 2.28 when only including those with a 

VL of over 500 copies/ml [145]. Further evidence of the link between HIV disease and cardiovascular events 

comes from the observations that earlier initiation of ART prevents cardiovascular events in several cohorts 

[146]. A study of 47 patients with HIV and pulmonary arterial hypertension found that ART led to an 

improvement in artery pressure as well as mortality due to pulmonary arterial hypertension [147]. Markers 

of endothelial damage have also been shown to be related to HIV viral load [148]. However, the direct 

effects of the virus are not the only explanatory factor for the increased risk of cardiovascular disease in 

HIV; an analysis of the VACS cohort found that the risk of MI in HIV infected people remained significant in 

those with a suppressed viral load (aHR 1.38 in virologically suppressed patients versus 1.48 in all HIV 

infected patients) [149].  

 

1.3.2.2 Effect of ART 

It may be possible that the increased risk of non-AIDS events in HIV is prevented if ART is started early 

enough [150], thus reducing the length of time exposed to viral replication and preventing advanced 

immunosuppression. However, this needs to be balanced with the cardiovascular risk posed by ART drugs 

themselves. ART has been recognised as a risk factor for cardiovascular disease in high income cohorts for 

many years, with the risk of myocardial infarction increasing by 26% for every year a patient is exposed to 

ART [151]. The DAD study reported a 3-fold increase in the risk of myocardial infarction in patients on a 

regimen containing a protease inhibitor compared to those taking an NNRTI [152].  Arterial stiffness has 

been shown to be significantly increased in people on a protease inhibitor compared to those not (PWV 9.0 

+/- 1.4 compared to 8.1+/-1.3 m/s) and history of protease inhibitor treatment increased the positive 

correlation between PWV and age [153]. However, Efavirenz use has also been implicated as increasing 

cardiovascular risk as compared to other NNRTIs [154]. When looking at NRTIs, Abacavir has been strongly 

associated with both cardiovascular events and endothelial dysfunction [155].This effect is potentially 

mediated by many factors including the action of various ART classes on lipid profiles, metabolic syndromes, 

oxidative stress and direct endothelial damage [156]. However, in a small group of men who switched from 
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Abacavir to Tenofovir, augmentation index (a measure of arterial stiffness) decreased significantly at 24 

weeks and a significant decrease in cholesterol was observed [157].  

 

Overall evidence from high income settings suggests that patients established on ART have less evidence of 

endothelial damage than those not yet on ART [158]. This discrepancy is probably explained by the fact the 

damage from ART is acquired over the longer term [159]. PWV data for patients on ART in the sub-Saharan 

Africa setting is limited and not as conclusive as high income data. In Cameroon, blood pressure (BP) was 

higher in patients on ART than those not on ART, but PWV was similar (7.2 +/-1.5 in treated and 7.46 +/- 2.2 

in untreated) [160]. In Rwandan women, PWV was not higher in HIV infected patients with short exposure to 

ART [161]. Most evidence points to the trend that coronary heart disease risk is increased in HIV, and that 

this is further increased on those on ART for longer durations of time [162]. 

 

1.3.2.3 The relationship between chronic immune activation and cardiovascular disease in HIV 

Seminal work on the relationship between T cell activation and cardiovascular disease in HIV was produced 

by Kaplan and colleagues, who showed that in HIV infected women, carotid artery stiffness as measured by 

distensibility was closely related to T cell activation and that this was independent of effects of CD4 count 

and HIV viral load [163]. This association was found to persist even after 6.5 years of ART [164]. Activated 

CD8 T cells, in particular have been associated with cIMT [165]. Critics of this association believe that the 

increased risk of cardiovascular disease seen in people with HIV results from a higher burden of traditional 

risk factors in this group and a small study from Goulenok and colleagues found that cIMT was not 

associated with T cell activation nor HIV in patients who had never smoked [166]. It should be highlighted 

here that CMV infection is very relevant to the discussion of the association between immune compromise, 

immune activation and endothelial dysfunction. CMV infection is increased in advanced HIV infection and 

has been independently linked with endothelial damage and cardiovascular disease [79, 167]. 

Particular interest has been focussed recently on the activation of cells of the monocyte lineage and their 

close associations with soluble markers of inflammation and coagulation; these markers are strongly 

related to an increased risk in cardiovascular disease and mortality [168-171]. However, the role of 

monocyte subsets in the development of cardiovascular remains unclear. Although patients with coronary 

artery disease have high levels of inflammatory monocytes (CD14 +CD16+) in some studies [172], classical 

monocytes (CD14++CD16-) have also been associated with acute myocardial infarction [173]. In addition, 

there is lack of clarity around whether it is the microbial translocation or the resultant monocyte activation 

that increases cardiovascular risk [174, 175]. 

Whatever the cellular mechanism, the resultant inflammation has been closely linked with clinical 

outcomes. In post hoc analysis of the SMART study, each 2 log increase in IL6 and D-dimer as a composite 
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marker increased the risk of a serious cardiovascular event by 60% [176]. Markers of inflammation such as 

CRP and fibrinogen were independently related to death in the FRAM cohort [177] and have been shown to 

be of similar importance in a South African cohort [178]. Persistently raised inflammatory biomarkers 

correlated with subclinical atherosclerosis in a Ugandan cohort of HIV infected patients [179]. 

Patients with lower CD4 counts at ART initiation also have higher inflammatory biomarkers and evidence of 

increased monocyte activation [180]. Advanced immunosuppression at the time of ART initiation is also an 

important predictor for non-AIDS co-morbidities in HIV infection [181-183] and a long term cohort of ART 

patients in Brazil showed that those with CD4<200 had higher PWV and that it also correlated with age, 

gender and BP [184]. In an Italian study, HIV was associated with ambulatory arterial stiffness index and 

baseline CD4 count [185]. High CD4 count, or more specifically, CD4 count more than 500 may be the 

important factor in protection against CVD in HIV, as opposed to early initiation of ART [186]. A CD4 count 

less than 500 cells/uL carried an attributable risk of around 20% towards the development of cardiovascular 

disease in the HIV outpatient study, which was greater than the contribution calculated for cigarette 

smoking [187]. The association between low CD4 count and cardiovascular disease has not been replicated 

in some cohorts [188], but higher CD4 count reconstitution on ART is associated with lower risk of 

cardiovascular disease [189]. Supporting the importance of absolute T cell counts as biomarkers of 

cardiovascular disease in HIV, a CD4/CD8 ratio of <0.8 has emerged as a predictor for cardiovascular disease 

in HIV and was significantly predictive in a cohort of patients with CD4 count >350 cells/mm3 [190]. Both 

low CD4 count and high CD8 T cell count were independent predictors of MI in the French HIV Database 

cohort [191]. 

 

1.4 A clash of two epidemics: shifting epidemiological trends in cardiovascular risk factors in 

SSA 

1.4.1 Epidemiological transition of cardiovascular disease in sub-Saharan Africa 

The global burden of disease survey showed an increasing incidence of cardiovascular disease in low and 

middle income countries and a trend towards increasing contribution of non-communicable diseases in the 

sub-Saharan Africa region to mortality [192]. As urbanisation increases, lifestyle changes result in alterations 

in the relative contribution of important cardiovascular risk factors such as hypertension, atherogenic diets 

and smoking [193]. This concept of an ‘epidemiological transition’ occurs as countries transition through the 

stages of economic development and the prevalence of subclinical atherosclerosis increases compared to 

cardiovascular disease caused by hypertension (see Figure 1-9). A global task force was launched in 2016 to 

address the research gap around HIV and non-communicable diseases in LMICs [194]. 
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Figure 1-9 Gillum's stages of cardiovascular disease in the epidemiological evolution of patterns 

among people of sub-Saharan Africa9  

 

 

1.4.2 Cardiovascular disease and HIV infection in sub-Saharan Africa 

Data on the risk of cardiovascular disease in HIV infection in sub-Saharan Africa are limited. A cohort study 

of cerebrovascular events in two regions of Tanzania showed an age-standardised stroke incidence of 315 

per 100,000 in an urban setting [195]. The same study reported a 15% prevalence of myocardial infarction 

on ECG amongst non-stroke patients [196]. A comparison of a cohort of patients with HIV infection in 

Botswana to a cohort in Nashville found that, when standardised for age, the incidence of cardiovascular 

disease was 8.4 compared to 5.4 per 1000 person years respectively [197]. Attempts to characterise 

subclinical atherosclerosis in SSA have revealed higher than expected levels of carotid intima-media 

thickening [198, 199]. A study in Botswana found HIV to be twice as frequent in patients with 

cardiomyopathy than in the general population [200] and a separate study in Rwanda diagnosed dilated 

cardiomyopathy in over 17% of HIV infected adults not established on ART [201]. 

                                                           
9 From 193. Cappuccio, F.P., Commentary: epidemiological transition, migration, and cardiovascular disease. Int J 
Epidemiol, 2004. 33(2): p. 387-8. 
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The risk factors for cardiovascular disease in sub-Saharan Africa are likely to be different from those in high-

resource countries [202] and management of cardiovascular disease will be particularly challenging in low 

income countries, where health systems are often fragmented and centred around single attendance 

episodes or infectious disease prevention [203]. Hypertension is an important risk factor for strokes in SSA, 

but the resources for secondary prevention are currently not available [204].   

 

1.4.3 Cardiovascular disease and HIV in Malawi 

Within Malawi, a cohort of stroke patients had a high prevalence of hypertension (55%), diabetes (21%), HIV 

(33%) and high cholesterol (17%)[205]. In addition, the majority of patients from  a recent SSA multi-centre 

study on stroke had evidence of metabolic syndrome (78%)[206]. Looking instead at patients on ART, a cross-

sectional study in Malawi showed a high prevalence of cardiovascular risk factors: insufficient fruit and 

vegetable diet (67.6%), raised blood pressure (45.9%), increased waist-hip ratio (45.4%), raised total 

cholesterol levels (31.0%) and low physical activity level (27.0%)[207]. A prospective study in Malawi found 

that HIV infection was more common in young adults with ischaemic strokes, who did not have many 

traditional risk factors [205]. A case control study by Benjamin et al found that patients with stroke were 

more likely to have HIV infection and that the highest risks were in those with untreated HIV (aOR 4.48) and 

those within the first 6 months of therapy (aOR 15.6). This was likely related to advanced immunosuppression 

within this cohort and demonstrates the need for further investigation into the aetiology of cardiovascular 

disease in patients in a setting like Malawi.  

However, when examining the existing data from SSA, there is a clear disparity on an epidemiological level 

in that the reported prevalence of levels of traditional risk factors is not able to fully account for the event 

rate of cardiovascular disease. Together, the increased life expectancy and increased risk of diseases 

associated with aging in HIV pose a significant threat to health systems in low-income countries [194]. The 

current study hypothesises that HIV infection and immune activation are risk factors for endothelial 

damage as measured by carotid intima medial thickness (cIMT) and pulse wave velocity (PWV) in adult 

Malawians.  

 

1.5 Assessment of cardiovascular risk 

1.5.1 Cardiovascular risk prediction scores 

The Framingham heart study pioneered the field of cardiovascular risk scoring and produced a risk 

estimation calculator which is still the most widely used scoring system [208]. It incorporates age, gender, 

total cholesterol, HDL, smoking status, diabetes and systolic blood pressure. Other risk calculators have been 

developed subsequently including the European Society of Cardiology SCORE calculator, which does not 
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include HDL or diabetes [209] and the American Society of Cardiology ASCVD calculator which does include 

HDL and diabetes but also makes a limited assessment of the contribution of race [209]. These scores have 

all been developed in general populations and do not cover risk factors specifically related to HIV such as 

immunosuppression, HIV viral load and chronic immune activation. The DAD study group produced a 

prediction score using a population of patients with HIV infection which incorporates CD4 count, but this has 

not been shown to be of increased predictive value [210]. Cardiovascular risk scores for patients with HIV 

infection remain inadequate compared to their use in populations with HIV infection [211]. A recent study in 

Tanzania identified a high lifetime CVD risk in HIV infected compared to uninfected participants (34.7% 

versus 17.0%) [212]. However, the application of cardiovascular risk scores in low income sub Saharan Africa 

is also limited by the absence of population specific data as well as pragmatic issues around availability of 

blood tests such as cholesterol. WHO in conjunction with the International Society of Hypertension have 

produced risk estimation charts specific for countries in sub Saharan African for settings with and without 

access to cholesterol measurements. Additionally, they take into account local mortality rates and are 

classified according to mortality stratum [209]. Malawi falls into stratum E with high child mortality and very 

high adult mortality. 

1.5.2 Physiological markers of cardiovascular risk 

1.5.2.1 Pathophysiology of arterial stiffness 

The artery wall is comprised of three layers: intima, media and adventitia (Figure 1-10). The main component 

of the  intima is the endothelial cell layer which is  surrounded by the media layer. The media contains 

lamellar units of elastin, smooth muscle and collagen. Elastin is responsible for artery distensibility and is 

found in high content in large arteries [213]. 
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Figure 1-10 Layers of the arterial wall10 

 

Elastin resists pressure within the artery at physiological levels and collagen functions to provide strength 

when the threshold of resistance for elastin is overcome. Collagen is stiffer by 100 – 1000 fold when 

compared to elastin and isn’t distensible. Adults are unable to manufacture elastin so damage caused by 

enzymes such as elastin like proteases (including MMPs) is irreversible [214], whereas collagen can be 

produced in response to damage to the media layer. Advanced glycation end products accumulate with time 

and cause extensive cross-linking of both collagen and elastin, which leads to an increase in stiffness. 

Calcification of the medial layer of the arterial wall also occurs with aging [215] and recently, it has been 

proposed that smooth muscle cells may develop osteogenic phenotype under stress, which could also 

contribute to arterial wall calcification and stiffening [216]. Stiffness of the media layer can lead to disruption 

of the endothelial barrier, indicating that arterial stiffness may play a direct role in the development of 

atherosclerosis [217].   

Aortic stiffness leads to early end systolic reflections instead of the usual diastolic reflections. One 

consequence of this is the increased backwards pressure on the left ventricle during systole which causes 

increased pressure in the left ventricle and left ventricular remodelling. A higher pulse pressure also occurs, 

leading to remodelling of the arterial wall and intima medial thickening [218]. Another consequence is that 

                                                           
10 From Wellcome Images 
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there is less backwards pressure during diastole which decreases coronary perfusion pressure. Together, an 

increased pulse pressure and decreased diastolic pressure increase transmission pressure to the 

microcirculation including the brain and kidney [213] (Figure 1-11).  

 

Figure 1-11 Effect of arterial stiffness on end organs11 

 

 

 

                                                           
11 From 219. Palombo, C., et al., Circulating endothelial progenitor cells and large artery structure and function in 
young subjects with uncomplicated type 1 diabetes. Cardiovasc Diabetol, 2011. 10: p. 88. 
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Stiffness also means that a higher blood pressure is needed to distend the artery and the ensuing 

hypertension propagates the cycle of increased stiffness through mechanical shear stresses. Studies have 

demonstrated that increased arterial stiffness can be picked up before the development of clinical 

hypertension [220]  and has been shown to precede structural alterations in mice [221].  

1.5.2.2 Methods of measurement of arterial stiffness 

Non-invasive measures of arterial stiffness can be categorised into three groups: measuring PWV, relating 

change in diameter of an artery to distending pressure, and assessing arterial pressure waveforms [222]. 

There are two main tools for measuring arterial stiffness: Doppler ultrasound or applanation tonometry. 

Applanation tonometry is based on a small micromanometer flattened against an artery [222].  

Aortic PWV is considered the gold standard for measurement of arterial stiffness [223] and is the method 

recommended by the European Network for Non-Invasive Investigation of Large Arteries [224]. The arterial 

stiffness analysis of the Framingham cohort compared various techniques for measurement of arterial 

stiffness and found that carotid-femoral PWV was by far the most predictive of cardiovascular outcomes 

(Table 1-1) [225]. PWV has also been chosen as a biomarker for the assessment of cardiovascular risk in 

clinical practice by the European society of Cardiology [226]. 

Table 1-1 Comparison of the ability of arterial stiffness measurements to predict clinical outcomes in 

the Framingham cohort12 

 

1.5.2.3 PWV as a tissue biomarker 

In contrast with the non-tissue biomarkers of cardiovascular disease arterial stiffness provides a 

measurement of cumulative cardiovascular damage. It is considered an intermediate step between 

cardiovascular risk factors and cardiovascular disease and an elevated PWV>10m/s indicates asymptomatic 

end organ damage according to ESC-ESH guidelines [227]. Experts are calling for the integration of PWV into 

                                                           
12 From 225. Mitchell, G.F., et al., Arterial stiffness and cardiovascular events: the Framingham Heart Study. 
Circulation, 2010. 121(4): p. 505-11. 
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risk prediction tools as well as interventions to target arterial stiffness [228]. The European Society of 

Cardiology guidelines recommend the use of PWV as one marker of target organ damage [229] and its use is 

advocated as an end point in clinical trials [230].  

Criteria for novel markers of cardiovascular risk were published in a consensus document by the American 

Heart Association in 2009 [231]. Evidence for each of these criteria will be presented in more detail. 

1.5.2.3.1 PWV validation against clinical outcomes in prospective studies 

There is strong evidence validating PWV as an independent predictor of cardiovascular disease. A meta-

analysis of 20 prospective studies that reported the predictive value of aortic PWV for cardiovascular (CV) 

events or death found that for groups with high versus low PWV, the RR was 2.26 (95 % confidence intervals 

(CI) 1.89 – 2.24) for CV events, 2.02 (1.68 – 2.42) for CV mortality and 1.90 (1.61 – 2.24) for all-cause 

mortality [232].  A more recent individual participant meta-analysis found that adjusted risk ratios for high 

aortic PWV were 1.23 (CI 1.11 – 1.35) for coronary heart disease, 1.28 (1.16 – 1.42) for stroke and 1.30 (1.18 

– 1.43) for all cardiovascular events [233]. When looking only at studies that assessed the general 

population, an analysis of the Framingham cohort found that for every SD increase in PWV, the adjusted HR 

for a CVD event was 1.48 (CI 1.16 – 1.91)  [225].  In the Rotterdam study analysis, aHR for participants in the 

third compared to the first tertile of aPWV was 2.45 for coronary heart disease and 2.28 for stroke [234].  

1.5.2.3.2 Evidence of incremental change in PWV with clinical outcomes 

The association between PWV and cardiovascular events has been shown to increase incrementally [232]. 

The meta-analysis by Vlachapoulos et al also found an incremental adjusted association between PWV and 

clinical outcomes: a 1 m/s increase in PWV correlated with an increase of 14% for CV events, 15% for CV 

deaths and 15% for all-cause mortality. In the Rotterdam study, an incremental increase was seen when 

comparing the second and third tertiles of PWV to the first for both coronary heart disease (aHR 1.72 vs 2.45 

respectively) and stroke (aHR 1.22 vs 2.28 respectively) [234].   

1.5.2.3.3 Evidence for clinical relevance of PWV 

The meta-analysis from Ben-Shlomo et al found that adding aortic PWV to the Framingham risk score (FRS) 

improved the net reclassification index modestly for all outcomes, but was particularly helpful for those with 

an intermediate risk on framingham risk score, showing a 13% improvement in classification of 10-year risk 

of CVD in those with intermediate risk [233]. In the Framingham risk study addition of aortic PWV to the 

standard risk factor model gave an upward reclassification of 6.7% of participants with CVD and upward 

reclassification of 1.2% with no event. For those in the intermediate risk category, there was upward 

reclassification of 14.3% for those with CVD event and downward reclassification of 1.4% for those who did 

not [225]. A subanalysis of the EDIVA cohort showed that there was a marked improvement in prediction of 
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CV events when PWV was added to the traditional HeartSCORE, especially for those with intermediate risk 

[235]. Several studies have recently reported the ability of PWV to improve the predictive capability of the 

FRS [236, 237]. However, another study from Holland aiming to identify new markers that may add to the 

predictive accuracy of the FRS found additive utility only with coronary artery calcium and to a lesser extent 

brain natriuretic peptide (BNP). Other markers, including PWV, were only marginally helpful [238].  

1.5.2.3.4 Evidence that modification of PWV improves clinical outcomes 

Trials to test the theory that reversal of arterial stiffness can also lead to improvement in clinical outcomes 

are currently lacking. However, several methods of reversing arterial stiffness are under study. Targeting the 

Renin-Angiotensin--System has shown the most promise. A meta-analysis of 5 trials using Angiotension 

Converting Enzyme inhibitor (ACEi) vs placebo to reduce arterial stiffness reduced PWV by an average of 

1.69 m/s independently of any change in BP [239]. Perindopril significantly decreased PWV compared to 

controls in a small group of hypertensive South African patients [240]. The combination of ACE inhibition and 

angiotension II receptor (ARB) blockade may have a synergistic effect on reversal of arterial stiffness. In a 

trial which investigated the reduction in risk of CVD in chronic kidney disease with dual inhibition of the RAS, 

PWV was decreased on ACEi and ARB dual therapy compared to monotherapy independently of BP [241]. 

Aldosterone has been shown to directly increase collagen deposition in elastic artery walls and 

spironolactone or other aldosterone inhibitors may also show promise in reversal of arterial wall stiffening 

[242] .  

Data suggest that statins exert anti-inflammatory and antiproliferative actions on vasculature beyond their 

lipid lowering properties. In a systematic review published in 2010, 2 of 4 studies assessing the effect of 

statins on PWV found a favourable decrease [243]. More recently, Kanaki and colleagues found that after 26 

weeks of statin therapy in patients with mild hypertension and hypercholesterolaemia, PWV (sd) was 9+/-1.5 

in the statin group and 10.9+/-2.6 in the placebo group (p<0.001) [244]. In an elderly population, 6 months 

of atorvastatin therapy led to a reduction in brachial ankle PWV as well as markers of oxidative stress [245].  

In terms of the effect of other anti-inflammatories on arterial stiffness, most work so far has been in the field 

of rheumatological disease. Anti-TNFα antibodies have shown a beneficial effect on arterial stiffness, but it is 

unclear whether this is an anti-inflammatory mediated effect or a direct effect of the antibody itself  [246]. A 

trial to investigate the Il-6 receptor blocker tocilizumab resulted in a worsening of arterial stiffness after 12 

weeks [247]. Another randomised controlled trial (RCT) testing golimumab in ankylosing spondylitis also 

showed a significant increase in PWV compared to placebo [248]. 
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Inhibition of the soluble receptor for advanced glycation end products is currently the only therapeutic 

target specifically designed to de-stiffen arteries and has recently showed some promise. In animal studies, 

use of “AGE-breaker” ALT-711 reversed arterial stiffness in diabetic rats [249].  

1.5.2.4 Risk factors for arterial stiffness 

1.5.2.4.1 Hypertension  

Around 70% of the variance in arterial stiffness can be accounted for by age and BP [250, 251]. Arterial 

stiffening alone may provide sufficient explanation for hypertension with aging [252].  A systematic review of 

risk factors for arterial stiffness found that the only consistent predictors were age and hypertension 

[253].The question over the direction of the relationship between hypertension (HTN) and arterial stiffness is 

unclear, but HTN develops in people with high arterial stiffness and no HTN at baseline [254] and arterial 

stiffness has been shown to be a predictor for incident HTN [255]. Further, systolic BP correlates with PWV 

even in pre-hypertensive ranges [251], which would support the hypothesis that arterial stiffness precedes 

the development of hypertension through, for example, mechanical shear stress or perturbations of the 

renin-aldosterone-angiotensin system.  The measurement of PWV has been suggested as integral to the 

management of arterial hypertension [256]. Several studies from South Africa have shown that PWV is a 

strong predictor of masked hypertension [257-259].  

1.5.2.4.2 Metabolic syndrome 

The main non-haemodynamic parameters closely associated with PWV are hyperglycaemia and insulin 

resistance, abdominal obesity and dyslipidaemia [260-262]. The hunter-gatherer lifestyle is independently 

associated with lower PWV at least partly due to lower body mass index (BMI), more favourable lipid profile 

and lower blood pressure [263]. Some evidence suggests that metabolic derangements are likely to affect 

PWV irrespective of BMI [264].  

In 108 HIV untreated patients in Cameroon, the prevalence of metabolic syndrome was twice as high when 

compared to 96 HIV uninfected controls [265]. In a South African cohort of men with low BMI, BMI 

negatively correlated with arterial stiffness after adjustment [266]. Wang et al published data from a Chinese 

cohort and found a higher PWV was associated with higher low density lipoprotein (LDL) and lower high 

density lipoprotein (HDL) [267] and in a separate study correlated with increasing levels of impaired fasting 

glucose [268]. HDL-C is inversely and independently associated with PWV, suggesting that it may play a role 

in protecting from arterial stiffness [269].  

1.5.2.4.3 Genetics 

There are substantial heritability components to both PWV and cIMT according to the Italian twin study 

[270]. This was also confirmed in a genome wide scan analysis of participants in the Framingham study 
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offspring cohort, with one area of linkage for reflected wave amplitude on chromosomes 4 and 8 [271]. The 

European ancestry cohorts showed that a variation in a locus on the BCL11B gene on chromosome 14 is 

associated with higher pulse wave velocity which harbours one or more gene enhancers [272]. A separate 

twin study showed PWV related to calcified plaque and total aorta calcification but not to cIMT or non-

calcified plaque [273]. A follow-up to this showed that genes involved in arterial calcification and collagen 

formation were associated with cross sectional PWV and changes in PWV over time [274]. 

1.5.2.4.4 Race 

Several studies have demonstrated that black race is associated with higher PWV factors [275-278]. In a 

study from South Africa, PWV and BNP levels were higher in Africans than in Caucasians and the process was 

partly driven by a higher systolic BP [279].  

1.5.3 cIMT 

1.5.3.1 What is intima-media thickness? 

The carotid artery is amenable to assessment via ultrasound methods because it is a relatively large artery 

and is anatomically superficial (Figure 1-12). Three distinct regions of the carotid artery can be scanned: 

common carotid artery, carotid bulb and internal carotid artery (Figure 1-13). However, repeatability for 

bulb and internal measurements is limited because it is more difficult to acquire a good quality image as the 

artery moves distally below the mandible.  
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Figure 1-12 Anatomy of the carotid artery13 

 

Figure 1-13 The carotid artery as seen on ultrasound 

 

 

Using B-mode ultrasound, a pattern with parallel lines can be visualised at the carotid artery which provides 

a measurement of the intima and medial layers of the carotid wall [280]. The intima-media layer includes the 

vessel endothelium at the luminal aspect and extends to the far side of the media where it joins with 

                                                           
13 From UCL Vascular biology unit manual 

ICA: Internal carotid artery ECA: External carotid artery CB: Carotid bulb  

CCA: Common carotid artery 
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adventitia. Figure 1-14 highlights this parallel double line pattern on the far carotid wall of a still ultrasound 

image from a SHIELD patient.  

Figure 1-14 Intima media thickness is represented by the ‘double line’ pattern on ultrasound 

 

The measurement of cIMT encompasses both the intimal and medial layers of the artery wall. Uniform 

thickening reflects an atherosclerosis process in the endothelial layer as well as remodelling of the smooth 

muscle layer [280]. Early atherosclerosis involves formation of subendothelial lipid pools which lead to 

thickening. Macrophage infiltration then leads to the formation of a necrotic core which eventually leads to 

the formation of plaque [281]. Although intima-medial thickening also occurs as part of the ageing process 

and is not therefore necessarily related to a process of atherosclerosis, it gives a good indication of global 

cardiovascular risk [282]. Further, different pathologies may affect different parts of the arterial tree [283]. 

Atherosclerosis tends to affect areas of low shear such as the carotid bulb, whereas intima thickening in 

response to hypertension usually occurs in areas of high shear such as the common carotid artery near the 

bifurcation [284].  

cIMT differs from plaque (which is a focal protrusion of the endothelial layer of the artery). cIMT is predictive 

of events independently from the presence of plaque [285]. An elevated cIMT is commonly cited as higher 

than the 75th centile of the general population value for a particular region and using a particular 

methodology [286].  

An analysis of risk factors for higher cIMT was performed in a birth cohort in Iowa aged 33 to 42 years in 

2001. This study found that the only significant risk factors for high cIMT were raised cholesterol and age 

[287]. The Bogalusa heart study found that systolic blood pressure explained variance in cIMT more than age 

and LDL cholesterol [288]. The young Finns study found that obesity, LDL and raised insulin levels predicted 

cIMT progression in adults with a mean age of 32 years [289]. The presence of multiple components of 

Intima media thickness 
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metabolic syndrome present together confers a greater effect on cIMT than the sum of the effects of the 

individual components [290]. 

1.5.3.2 cIMT as a tissue biomarker 

Standardised measurement of cIMT as a marker of cardiovascular risk is governed by the Mannheim 

Consensus, last updated in 2011 [291]. Although the American College of Cardiology Foundation and 

American Heart Association recommended that cIMT could be measured in asymptomatic patients graded as 

intermediate risk of a cardiovascular event [286], the recommendation was updated in 2013 to advise 

against the use of cIMT in risk assessment for primary prevention in routine clinical care [292]. Mainly, it is 

not clear that adding cIMT to current risk stratification measures such as Framingham risk scores add 

sufficient benefit to be clinically useful [293]. An analysis of the Framingham cohort found that only the 

internal carotid artery cIMT was useful in reclassifying cardiovascular risk, with a modest net reclassification 

index of 7.6% [294]. In a meta-analysis it was found that the relative reclassification index when adding cIMT 

for an intermediate risk group was 3.6% [293].  

However, several large community studies have shown that cIMT is useful in predicting coronary events and 

stroke. Two large meta-analyses have been published. The first in 2007 assessed 11 studies (34335 people) 

and found that the HR per 1SD increase in cIMT was 1.26 (95% CI 1.21 – 1.30) for MI and 1.32 (1.27 – 1.38) 

for strokes [295]. A further meta-analysis published in 2012 assessed 14 studies and found that the pooled 

adjusted hazard ratio for risk of stroke per 0.1mm change in cIMT was 1.08 (95% CI 1.05 – 1.11) for MI and 

1.12 (CI 1.10 – 1.15) for stroke [293]. The ARIC study, which was included in this meta-analysis, investigated 

a large cohort of community participants aged 45 – 75 and without prior history of stroke or coronary events 

and found an incremental association between cIMT and clinical events. The adjusted hazard ratio when 

comparing third to first tertile was 2.81 for women and 3.16 for men, and when comparing the second to 

first tertile was 1.08 for women and 1.28 for men [296].  On further assessment the relationship was non-

linear, with cubic splines found to be the best fit [296]. A study of middle aged Swedish men and women 

found that cIMT was associated with an incremental increase in cIMT, even after adjustment for presence of 

carotid plaque[297]. The Tromso study included adults aged 19 to 94 with no previous MI and found that 

cIMT was only associated with MI when carotid bulb measurements were used [298]. The CAPS study also 

analysed a healthy population of 19 to 90 year olds and found that both common carotid (CCA) and bulb 

cIMT independently predicted myocardial infarction and stroke and that this effect was even more 

pronounced in the younger cohorts [299]. A large study of the general population in Germany comparing 

progression of cIMT with a combined cardiovascular endpoint found no association. However, when the 

absolute values of cIMT were assessed they were robustly associated with the combined outcome after 

adjustment with a HR of 1.16 (95% CI 1.10 – 1.22) [300]. Although no data exist on whether reversal of cIMT 
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can lead to a reduction in clinical events, several studies have demonstrated improvement in cIMT with 

statin therapy [301, 302].  

 

1.6 Study aims and objectives  

This study aimed to investigate the relationship between HIV, persistent immune activation and endothelial 

dysfunction in patients starting ART in Blantyre, Malawi. This translates into two general aims: 1) to 

compare subclinical carotid wall thickening in patients with and without HIV in Malawi and 2) to investigate 

the relationship between immune activation and endothelial dysfunction before and after initiation of ART 

in Malawi. This was broken down into six more specific, detailed objectives as follows: 

 

Detailed objectives 

1. Carry out a systematic review to define the clinical burden of discordant immune response to ART 

[Chapter 2] 

 

2. Establish the range of age adjusted carotid intima medial thickness (cIMT) and arterial stiffness values 

in HIV negative patients and HIV positive patients with advanced HIV  

[Chapter 4] 

 

3. Establish to what extent advanced HIV is a risk factor for increased cIMT and arterial stiffness in Malawi  

[Chapter 4] 

 

4. Establish to what extent immune activation is a risk factor for higher cIMT and arterial stiffness 

[Chapter 5] 

 

5. Explore the mechanisms involved in endothelial dysfunction according to different HIV related immune 

phenotypes 

[Chapter 6] 

 

6. Describe the extent to which resolution of immune activation on ART alters endothelial dysfunction as 

measured by arterial stiffness 

[Chapter 7] 
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7. Investigate whether intensified initial management of HIV confers a larger decrease in endothelial 

dysfunction as measured by arterial stiffness, compared to standard ART 

[Chapter 7] 
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2 CHAPTER 2: DISCORDANT IMMUNE RESPONSE WITH ANTIRETROVIRAL 

THERAPY IN HIV-1: A SYSTEMATIC REVIEW OF CLINICAL OUTCOMES 

2.1 Preface 

Discordant immune response (DIR) to ART is a complication of chronic immune activation and has been 

widely reported in the literature. However, the clinical burden associated with DIR has not been 

systematically summarised. This systematic review was carried out to provide a summary of one of the 

major complications of chronic immune activation from a global view point [303]. 

2.2 Introduction 

Antiretroviral therapy (ART) substantially reduces the incidence of acquired immunodeficiency syndrome 

(AIDS) and mortality, with increased CD4 cell count significantly and independently associated with improved 

prognosis [304-307]. Some patients do not achieve CD4 cell count reconstitution with ART, despite achieving 

suppression of HIV viral load in the blood [308]. This paradoxical response is referred to by various terms in 

the literature including DIR, poor or suboptimal immune reconstitution, incomplete immune recovery or 

restoration and immunological non-response. Here, we use the term discordant immune response as it was 

the term most frequently used by the included studies [309-313].  There is currently no agreed case 

definition for DIR.  

Over 13 million people worldwide are on ART, with a further 22 million eligible [314]. Understanding 

limitations to its success will be critical in improving individual responses to treatment and regimen 

durability. The 2013 World Health Organization (WHO) consolidated guidelines on treatment of HIV now 

favour use of HIV viral load monitoring for routine identification of ART treatment failure [315], but  CD4 cell 

counts for patients established on ART remain an important clinical and prognostic tool and are essential for 

identifying DIR [316, 317].  

Much research has focused on CD4 reconstitution on ART, but the mechanisms promoting DIR are not well 

understood. Damage to CD4 T cells begins prior to ART initiation due to direct effects of the HIV virus on 

thymic tissue and depletion of progenitor cells[318]. Thymic output may be disproportionally affected in 

patients who start ART at lower CD4 counts leading to under-reconstitution of naïve CD4 T cells [319, 320]. 

Lymph node fibrosis is also a major feature and correlates with duration of HIV infection prior to ART 

initiation [321, 322]. Untreated HIV infection leads to a significant activation of the immune system [323], 

resulting in a cycle of systemic inflammation, persistent T cell activation, exhaustion and death [324-326]. 

The extent of immune activation at the time of ART initiation is associated with the development of DIR 

[307, 327] and predicts mortality on ART [176]. HIV induced T cell dysfunction and inflammation are closely 
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related to serious non-AIDS events [323, 328].  Persistent immune activation is often detected despite 

virologically suppressive ART [329] and can be driven by microbial translocation[330] , low level persistent 

HIV viral replication[331], and latent co-infections such as CMV [103, 332] and tuberculosis [333, 334]. 

Innate immune cells including monocytes, macrophages and NK cells also perpetuate immune activation, but 

this axis is more specifically driven microbial translocation, LPS antigenaemia and circulating soluble CD14 

and does not necessarily correlate with T cell activation [335-338]. 

Non-systematic reviews have previously been carried out into aetiologies, prevalence and potential 

management of DIR [339-345]. However, the literature is heterogeneous and in order to better understand 

the burden of DIR, we sought to systematically characterise the risk of mortality, AIDS and serious non-AIDS 

events associated with DIR across the published literature.  

2.3 Methods 

The study protocol was registered with PROSPERO at the Centre for Review Dissemination, University of York 

(registration number CRD42014010821). The systematic review has been reported in accordance with the 

PRISMA guidelines [346] (See S1. Checklist: PRISMA Guidelines).  

2.3.1 Eligibility criteria for study inclusion 

2.3.1.1 Participants 

Participants were aged 16 years or older and no restrictions were placed on language or geographical region. 

Participants with DIR were defined as patients who had been taking ART for at least 6 months and who were 

virologically suppressed, but had a suboptimal CD4 count according to study definitions. Studies defined a 

suboptimal CD4 count in terms of either a failure to achieve a pre-specified rise in CD4 count or a pre-

specified absolute CD4 value at a specific time point following ART initiation. Virological suppression was 

defined as at least one single HIV viral load measurement of below 1000 copies/ml after at least 6 months of 

ART. Studies that did not report on the virological status of the cohort were not included. 

2.3.1.2 Outcomes 

Studies were included if they estimated the risk of mortality, AIDS or serious non-AIDS events associated 

with DIR. Studies were included if death was verified by clinician review, tracing or verbal autopsy. AIDS was 

defined as any illness that met criteria for a WHO stage 4 condition [347]. Serious non-AIDS events were 

defined as illnesses not included in the WHO Clinical Staging System, and which were non-communicable. 
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These include non-communicable cardiovascular, liver, renal and bone diseases as well as non-AIDS related 

malignancies. Studies reporting AIDS and serious non-AIDS events were deemed to meet our inclusion 

criteria if the events had been verified at least by clinician review of participant records.  

2.3.1.3 Study design 

Studies were eligible for inclusion if they were cohort studies or randomised controlled trials (RCTs). We 

excluded editorials and comments, case reports and case series, qualitative studies, mathematical modelling 

studies, and economic analyses.  

2.3.1.4 Information sources and search methods 

We searched the following databases: Cochrane Central Register of Controlled Trials (CENTRAL, in the 

Cochrane Library issue 1, 2016); MEDLINE (PubMed; 1966 to 31st December 2015); EMBASE (OVID; 1980 to 

31st December 2015). Table 2-1 shows the search strategy used in Medline (PubMed); this was modified for 

the other electronic databases.   
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Table 2-1 Search strategy 

Search 

#16 Search (#5) AND #15  

#15 Search ((((((((( #6) OR #7) OR #8) OR #9) OR #10) OR #11) OR #12) OR #13) OR #14) OR #15 

Field: Title/Abstract 

#14 Search incomplete CD4* response Field: Title/Abstract 

#13 Search discordant* Field:Title/Abstract 

#12 Search immunovirological discordance* Field: Title/Abstract 

#11 Search low CD4* Field: Title/Abstract 

#10 Search insufficient CD4* Field: Title/Abstract 

#9 Search suboptimal CD4* Field: Title/Abstract 

#8 Search low responder* Field: Title/Abstract 

#7 Search suboptimal immune response*[Title/Abstract] 

#6 Search suboptimal immune reconstitution [Title/Abstract] 

#5 Search (#1) AND #4 

#4 Search (#2) OR #3 

#3 Search (antiretroviral[Title/Abstract]) OR ART[Title/Abstract] 

#2 Search antiretroviral therapy [Title/Abstract] 

#1 Search "HIV Infections"[Mesh] 

2.3.2 Study Selection and Data Collection 

Titles of studies identified from the database search were independently reviewed by two authors and were 

excluded if the study was unrelated to the review subject. Remaining studies underwent abstract review 

independently by both authors and then full text review by the same two reviewers. Pre-piloted data 

extraction forms were independently applied to all studies that underwent full text review. Where 

disagreement occurred a consensus was reached by discussion or a third reviewer was consulted. Where 

outcome data were not reported, or if other eligibility criteria were unclear, the lead study author was 

contacted.  

2.3.3 Risk of bias  

Risk of bias assessment was based on the Cochrane Tool for Assessing Risk of Bias in Cohort Studies [348]. 

The Cochrane Tool for Assessing Risk of Bias in Randomised Control Trials was not used because no RCTs 

http://www.ncbi.nlm.nih.gov/pubmed/advanced
http://www.ncbi.nlm.nih.gov/pubmed/advanced
http://www.ncbi.nlm.nih.gov/pubmed/advanced
http://www.ncbi.nlm.nih.gov/pubmed/advanced
http://www.ncbi.nlm.nih.gov/pubmed/advanced
http://www.ncbi.nlm.nih.gov/pubmed/advanced
http://www.ncbi.nlm.nih.gov/pubmed/advanced
http://www.ncbi.nlm.nih.gov/pubmed/advanced
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targeting DIR were identified that met the inclusion criteria. Potential sources of bias were assessed in three 

domains: ‘study design’; ‘comparability’; and ‘assessment of outcomes’. 

The study design domain assessed whether participants were selected to be representative of adults on ART, 

and if there were clear selection criteria for those with and without DIR. Studies with more stringent 

selection criteria based on, for example, frequency of CD4 and viral load monitoring or attendance at routine 

clinics prior to enrolment, were deemed to be at a high risk of bias because they might exclude populations 

at higher risk of DIR and therefore were not representative of the entire population of patients with DIR. The 

comparability domain assessed if patients with and without DIR were managed according to the same 

standardised protocol and if outcomes were reported after appropriate adjustment for potential 

confounding variables. For the assessment of outcomes domain, outcomes had to be measured using 

clinician review, case note review, verbal autopsy or autopsy. Studies that did not report at least one of 

these methods were deemed high risk of bias for this category. The minimum acceptable follow-up period 

was one year as this is the highest risk period for adverse clinical outcomes post ART initiation [349].  

An overall risk of bias assessment was made for each individual domain. A domain would be classified as 

high risk of bias if any one question within it failed the specified criteria.  Where insufficient information had 

been reported in a study to make a judgement on the risk of bias, that question was recorded as unclear. 

‘Unclear’ and ‘high risk’ categories were then combined for the purposes of analysis [350]. 

2.3.4 Summary measures and synthesis of results 

For each study, the proportion of participants with and without DIR who died, and/or experienced an AIDS-

related, or serious non-AIDS-related event were estimated. Risk ratios and 95% confidence were extracted 

from the manuscript or calculated using Stata Version 13.1. Information was collected on variables including 

baseline CD4 and viral load, ART regimen, route of transmission and documentation of Hepatitis C infection. 

A meta-analysis with pooled effect estimates was planned including an analysis of heterogeneity using I2 

tests in Stata version 13.1. Sub analyses were planned to look for differences in effect of geographical region, 

year of study, exposure to ART and DIR definition. However, a meta-analysis could not be carried out due to 

considerable variation in both DIR definition and length of follow-up meaning that the included papers were 

not sufficiently comparable to produce a meaningful summary estimate.  
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2.4 Results 

2.4.1 Study selection 

2782 study titles were identified by the search. Twenty studies met inclusion criteria for full-text review 

(Figure 2-1). The two most common reasons for exclusion were that the study did not report a clinical 

outcome (36%) and the cohort was not virologically suppressed (23%). Authors from the study by Young et al 

were contacted to clarify if participants had been on ART for at least 6 months but the data were no longer 

available and so the study was excluded.  

Figure 2-1 . Flow of paper selection from those identified following literature search through to 

inclusion 

 

2.4.2 Study characteristics 

Twenty studies were included [57, 307, 309-312, 351-364], all of which were cohort studies. For three 

studies, the cohort was established de novo to investigate the effects of DIR on clinical outcomes [57, 307, 

352, 364]. One study analysed DIR and outcomes in the control arm of an RCT assessing ART regimes for 
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individuals initiating ART [351]. The remaining 14 studies conducted secondary analysis of existing datasets 

comprising of national or international cohorts of HIV infected patients who had data collected prospectively 

and systematically during routine clinical care [309-312, 353-363].  

Seventeen studies recruited participants from HIV care clinics. Five studies included participants from 

resource-limited countries [57, 307, 312, 363, 364]: three from countries with a generalised HIV epidemic 

(Uganda, South Africa) [57, 307, 364]; one from Senegal [363]; and one from an international collaboration 

of both low-, and middle-income countries [312]. Participants were ART-naïve in 16 studies [57, 307, 309-

312, 351, 352, 354, 356-360, 363, 364] whereas four studies included patients who were ART naïve or 

experienced [353, 355, 361, 362].  

For included studies, the median proportion of male participants ranged from 31% – 100% and median age 

ranged from range 34 to 43 years (Table 2-2 ). Median CD4 cell count at ART initiation was reported for 15 

studies and ranged from 80 -221 cells/mm3.  Median HIV viral load at ART initiation was reported for 10 

studies and ranged from 4.5 log10 – 5.1 log10 copies/ml. The threshold for defining virological suppression 

ranged from <50 copies/ml to <1000 copies per ml. Participant follow-up ranged from 1 to 7 years.
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Table 2-2 Description of 20 included studies 

Study author 

 

Study 

design 

Year of 

publication 

Median 

Duration 

of 

follow-

up 

Country Setting Relevant 

Outcomes 

examined 

ART 

naïve? 

%Male Median 

age 

(years) 

Median 

CD4 

(cells/uL) 

at ART 

initiation 

Median HIV VL at 

ART initiation 

(log10 copies/mL) 

BAKER [351] Control 

arm of ART 

RCT 

2008 5 years USA Community, 

80 sites 

Predictors 

and clinical 

outcomes in 

DIR 

Yes 80 39 221 5.0 

BATISTA [363] Established 

HIV cohort2 

2015 7 years Senegal HIV care 

clinic 

Frequency 

and risk 

factors for 

DIR, and 

incidence of 

OI and death 

Yes 35 40 Not 

reported 

Not reported 

DRONDA [352] Prospective 

cohort 

study1 

2002 3 years Spain HIV care 

clinic 

Immunologic 

and clinical 

outcomes in 

DIR 

Yes 74 36 196 5.0 

ENGSIG [353] Established 

HIV cohort2 

2010 4.7 years Denmark HIV care 

clinics, 8 

sites 

Predictors of 

and 

mortality in 

DIR 

No 78 435 Not 

reported 

Not reported 

FALSTER [354] Established 

HIV cohort2 

2008 5.4 years Australia HIV care 

clinics, sites 

Prevalence 

of DIR, and 

Yes 935 Not 

reported 

Not 

reported 

Not reported 
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not 

reported 

clinical 

outcomes 

GILSON [309] Established 

HIV cohort2 

2010 3 years UK HIV care 

clinics, 10 

sites 

Predictors 

and clinical 

outcomes in 

DIR 

Yes 75 37 170 5 

GRABAR [355] Established 

HIV cohort2 

2000 18 months France HIV care 

clinics, 68 

sites 

Clinical 

outcomes in 

DIR 

No 79 37 150 4.54 

GUTERRIEZ [356] Established 

HIV cohort2 

2008 2.3 years Spain HIV care 

clinics, 10 

sites 

Predictors 

and clinical 

outcomes in 

DIR 

Yes 75 37 160 5.0 

HUNT [307] Prospective 

cohort 

study1 

2011 2 years Uganda HIV care 

clinic 

Mortality 

according to 

CD4 

account3 

Yes 30 34 135 5.1 

KAUFMANN [357] Established 

HIV cohort2 

2004 5 years Switzerland HIV care 

clinics, 

number of 

sites not 

reported 

Predictors 

and clinical 

outcomes in 

DIR 

Yes 74 38 180 4.9 

LOUTFY [358] Established 

HIV cohort2 

2010 2.7 years Canada HIV care 

clinics, 9 

sites 

Clinical 

outcomes in 

DIR 

Yes 83 40 180 5.0 

MOORE [310] Established 

HIV cohort2 

2005 3.7 years Canada HIV care 

clinic 

Predictors 

and 

Yes 775 39 199 Not reported 
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mortality in 

DIR 

NAKANJAKO [57] Prospective 

cohort 

study1 

2008 1.8 years Uganda HIV care 

clinic 

Prevalence 

of DIR and 

clinical 

outcomes 

Yes 31 38 98 Not reported 

NICASTRI [361] Established 

HIV cohort2 

2005 3.7 years Italy Hospital, 63 

sites 

Immunologic 

and clinical 

outcomes  

No 72 35 185 4.78 

PACHECO [359] Established 

HIV cohort2 

2009 6 years Spain Hospital, 10 

sites 

CD4 count 

recovery, 

predictors 

and 

mortality in 

DIR 

Yes 325 Not 

reported 

Not 

reported 

Not reported 

TAKUVA [364] Prospective 

cohort 

study1 

2014 2 years South 

Africa 

HIV care 

clinic, 1 site 

Mortality 

and AIDS in 

DIR 

Yes 36 39 80 Not reported 

TAN [311] Established 

HIV cohort2 

2008 3.2 year USA HIV care 

clinic 

Clinical 

outcomes in 

DIR 

Yes 76 38 213 5.4 

TAIWO [362] Established 

HIV cohort2 

2009 Not 

reported 

USA HIV care 

clinics, 4 

sites 

Clinical 

outcomes in 

DIR 

No 100 42 Not 

reported 

Not reported 

TUBOI [312] Established 

HIV cohort2 

2010 1 year Multi-

centre4 

HIV care 

clinics, 31 

centres 

Mortality in 

DIR 

Yes 39 34 100 Not reported 
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ZOUFALY [313] Established 

HIV cohort2 

2010 3.8 years Germany HIV care 

clinics, 11 

sites 

Predictors 

and clinical 

outcomes in 

DIR 

Yes 77 39 80 Not reported 

ART= anti-retroviral therapy, cART=combination anti-retroviral therapy, DIR=discordant immune response, VL=Viral load, PI=Protease inhibitor, NRTI=nucleoside reverse transcriptase inhibitor, DDI=didanosine, 

TDF=Tenofovir, LMIC-=Low and middle income countries. 1 Patients are enrolled specifically for the aims of the current study. 2 Retrospective analyses of prospectively collected data.  3Analysis of clinical outcomes in 

DIR is a secondary analysis in this study. 5Includes countries from Africa, South America and Asia. 5Not reported for entire cohort therefore median value from optimal immune response group reported.  
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2.4.3 Risk of bias 

Two (10%) studies had a high risk of bias in study design; 6 (30%) in comparability; and 11 

(55%) in assessment of outcomes (Table 2-3).  

For the study design domain, Engsig et al required a viral load of <50 copies /ml for more than 

three consecutive years before the start of the DIR observation period [353], and Kaufmann et 

al required a viral load of <1000 copies/mL during the entire 5-year observation period [357]. 

The frequency of visits these criteria would require may have excluded patients at higher risk 

of DIR. All studies detailed clear selection criteria for participants with and without DIR. 

For the comparability domain, participants with and without DIR were managed according to 

the same treatment protocols for all studies but 6 studies did not appropriately evaluate the 

effects of confounders on outcomes [57, 351-354, 357]. 

For the assessment of outcomes domain, two studies gave no information on how deaths [357, 

358] or AIDS events [358] were ascertained. Eleven studies did not describe how missing data 

were handled [57, 309, 351, 353, 354, 357-360, 362, 363].  



75 
 

Table 2-3 Risk of bias assessment for 20 included studies 

Study Study design Comparability Assessment of outcomes Overall 

risk of 

bias 

Were 

participants 

selected to be 

representative 

of the wider 

population? 

Were there 

clear 

selection 

criteria for 

those with 

and without 

DIR? 

Risk 

of 

bias 

Are patients 

with and 

without DIR 

managed to 

standardised 

protocol? 

Are 

outcomes 

reported 

after 

adjustment 

for 

important 

confounding 

variables? 

Risk 

of 

bias 

Were 

procedures 

for 

measuring 

outcome 

sufficient? 

Was 

follow-up 

long 

enough 

for 

outcome 

detection? 

Were 

incomplete 

outcome 

data 

adequately 

assessed? 

Are 

outcomes 

reported 

in full and 

not 

selectively 

reported? 

Risk of 

bias 

BAKER [351] Yes Yes Low Yes Unclear High Yes Yes Unclear Yes High High 

BATISTE [363] Yes Yes Low Yes Yes Low Yes Yes No Yes High High 

DRONDA 

[352] 

Yes Yes Low Yes No High Yes Yes Yes Yes Low High 

ENGSIG [353] No Yes High Yes No High Yes Yes Unclear Yes High High 

FALSTER [354] Yes Yes Low Yes No High Yes Yes Unclear Yes High High 

GILSON [309] Yes Yes Low Yes Yes Low Yes Yes Unclear Yes High High 

GRABAR [355] Yes Yes Low Yes Yes Low Yes Yes Unclear Yes High High 

GUTERRIEZ 

[356] 

Yes Yes Low Yes Yes Low Yes Yes Yes Yes Low Low 

HUNT [307] Yes Yes Low Yes Yes Low Yes Yes Yes Yes Low Low 

KAUFMANN 

[357] 

No Yes High Yes No High Unclear Yes No Yes High High 

Table 3. Risk of Bias for 20 included studies 
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LOUTFY [358] Yes Yes Low Yes Yes Low Unclear Yes No Yes High High 

MOORE [310] Yes Yes Low Yes Yes Low Yes Yes Yes Yes Low Low 

NAKANJAKO 

[57] 

Yes Yes Low Yes No High Yes Yes No Yes High High 

NICASTRI 

[361] 

Yes Yes Low Yes Yes Low Yes Yes Yes Yes Low Low 

PACHECO 

[359] 

Yes Yes Low Yes Yes Low Yes Yes No Yes High High 

TAKUVA [364] Yes Yes Low Yes Yes Low Yes Yes Yes Yes Low Low 

TAN [311] Yes Yes Low Yes Yes Low Yes Yes Yes Yes Low Low 

TAIWO [362] Yes Yes Low Yes Yes Low Yes Unclear Unclear Yes High High 

TUBOI [312] Yes Yes Low Yes Yes Low Yes Yes Yes Yes Low Low 

ZOUFALY 

[313] 

Yes Yes Low Yes Yes Low Yes Yes Unclear Yes High High 
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2.4.4 Definition of DIR 

Definitions of DIR varied significantly and were classified into two categories: a failure to 

achieve a prespecified absolute CD4 count at a predefined time point; or a failure to achieve a 

prespecified rise in CD4 count from baseline at a predefined time point (Table 2-4). Five 

studies explored several potential definitions of DIR [57, 309, 313, 358, 364].  

Eleven studies defined  DIR based on a failure to achieve a rise in CD4 from ART initiation [57, 

309-312, 351, 352, 355, 356, 361, 363]. Five used CD4 count thresholds of a failure to achieve a 

rise of at least 50 cells/ mm3 at 6 months [309-312, 363]; two used at least 100 cells/ mm3 at 

12 months [57, 352]; 2 used at least 50 cells/ mm3 at 12 months [355, 356]; one used at least 

50 cells/ mm3 at 8 months [351]; and one used at least 100 cells/ mm3 at 8 months [309].  

Nine studies defined DIR based on a failure to achieve an absolute CD4 count at a predefined 

time point [307, 313, 353, 354, 357-359, 362, 364] and used the following CD4 count 

thresholds: 200 cells/ mm3 at 6 months[364] , 200 cells/ mm3 at 12 months [313, 358]; of 350 

cells/ mm3 at 9 months [354]; of 250 cells/ mm3 at 22 months [359]; 200 cells/ mm3 at 36 

months [353]; and  500cells/ mm3 at 60 months [357]. Hunt and colleagues described mortality 

according to tertiles of CD4 counts in patients with viral suppression rather than use a single 

definition for DIR [307] so we compared mortality in the highest tertile (>177 cells/mm3) to the 

lowest tertile (<95 cells/mm3), using the lowest tertile of CD4 counts as the ‘DIR group’.  

HIV VL cut offs used by studies to define virological suppression were as follows: 50 copies/ml 

(seven studies) [309, 313, 352, 353, 358, 362, 363]; 400 copies/ml (four studies) [57, 351, 354, 

364]; 500 copies/ml (four studies) [310, 312, 356, 361]; and 1000 copies/ml (four studies) [307, 

355, 357, 359]. One study only reported using an ‘undetectable’ VL [311]. The time period for 

the definition of virological suppression was as follows: a one off cut off point between 6 

months to a year post ART (eight studies) [310-312, 351, 355, 361, 363, 364];  two 

measurements over one year (two studies) [309, 354]; quarterly measurements for 2 years 

(two studies) [57, 352, 359], and quarterly measurements throughout the period of follow-up 

(seven studies) [307, 313, 356-358, 362, 365].  

2.4.5 Effect of DIR on risk of mortality 

Of the 20 studies including, 10 reported on the risk of mortality in DIR and 10 reported on the 

incidence or mortality in patients with DIR. 
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The risk of mortality ranged between 3% to 23% for patients with DIR and 1% to 7% for 

patients without DIR, over a median follow-up time of 2 years and 3.7 years respectively. Ten 

studies estimated the effect of DIR on mortality [307, 309-312, 351, 353, 356, 357, 359]  (Table 

2-4). Risk ratios ranged between 1.00 (95% CI 0.26 – 3.92) and 4.29 (95% CI 1.96 – 9.38). Six of 

ten studies showed a significantly higher risk of mortality in participants with DIR compared to 

participants without DIR [309-312, 356, 357] (Fig 2A). Two of these studies reported on the 

absolute risk of mortality in participants with DIR in resource-limited settings [307, 312], with 

Tuboi et al finding DIR to be significantly associated with an increased risk of death.  

Ten studies reported the incidence of mortality in participants with DIR (Table 2-5). Six found 

the incidence of mortality to be significantly higher in participants with DIR compared to 

participants without DIR [309-312, 356, 364]. Incidence rate ratios ranged from 1.78 (95% CI 

1.09 – 2.90) to 4.01 (95% CI 1.62 – 9.94). One study from a sub-Saharan Africa setting (South 

Africa) reported rates of mortality and found an IRR of 1.78 (1.09 – 2.90). Various different 

factors were assessed to investigate whether they influenced the effect of DIR on mortality. No 

differences in risk of mortality conferred by DIR were found according to DIR definition type, 

CD4 count cut off or time period post ART initiation.  
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Figure 2-2 Forest plot showing risk of clinical outcomes for patients with DIR across those studies reporting each outcome 

A) Mortality B) AIDS events C) Combined mortality and AIDS events 
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Table 2-4 . Effect of DIR on rate of clinical outcomes, according to DIR definitions, for 20 studies reporting clinical outcomes 

Definition of 

discordant 

immune 

response 

First Author HIV viral 

load cut off  

Number 

virologic-

ally 

suppress-

ed 

Number 

virologic-

ally 

suppress-

ed with 

DIR 

Effect of DIR on risk of Mortality Effect of DIR on risk of AIDS Effect of DIR on risk of AIDS or 

mortality 

DIR 

number of 

participants 

(%) 

IR number 

of 

participants 

(%) 

Risk 

ratio 

(min 

CI – 

max 

CI) 

DIR 

number of 

participants 

(%) 

IR number 

of 

participants 

(%) 

Risk 

ratio 

(min 

CI – 

max 

CI) 

DIR 

number of 

participants 

(%) 

IR number 

of 

participants 

(%) 

Risk 

ratio 

(min 

CI – 

max 

CI) 

Failure to 

achieve rise in 

CD4 count of 

>=50 cells/mm3 

at 6 months 

after ART 

initiation 

MOORE 

[310] 

<500 at 6 

months 

1084 235 53 (22.6) 61 (7.2) 3.14 

(2.24 

– 

4.40) 

NR NR NR NR NR NR 

TAN [311] Undetected 

at 6 

months 

320 35 4 (11.4) 11 (3.9) 2.96 

(1.00 

– 

8.80) 

6 (17.1) 30 (10.5) 1.63 

(0.73 

– 

3.54) 

NR NR NR 

TUBOI [312] <500 at 6 

months 

6234 1260 23 (4.5) 51 (1.0) 1.78 

(1.09 

– 

2.90) 

NR NR NR NR NR NR 

Failure to 

achieve rise in 

CD4 count of 

>=50 cells/mm3 

at 8 months 

after ART 

initiation 

BAKER [351] <400 at 8 

months 

850 149 7 (4.7) 19 (2.7) 1.73 

(0.74 

– 

4.03) 

16 (10.7) 33 (4.7) 2.28 

(1.29 

– 

4.02) 

NR NR NR 
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Failure to 

achieve rise in 

CD4 count of 

>=100 

cells/mm3 at 8 

months after 

ART initiation 

GILSON 

[309] 

<50 twice 

over one 

year 

2584 571 26 (4.6) 24 (2.0) 2.29 

(1.33 

– 

3.97) 

15 (2.6) 33 (2.8) 0.96 

(0.53 

– 

1.76) 

NR NR NR 

Failure to 

achieve rise in 

CD4 count of 

>=50 cells/mm3 

at 12 months 

after ART 

initiation 

GRABAR 

[355] 

<1000 at 6 

months 

1486 387 NR NR NR NR NR NR 37 (9.6) 51 (4.8) 1.99 

(1.33 

– 

2.99) 

GUTERRIEZ 

[356] 

<500 

throughout 

follow-up 

650 108 8 (7.4) 10 (1.8) 4.01 

(1.62 

– 

9.94) 

3 (2.8) 15 (2.8) 1.00 

(0.30 

-–

3.41) 

NR NR NR 

Failure to 

achieve rise in 

CD4 count of 

>=100 

cells/mm3 at 12 

months after 

ART initiation 

DRONDA 

[352] 

<50 

quarterly 

for 2 years 

288 76 NR NR NR NR NR NR 7 (9.2) 40 (18.9) 0.86 

(0.41 

– 

1.80) 

NAKANJAKO 

[57] 

<400 

quarterly 

for 2 years 

339 151 NR NR NR 14 (9.3) 9 (4.8) 1.94 

(0.86 

– 

4.35) 

NR NR NR 

Failure to 

achieve rise in 

CD4 count of 

>=100 

cells/mm3 at 12 

NICASTRI 

[361] 

<500 at 12 

months 

1117 336 NR NR NR NR NR NR Not 

reported 

Not 

reported 

Odds 

ratio 

2.32 

(1.36 

– 

3.95) 
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months after 

ART  

Failure to 

achieve an 

absolute CD4 

count of 

>=174cells/mm3 

at 6 months 

after ART 

initiation1 

HUNT [307] <1000 

throughout 

follow-up 

451 107 3 (2.8) 6 (1.7) 1.00 

(0.26 

– 

3.92) 

NR NR NR NR NR NR 

Failure to 

achieve an 

absolute CD4 

count of >=350 

cells/mm3 at 9 

months after 

ART initiation 

FALSTER 

[354] 

<400 twice 

over one 

year 

292 83 NR NR NR NR NR NR 14 (3.5) 35 (2.2) 2.06 

(0.89 

– 

4.79) 

Failure to 

achieve an 

absolute CD4 

count of >=200 

cells/mm3 at 12 

months after 

ART  

ZOUFALY 

[313] 

<50 

throughout 

follow-up 

1085 248 NR NR NR 18 (7.3) 11 (1.3) 2.70 

(1.29 

– 

5.66) 

NR NR NR 

LOUTFY 

[358] 

<50 

throughout  

2028 404 NR NR NR NR NR NR 14 (3.5) 35 (2.2) 1.61 

(0.87 

– 

2.96) 

Failure to 

achieve an 

absolute CD4 

count of >=250 

PACHECO 

[359] 

<1000 

quarterly 

for 2 years 

147 40 5 (12.5) 

 

4 (3.7) 3.23 

(0.89 

– 

11.77) 

NR NR NR NR NR NR 
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cells/mm3 at 22 

months after 

ART initiation 

Failure to 

achieve an 

absolute CD4 

count of >=200 

cells/mm3 at 36 

months after 

ART initiation 

ENGSIG 

[353] 

<50 over 3 

years 

291 55 11 (20) 11 (4.7) 4.29 

(1.96 

– 

9.38) 

NR NR NR NR NR NR 

Failure to 

achieve an 

absolute CD4 

count of >=500 

cells/mm3 at 60 

months after 

ART 

KAUFMANN 

[357] 

<1000 over 

5 years 

293 105 22 (21.0) 18 (9.6) 2.19 

(1.23 

– 

3.89) 

NR NR NR NR NR NR 

NR not reported. DIR discordant immune response IR concordant immune response. VL viral load.  
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Table 2-5 Effect of DIR on rate of clinical outcomes, according to DIR definitions, for 10 studies reporting incidence data 

Definition 

of 

discordan

t immune 

response 

(time 

periods are 

length of 

time 

following 

ART 

initiation) 

First 

Author 

HIV viral 

load cut 

off  

Number 

virologic-

ally 

suppress

-ed 

Number 

virologic-

ally 

suppress

-ed with 

DIR 

Effect of DIR on rate of Mortality Effect of DIR on rate of AIDS Effect of DIR on rate of AIDS or 

mortality 

DIR 

number of 

participant

s (per 

100py) 

IR number 

of 

participant

s (per 100 

py) 

Incidenc

e rate 

ratio 

(min CI – 

max CI) 

DIR 

number of 

participant

s (per 100 

py) 

IR number 

of 

participant

s (per 100 

py) 

Incidenc

e rate 

ratio 

(min CI – 

max CI) 

DIR 

number of 

participant

s (per 100 

py) 

IR number 

of 

participant

s (per 100 

py) 

Incidenc

e rate 

ratio 

(min CI – 

max CI) 

Failure to 

achieve 

rise in 

CD4 count 

of >=50 

cells/mm3 

after 6 

months  

BATISTA 

[363] 

<50 at 6 

months 

657 102 NR NR NR NR NR NR 47 (9.8) 202 (7.8) 1.21 

(0.85 – 

1.72) 

MOORE 

[310] 

<500 at 6 

months 

1084 235 53 (5.7) 61 (1.8) 3.2 (3.9 – 

12.7) 

NR NR NR NR NR NR 

Failure to 

achieve 

an 

absolute 

CD4 count 

of >=200 

cells/mm3 

TAKUVA 

[364] 

<400 at 6 

months 

4129 NR NR NR 2 (1.44 – 

2.79) 

NR NR 1.67 

(1.27 – 

2.21) 

NR NR NR 
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after 6 

months  

Failure to 

achieve 

rise in 

CD4 count 

of >=100 

cells/mm3 

after 8 

months  

GILSON 

[309] 

<50 twice 

over one 

year 

2584 571 26 (3.5) 24 (0.5) 7.00 (3.9 

– 12.7) 

15 (2.0) 33 (0.7) 2.9 (1.4 

– 5.4) 

NR NR NR 

Failure to 

achieve 

rise in 

CD4 count 

of >=50 

cells/mm3 

after 12 

months  

GRABAR 

[355] 

<1000 at 6 

months 

1486 387 NR NR NR NR NR NR 37 (6.6) 51 (1.8) 3.7 (2.3 

– 5.7) 

Failure to 

achieve 

an 

absolute 

CD4 count 

of >=200 

cells/mm3 

after 12 

months 

ZOUFALY 

[313] 

<50 

throughou

t  

1085 248 18 (4.4) 11 (1.6) 2.8 (1.2 – 

6.4) 

NR NR NR NR NR NR 

LOUTFY 

[358] 

<50 

throughou

t  

2028 404 NR NR NR NR NR NR 14 (1.1) 35 (0.8) 1.4 (0.7 

– 2.6) 
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Failure to 

achieve 

an 

absolute 

CD4 count 

of >=250 

cells/mm3 

after 22 

months 

PACHEC

O [359] 

<1000 

quarterly 

for 2 years 

147 40 5 (2.4) 4 (0.7) 3.2 (0.70 

– 16.4) 

NR NR NR NR NR NR 

Failure to 

achieve 

an 

absolute 

CD4 count 

of >=200 

cells/mm3 

after 36 

months 

ENGSIG 

[353] 

<50 over 3 

years 

291 55 26 (3.5) 24 (0.5) 4.4 (1.7 – 

11.3) 

NR NR NR NR NR NR 

Failure to 

achieve 

an 

absolute 

CD4 count 

of >=200 

cells/mm3 

after 6 

months 

TAIWO 

[362] 

<50 

biannually 

throughou

t  

NR NR NR NR 5.96 

(0.40 – 

87.8) 

NR NR HR 22.8 

(1.89 – 

275) 

NR NR HR 10.7 

(1.65 – 

70) 

NR not reported. DIR discordant immune response IR concordant immune response. VL viral load. py person years HR hazard ratio  
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2.4.6 Effect of DIR on risk of AIDS and serious non-AIDS events 

Six studies reported AIDS events [57, 309, 311, 313, 351, 356]. The risk ratio for associations 

between DIR and AIDS events ranged from 0.96 (95% CI 0.53 – 1.76) to 2.70 (95% CI 1.29 – 5.66) (Fig 

2B). One of these reported AIDS events in a low resource setting (Uganda) with a risk ratio of 1.94 

(0.86 – 4.35). Five studies reported combined AIDS events or mortality [352, 354, 355, 358, 361] and 

risk ratios ranged from 0.86 (95% CI 0.41 – 1.80) to 2.06 (95% CI 0.89 – 4.79)  (Fig 2C). One study 

from a low resource setting (Senegal) reported an incidence rate ratio of 1.21 (0.85 – 1.72). 

Four studies detailed AIDS events. The most commonly reported pathologies were oesophageal 

candidiasis, tuberculosis, AIDS related cancers, pneumocystis jirovecii and bacterial pneumonia [57, 

351, 356, 360]. Only Baker et al included serious non-AIDS events [351], reporting events in eight of 

143 patients (5.6%) with DIR compared to 31 of 671 patients (4.6%) without.   

2.5 Discussion 

 The main finding of this review was that we found definitions used to categorise DIR varied widely, 

with 14 different definitions used in the 20 included studies. Although meta-analysis was not 

performed due to heterogeneity in definitions as well as length of follow-up, mortality rates remain 

substantially and significantly elevated in patients with DIR in studies that reported rates adjusted 

for time. The relationship between DIR and AIDS is less clear and may be complicated by challenges 

in diagnosing or reporting AIDS conditions. Alternatively, other conditions such as serious non-AIDS 

events may be contributing to mortality and this warrants further investigation.  

 

Heterogeneity in DIR definitions also greatly limits the ability to draw conclusions about clinical 

burden in this patient cohort. This chapter has synthesised existing data and suggested the definition 

for DIR to be a rise of less than 50 cells/uL at 6 months following ART initiation in those who have 

achieved virological suppression but with a CD4 count of less than 350 cells/uL. This provides a 

starting point for the development of consensus within the field. For the majority of included 

studies, mortality in patients with DIR was two to three times higher than in those with a satisfactory 

immune response. To our knowledge, this is the first review to systematically examine the fate of 

adults with DIR. Two further important gaps in the literature were identified: the large majority of 

current data reports on cohorts from high income countries; and only one study reported on the 

burden of serious non-AIDS events. Both the clinical burden of DIR in low income settings and the 
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global burden of serious non-AIDS events remain unclear. It is not possible to draw comparisons 

between the risks associated with DIR in low resource to high resource settings with the current 

literature. 

In order to address the issues identified here around heterogeneity of definitions, we advocate the 

use of a standard definition. To define DIR based on a failure to achieve a rise in CD4 from baseline is 

more reflective of the amount of time spent at a lower CD4 count, which is an important predictor of 

poor outcomes [317]. In contrast, an absolute CD4 count at a given time point may only tell us about 

that point in time, when other factors such as co-existing infections may be affecting the CD4 count. 

The expected rate of CD4 reconstitution following ART initiation is 20 to 30 cells per month in the 

first 6 months and then 5 to 10 cells per month between 6 months and 24 months [38, 366]. 

Therefore, when choosing a time point to measure DIR, we believe that 6 months after ART initiation 

is logical. Further studies might also consider whether time taken to get to a pre-specified CD4 count 

may be more representative of total time spent below that value. 

Many studies included in this review based their definition of DIR on a failure to achieve a rise of 50 

cells/uL at 6 months’ post ART initiation. Whilst this is a relatively strict CD4 cut off, these studies still 

reported a high proportion of virologically-suppressed patients with DIR. We would therefore 

recommend defining DIR as a rise of less than 50 cells/uL at 6 months following ART initiation in 

patients who have achieved virological suppression. This definition has the benefit of identifying a 

high risk group of patients early on in the course of their ART management to allow for increased 

benefit of any potential intervention. It is logical that this definition would only apply to those 

commencing ART with a CD4 <350 cells/uL so as not to over diagnose DIR in a population starting 

with higher CD4 counts. The heterogeneity in definitions for DIR and outcome measures means that 

it is not currently possible to meaningfully compare the utility of definitions to predict clinical 

outcomes. We recommend further studies to clinically validate a standardised definition.  

This review should be interpreted in the light of several limitations. Firstly, the majority of studies 

were carried out using data collected from ongoing multicentre cohort studies, meaning cohorts are 

likely to be highly selected in terms of laboratory monitoring and attending follow-up visits. This 

limits the generalizability of the studies, and may mean that the risk of adverse clinical outcomes in 

individuals with DIR could be underestimated. Secondly, the HIV viral load limit defining virological 

suppression varied across studies. However, it remains unclear whether differences in viral load 

below 1000 copies/ml are biologically significant [367]. Lastly, individual studies did not distinguish 
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between early mortality in patients starting ART with advanced immunosuppression and long term 

mortality due to poor immune reconstitution. This could be addressed in future studies. 

There are currently no effective therapeutic options to reduce the excess mortality associated with 

DIR and no difference has been demonstrated with newer ARVs including tenofovir compared to 

thymidine analogues. One approach under evaluation is to target underlying drivers of immune 

activation and inflammation. The addition of Raltegravir to standard two class regimes at ART 

initiation has the aim of decreasing viral set point but as yet only two small studies have shown any 

effect on immune responses [368, 369]. Similarly, a recent trial with valganciclovir to tackle ongoing 

CMV replication failed to show any improvement in CD4 count [370]. Although probiotics can 

improve the systemic pro-inflammatory profile, there is no evidence that this can improve CD4 

counts [371]. To address generalised inflammation, anti-inflammatory agents such as statins and 

anti-rheumatic agents have been tested [372, 373]. Whilst statins reduced peripheral immune cell 

activation, there is no evidence that they can improve CD4 T cell count. Studies investigating the role 

of quinolones in reducing HIV related immune activation have shown only small decreases in 

inflammatory markers [374].  Immunomodulatoy agents such as IL-2 have shown limited success 

[375, 376] and current focus is being placed on IL-7 therapy [377, 378] with several ongoing trials in 

progress. Lastly, agents aimed at stimulating thymic output have also been tested in early studies 

[379, 380].  

Practical management options may be more accessible in the short term. Standardised guidelines 

could recommend continuation of prophylactic therapies such as co-trimoxazole and isoniazid for 

patients with DIR, or could prompt investigation for subclinical opportunistic infections such as 

tuberculosis and CMV. Although prevention of DIR through early diagnosis of HIV infection and 

prompt treatment with ART is likely the most effective intervention [381-384], a large proportion of 

patients worldwide continue to present with advanced HIV infection [385, 386].  

This systematic review highlights that a wide range of definitions have been used to characterise 

clinical outcomes in patients with DIR. These patients are at an increased risk of mortality and are in 

need of special attention, including integration into HIV clinical trials.  We have suggested a 

definition for DIR based on the limited available data in order to help begin the process of arriving at 

a consensus definition that could be used to guide clinical care and in future research. We 

recommend that further studies validate this definition for DIR to aid the development of consensus 

guidelines. 
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3 CHAPTER 3: GENERAL STUDY METHODS 

3.1 Recruitment of clinical cohort 

3.1.1 Study design 

The SHIELD study is a cohort study of HIV infected adults with advanced immunosuppression and 

HIV uninfected healthy volunteers. A cross sectional analysis of SHIELD enrolment data collected at 2 

weeks post ART initiation answers objectives 2 – 5 (see Chapter 1). An analysis of longitudinal data 

up to 44 weeks post SHIELD enrolment answers objectives 6 and 7. Figure 3-1 gives an overview of 

how the SHIELD study was designed to answer each of the objectives.  

3.1.2 Study site and patient management systems 

3.1.2.1 QECH 

Queen Elizabeth Central Hospital (QECH) is a tertiary referral hospital set within Malawi’s second 

city, Blantyre. It is a receiving hospital for all district health clinics within urban Blantyre, and serves 

as a tertiary referral centre for the Southern Malawi region. QECH is a major teaching hospital 

affiliated with the University of Malawi, College of Medicine. Public health care in Malawi is free but 

resources within the public system are limited and many private fee paying facilities exist. ART is free 

and is supported by external funders, such as PEPFAR, making its supply reliable. The SHIELD study 

was conducted in three main locations within Queen Elizabeth Central Hospital: the adult medical 

inpatients wards, the ART clinic and the voluntary counselling and testing (VCT) clinic (Figure 3-2). 
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Figure 3-1 Overview of SHIELD study design and objectives 
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Figure 3-2 Map of QECH grounds, with locations of SHIELD study sites14 

 

                                                           
14 From 387. https://www.google.co.uk/maps/place/Queen+Elizabeth+Central+Hospital, B., +Malawi/@-
15.8030426,35.0168894,16z/data=!3m1!4b1!4m2!3m1!1s0x18d845947a5ca71d:0x143328d65dc6a84c.  [cited 2016 22nd January]; Map of QECH]. 
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3.1.2.2 Adult medical wards 

Adult inpatients are admitted to medical wards through referrals from the Accident, Emergency and 

Trauma Centre (AETC). There are three general medical wards in QECH: Male ward, Female ward 

and TB ward. Together these wards care for approximately 220 patients. The medical take has an 

admission rate of around 10 to 20 patients per day, with one published study recording 4699 

medical admissions in 2010 [388]. Approximately 70% of adult medical inpatients have HIV infection 

[389], with approximately one third of those not yet on ART, one third in the first 6 months of ART 

and one third on established ART (personal communication, Ingrid Peterson).  

Routine HIV testing was not established on the wards prior to the initiation of the SHIELD and 

REALITY studies. HIV counsellors were employed by the studies to provide this service to the wards. 

As a result, the proportion of medical patients leaving hospital with a HIV diagnosis improved 

substantially. Patients with a new diagnosis of HIV are referred to the ART clinic as ART cannot be 

initiated or dispensed on the wards.  

3.1.2.3 VCT clinic 

The VCT clinic provides HIV testing and counselling for people requesting voluntary routine testing 

and also for some patients within QECH who present unwell and seek diagnostic services. In the last 

quarter of 2015, the VCT clinic tested 2181 new clients; 593 (27%) positive and 1580 negative (72%). 

All HIV counsellors are government registered through a two-week residential course and maintain 

skills through quarterly regional meetings. HIV tests are carried out strictly according to national 

guidance. Patients are counselled and then tested using the Determine HIV rapid test. A positive 

result using the Determine kit requires confirmation with a second test using the Unigold HIV rapid 

test. If the tests are discordant a result of inconclusive is given and clients are encouraged to 

reattend for testing after two weeks. The results of the HIV test are recorded in the patient’s 

personal ‘health passport’, then stamped and signed. Yearly tests are recommended for those 

testing negative. For those testing positive, a referral is made to the ART clinic for further 

assessment. Figure 3-3 gives an overview of the HIV testing process through to ART initiation for 

adults at QECH.  

3.1.2.4 ART clinic  

Since its conception in 2004, the QECH ART clinic has initiated 25,000 patients on ART. It has three 

full time ART clinicians, four nurses trained in dispensing ART, and one physician from the 

department of medicine for each clinic session. At QECH ART clinic, over 10,000 patients are 

currently receiving ART and an average quarter sees 10 deaths and 35 defaults. The clinic is also a 

secondary referral centre, supporting 13 peripheral ART clinics. The ART clinic supports ongoing 
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research studies. Both REALITY and SHIELD studies had their own clinic rooms set within the ART 

clinic. 

Every patient admitted to the clinic (whether for ART initiation or for pre-ART care) is given a 

mastercard and recorded onto an electronic data capture system.  Essential information including 

height, weight, WHO stage, lab results and ART history are included for each patient. Paper records 

with this information are also filed within the clinic. Visits are recorded in the patient’s health 

passport and when ART is dispensed or a non-ART visit occurs, essential information is summarised 

on a printed sticker which is also placed in the health passport.  

A general overview of the ART initiation process is given in Figure 3-3. Every adult who tests positive 

for HIV either on the medical wards or at VCT is referred to QECH ART clinic. They are assessed by a 

clinician and given a WHO stage. Patients deemed as stage 3 or 4 automatically qualify for ART, 

without the need for CD4 measurement. Those at stage one or two have a CD4 count and go on to 

initiate ART if it is less than 500 copies/mm3. Those with a CD4 of greater or equal to 500 

copies/mm3 are kept under surveillance at the clinic in ‘pre-ART’ care. Group counselling is 

mandatory for all patients who are eligible to start ART. Group counselling sessions are carried out 

twice a week at the ART clinic and patients must attend with a ‘guardian’, who also undergoes 

counselling. After successful completion of counselling, the patient reattends to see a clinician and 

starts ART according to national guidelines[390]. 

All patients with HIV infection are started on co-trimoxazole (960mg once daily formulation). As of 

2013, the first line ART regime in Malawi has been Tenofovir 300mg, Lamivudine 300mg and 

Efavirenz 600mg (one co-formulation tablet once daily).  Patients are usually given a two week 

course to begin, so that they can be reviewed early by a clinician for side effects. Prescriptions are 

then given monthly for the first three months and, depending on availability of drugs, up to 3 

monthly prescriptions thereafter. Patients who present with symptoms are investigated and 

managed either by ART clinic staff or are referred to AETC at QECH.  

3.1.2.5 MLW 

MLW was established in 1995 and falls under the auspices of the College of Medicine, University of 

Malawi. It is partnered with the University of Liverpool, Liverpool School of Tropical Medicine and 

the University of Glasgow. These links are managed through the Liverpool-Glasgow-Wellcome centre 

for Global Health Research. MLW supports researchers from a broad range of research fields. MLW 

works closely with QECH and provides clinical services such as blood culture and CSF analysis. Clinical 

researchers working at MLW support clinical services in the hospital by undertaking regular ward 

rounds and clinics.  
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Clinical fellows at MLW are responsible for project managing their own studies, including line 

managing staff.  They are supported by 12 operational departments including HR, finance and 

supply, data and IT.  
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Figure 3-3 Overview of HIV testing process through to ART initiation at QECH and REALITY/SHIELD screening strategy 
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3.1.3 Study populations 

3.1.3.1 Overview of SHIELD study populations 

The SHIELD study is comprised of three patient cohorts: HIV-infected patients co-recruited from 

REALITY, HIV-infected patients not recruited to REALITY and HIV-uninfected participants recruited 

from the VCT clinic. HIV infected adults were recruited exclusively to the SHIELD study from the 

REALITY trial between January 2014 and May 2015. After enrolment to REALITY was completed, 

further HIV infected participants were recruited into SHIELD directly from the standard ART system 

from May until August 2015. Great efforts were employed to ensure integration of REALITY and 

SHIELD studies, especially with regards to screening for identification of eligible patients. REALITY 

patients were identified from within the standard QECH care pathway for HIV infected patients. This 

same strategy was continued after REALITY completed enrolment to recruit the additional HIV 

infected non-REALITY SHIELD patients. The REALITY HIV infected cohort was subject to additional 

eligibility criteria that were not required for the non-REALITY HIV infected cohort (see section 

3.1.3.2.4).  

3.1.3.2 REALITY study 

The REALITY study was conducted to assess potential interventions to decrease early mortality 

following ART initiation in adults and children with a CD4 count of less than 100 cells/mm3. The 

SHIELD study aimed to assess the relationship between immune activation and cardiovascular risk in 

this same population of patients with CD4 count less than 100 cells/mm3. Therefore, the SHIELD 

study was different from the REALITY study in that REALITY did not assess either immune activation 

nor cardiovascular risk.  

3.1.3.2.1 Background and Aims 

Analysis from the DART trial showed a high 3 month mortality in patients starting ART with a CD4 

count of less than 100 cells/mm3 (Figure 3-4)[391]. The primary aim of the REALITY study was to test 

interventions aimed at decreasing 3-month mortality in patients starting ART with a CD4 less than 

100 cells/mm3. Secondary objectives fall into three domains and aimed to identify: the cost-

effectiveness of interventions to reduce early mortality; the mechanisms of action of effective 

interventions; and the acceptability of interventions at a community level. Analysis of underlying 

mechanisms of action include measurement of HIV viral load and resistance, molecular diagnostics, 

measures of immune activation, immune responses to pathogens, microbial translocation and 

enteropathy and body composition (REALITY trial number NCT01825031, www.clinicaltrials.gov). 
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Figure 3-4 Mortality following ART initiation according to nadir CD4 count in the DART 

cohort 

15 

 

3.1.3.2.2 Interventions 

The REALITY trial assessed three potential interventions to reduce 3-month mortality in patients 

starting ART with CD4 less than 100 cells/mm3.  

Early mortality may be related to direct effects of the HIV virus and a more rapid reduction in viral 

load may help to reduce mortality. Integrase inhibitors confer an additional decrease in viral load at 

ART initiation when combined with the standard two class regime. Arm A therefore added 

Raltegravir (400mg twice daily) as a third ART class for 3 months.  

Arm B is the addition of augmented prophylaxis against opportunistic infections, bacterial infections 

and helminths. Co-infections have been shown to be a major cause of early mortality following ART 

initiation. The REALITY study tested an anti-infective package which includes co-trimoxazole (960mg 

                                                           
15 From 391. Walker, A.S., et al., Mortality in the Year Following Antiretroviral Therapy Initiation in HIV-
Infected Adults and Children in Uganda and Zimbabwe. Clin Infect Dis, 2012. 55(12): p. 1707-18. 
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once daily), isoniazid (300mg once daily with pyridoxine 25mg once daily) and fluconazole (100mg 

once daily) for 3 months; azithromycin (500mg once daily) for 5 days; and a one off dose of 

albendazole (400mg).  

Individuals with low BMI have higher mortality on ART and this is thought to be related to a catabolic 

state which ensues following ART initiation. Ready to Use Therapeutic Food (RUTF) is currently 

recommended only for those with the lowest BMI (<18.5). Arm C randomised patients to receive 

Ready to Use Supplementary Food (RUSF), which can be used in any patient starting ART with a CD4 

<100 cells/mm3 regardless of BMI. 

3.1.3.2.3 Study design 

The REALITY trial was an open label randomised control trial with a factorial design. Patients were 

randomised simultaneously to all three arms (Figure 3-5). Patients may have been randomised to all 

intervention groups, no intervention groups, or any combination of these. For each arm, patients not 

randomised to an intervention received the standard of care. QECH, Blantyre, Malawi is one of 8 

REALITY sites across low income sub-Saharan Africa. The sample size was 1800 participants over 18 

months across the 8 sites totalling 600 children and 1200 adults. 450 participants were initially 

projected for the Blantyre site.   

3.1.3.2.4  Study population 

Patients were eligible for inclusion in the REALITY trial if they met the following criteria: aged 5 years 

or older, documented HIV infection, ART naïve, CD T cell count <100 cells/mm3 at REALITY screening, 

results of haematology and biochemistry tests available, no contra-indication to planned ART 

according to national guidelines and provision of informed consent. Patients were excluded if they 

met any of the following criteria: contraindications to any proposed drug; pregnant, breastfeeding or 

intending to become pregnant within 3 months of starting ART; ever received single dose 

Nevirapine.  



100 
 

Figure 3-5 Schematic of REALITY trial randomisation process 

 

3.1.3.2.5 Follow-up and ascertainment of outcomes 

The schedule of follow-up for the REALITY trial is shown in Figure 3-6. Patients were brought back at 

week 2 to monitor clinical progress. In addition to the scheduled visits, patients were also 

encouraged to attend in the event of new signs or symptoms. 
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Figure 3-6 Overview of REALITY study schedule and procedures 
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Clinical events were managed by the REALITY trial team using resources available within the QECH 

public service and, where necessary, private resources. Examples of private services used include 

pathology services for lymph node tissue examination and purchasing of drugs such as amphotericin. 

Any clinical event was recorded and reported on a separate case report form.  

3.1.3.3 SHIELD patient recruitment 

3.1.3.4 Co-recruitment of HIV infected patients from REALITY study 

Due to the procedural burden during the REALITY enrolment visit, SHIELD enrolment was carried out 

at the week 2 REALITY visit. Potential REALITY participants were informed about the SHIELD study 

and provided with information during the screening process so that they had time to consider 

whether they wanted to participate or not. They were then approached during the week 2 REALITY 

visit to ascertain whether they were interested in taking part. If the potential participant was 

agreeable, they underwent a separate informed consent process with SHIELD study staff. All REALITY 

participants aged 18 or older were eligible for recruitment to the SHIELD study. REALITY participants 

were excluded from taking part in the SHIELD study if the patient, guardian or clinician felt that the 

patient was too unwell to take part in a second study or if the patient was clinically severely anaemic 

(due to additional blood draws for SHIELD).  

3.1.3.4.1 HIV infected participants recruited outside REALITY 

The same screening process was used to identify potential REALITY participants and HIV infected 

SHIELD participants not recruited to REALITY. However, some inclusion and exclusion criteria could 

be removed for the HIV infected non-REALITY participants because they were not participating in a 

clinical trial. Haematology or biochemistry results were no longer required prior to enrolment and 

there were no exclusions based on contra-indications to drugs or breastfeeding. The inclusion 

criteria for this group were:   aged 18 years or older; documented HIV infection; ART naïve; CD T cell 

count <100 cells/mm3 at screening; no contra-indication to planned ART according to national 

guidelines; and provision of informed consent. Patients were now only excluded if they were 

pregnant at the time of enrolment.  Pregnant women were excluded due to possible perturbations 

of immune phenotype during pregnancy as well as challenges with longitudinal measurements of 

PWV, given that it is measured over the abdomen.  

3.1.3.4.2 HIV uninfected participants 

HIV uninfected participants were identified from the voluntary counselling and testing clinic. Clients 

were eligible if they had a documented negative HIV test within the past two months but were 

excluded if they had any symptoms or signs of an acute infection within the previous past two 

weeks. Patients referred for HIV testing through the adjacent STI clinic were excluded. HIV 



103 
 

uninfected participants were not age matched to HIV infected participants, but an early look at the 

demographics showed that HIV infected participants were almost exclusively over 30 years old so an 

additional inclusion criterion of 30 years or older was imposed.  

Following analysis of baseline immunophenotyping data showing high immune activation in the HIV 

uninfected Malawian comparison group, ethical approval was sought to recruit 10 non-Malawian 

HIV uninfected healthy volunteers to provide normative data for immune activation studies. 

Volunteers were eligible for this arm of the study if they were over 18 and had lived in a high income 

setting until at least the age of leaving secondary school. They were excluded if they had any signs or 

symptoms of an acute infection within the past two weeks.  This cohort was recruited by placing 

posters within the hospital and MLW. Following informed consent, participants underwent HIV 

testing at the VCT clinic and underwent a blood draw to test for immune activation parameters.  

3.1.4 Study procedures 

3.1.4.1 SHIELD study schedule and procedures 

A summary of the SHIELD study schedule is given in Figure 3-7.  

3.1.4.1.1 Informed consent 

After having been identified as eligible during the screening process, participants were invited to 

provide informed consent. Patients were counselled in any available ART clinic room, away from the 

study clinic room. Patients who had not already been able to review the information leaflet were 

provided with time to do so. Where both the patient and guardian were unable to read, the 

information leaflet was read to them by an independent member of the ART clinic staff who then 

also co-signed the consent form. Finger prints were taken for those unable to sign the consent form. 

Patients were encouraged to ask questions and their understanding of what was involved was 

checked.  

An amendment was made during the study to request additional consent for the export of patient 

samples and to approach participants for future studies. For this, participants were offered an 

additional information leaflet and consent form to review and sign - if they felt happy to - during 

their routine clinic visits.  

3.1.4.1.2 Enrolment  

Three types of procedure were carried out at SHIELD enrolment and exit visits: questionnaires, blood 

draw and cardiovascular tests. Each patient had the following questionnaires administered at 

enrolment: cardiovascular disease and infection history, HIV disease and socio-economic. 
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Figure 3-7 Overview of SHIELD study schedule and procedures 
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The HIV disease and socio-economic forms were carried out as part of REALITY enrolment and so 

were not repeated during the SHIELD enrolment visit for these participants. To ensure time points of 

questionnaire delivery were comparable between HIV infected REALITY and non-REALITY 

participants, the HIV disease and socio-economic questionnaires for non-REALITY HIV infected 

participants were carried out when they were initiating ART (as would have been the case for 

REALITY participants). Cardiovascular disease and infection questionnaires were administered two 

weeks following ART initiation (as was the case for REALITY participants). The HIV disease 

questionnaire was not relevant for HIV uninfected participants, who had cardiovascular disease and 

infection as well as socio-economic questionnaires administered at enrolment. HIV infected 

participants had fasting bloods for cholesterol and glucose measured during the 2 week visit if they 

attended fasting (defined as no food or drink other than water in the previous 6 hours). If on the day 

of the enrolment visit patients were not fasted, they were advised to come fasting for the next visit 

in two weeks’ time and fasting blood was tested for cholesterol and glucose at that later visit. 

Unfasted HIV uninfected participants were advised to return the next day. Otherwise all enrolment 

bloods reported for HIV infected patients (including immunophenotyping) were carried out 2 weeks 

following ART initiation. PWV and cIMT were carried out in the clinic during the patient visit.  

3.1.4.1.3 PWV and Exit visits 

During the week 10 and 22 follow-up visits only PWV was recorded. There were no questionnaires 

administered and no blood was drawn. The socio-economic and HIV disease questionnaires were not 

repeated during the SHIELD exit visit. The cardiovascular disease and infection questionnaire was 

modified to pick-up any new diagnoses that the patients had received during the time they had been 

in the study.  

3.1.4.1.4 Handling of missed appointments 

Tracing was initiated for any participant who was more than one week overdue for their 

appointment. Firstly, attempts were made to contact the participant by telephone. If unsuccessful, 

the field-worker would carry out a visit to the participant’s home. Any participants who withdrew or 

who were untraceable were discussed in the weekly team meeting to learn appropriate lessons from 

this. A loss to follow-up form was completed for any participant who was no longer able to attend 

visits. This could have been because of death, participant withdrawal or an inability to trace the 

participant. In the case of a death, hospital records and patient health passports were reviewed 

where possible to provide a cause of death. For participant withdrawal, the reason was recorded. In 
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cases where the study team was unable to trace the participant, the efforts that were made to trace 

the participant were recorded.  

3.1.5 Study timescale 

The SHIELD study was planned to recruit from January 2014 until March 2015, with 44 weeks of 

follow-up running until January 2016.  However, due to initial challenges with REALITY recruitment 

rates, SHIELD enrolment continued from January 2014 until August 2015 and follow-up ran until 

March 2016. For participants recruited between June and August 2015, follow-up was truncated by a 

maximum of 14 weeks.  

3.2 Outcome measures – physiological measurements of endothelial damage 

3.2.1.1 Calculation of PWV 

There are three methods for measuring PWV. Firstly, it can be measured using pressure and flow 

characteristics. The Moens-Kortweg equation calculates PWV based on using elastic modulus, 

viscosity, and vessel diameter. It assumes that PWV=√(Eh/2ρR) where E is Young’s modulus of the 

arterial wall, h is wall thickness, R is arterial radius at the end of diastole and ρ is blood density [222]. 

The Bramwell & Hill equation uses some additional assumptions to modify the original Moens-

Kortweg equation for the calculation of PWV, specifically relating  PWV to distensibility: 

PWV=√(ΔPV/ΔVρ) = √(1/ρD) where ΔPV/ΔVρ is the relative volume elasticity of vessel segment, ρ is 

the density of blood and D is distensibility [392]. The Bramwell Hill equation can be used to calculate 

PWV through ultrasound methods to establish the required pressure and flow characteristics but 

this can be quite cumbersome.  

Secondly, PWV can be measured by calculating the velocity of the forward wave. Technically, PWV is 

the distance travelled by a wave divided by the time for the wave to travel that distance (Δx/Δt). 

However, because this assumes that the forward travelling wave is constant and there are no 

reflections, to measure PWV based on the time for a wave to get from one point to another, the 

measurement would also have to be adjusted for flow characteristics and for wave reflections. This 

would also require ultrasound methods.  

Lastly, these challenges can be overcome by measuring two pulse waves simultaneously. By using 

the ‘foot to foot’ technique, the measurement is made at a time when there are minimal reflected 

waves (Figure 3-8). This approach makes the measurement of PWV much simpler and can be carried 

out using non-invasive approaches such as mechanical tonometers or pulse detection devices [218]. 
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However, the measurement of PWV is open to errors and most notably measurement of the length 

between two points [393]. Some evidence also suggests that PWV measurement may be affected by 

plasma viscosity [394] . 

Figure 3-8 Calculation of Pulse Wave Velocity16  

 

 

3.2.1.2 PWV measurement 

3.2.1.2.1 Regions 

PWV can be measured over several different sites including carotid-femoral, brachial-ankle, carotid-

radial. Different sites provide different types of information, for example, carotid-radial gives 

information about the more peripheral muscular arteries, whereas carotid femoral reflects the large 

elastic arteries. PWV values also differ between sites and brachial-ankle PWV may be around 20% 

higher than carotid-femoral PWV [395]. Overall, strong evidence now exists to support the 

measurement of PWV along the aorta as the gold standard method for determining arterial stiffness 

as a biomarker for cardiovascular disease. Firstly, it is of major clinical relevance as the arteries 

branching from the aorta are responsible for the main cardiovascular complications (carotid, 

coronary, and renal vessels). It is also the region most predictive of cardiovascular events. Lastly, the 

                                                           
16 From [18] 
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change in PWV with age over the aorta is larger than with other arteries and is therefore more 

discriminatory [396].  

3.2.1.2.2 Length 

The measurement of the distance for calculation of transit time is the major source of error in 

measurement of PWV. Various different methods of measuring distance have been compared and 

associated with clinical outcomes, but validated cut offs differ significantly according to how the 

distance measured. This limits comparability across studies. The expert consensus document on 

measurement of aortic stiffness was updated in 2012 by the European Society of Hypertension 

Working Group on Vascular Structure and Function and the European Network for Noninvasive 

Investigation of Large Arteries [223, 224] to specify guidance on measurement of length. They 

proposed that the most accurate measurement method was to calculate the distance from the 

carotid artery to femoral artery and multiply by 0.8. Recently, various methods for calculating length 

in PWV were compared with invasive techniques and found that the proposed ‘direct’ measurement 

(carotid to femoral length x0.8) overestimated the invasive aortic stiffness measurement by 1.7m/s 

in older patients but showed good agreement in patients aged between 50 and 70 years [397]. 

Whichever technique is used, it has been highlighted that it is important that the approach used to 

measure the length for the PWV calculation is reported [398].  

3.2.1.2.3 Vicorder 

For the SHIELD study we chose to use the Vicorder system due to evidence showing that it was 

possible to train operatives with limited experience, because of its low intra- and inter-operator 

variability, and because of the ease of use in clinical settings making it preferable for use in a low 

income setting [399, 400]. The Vicorder is an automatic system which uses oscillometry to 

simultaneously detect the carotid and femoral pulse. The equipment consists of the Vicorder 

hardware system (Skidmore Medical) which has two blood pressure measurement channels and two 

photoplethysmography channels. This system is connected to a laptop with Vicorder software via a 

USB cable. Two colour coded pneumatic hoses are then attached to the blood pressure and 

photoplethysmography channels. These hoses are in turn connected to a 30mm pad which is placed 

around the neck, with the detector positioned over the carotid artery and a larger 100mm wide cuff 

which is placed around the thigh, at the highest possible point (Figure 3-9). The cuffs are inflated to 

65mmHg at which point a waveform is detected at each site and displayed on the screen (Figure 

3-10).  
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Figure 3-9 PWV being performed on a practice volunteer 

 

 

Figure 3-10 A screen shot from the pulse wave analysis software showing carotid (top) and 

femoral (bottom) waveform traces 
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3.2.1.3 Intra-operator variability 

An intra-operator variability assessment was carried out for the PWV operator. For 10 participants, 

the PWV was repeated 20 minutes after the initial exam according to the same protocol.  

3.2.1.4 SHIELD study PWV measurement protocol 

The study PI was trained in PWV technique during a 2 week course in PWV and cIMT assessment at 

the University College London Cardiovascular Physiology Unit, London prior to study 

commencement. The SHIELD clinical officer was in turn trained onsite by the study PI. The SHIELD 

clinical officer was responsible for carrying out PWV on the patients recruited to the study.  

PWV was measured after the patient had been lying flat for at least 10 minutes. After the cuffs were 

applied to the right carotid and femoral regions, the distance would be measured from the sternal 

notch to the umbilicus and then from the umbilicus to the middle of the top of the femoral cuff. This 

measurement was taken with one length of the tape measure and was recorded as the distance for 

the calculation of PWV (it was taken to be the equivalent of carotid sensor to femoral sensor x0.8 as 

recommended in the University College London (UCL) Cardiovascular Physiology Unit Guidelines). 

For repeat or follow-up measurements on the same patient, the operator ensured that the same 

length that was taken during the first procedure was used for all subsequent assessments of PWV.  

Length was inputted into the Vicorder software and when both the carotid and femoral waveforms 

appeared acceptable for 6 sequential beats, the PWV value was recorded. SHIELD protocol required 

that three measurements within 0.5 m/s of each other be reported and the average of those three 

measurements was taken as the final result.  

The PWV measurement procedure was overseen by the study PI for the first 30 patients. This 

included a post-analysis check of both the carotid and femoral artery pulse waveforms. Thereafter, 

intermittent checks were carried out throughout the study period to ensure that the waveforms 

were still of acceptable quality.  

3.2.1.5 SHIELD cIMT protocol 

The SHIELD study adopted the same protocols for cIMT scanning and measurement as the vascular 

biology unit, UCL. This in turn follows the Mannheim Consensus [291]. 

3.2.1.5.1 Acquisition of cIMT images 

cIMT was measured using B-mode ultrasonography (SIUI CTS 7700, Trisonics) (Figure 3-11). A 7hz 

linear array transducer was used at a gain of 60dB and frequency of frame rate of 15Hz. The carotid 

artery was visualised in longitudinal view and in the lateral position so that the distinctive parallel 
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double line appearance was captured on both near and far carotid walls, indicating that the cross 

sectional image was taken through the middle of the artery (Figure 3-12).  

Figure 3-11 cIMT being performed on a SHIELD practice volunteer 

 

Figure 3-12 Correct angle for ultrasound beam to ensure double line appearance in common 

carotid artery 

A Double lines short                         B Double lines not seen                      C Correct angle 

                                   

 

cIMT was measured by one of two technicians. The study PI was trained at UCL department of 

cardiovascular physiology before study commencement. Further training was then provided onsite 

in Malawi to both the study PI and the study sonographer (who had previous research experience in 
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measuring carotid cIMT). This onsite training was delivered by two sonographers experienced in 

carotid cIMT assessment from the Royal Liverpool University Hospital.  

The SHIELD procedure required that a minimum of 10 seconds cineloop be acquired at each one of 6 

different regions: right and left common carotid, right and left carotid bulb and right and left internal 

carotid artery. Minimum requirements for the common carotid artery were that i) double lines were 

visible for both the near and far walls ii) double lines were visible for at least 10mm length iii) the 

start of the carotid bifurcation was visible on the scan iv) the artery was horizontal in the image 

(Figure 3-13).  

Figure 3-13 Image of requirements for common carotid artery17 

 

 

For the carotid bulb scans, it was required that at least 1mm proximal to the carotid bulb was 

visualised but only far wall double lines were required to be visible for at least 5mm of length (Figure 

3-14).  

                                                           
17 From a SHIELD participant 
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Figure 3-14 Image of requirements for carotid bulb18 

 

For the ICA, it was required that the flow divider was visible and that double lines were seen at some 

point along the internal carotid aspect of the flow divider (Figure 3-15).  

                                                           
18 From a SHIELD participant 
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Figure 3-15 Image of requirements for internal carotid artery19 

 

To confirm that it was the internal carotid artery that was being measured, doppler flow was 

assessed along the artery to confirm it was consistent with the wide waveform of the internal 

carotid artery (Figure 3-16). When the technician was satisfied that the best possible cineloop had 

been acquired, it was saved under patient study numbers to the ultrasound machine as well as an 

external hardware device.  

Figure 3-16 Comparison of waveforms for the ECA and ICA 

  

The quality of the cIMT images was reviewed regularly by the study PI and by an experienced cIMT 

analyst at the department of vascular physiology at UCL.  

                                                           
19 From a SHIELD participant 
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3.2.1.5.2 Semi-automated cIMT measurement 

Use of semiautomated edge detection software for making the measurement of the cIMT is 

recommended by the Mannheim consensus [291]. For the SHIELD protocol we used Carotid Analysis 

for Research software (mia-llc, Iowa, USA). The SHIELD study PI was trained on use of the software at 

the unit of vascular biology, UCL before study initiation. Analysis of a random selection of images 

was also performed by an experienced operator at the same department following the SHIELD 

protocols to ensure high quality scan readings.  

Cineloops were imported into the software and were first calibrated then played through to visualise 

the target region for assessment. Six separate scans (one for each region of interest) were analysed 

for each participant. For each scan, cIMT was measured at the far wall as measurements from the far 

wall are more repeatable [291], where a region of interest was defined by the operator (study PI). If, 

after edges had been automatically detected, the operator felt that the edges detected by the 

software were in error, they were able to manually adjust the placement of the detection lines. An 

average of three measurements that were within 0.05mm was taken for each region. 

For the common carotid artery, the region of interest was placed at least 1cm proximally to the start 

of the bifurcation and over a 1cm section (Figure 3-17). Edges were then detected automatically 

over the duration of the cineloop. As well as the far cIMT, vessel diameter was also measured and 

graphed on the software. The operator then chose three cycles based on the narrowest vessel 

diameter (correlated with cardiac diastole) to read the cIMT.  
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Figure 3-17 Demonstration of cIMT measurement using edge detection software for 

common carotid artery  

 

  

For the carotid bulb, the region of interest was 5mm in length and was placed at the start of the 

bifurcation over the far wall (Figure 3-18).  
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Figure 3-18 Demonstration of cIMT measurement using edge detection software for carotid 

bulb 

 

 For the ICA, the region of interest was placed within 10mm distally to the start of the flow divider, 

at any point where the double line pattern was visible (Figure 3-19). Because the ICA measurements 

were more challenging, a minimum length of region for assessment of cIMT was not defined but was 

left to the operator’s discretion.  
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Figure 3-19 Demonstration of cIMT measurement using edge detection software for internal 

carotid artery 

 

3.2.1.5.3  Intra-operator and inter-operator variability 

For cIMT both intra and inter-operator variability were assessed as two operators carried out the 

scanning. Each operator was required to scan a minimum of 10 extra participants to establish 

individual scores for intra-operator variability. In each case, the operator would wait a minimum of 

20 minutes before repeating the scan according to the same procedure. A further 10 participants 

were scanned by both operators at separate times on the same day to ascertain inter-operator 

variability. When cIMT edge detection analysis was being undertaken, the assessor was blinded to 

scanning operator and to which scans were taken for the purposes of variability studies. 

 

3.3 General Laboratory methods 

3.3.1.1 Biochemistry and haematology 

Blood samples for fasting glucose, fasting cholesterol, creatinine, full blood count and CD4 count 

were processed by the MLW CORE laboratory facility. Each patient was provided with a unique 

barcode which was linked to the patient study number and date of birth. Completed blood samples 

were taken to the MLW CORE reception where they were booked in electronically onto the LIMS lab 

management system. Biochemistry tests were then processed on AU480 chemistry analyser 

(Beckman Coulter), full blood count on the ACT5 Diff (Beckman Coulter) and CD4 count on a 
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FACScount flow cytometer (Becton Dickinson, BD Biosciences, San Jose, USA). Left over serum and 

plasma from enrolment bloods (biochemistry and full blood count) was stored at -80C in the MLW 

CORE laboratory freezer facilities. The MLW laboratories participate in the UK National External 

Quality Assessment Scheme (NEQAS).  

3.3.1.2 Immunology and plasma biomarkers 

Blood was taken in citrate and EDTA bottles separately and was transported directly to the MLW 

immunology lab under the care of the SHIELD laboratory technician. All samples were manually 

logged and processed according to the SHIELD immunology standard operating procedure which is 

further detailed in Chapter 5. In brief, the EDTA sample was spun to identify the buffy coat which 

was stored in freezing medium at -80C. The remaining plasma was also stored at -80C in the MLW 

freezer archive. Citrate samples were spun with lymphoprep to identify the PBMC layer which was 

removed with a plastic pipette and then stained for real time surface immunophenotyping. 

Remaining PBMCs were frozen in liquid nitrogen. Electronic records were maintained for all samples 

kept in freezer archives and liquid nitrogen. These records were checked for accuracy periodically 

throughout the study.  

3.4 Data management 

The data collection process for the SHIELD study followed good clinical practice (GCP) guidelines on 

data handling as well as MLW standard operating procedures for data collection and management. 

The SHIELD study was audited and regulated by the MLW Clinical Trials and Research Unit. A paper 

screening log was maintained to record all patients who were being assessed for study eligibility 

during the screening process. Patients who were eligible to enter the study were assigned a unique 

study identification number. Data were collected in the study clinic using paper forms which were 

scanned into Intelligent Charter Recognition (ICR) scanning software (Cardiff Teleform Version 10.7, 

Vista, CA). Once scanned, a quality assurance step was performed by the study PI to correct any 

queries highlighted by the software. An additional step was undertaken whereby the original and 

scanned documents were compared to look for important errors in recognition. The data were then 

committed to a password protected access database which was stored on MLW central servers. On 

completion, the data were downloaded directly into Stata 13.1 (Statacorp, USA) for analysis. For 

flow cytometry and cIMT data, results were entered into an excel file and then merged with the CRF 

data in Stata. Paper CRFs were stored in the MLW research office and were only accessed by the 

SHIELD study team. Consent forms containing patient identifiable information were stored 

separately within the MLW research premises. The CRFs will be archived at MLW for 5 years after 

which time they will be destroyed in accordance with MLW policy.  
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3.5 Statistical analysis 

3.5.1 Variable management 

Data was downloaded directly from the database into STATA files and was then checked alongside 

source CRFs for missing data and inaccurate outliers. Following cleaning, databases were then 

merged. Outcome variables (cIMT and PWV) were examined for normality and any true outliers 

greater than 97.5th or less than 2.5th centiles were truncated to take the value of the 97.5th or 

2.5th centile value respectively for the purposes of regression analysis to avoid undue influence. 

Those values that did not follow the normal distribution were transformed according to the best fit 

distribution. Statistical analysis for each study objective is described in the relevant chapters. All 

analysis was undertaken using Stata v13.1 (Statacorp, USA).  

3.6 Sample size calculations 

Data on cIMT and PWV from low resource SSA were not available to inform the sample size 

calculation for this study. Therefore, calculations were based on available data from high resource 

settings. For cIMT, approximately 25% of patients have a cIMT of greater than 1.0mm which 

represents approximately a 2 fold increased risk of cardiovascular events [401]. A recent meta-

analysis found that patients who are HIV positive are 50% more likely to have a cIMT greater than 

1.0mm[402]. 

For PWV, the greatest mortality occurs in the top quartile of patients which equates to a cfPWV of 

approximately 12 m/s. Changes in arterial stiffness occur over a few months [403, 404]. Orlova et al 

showed that 50% of patients with high cardiovascular risk did not have an improvement in PWV 

after 6 months of coronary prevention therapy and were 4 times more likely to experience a serious 

cardiac event [405].  

Variables of interest and outcome measures used to inform sample size calculations for each specific 

objective are outlined in Table 3-1. 

Table 3-1 Overview of variables used to perform sample size calculations for each specific 

objectives 

Objective Variable of interest Outcome Type of analysis 

2 HIV status cIMT values 

cfPWV values 

Descriptive 

3 HIV status cIMT >1.0mm* Statistical; regression+ 

4 sCD14 >2.91x108 pg/mL* cfPWV >12 m/s* Statistical; regression+ 
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5 Endothelial microparticles cfPWV not decreased Exploratory 

6 Decrease in proportion of 

activated monocytes <50%* as 

measured by CD163 and HLA-DR 

expression 

cfPWV not decreased Statistical; regression+ 

7 Randomisation arm cfPWV as continuous 

variable 

Exploratory 

*Values are an estimation of the worst affected quartile; actual values used for the final analyses will 

be based on the distribution within the SHIELD study. +Objectives 3, 4 and 6 require sample size 

calculations as outlined below. 

3.6.1 Sample size calculation for the determinants of endothelial dysfunction at ART initiation 

(objectives 3 and 4) 

As per table 3-1, objectives 3 and 4 require sample size calculations. The calculation for objective 3 is 

based on cIMT as the main outcome measure with HIV status as the variable of interest. Calculations 

are based on a HIV positive population of 330 patients in line with recruitment targets for the 

REALITY trial. The table below therefore calculates the possible power that can be achieved for 

various different sizes of HIV uninfected adults with a fixed number of HIV infected participants. The 

proportion of HIV uninfected patients with outcome cIMT of >1.0mm is calculated at 25% as the 

literature consistently reports significantly higher rates of clinical outcomes in the top quartile of 

patients for these variables. A similar principle of 25% of adults with a low soluble CD14 having a 

pathological PWV of over 12 m/s at baseline was used to calculate sample size for objective 4. 

 

Ratio of exposed to 

unexposed 

Estimated OR α β Sample size 

required 

Total sample 

size 

accounting 

for 10% loss 

to follow-up 

2:1 1.5 0.05 0.12 450 495 

3:1   0.21 400 440 

4:1   0.33 375 413 

6:1   0.48 350 385 

3:1 1.75  0.07 400 440 
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4:1   0.15 375 413 

6:1   0.28 350 385 

3:1 2.0  0.01 400 440 

4:1   0.03 375 413 

6:1   0.09 350 385 

 

Therefore, in order to achieve a power of at least 80% and detect an OR of 1.5, we would need a 

total sample size of 440, with 330 HIV positive patients and 110 HIV negative patients.  

3.6.2 Sample size calculation for determinants of endothelial dysfunction over time (objective 6) 

For objective 6, the outcome is a failure to decrease PWV over the study period, with the variable of 

interest being a high monocyte count. For this power calculation, a fixed sample size of 330 patients 

was used as derived above.  Taking the quartile of patients with the smallest decrease in activated 

monocytes following ART as the most at risk, the calculations are based on 25% of patients having a 

low decrease in activated monocytes and 75% having a large decrease in activated monocytes. The 

table below shows three different potential proportions of patients with a low decrease in monocyte 

activation who do and do not experience a decrease in PWV during the study period. For each of 

those proportions, the potential OR possible with this fixed number of patients is demonstrated. For 

example, this sample size would give us 75% power to detect an OR of 1.5.  

 

Proportion patients in 

the exposed group 

with and without 

outcome of interest 

Estimated OR α β 

1:1  1.5 0.05 

 

0.25 

1.75  0.08 

2.0  0.02 

2:3 1.5  0.44 

1.75  0.18 

2.0  0.06 

1:2 1.5  0.52 

1.75  0.29 
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2.0  0.14 

 

Therefore, with the expected proportion of patients with and without a decrease in PWV to be 1:1 in 

the group with higher cardiovascular risk (those exposed to higher monocyte activation), we would 

have reasonable power (75%) to demonstrate an odds ratio approximating 1.5.  

 

3.7 Ethical considerations 

Ethical approval for the SHIELD study was granted by the College of Medicine Research and Ethics 

Committee (COMREC), University of Malawi and the University of Liverpool Research and Ethics 

Committee. Written informed consent was obtained from all participants.  
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4 CHAPTER 4: ENDOTHELIAL DAMAGE IN ADULT MALAWIANS AND 

ASSOCIATION WITH HIV 

4.1 Introduction 

The risk of cardiovascular disease in adults living in low resource sub-Saharan Africa countries has 

not been well characterised. The global burden of disease study demonstrated an increase in the 

contribution of non-communicable diseases relative to infectious disease in the region [192], and 

cardiovascular disease is the leading cause of death from non-communicable disease globally. 

Urbanisation in SSA is predicted to result in changes in the epidemiology of CVD, as traditional 

cardiovascular risk factors such as hyperlipidaemia, diabetes and obesity increase [193]. This is 

superimposed on a HIV epidemic which is also evolving in many parts of SSA to become a chronic 

disease, affecting an aging population[50].  

HIV infection has been associated with an approximately 2 to 3-fold increased risk of cardiovascular 

events in high income settings [128]. However, debate still exists on the limitations of comparing 

cohorts of HIV infected and uninfected individuals in these settings due to inherent differences in 

traditional cardiovascular risk factor profiles of these patient groups [406]. Carrying out research into 

cardiovascular disease in HIV in a low income country like Malawi could contribute unique 

information to the international research effort for two reasons. Firstly, the HIV epidemic in Malawi 

is generalised and therefore the HIV infected population will be broadly more similar to the HIV 

uninfected control groups. Secondly, there are fewer traditional cardiovascular risk factors (such as 

hyperlipidaemia, diabetes and obesity) in the general population in Malawi owing to the fact that it 

is at an earlier stage of the epidemiological transition than other SSA countries, again reducing 

potential for confounding [207].  

Regionally it remains unclear whether HIV is a risk factor for cardiovascular disease in the low 

income SSA setting, given the low prevalence of other risk factors. Identifying an association early, 

could help to prevent a clash of these two epidemics as urbanisation increases. Healthcare systems 

across SSA are geared towards prevention and treatment of infectious disease. Resources and 

capacity do not exist to tackle large scale chronic morbidity. Simple interventions and management 

guidelines for the prevention of cardiovascular disease in HIV could be feasible within the HIV care 

system, and it is therefore imperative that any additional risk of cardiovascular disease that may 

affect people infected with HIV in SSA is identified early so that health care systems and prevention 

programmes could be implemented in time.   
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4.2 Specific objectives 

This chapter will address specific objectives 2 and 3: 

2. Establish the range of age adjusted carotid intima medial thickness (cIMT) and arterial stiffness 

values in HIV negative patients and HIV positive patients with advanced HIV 

3. Establish to what extent advanced HIV is a risk factor for increased cIMT and arterial stiffness in 

Malawi 

4.3 Methods 

4.3.1 Study procedures 

The study procedures for Objectives 2 and 3 are as described in the general methods. 

4.3.2 Sample size calculation 

Objective 2 was descriptive and the sample size calculation for objective 3 is described in general 

methods (subsection 3.6.1).  

4.3.3 Statistical analysis 

4.3.3.1 Variable management  

Variables measured can be loosely categorised into demographic variables, traditional 

cardiovascular risk variables, infection related variables and immunological variables. Level of 

primary school education was used as an indicator of educational status and was divided into a 

binary outcome of primary education or less versus any secondary education or more. This 

distinction was made because primary school education is currently free of charge in Malawi. Waist 

– height ratio was also calculated as an indicator of central obesity because this has been shown to 

be a more specific risk factor for cardiovascular disease than BMI. Data collected on smoking 

included whether the patient was a current smoker or an ex-smoker, the number of years spent 

smoking and the number of cigarettes per day. For the purposes of analysis, smoking status was 

categorised into ‘ever smoked’ (current and ex-smokers) or ‘never smoked’. Similarly, for alcohol, 

data was collected on current or ex-drinker, how many years spent drinking and how many days of 

the week. For the purposes of analysis this was categorised into ‘ever drank alcohol’ or ‘never drank 

alcohol’. For a participant to be classified as having a pre-existing cardiovascular diagnosis 

(myocardial infarction, stroke, heart failure or transient ischaemic attack (TIA)), diabetes, or 

hypertension), this diagnosis must have been recorded in the hand held notes or in the clinic file. 

Both cholesterol and glucose samples were taken when the patient had been fasting for a minimum 

of 6 hours. A current infection was defined as an infection which occurred within 1 month of the 
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clinic visit (for longer term infections such as TB this was taken to be within one month of 

completion of treatment).  

4.3.3.2 Objective 2: Establish the range of age adjusted carotid intima medial thickness (cIMT) 

and arterial stiffness values in HIV negative patients and HIV positive patients with 

advanced HIV 

cIMT and PWV measurements were first assessed for intra and inter-operator variability using Bland-

Altman analysis for linear concordance. Raw data were then plotted against age and according to 

HIV status. cIMT and PWV values for our cohort were both categorised into 10-year age bands and 

reported in the form of linear regression adjusted for age.  

4.3.3.3 Objective 3: Establish to what extent advanced HIV is a risk factor for increased cIMT and 

arterial stiffness in Malawi as compared to HIV negative volunteers 

Firstly, we performed univariate analysis of all variables measured at baseline (demographic 

variables, traditional cardiovascular risk factors, and other clinical factors) according to HIV status. 

Wilcoxon Ranksum was used to analyse associations for categorical data and Spearman rho for 

continuous data.  

Next, we asked the question: “Is HIV independently associated with PWV or cIMT at ART initiation?” 

We aimed to answer this by building a model where HIV status was included as a forced variable 

whilst adjusting for potential confounders. Direct Acyclic Graph (DAG) diagrams (see Figure 4-1 and 

Figure 4-2 ) were constructed to identify potential confounders.  Any variable identified as being on 

the causal pathway on the DAG was assessed in univariate analysis. Any of these variables that had 

univariate p value <0.2 were carried forward for inclusion as confounders in the model. However, 

where one or more variables were strongly co-linear (eg systolic and diastolic BP or weight and BMI), 

the variable that was most strongly associated on univariate analysis was chosen. Backwards 

elimination was used to sequentially exclude variables with a p value of >0.2.  

Lastly, we asked the question: “Which traditional risk factors are associated with PWV and cIMT in 

Malawian adults, and does the addition of HIV status improve the traditional risk factor model?”. We 

identified all variables which were associated with the outcome on univariate analysis with a p value 

of <0.2. For those variables that were strongly correlated with each other (eg weight and BMI), we 

chose the variable that had the most significant association with the outcome. Backwards 

elimination was used to sequentially exclude variables with a p value of >0.2.   
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Figure 4-1 Direct Acyclic Graph of associations between measured variables and Arterial Stiffness 
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Figure 4-2 Direct Acyclic Graph of associations between measured variables and Intima Media Thickness 
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4.4 Results 

4.4.1 Description of cohort 

4.4.1.1 Patient Flow 

In total the SHIELD study recruited 279 HIV infected participants (including 170 co-recruited from the 

REALITY study) and 110 HIV uninfected participants (See Figure 4-3). The 279 HIV infected 

participants were identified following screening of 2106 patients with a new diagnosis of HIV. Of 

those screened who were not enrolled, 1477 (73%) patients were found to have a CD4 count that 

was too high (>/= 100 cells/uL), 117 (6%) were eligible but declined participation, 42 (2%) died 

before they could be recruited, 39 (2%) were started on ART by the national program before they 

could be recruited, 23 (1%) were not resident in Blantyre and therefore could not attend follow-up, 

16 (1%) did not receive results in a timely manner due to machine failures, 14 (1%) were lost after 

screening, 12 (1%) were already taking part in another clinical trial, 9 (0.4%) were too sick to consent 

or participate, 8 (0.4%) did not meet the REALITY study eligibility criteria, 2 (0.1%) opted for 

treatment in a private clinic and for 68 (3%) patients the reasons for not being recruited were 

unclear (Figure 4-4). Overall, 626 (30%) of the 2106 patients screened had a CD4 less than 100 

cells/uL.  Breaking this down into site of HIV testing, 499 of 1845 (27%) patients screened from VCT 

had a CD4 count less than 100 cells/uL compared to 127 of 254 (50%) of patients screened from 

medical inpatient wards.  Data on characteristics of patients who declined participation were not 

collected.  
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Figure 4-3 Summary of recruitment of SHIELD study participants 
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Figure 4-4 Screening outcomes for 2016 patients screened for REALITY and SHIELD studies 

 

 

4.4.1.2 Baseline demographic and clinical characteristics 

An overview of the demographic and clinical variables of the 389 participants recruited, according to 

HIV status, is given in Table 4-1. The HIV infected cohort showed a higher proportion of males and 

patients with primary school education or less. Amongst the traditional cardiovascular risk variables, 

the HIV infected cohort had significantly lower weight, BMI, waist: height ratio, systolic blood 

pressure and fasting cholesterol, were marginally more likely to have been previously prescribed 

cardiovascular medications and were more likely to have taken alcohol in the past, although not 

reaching statistical significance. A higher fasting glucose was also noted. For the remaining variables, 

the heart rate was higher in the HIV infected group and haemoglobin and lymphocyte counts were 

lower. Three HIV uninfected participants had suffered with a malaria infection within one month 

prior to enrolment.  

HIGH CD4

ENROLLED

DECLINED

DIED

NATIONAL PROGRAM

NOT BT RESIDENT

MACHINE FAILURE

LOST

OTHER STUDY

TOO SICK

NOT ELIGIBILE

PRIVATE

UNCLEAR



132 
 

Table 4-1 Baseline demographic and clinical characteristics according to HIV status 

 
 

HIV uninfected 

n=110 

HIV infected 

N=279 

P value  

Demographic variables Age 36.8 (+/- 9.8) 37.5 (+/- 9.8) 0.41 

 No. Male 44 (40%) 157 (56%) 0.004 

 Primary school 

education or less 

38 (40%) 136 (53%) 0.02 

Traditional CV risk factor 

variables 

Weight 61.7 (+/- 11.4) 54.6 (+/ -9.8) <0.0001 

 Waist: height ratio 0.49 (+/- 0.07) 0.46 (+/- 0.06) <0.001 

 BMI  23.3 (+/- 4.6) 20.6 (+/- 3.5) <0.0001 

 Systolic BP 125 (+/- 14) 119 (+/- 15) <0.001 

 Diastolic BP 76 (+/- 10) 74 (+/- 9) 0.27 

 History of smoking 16 (15%) 56 (20%) 0.21 

 History of alcohol 28 (25%) 119 (43%) <0.01 

 Pre-existing 

cardiovascular diagnosis 

1 (1%) 1 (0.4%) 0.47 

 Prescribed CV drugs 5 (5%) 4 (1.5%) 0.08 

 Pre-existing diabetes 1 (1%) 1 (0.4%) 0.65 

 Pre-existing 

Hypertension 

3 (3%) 5 (2%) 0.40 

 New diagnosis of 

hypertension 

46 (42%) 88 (32%) 0.055 

 Fasting cholesterol 4.0 (+/- 1.0) 3.7 (+/- 1.1) 0.049 

 Fasting glucose 4.7 (+/- 0.9) 5.0 (+/- 1.1) 0.01 

 Creatinine 63.5 (+/- 13.6) 69.1 (+/- 23.6) 0.13 

Infection related 

variables 

Heart rate 74 (+/- 11) 86 (+/- 18) <0.0001 

 Haemoglobin 13.7 (+/- 1.8) 11.5 (+/- 2.1) <0.0001 

 Current infection 3 (3%) 57 (21%) <0.0001 
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 TB 0 (0%) 2 (1%)  

 Cryptococcal meningitis 0 (0%) 0 (0%)  

 Pneumonia 0 (0%) 10 (4%)  

 Gastroenteritis 1 (1%) 17 (6%)  

 Malaria 2 (2%) 3 (1%)  

Immune related 

variables 

Lymphocytes 2.1 (+/- 0.8) 1.3 (+/- 0.7) <0.0001 

 Monocytes 0.47 (+/- 0.84) 0.52 (0.54) 0.054 

 Absolute CD4 count 

cells/uL 

NA 41 (18 – 62) NA 

 HIV viral load x106 

copies 

NA 1.1 (0.4 – 2.9)  NA 

 

4.4.1.3 Description of HIV related disease 

Enrolment for HIV infected participants took place over a 2-week period, to minimise the burden for 

this sick patient group. Of the 279 participants recruited with HIV infection, 2(0.7%) withdrew after 

initially giving consent (both after discussing with family members), 8(3%) patients died, 3(1%) did 

not re-attend and were lost to follow-up. Of those remaining the mean (sd) CD4 count was 41(38.6) 

cells/uL: 39(54.6) for the SHIELD cohort and 41(27.2) for the REALITY cohort. The median (IQR) HIV 

viral load was 1.1 x106 (0.4 – 3.0) x106: 2.2 x106 (0.6 – 4.3) x106 for the SHIELD cohort and 1.1 x106 

(0.4 – 2.1) x106 for the REALITY cohort. The number of patients in WHO stages 1, 2, 3 and 4 were 

82(30%), 130(48%), 50(18%) and 10(4%) respectively. Pulmonary or disseminated TB was diagnosed 

in 30 patients, chronic diarrhoea in 29, severe weight loss in 8, moderate weight loss in 3, 

cryptococcal meningitis in 5, oesophageal candidiasis in 1, Kaposi’s sarcoma in 1 and severe bacterial 

infection in 1. All patients were commenced on standard first line ART (Tenofovir, Lamivdine, 

Efavirenz) apart from one patient who was commenced on Zidovudine, Lamivudine and Nevirapine.   

4.4.2 Age adjusted PWV and cIMT values 

4.4.2.1 Variability studies 

4.4.2.1.1 PWV: Intra-operator variability 

PWV was performed by one operator, the study clinical officer, and so the intra-operator variability 

was calculated for this operator. The concordance correlation co-efficient was 0.986 (95% CI 0.957 – 
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0.995) based on 13 observations. This correlation is displayed in Figure 4-5. Figure 4-6 shows that 

the difference between readings does not change according to the PWV value in the limits of 

agreement plot, and this was associated with a small correlation between difference and mean value 

of -0.29 using the F-test for correlation. Slight bias for the second reading to be lower is likely due to 

a few outliers and a small sample size.   

Figure 4-5 Intra-operator concordance for 13 paired PWV measurements 
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Figure 4-6 Plot of mean difference for 13 paired PWV measurements 

 

4.4.2.1.2 cIMT: intra-operator variability 

For cIMT measurements there were two operators (sonographer and study PI). Intra-operator 

variability is presented separately for each operator. Each operator was given a score for each of the 

3 cIMT sections measured in the protocol (common carotid artery, carotid bulb and internal carotid 

artery), using an average value of the left and right sides. For the sonographer, the concordance 

correlation coefficient (95% CI intervals) for the common carotid artery, carotid bulb and internal 

carotid artery regions were 0.964 (0.883 – 0.989, Figure 4-7), 0.963 (0.895 – 0.987, Figure 4-8) and 

0.363 (-0.129 – 0.711, Figure 4-9) respectively. As with PWV, there was no change in mean 

differences according to cIMT values and so these graphs were not repeated.  
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Figure 4-7 Intra-operator variability for sonographer, for 12 paired common carotid artery 

measurements 
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Figure 4-8 Intra-operator variability for sonographer, for 12 paired carotid bulb 

measurements 

 

Figure 4-9 Plot of mean difference for 12 paired carotid bulb measurements for sonographer 
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For the study PI, the concordance correlation coefficient (95% CI intervals) for the common carotid 

artery, carotid bulb and internal carotid artery regions was 0.853 (0.554 – 0.957, Figure 4-10), 0.171 

(-0.316 – 0.586, Figure 4-11) and 0.298 (-0.535 – 0.837, Figure 4-12) respectively. This was based on 

11 paired measurements for common carotid artery, 9 paired measurements for carotid bulb and 6 

paired measurements for internal carotid artery.  

Figure 4-10 Intra-operator variability for study PI, for 11 paired common carotid artery 

measurements 
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Figure 4-11 Intra-operator variability for study PI, for 9 paired carotid bulb measurements 

 

Figure 4-12 Intra-operator variability for study PI, for 6 paired internal carotid artery 

measurements 
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4.4.2.1.3 cIMT: Inter-operator variability 

Ten participants were scanned by both operators to derive inter-operator variability for the three 

cIMT regions. The concordance correlation coefficient between the two operators for the common 

carotid artery, carotid bulb and internal carotid artery cIMT was 0.683 (0.112 – 0.915, Figure 4-13), 

0.814 (0.40 0 – 0.952, Figure 4-14)  and -0.174 (-0.674 – 0.436, Figure 4-15). This was based on 9 

paired measurements for common carotid artery, 9 paired measurements for carotid bulb and 5 

paired measurements for internal carotid artery.  

Figure 4-13 Inter-operator variability for 9 paired common carotid artery measurements 
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Figure 4-14 Inter-operator variability for 9 paired carotid bulb measurements 

 

 

Figure 4-15 Inter-operator variability for 5 paired internal carotid artery measurements 
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4.4.2.2 Distribution of PWV and cIMT values 

The distributions of PWV and cIMT were examined because regression methods assume a normal 

distribution. The distribution of PWV values are shown in Figure 4-16. The Shapiro-Wilk W test for 

normality gave a W value of 0.98 (p<0.0001), indicating that a log distribution is the best 

transformation to achieve a normal distribution. Figure 4-17 shows the histograms of PWV data by 

different possible transformations. This confirms that the log transformation is the best fit.  

Figure 4-16 Distribution of raw PWV values 
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Figure 4-17 Distributions of transformed PWV values 

 

PWV was therefore log transformed for inclusion in modelling throughout this analysis. Coefficients 

are presented after having been back transformed into linear values for ease of interpretation. 

CCA cIMT values were also not normally distributed (Figure 4-18). For CCA cIMT, the Shapiro-Wilk W 

value was 0.922 (<0.000001), with a theta coefficient of -1.54, indicating that an inverse square 

transformation would be most appropriate. This was confirmed when visualising the distributions in 

histograms of the transformed values using the gladder command in Stata version 13.1 (Figure 4-19). 

To be more specific, the theta value was used instead of the inverse square, so CCA cIMT data was 

transformed using the formula: 1/(cca_imt^1.54). As before these values were back transformed 

from model outputs to linear coefficients.  
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Figure 4-18 Distribution of raw CCA cIMT values 

 

Figure 4-19 Distribution of transformed CCA cIMT values 
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4.4.2.3 PWV and cIMT values according to HIV status and age category  

Enrolment visit PWV values were available for 259 (93%) patients with HIV infection and 107 (97%) 

without. PWV values are presented according to 5-year age bands for patients with and without HIV 

infection in Table 4-2 and Table 4-3 respectively. For both cohorts, the mean PWV increases steadily 

through increasing age bands. These categories are compared according to HIV status in Figure 4-20. 

Table 4-2 PWV values for 259 participants with HIV infection 

Age category Number of participants Mean 

PWV 

(m/s) 

Min 

PWV 

(m/s) 

Max 

PWV 

(m/s) 

SD  

18 - 25 21 6.7 4.8 8.7 1.00 

25 - 35 90 7.0 4.8 10.1 1.12 

35 - 45 98 7.6 4.8 10.4 1.10 

45 - 55 39 8.2 4.9 11.5 1.40 

>55 11 9.6 7.2 10.4 1.20 

All 259 7.5 4.8 11.5 1.32 

 

Table 4-3 PWV values for 107 participants without HIV infection 

Age category Number of participants Mean 

PWV 

(m/s) 

Min 

PWV 

(m/s) 

Max 

PWV 

(m/s) 

SD  

18 - 25 12 6.5 5.8 8.1 0.71 

25 - 35 42 6.8 4.8 9.3 0.98 

35 - 45 29 7.4 4.8 10.4 1.16 

45 - 55 17 7.7 4.8 10.2 1.48 

>55 7 8.9 8 9.5 0.59 

All 107 7.2 4.8 10.4 1.22 
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Figure 4-20 PWV according to age category and HIV status 

 

After assessing whether cIMT image quality met the quality requirements stipulated in SHIELD SOPs, 

356 (92%) participants had a common carotid artery scan that could be interpreted, 359 (92%) had a 

carotid bulb scan that could be interpreted and 326 (84%) had an internal artery carotid scan that 

could be interpreted. The sonographer carried out 293 (75%) of scans and the study PI carried out 96 

(25%) of scans. The study was designed to have one main cIMT operator (sonographer) and one 

substitute operator (PI) because the sonographer could not be available full time due to clinical 

duties. Common carotid artery cIMT values are shown in Table 4-4 and Table 4-5, carotid bulb values 

in Table 4-6 and Table 4-7, and internal carotid artery values in Table 4-8 and Table 4-9 for patients 

with and without HIV infection respectively.  
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Age category Number of participants Mean 
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25 - 35 84 0.55 0.42 0.80 0.06 

35 - 45 89 0.58 0.49 0.76 0.05 

45 - 55 38 0.65 0.53 0.83 0.08 

>55 10 0.64 0.56 0.80 0.07 

All 237 0.58 0.42 0.83 0.07 

 

Table 4-5 Common carotid artery IMT values according to age category for 87 participants 

without HIV infection 

Age category Number of participants Mean 

CCA IMT 

(m/s) 

Min 

CCA 

IMT 

(m/s) 

Max 

CCA 

IMT 

(m/s) 

SD  

18 - 25 8 0.51 0.48 0.58 0.51 

25 - 35 33 0.54 0.40 0.63 0.54 

35 - 45 27 0.57 0.48 0.67 0.57 

45 - 55 14 0.65 0.55 0.74 0.65 

>55 5 0.70 0.59 0.81 0.70 

All 87 0.57 0.40 0.81 0.57 

 

Table 4-6 Carotid bulb IMT values according to age category for 214 participants with HIV 

infection 

Age category Number of participants Mean CB 

IMT 

(m/s) 

Min 

CB 

IMT 

(m/s) 

Max 

CB IMT 

(m/s) 

SD  

18 - 25 17 0.55 0.49 0.66 0.05 

25 - 35 72 0.60 0.47 0.81 0.07 

35 - 45 83 0.67 0.51 0.95 0.10 

45 - 55 31 0.72 0.54 1.06 0.12 
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>55 11 0.76 0.60 0.98 0.12 

All 214 0.65 0.47 1.06 0.11 

 

Table 4-7 Carotid bulb IMT values according to age category for 82 participants without HIV 

infection 

Age category Number of participants Mean CB 

IMT 

(m/s) 

Min 

CB 

IMT 

(m/s) 

Max 

CB IMT 

(m/s) 

SD  

18 - 25 8 0.57 0.44 0.82 0.12 

25 - 35 34 0.64 0.54 0.86 0.07 

35 - 45 22 0.66 0.54 0.87 0.09 

45 - 55 14 0.73 0.55 0.93 0.12 

>55 4 0.87 0.75 0.98 0.10 

All 82 0.66 0.44 0.98 0.11 

 

Table 4-8 Internal carotid artery IMT values according to age category for 149 participants 

with HIV infection 

Age category Number of participants Mean 

ICA IMT 

(m/s) 

Min 

ICA 

IMT 

(m/s) 

Max 

ICA 

IMT 

(m/s) 

SD  

18 - 25 8 0.43 0.35 0.53 0.07 

25 - 35 53 0.49 0.31 0.65 0.07 

35 - 45 58 0.53 0.37 0.71 0.07 

45 - 55 25 0.57 0.44 0.69 0.06 

>55 5 0.57 0.49 0.64 0.05 

All 149 0.52 0.31 0.71 0.08 
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Table 4-9 Internal carotid artery IMT values according to age category for 43 participants 

without HIV infection 

Age category Number of participants Mean 

ICA IMT 

(m/s) 

Min 

ICA 

IMT 

(m/s) 

Max 

ICA 

IMT 

(m/s) 

SD  

18 - 25 3 0.47 0.40 0.51 0.06 

25 - 35 20 0.52 0.38 0.66 0.07 

35 - 45 10 0.53 0.39 0.68 0.08 

45 - 55 8 0.62 0.55 0.80 0.08 

>55 2 0.60 0.56 0.65 0.06 

All 43 0.54 0.38 0.80 0.08 

 

During study design, three carotid regions were chosen to study whether HIV infection might have a 

differential effect on cIMT in different sections of the carotid tree, compared to the effects of 

traditional cardiovascular risk factors. However, cIMT was not significantly higher at any of the three 

regions in HIV infected participants. Furthermore, absolute mean cIMT values for HIV participants 

were lower for the bulb and the internal carotid artery when compared to common carotid artery.  

In addition, variability was higher at the carotid bulb and internal carotid artery. Although the 

absolute numbers were small in these analyses, this is consistent with published literature on higher 

variability in these regions. With this lack of evidence for an increased effect of HIV at the bulb or the 

internal carotid, combined with the low reproducibility, the mean common carotid artery cIMT is 

now used as the cIMT outcome measure. The common carotid artery cIMT was the most 

reproducible and is the most highly cited in published literature. Figure 4-21 compares CCA cIMT 

values for each age category according to HIV status. 
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Figure 4-21 Mean common carotid artery IMT according to age category and HIV status 

 

 

4.4.2.4 Continuous models adjusted for age 

Using linear regression, every 10-year increase in age is associated with a 0.23 m/s increase in PWV 

(95% CI 0.17 – 0.29) for participants with HIV infection (Figure 4-22) and a 0.22 m/s increase in PWV 

(95% CI 0.14 – 0.30) for participants with HIV infection (Figure 4-23). Every 10-year increase in age 

was also associated with a 0.1 mm increase in common carotid artery cIMT (95% CI 0.08 – 0.12) for 

participants with HIV infection (Figure 4-24) and a 0.13 mm increase (95% CI 0.11 – 0.16) for 

participants without HIV infection (Figure 4-25).  
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Figure 4-22 PWV according to age for adult Malawians with advanced HIV infection 

 

Figure 4-23 PWV according to age for adult Malawians without HIV infection 
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Figure 4-24 Mean CCA IMT values according to age for adult Malawians with advanced HIV 

infection 

 

Figure 4-25 Mean CCA IMT according to age for adult Malawians without HIV infection 
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4.4.2.5 Analysis for HIV and age effect modification 

An effect modification analysis was carried out to test for ‘accelerated aging’ in participants with HIV 

infection. The concept of accelerated aging is based on the premise that people with HIV experience 

age related comorbidities at an earlier age than those without HIV. We therefore sought to assess 

whether there the effect of HIV on PWV was greater in older age categories.. A linear regression 

model for PWV with an interaction term for age and HIV found that the addition of HIV increased the 

effect of age on PWV from a coefficient of 0.065 to 0.070 m/s (p value 0.73), indicating that HIV did 

not significantly modify the effect of age on PWV. The same analysis performed for mean CCA cIMT 

found that the addition of HIV resulted in a non-significant reduction of the effect of age on cIMT 

from a coefficient of 0.005 to 0.004 (p=0.11).  

4.4.3 Is HIV independently associated with PWV or cIMT at ART initiation? 

4.4.3.1 PWV 

Univariate analysis for PWV risk factors is shown in Table 4-10 for continuous variables and Table 

4-11 for categorical variables.  Those variables with a p value of <0.2 on univariate analysis were 

considered for inclusion in the multivariate model if they had been identified as a potential 

confounder (See Figure 4-1 Direct Acyclic Graph of associations between measured variables and 

Arterial Stiffness). If two or more variables had a p value less than 0.02 but were represented a 

similar risk factor and would display high co-linearity, the variable with the strongest association 

with the outcome measurement was chosen to be included in the model. HIV status was forced into 

the model as this was the variable of interest. Age and sex were also forced into the model as 

obligate confounders because they are important a priori factors in cardiovascular risk. Diastolic BP, 

fasting cholesterol, weight and current infection status were entered as important potential 

confounders. The final model for the effect of HIV on PWV after adjusting for potential confounders 

is shown in Figure 4-12. HIV is associated with a 12% adjusted increase in PWV in patients initiating 

ART with CD4<100 cells/uL compared with healthy HIV uninfected participants.  

Table 4-10 Univariate analysis of continuous variables and PWV  

 
Spearman’s rho P value  Included in model 

Age 0.49 <0.0001 X 

Weight 0.13 0.01 X 

Waist: height ratio 0.10 0.07 
 

BMI  0.10 0.07 
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Heart rate 0.07 0.21 
 

Systolic BP 0.22 <0.0001 
 

Diastolic BP 0.31 <0.0001 X 

Haemoglobin 0.09 0.06 X 

Fasting Cholesterol 0.12 0.03 X 

Fasting Glucose 0.07 0.24 
 

Creatinine 0.14 0.008 
 

Lymphocytes -0.03 0.52 
 

Monocytes -0.01 0.82 
 

 

 

Table 4-11 Univariate analysis of categorical variables and PWV 

 
Median PWV (m/s) P value  Included in model 

HIV infected 7.3 
  

HIV uninfected 7.2 0.10 X 

Male 7.45 
  

Female 7.1 0.0003 X 

Primary school education or less 7.4  
  

Greater than primary school education 7.2 0.26 
 

Smoker or ex-smoker 7.3 
  

Never smoked 7.3 0.49 
 

Drinks alcohol or past alcohol 7.2 
  

Never drank alcohol 7.4 0.80 
 

Pre-existing cardiovascular diagnosis 8.2 
  

No previous cardiovascular diagnosis 7.3 0.001 
 

Prescribed CV drugs 8.0 
  

Never prescribed CV drugs 7.3 0.02 
 

Clinically hypertensive 7.8 
  

Not clinically hypertensive 7.2 0.0004 
 

Current infection 7.5 
  

No current infection 7.3 0.12 X 
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Table 4-12 Final multivariate model for the effect of HIV on PWV after adjusting for 

confounders 

Variable Fold change in 

PWV 

P value 95% CI 

(min) 

95% CI 

(max) 

HIV 1.12 0.02 1.02 1.23 

Age (per 10-year increase) 1.18 <0.0001 1.13 1.23 

Female sex 0.92 0.07 0.85  1.01 

Diastolic BP (per 10 mmHg 

increase) 

1.07 <0.0001 1.03 1.13 

Haemoglobin 1.02 0.09 1.00 1.04 

 

4.4.3.2 cIMT 

Using the same methodology, the relationship between HIV and common carotid artery cIMT was 

examined. In addition to HIV, age and sex which were included as forced variables, waist: height 

ratio, fasting cholesterol, fasting glucose, smoking history and alcohol history were entered into the 

final model to adjust for potential confounders. Univariate analysis is presented in Table 4-13 and  

Table 4-14. There was a small increase in fold change of CCA cIMT of 2% but this was not statistically 

significant (p=0.26, Table 4-15). Sex was not an important adjusted risk factor for cIMT and although 

the decision had been made a prior to include age and sex as forced variables, a sensitivity analysis 

found that performing the model without adjusting for sex did not affect the effect size of the other 

variables and therefore the pre-defined strategy was adhered to.  

Table 4-13 Univariate analysis of continuous variables and common carotid artery IMT 

 
Spearman’s rho P value  Included in model 

Age 0.57 <0.001 X 

Weight 0.29 <0.001 
 

Waist: height ratio 0.30 <0.001 X 

BMI  0.30 <0.001 
 

Heart rate 0.85 0.04 
 

Systolic BP 0.22 <0.001 
 

Diastolic BP 0.24 <0.001 
 

Haemoglobin 0.51 0.24 
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Fasting Cholesterol 0.24 <0.001 X 

Fasting Glucose 0.08 0.17 X 

Creatinine 0.19 <0.001 
 

Lymphocytes 0.01 0.90 
 

Monocytes 0.00 0.98 
 

 

Table 4-14 Univariate analysis of categorical variables and common carotid artery IMT 

 
Median CCA IMT  P value  Included in model 

HIV infected 0.56 (0.53 – 0.62) 
  

HIV uninfected 0.56 (0.53 – 0.61) 0.87 
 

Male 0.56 (0.53 – 0.61) 
  

Female 0.56 (0.54 – 0.61) 0.83 
 

Primary school education or less 0.56 (0.53 – 0.62) 
  

Greater than primary school education 0.56 (0.53 – 0.61) 0.48 
 

Smoker or ex-smoker 0.56 (0.54 – 0.61) 
  

Never smoked 0.55 (0.52 – 0.61) 0.06 X 

Drinks alcohol or past alcohol 0.55 (0.53 – 0.61) 
  

Never drank alcohol 0.56 (0.54 – 0.52) 0.05 X 

Pre-existing cardiovascular diagnosis 0.60 (0.56 – 0.71) 
  

No previous cardiovascular diagnosis 0.56 (0.53 – 0.61) 0.007 
 

Prescribed CV drugs 0.71 (0.62 – 0.74) 
  

Not prescribed CV drugs 0.56 (0.53 – 0.61) 0.001 
 

Clinically hypertensive 0.58 (0.55 – 0.63) 
  

Not Clinically Hypertensive 0.55 (0.53 – 0.60) <0.001 
 

Current infection 0.56 (0.52 – 0.61) 
  

No current infection 0.56 (0.53 – 0.61) 0.41 
 

 

Table 4-15 Final multivariate model for the effect of HIV on CCA IMT after adjusting for 

confounders 

Variable Fold change in 

CCA IMT 

P value 95% CI (min) 95% CI (max) 
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HIV 1.02 0.26 0.98 1.06 

Age (per 10-year 

increase) 

1.11 <0.0001 1.09 1.13 

Female sex 1.01 0.72 0.97 1.05 

Waist: height 

ratio 

1.50 <0.01 1.11 2.00 

Current or 

previous alcohol 

0.96 0.046 0.92 1.00 

 

4.4.4 Which traditional risk factors are associated with PWV and cIMT in Malawian adults, and 

does the addition of HIV status improve the traditional risk factor model? 

A full model was constructed for both outcomes including major traditional cardiovascular risk 

factors, as identified from the literature: age, sex, history of smoking, systolic BP, waist height ratio, 

fasting cholesterol and fasting glucose. No participants had a family history of cardiovascular disease 

and so this factor was not included. This may represent challenges identifying family history of CVD 

in this setting, or a low rate of previous CVD in the population.  

4.4.4.1 PWV 

Age, male sex and systolic BP were important risk factors for PWV in the final traditional risk factor 

model (Table 4-16). Age was the most important factor, with a 21% increase in PWV for every 10-

year increase in age. When HIV status was added to the model, HIV infection was associated with an 

additional 9% increase in PWV (Table 4-16).  

Table 4-16 Final model for risk factors associated with PWV in adult Malawians with and 

without the inclusion of HIV status 

Variable Traditional risk factors for PWV Traditional risk factors model with 

HIV status added 

 Fold 

change in 

PWV 

P value 95% CI 

(min) 

95% CI 

(max) 

Fold 

change 

in 

PWV 

P value 95% 

CI 

(min) 

95% 

CI 

(max) 

Age (per 

10-year 

increase) 

1.21 <0.0001 1.16 1.26 1.19 <0.0001 1.15 1.24 
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Female sex 0.91 0.03 0.84 0.99 0.92 0.02 0.85 0.99 

Systolic BP 1.04 <0.01 1.01 1.07 1.04 <0.001 1.02 1.07 

HIV 

infection 

NA NA NA NA 1.09 0.045 1.00 1.18 

 

4.4.4.2 cIMT 

Only age and waist: height ratio were important independent risk factors for cIMT in this cohort of 

adult Malawians. When HIV was added to this final traditional cardiovascular risk factor model it was 

not retained. 

Table 4-17 Final model for risk factors associated with CCA IMT in adult Malawians 

Variable Fold change in 

CCA IMT 

P value 95% CI (min) 95% CI (max) 

Age (per 10-year 

increase) 

1.11 <0.0001 1.09 1.13 

Waist: height 

ratio (per 0.1 cm 

increase) 

1.06 <0.0001 1.03 1.08 

 

4.5 Discussion 

In this relatively young cohort of Malawian adults, advanced HIV infection was an important risk 

factor for elevated PWV two weeks following ART initiation. The risk associated with being HIV 

positive was higher than that associated with a 10mmHg increase in diastolic BP.  

PWV amongst healthy, HIV uninfected participants in this study was higher than in comparable 

cohorts previously published. For the 30 to 40 age category, median PWV from cohorts in Angola, 

Europe and USA was approximately 0.9 m/s lower than in HIV uninfected Malawian adults [407-

409]. Amongst a community sample of HIV uninfected South Africans, average PWV was 1.3 m/s 

lower than in this Malawian HIV uninfected cohort and with a  similar average age [410]. This may be 

related to methodological issues in the selection of the HIV uninfected cohort for our study. It may 

be that by identifying some participants from the VCT clinics, some people, although appearing to be 

healthy from clinical assessment at time of enrolment, did have some reason for presenting for HIV 

testing. Or, this discrepancy could be related to the measurement of PWV itself including the use of 
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different devices. Alternatively, it may be that in this urban cohort of Malawian adults, arterial 

stiffness may be higher due to background inflammation or other as yet unidentified factors.  

In studies that have compared PWV in HIV infected and uninfected participants, HIV has not been 

identified as an independent risk factor for increased arterial stiffness. Fourie et al found that there 

was no difference in PWV between HIV infected and uninfected participants and that PWV did not 

differ within the HIV infected group according to treatment status. However, the HIV treatment 

naïve group had a much higher average CD4 count than participants in the SHIELD study and 

participants in the treatment group had received ART for a median of nearly 3 years [411]. Ngatchou 

et al in Cameroon had a similar average PWV in untreated HIV infected adults but again, the CD4 

count was higher and the cohort was an average of 7 years older [160]. Several studies however 

have demonstrated that low nadir CD4 counts are independently associated with PWV (rather than 

HIV status itself) [412-414]. 

Within the HIV infected cohort, one third of patients screened had a CD4 less than 100 and those 

recruited had a high mortality rate and overall evidence of being more clinically unwell (lower BP, 

higher heart rate and lower haemoglobin). The clinical application of increases in PWV to the risk of 

cardiovascular disease in this setting is currently limited. However, we have shown that PWV is 

feasible and repeatable in low income sub-Saharan Africa.  

In contrast, no association was found between HIV and cIMT. There are several potential reasons for 

this. Firstly, it is likely that the phenotype of cardiovascular disease in the majority of Malawians is 

still that of hypertension and inflammatory driven disease, as opposed to atherosclerotic disease 

which would be associated with urbanisation related traditional risk factors such as high cholesterol, 

diabetes and obesity. Secondly, it may be more likely to see differences in levels of atherosclerosis 

between those with and without HIV infection in older age groups. Next, it is possible that the 

pathogenesis of HIV in this setting does not necessarily promote wall thickening, but could, in fact 

lead to thinning of the artery wall [415]. Lastly, the measurements may not have been sufficiently 

accurate to find small differences in this relatively small group of patients given the limited 

reproducibility of cIMT in this study 

When comparing out cIMT data to other settings, cIMT seems to be higher in our HIV uninfected 

Malawian group when compared to healthy European controls assessed in a study by a South 

African group comparing cIMT readings from the common carotid in a group of HIV infected South 

African participants to a group of healthy Dutch controls [416]. They found the South African group 

to reach a cIMT of 0.78mm (termed subclinical atherosclerosis) 10 years younger than their 
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European counterparts (age 76 versus 66). The age at which our Malawian HIV infected cohort 

reached this threshold was age 71, lying in between the two cohorts. This would suggest that there 

may be some acceleration of time to subclinical atherosclerosis amongst Malawian adults with HIV, 

where there are few traditional cardiovascular risk factors apart from hypertension, but not as much 

as with South African patients with HIV, where urbanisation related risk factors are more prevalent.  

cIMT was much more reliable when measured at the common carotid which is consistent with 

existing literature [417]. Although the repeatability for the bulb and internal carotid was less reliable 

in this study, there was no clear evidence that cIMT was higher in these regions for patients with HIV 

infection than for those without. Both PWV and cIMT were strongly correlated with age and 

although there was no interaction between age and HIV in predicting PWV in this study, the 

numbers of older patients were small and this interaction could be further assessed in an older 

cohort.  

The INTERSTROKE study showed that hypertension was the most important risk factor in Africa for 

all causes of stroke in contrast with other global regions where risk factors such as diet, diabetes 

mellitus and smoking were important [418]. This is in keeping with our current finding that 

hypertension remains the most prevalent traditional cardiovascular risk factor in this low income 

SSA setting.  

PWV was closely associated with blood pressure and haemoglobin. High blood pressure is known to 

be an important factor in the development and propagation of arterial stiffness. The measurement 

of arterial stiffness is influenced by both blood pressure and plasma viscosity.  Blood pressure was 

measured at the time of PWV assessment and used to produce the calculation, meaning that 

measurements were adjusted for acute readings. Therefore, the relationship between PWV and 

blood pressure should reflect accumulated exposure to blood pressure over time. PWV 

measurements can also be influenced by plasma viscosity, which is the likely explanation for why a 

higher PWV was associated with higher haemoglobin levels.  

Waist height ratio (ratio of waist circumference in cm to height in cm) was the only traditional risk 

factor associated with cIMT. This would support the hypothesis that atherosclerosis is associated 

with factors traditionally related to urbanisation in this setting such as dyslipidaemia, diabetes or 

obesity. However, it is important to note that this study was restricted in only having fasted total 

cholesterol and not cholesterol differentials. Perturbations may have existed with LDL and HDL 

values even with normal total cholesterol and these may have given stronger associations with cIMT. 
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Despite the fact that this is a young cohort with relatively few traditional risk factors 12% of 

participants were found to have a PWV >10 m/s, and 14% had a cIMT>0.78 (corresponding to 

pathological cut off values [291, 417]). If a threshold of 8 m/s is taken, as suggested in South African 

cohort, then one third of participants would qualify as having an elevated PWV [410]. 

This is the first comparison of arterial stiffness and cIMT in HIV infected and uninfected adults from a 

low income SSA setting. Further, we present the first data to specifically demonstrate an increase in 

PWV in HIV infected individuals. It is likely that this difference may be due to the advanced immune 

suppression in our HIV infected cohort as PWV has never specifically been measured in a cohort of 

participants with such advanced immune suppression. PWV correlates strongly with some previously 

documented risk factors and, together with high repeatability, demonstrates both feasibility and 

utility in this setting. 

Clinical application of this increased risk is limited by the lack of validation of PWV in the SSA setting. 

Clinical validation of both PWV and cIMT may provide a useful and efficient resource for 

quantification of cardiovascular risk and its management in low income SSA. Lastly, it is 

recommended that further consideration is given to routine measurement of BP in ART clinics as, 

along with HIV, this is the main risk for increases in arterial stiffness and is modifiable.  

  



162 
 

5 CHAPTER 5: IMMUNE ACTIVATION IN ADULT MALAWIANS AND 

ASSOCIATION WITH ENDOTHELIAL DAMAGE 

5.1 Introduction 

Chronic immune activation is predominantly characterised by the expansion of T cells expressing an 

activated cell surface phenotype including HLA-DR and CD38 [72, 419]. It is closely associated with T 

cell exhaustion (measured by PD-1 expression) and T cell senescence (measured by CD57 

expression), which are a result of exposure to a high antigenic load and repeated cell cycling of 

activated cells [82, 420, 421]. Chronic immune activation is a feature of many non-communicable 

diseases including auto-immune disorders such as rheumatoid arthritis and SLE [422].  Persistent 

stimulation of the immune system in these disorders leads to a continued state of systemic 

inflammation which predisposes patients to endothelial damage and cardiovascular disease.  

Most infectious pathogens that are encountered by the immune system are cleared away so that the 

immune system returns to an inactivated state. However, in the case of HIV (and other infections 

such as CMV, Hepatitis B and Hepatitis C), the pathogen can continue to replicate despite the initial 

immune response. Chronic immune activation can persist in people with HIV infection even after 

they have achieved viral suppression on ART [423, 424]. This state of systemic inflammation has 

been linked to endothelial damage and cardiovascular disease in high resource settings but the 

extent to which it contributes to cardiovascular disease in a resource poor sub-Saharan Africa setting 

is unclear [425].  

This chapter aims to assess whether there is any relationship between immune activation and 

endothelial damage in adult Malawians initiating ART with a CD4 count less than 100 cells/uL and in 

HIV uninfected healthy controls.  

5.2 Specific objectives 

This chapter addresses objective 4: “To establish to what extent immune activation is a risk factor for 

higher cIMT and arterial stiffness”.  

5.3 Methods 

5.3.1 Study procedures 

Markers of immune activation were assessed in the same cohort described in Chapter 4.  
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5.3.2 Characterisation of surface immunophenotype 

5.3.2.1 PBMC separation 

Blood collected in sodium citrate was diluted in a 1:2 dilution with phosphate buffered saline (PBS) 

and then slowly added to a 50ml falcon tube containing Lymphoprep (Axis-Shields-Diagnostics) in a 

2:1 ratio ensuring that the blood and Lymphoprep did not mix. The samples were then centrifuged at 

500g for 25 minutes, with the lowest possible brake speed to prevent mixing of the sample, to 

generate 4 distinct layers as shown in Figure 5-1. PBMCs were carefully aspirated using a plastic 

pipette and then added to 10mls PBS.  

Figure 5-1 Layers produced following centrifugation of whole blood with lymphoprep 

 

PBMCs were then washed twice in 50mls PBS at 500g for 10 minutes to remove any remaining 

lymphoprep. After PBS was discarded, 5mls RPMI-1640 culture medium was added. 10uL of 

PBMC/RPMI solution was mixed with tryptan blue at a 1:10 dilution and 10uL of that was added to 

both sides of a counting chamber. The number of unstained cells within one large square was then 

entered into the following equation to estimate the concentration of PBMCs in the sample:  

Number of cells in one large square * dilution factor * 104 = number of cells/ml  

5.3.2.2 Staining 

5.3.2.2.1 Overview of staining process 

Two staining panels were analysed: one for T cell phenotyping and one for monocyte phenotyping. 

Each panel consisted of one sample of 50uL of PBMCs in RPMI that was stained with all the 
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fluorochromes for that panel. For the purposes of compensation, each panel also included one tube 

for an unstained sample and one single stain tube for each fluorochrome being used in that panel. 

The unstained and single stained samples were conducted using anti-mouse Igk and negative control 

compensation particles (BD biosciences) in order to minimise usage of cells for compensation 

purposes. A staining volume of 100uL was maintained for both cells and compensation tubes. All 

tubes were incubated in the dark at room temperature for 15 minutes and then the tubes containing 

cells were washed twice in 100uL PBS at 500g for 10 minutes. Cells were acquired on a 3 laser, 9 

colour CyAn Flow Cytometer (Beckman Coulter) in 300uL PBS.  

5.3.2.2.2 T cell panel staining and optimisation 

For T cells, a staining concentration of 1x106 cells in 50uL was required and cells were spun down 

and resuspended in RPMI to acquire this concentration. The final T cell panel is shown in Table 5-1. 

For each antibody, the volume displayed in the table was added to the 50uL PBMCs suspended in 

RPMI. For the T cell panel, this brought the staining volume up to slightly over 100uL (107.5uL) and 

therefore no PBS was added.  

Table 5-1 Final T cell panel 

Target cell surface 

marker 

Fluorochrome Antibody volume 

(uL) 

Flow cytometer 

Channel 

Voltage 

CD57 FITC 10 1 750 

CD38 PE 5 2 800 

CD8 PE Cy7 0.4 4 600 

CD4 V450 10 6 720 

CD3 BV510 10 7 720 

PD-1 APC 12.5 8 850 

HLA-DR APC Cy7 10 9 900 

 

The panel was designed based on two main factors: the emission spectra detected by the 9 CyAn 

filter channels, and pairing the brightness of the fluorochromes with the density of cell surface 

marker expression. 

The three CyAn lasers excite fluorochromes at 488nm (Blue laser), 405nm (Violet laser) and 640nm 

(Red laser). Emissions from these excited fluorochromes are then detected by 9 filters as outlined in 

Table 5-2. Although one laser can excite several different fluorochromes, only one 

fluorochrome/antibody combination can be assigned for detection at each channel. The 
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fluorochromes detected for each filter channel are also listed in Table 5-2. Therefore, one of the 

possible fluorochromes from each channel should be paired with one cell surface antibody of 

interest. In principle, it is best to choose filter channels which are furthest away from each other to 

reduce the degree of spectral overlap. The overlap in emission spectra for common fluorochromes 

according to each CyAn laser is presented in Figure 5-2. For larger panels using more channels, there 

will invariably be overlap between emission spectra and compensation techniques can be employed 

to adjust for it (see 5.3.2.3.2).  

 

Table 5-2 CyAn Flow Cytometer laser and filter properties20 

 

                                                           
20 source CyAn ADP High Speed Analyzer Instructions for Use, Beckman Coulter, January 2009, Fullerton CA 
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Figure 5-2 Spectral overlap of common fluorochromes for each CyAn laser21 

 

The brightness of the fluorochromes can be compared using the stain index values (see Figure 5-3 

for a comparison). Brightly staining fluorochromes should be paired with antibodies against cell 

markers that are less commonly expressed to enable detection and dimly staining fluorochromes 

should be paired with antibodies against cell markers that are more commonly expressed to 

minimise spillover.  

                                                           
21 adapted from Fluorochrome/Laser Reference Poster, bdbioseciences.com/colours, BD biosciences 
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Figure 5-3 Relative brightness of common fluorochromes22  

 

 

The cell surface markers stained for in the T cell panel were CD3 (T cell marker), CD4 and CD8 (T cells 

of interest), CD38 and HLA-DR (activation markers), PD1 (exhaustion marker) and CD57 (senescence 

marker). Initially the cell markers were paired with fluorochromes as follows: CD3 BV510 (BD 

horizon), CD4 V450 (BD horizon), CD8 PE (Biolegend), CD38 PE Cy7 (BD Pharmingen), HLA-DR AF700 

                                                           
22 source Fluorochrome Reference Chart, bdbiosciences.com/colors, BD biosciences 
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(BD Pharmingen), PD1 APC (BD Pharmingen) and CD57 FITC (BD Pharmingen). The volume of 

fluorescent antibody to be used was first assessed individually and then tested as part of the panel. 

Higher volumes of antibody can produce a higher intensity signal up to an optimal point, past which 

the intensity plateaus and can even decrease. Titrations for each antibody initially tested for our T 

cell panel are shown in Figure 5-4 with the final volume of antibody used represented by the blue 

line. For antibodies that did not demonstrate a clear plateau (CD38 PECy7 and PD1 APC), higher 

volumes were chosen to be sure that sufficient antibody was being used.  
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Figure 5-4 Antibody titrations for T cell panel 
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When the full panel was then tested together, two issues were identified. Firstly, HLA-DR was not 

staining as brightly as would be expected. Figure 5-5 part A shows HLA-DR mean fluorescence 

intensity (MFI) on PBMCs without HLA-DR AF700 staining and part B shows the same patient sample 

with HLA-DR AF700 staining. Good separation of the HLA-DR population is not achieved when 

stained with AF700. Increased volumes of antibody did not improve the MFI of the HLA-DR staining 

(see Figure 5-6) and so HLA-DR was tried on various different fluorochromes (Figure 5-7).  The best 

separation between HLA-DR negative and positive populations was found with HLA-DR APC Cy7 (BD 

Pharmingen) staining. 

Figure 5-5 Comparison of HLA-DR expression using AF700 fluorochrome compared to APC 

Cy7 
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Figure 5-6 Comparison of different volumes of HLA-DR AF700 on HLA-DR separation 

 

Figure 5-7 Comparison of different fluorochromes for staining HLA-DR 
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Secondly CD8 PE was spreading into the CD38 PE Cy7 channel making compensation difficult. Figure 

5-8 shows post compensation plots for CD38 PE versus CD8 PE Cy7 and vice versa. These plots show 

staining on all PBMCs following maximum compensation. The populations remain misaligned. 

The use of a different clone and different volumes of CD38 PE did not resolve the overspill.  

Figure 5-8 Compensation plots for CD8 PE-Cy7 and CD38 PE  

 

 

Therefore, the fluorochrome for staining CD8 was changed from CD8 PE to CD8 PerCP (Biolegend) 

and the fluorochrome for CD38 was changed from CD38 PE Cy7 to CD38 PE (BD Pharmingen).  

During panel optimisation, the voltage levels for each filter channel were also reviewed. The channel 

voltage can also modify the MFI detected for a population – lower voltages can reduce separation of 

populations, but voltages that are too high can lead to the loss of events from the plots. During 

panel optimisation, a range of voltages were tried for each channel until the optimum separation 

was achieved. 

5.3.2.2.3 Monocyte panel staining and optimisation 

For monocytes, a staining concentration of 1x106 cells in 50uL was initially tried, but too few 

monocytes were yielded. Because monocytes only make up approximately 3% of PBMCs, for a yield 

to produce reliable immunophenotyping results of monocyte subsets, a higher initial concentration 

was necessary. So for monocytes a final concentration of 3x106 cells in 50uL was used. The final 

monocyte panel is shown in Table 5-3. Because the total volume of antibodies for the monocyte 

panel was 20uL, 30uL PBS was added to make a total staining volume of 100uL.  
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Table 5-3 Final Monocyte Panel 

Target cell surface 

marker 

Fluorochrome Antibody volume 

(uL) 

Flow cytometer 

Channel 

Voltage 

CD16  PE 5 2 630 

CD14 PE Cy7 10 5 800 

HLA-DR  APC Cy7 5 9 850 

 

The cell surface markers stained for in the monocyte panel were HLA-DR (used as a monocyte 

marker to identify monocyte population), CD14 (ubiquitous monocyte marker) and CD16 (to identify 

monocyte subsets). Optimal antibody volumes were also tested for the CD14 PE Cy7 (BD 

Pharmingen) and CD16 PE (BD Pharmingen) markers and titration results are shown in Figure 5-9 

(final antibody volume used represented by blue line). Because a clear plateau wasn’t seen with 

CD16 FITC and it is part of a small panel, 5uL was chosen as per manufacturers recommendations 

and led to a good separation of CD16 FITC populations when the full panel was tested.  
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Figure 5-9 Antibody titrations for monocyte panel 

 

 

Apart from switching HLA-DR from AF700 to APC Cy7 for the same reasons described in the T cell 

panel, no further adjustments were made to the initial monocyte panel.  

5.3.2.3 Flow cytometry 

5.3.2.3.1 Overall method 

CyAn maintenance schedules including cleaning and monitoring of coefficient of variation thresholds 

were adhered to according to manufacturer guidance. A system clean was performed on machine 
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start up every day and a sample clean was performed prior to acquiring each new set of samples. 

Standard protocols for both the T cell panel and monocyte panels were designed and stored on the 

SUMMIT software (Beckman Coulter) and used consistently for sample acquisition. Compensation 

tubes were acquired before stained tubes and the acquisition rate was set to slow to minimise 

doublets. Resulting flow plots were saved and then exported to FlowJo software (Treestar, Inc.)  for 

analysis.  

5.3.2.3.2 Compensation 

Unstained and single stained compensation beads were used as a reference to automatically 

generate compensation matrices for both T cell and monocyte panels which were then manually 

verified. The first 100 samples were individually compensated using this method. Compensation 

matrices generated from these data were then used to program SUMMIT software to automatically 

compensate stained samples following acquisition. The final compensation matrices for the T cell 

panel and the monocyte panel are shown in Figure 5-10 and Figure 5-11 respectively. The grid at the 

top of each figure gives the percentage of compensation needed for each pairing of fluorescent 

antibodies. The dot diagrams show staining of all PBMCs for each pairing of fluorescent antibodies – 

the blue dots represent uncompensated cells and the black dots represent compensated cells.  

  



176 
 

 

Figure 5-10 Compensation matrix for T cell panel 

 

 

 

Fl 4 Log: CD8 PerCP                Fl 1 Log CD57 FITC              Fl 8 Log: PD-1 APC                   Fl 7 Log: CD3 BV510            Fl 9 Log: HLA-DR APC Cy7               Fl 6 Log: CD4 v450  

FL
 2

 L
o

g:
 C

D
3

8 
P

E
 

Fl
 4

 L
o

g:
 C

D
8

 P
er

C
P
 

FL
 1

 L
o

g:
 C

D
5

7 
FI

TC
 

FL
 8

 L
o

g:
 P

D
-1

 A
P

C
 

FL
 7

 L
o

g:
 C

D
3

 
B

V
51

0
 

FL
 9

 L
o

g:
 H

LA
-D

R
 

A
P

C
 C

y7
 



177 
 

Figure 5-11 Compensation matrix for monocyte panel 

 

5.3.2.3.3 Gating strategy 

A standardised gating strategy was developed for each panel. The gating strategy for the T cell panel 

is presented in Figure 5-12. From top left of the figure, singlets were identified on forward scatter 

linear versus area. The lymphocyte population was then identified on forward and side scatter light 

properties and was split into CD3+ and CD3- cells. CD3+ cells were divided into CD8+ and CD4+ cells. 

CD8 and CD4 cells were then individually gated to look for activation (HLA-DR versus CD38) and then 

to look for senescence / exhaustion (CD57 versus PD1). Expression of HLA-DR and PD1 on CD8 and 

CD4 T cells is continuous (as opposed to either being present or not present) and so positive and 

negative populations are not clearly separated. However, CD3- cells show distinct populations of 

HLA-DR and PD-1 positive cells and therefore can be used as a standardised method of defining 

positive and negative populations. This approach was validated using FMOs (fluorescence minus one 

samples) meaning that cells were stained with all fluorescent antibodies in the panel apart from the 

antibody of interest (either HLA-DR or PD-1). This provides a negative cut off value for that marker. 

In Figure 5-13, panel A shows where the gates are placed to identify the HLA-DR positive population 
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Fl
 2

 L
o

g:
 C

D
1

6
 P

E 

Fl
 2

 L
o

g:
 C

D
1

6
 P

E 
Fl 5 Log: CD14 PE Cy7 Fl 9 Log: HLA-DR APC Cy7 



178 
 

CD3- cells. Panel B shows where these gates would be placed if we had used FMOs to identify the 

HLA-DR negative population for that same sample.  Similar percentages of HLA-DR positive cells are 

identified using the two methods.  The same process was carried out with a PD-1 FMO and is shown 

in Figure 5-14.
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Figure 5-12 T cell panel gating strategy 
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Figure 5-13 Comparison of CD3- and FMO gating strategy to gate HLA-DR positive CD4 and CD8 T cells 
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Figure 5-14 Comparison of CD3- and FMO gating strategy to gate PD-1 positive CD4 and CD8 T cells 
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The gating strategy for the monocyte panel is shown in Figure 5-15. Singlets were again identified on 

forward scatter linear versus area. A HLA-DR positive population was then identified based on 

forward scatter light properties (representing cell size). This population was then used to find CD14 

and CD16 monocyte subsets. The method used to identify monocyte subsets in this work is based on 

accepted monocyte subset gating strategy [83].  To provide further evidence differentiating between 

monocyte and NK cell populations (both express HLA-DR and can express CD16), a CD56 marker was 

added to the monocyte panel. Monocyte and NK cell populations were first identified on the HLA-DR 

versus side scatter plot (see Figure 5-16). Although both the monocyte and NK cell populations 

expressed CD56, there were no identifiable monocyte populations when gating for CD14 and CD16 

on the NK cell population.  

Figure 5-15 Monocyte gating strategy 
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Figure 5-16 Differentiating between monocyte and NK cell populations 

 

 

If the number of CD4 or CD8 T cells or monocytes available for analysis in any sample was fewer than 

1000 cells, the sample was excluded from analysis due to the potential for inaccurate results at low 

cell counts.  

5.3.3 Sample size calculations 

The sample size calculation for objective 4 is described in the general methods section (subsection 

3.6.1) 

5.3.4 Statistical analysis 

5.3.4.1 Classification of immune markers 

T cell activation was classified as the percentage of T cells (either a CD4 or a CD8 T cell) that 

expressed HLA-DR or CD38 or both. This is the equivalent to the proportion of cells in the outer 

three quadrants compared to the percentage of cells in the bottom left quadrant. The percentage of 

cells expressing HLA-DR irrespective of CD38 was also measured and is referred to as ‘HLA-DR+’. 

Similarly, the percentage of cells expressing CD38 irrespective of HLA-DR was measured and is 

referred to as ‘CD38+’.  T cell senescence was defined as the proportion of cells expressing PD1 (they 
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could be either CD57+ or CD57-). T cell exhaustion was defined as the proportion of cells expressing 

CD57 (they could be either PD1+ or PD1-).  

5.3.4.2 Objective 4: “Establish to what extent immune activation is a risk factor for higher cIMT 

and arterial stiffness” 

Firstly, we performed univariate analysis of all immune markers according to HIV status and, then 

according to PWV and cIMT values. Wilcoxon Ranksum was used to analyse associations for 

categorical data and Spearman rho for continuous data.  

Next, we asked the question: “Does immune activation, exhaustion or senescence explain the effect 

of HIV on PWV?” Immune markers were added one at a time to the model constructed to assess the 

effect of HIV on PWV in subsection 4.4.3.  

Lastly, we asked the question: “Does the addition of immune markers to traditional cardiovascular 

risk factor models improve the risk prediction for arterial stiffness or intima-media thickness?” 

Again, immune markers were added one at a time to the final model of traditional risk factors 

associated with both PWV and cIMT.  

5.3.4.3 Identification of immune activation categories by principal components analysis 

A Principal Components Analysis of immune markers was performed to group patients according to 

immune marker profiles. A principal components correlation and cluster dendogram were both 

constructed using Stata (version 13.1) to identify the most appropriate number of groups. The 

corresponding number groups were used to generate clusters of data which were then examined in 

a scatter graph and according to HIV status. 

5.4 Results  

5.4.1 Description of T cell surface immune phenotypes according to HIV status 

The percentage of CD4 and CD8 T cells expressing markers of immune activation, exhaustion and 

senescence are shown in Table 5-4. The ‘CD4 activated’ phenotype represents the total percentage 

of cells expressing either CD38 or HLA-DR. ‘CD4 Exhaustion’ represents all cells expressing PD1 

(whether CD57 positive or not) and ‘CD4 Senescence’ represents all cells expressing CD57 (whether 

PD1 positive or not). The same classifications have been used for CD8 T cells.  

The percentage of CD4 T cells expressing all activation, exhaustion and senescence markers is higher 

in HIV infected compared to uninfected participants. The CD4+CD38+HLA-DR- phenotype is lower in 

HIV infected participants, which may represent the fact that HLA-DR is the more important marker 
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of activation. For CD8 T cells, double expression of CD38+HLA-DR+ is significantly higher in HIV 

infected participants compared to uninfected. Immune markers measuring PD1+ are significantly 

higher in HIV infected than uninfected groups. The percentage expression of senescent cells 

increased with age for CD8 T lymphocytes, but not for CD4 T lymphocytes, and this was true for HIV 

infected and uninfected participants (see Figure 5-17 and Figure 5-18).  

Table 5-4 T cell expression of immune markers according to HIV status 

 
HIV infected  

n=202 
HIV uninfected  

n=94 
P value 

Absolute CD4 count (cells/uL) 42 (18 – 62) NA NA 

HIV viral load (copies/ml) 113,560 (41,747 – 293,663) NA NA 

CD4 T cells CD4/CD8 ratio 0.09 (0.04 – 0.20) 1.39 (1.02 – 2.15) <0.00001 

CD4 % 8.2 (4.1 – 16.5) 58.1 (50.5 -68.3) <0.0001 

CD4 CD38+HLA-DR- 26.7 (17.6 – 39.6) 35.7 (28.1 – 42.7) <0.001 

CD4 CD38+HLA-DR+ 22.25 (11.4 – 33.8) 5.0 (2.6 – 8.7) <0.0001 

CD4 CD38-HLA-DR+ 17 (10.5 – 23.3) 6.7 (4.1 – 11.8) <0.0001 

CD4 Activated 74.5 (61.5 – 85.7) 53.5 (40.5 -  65.0) <0.0001 

CD4 CD57+PD1- 5.3 (2.6 – 8.7) 3.2 (1.7 – 5.7) <0.001 

CD4 CD57+PD1+ 7.8 (4.6 – 14.4) 2.2 (1.4 – 4.0) <0.0001 

CD4 CD57-PD1+ 40.9 (24.8 – 52.8) 12.8 (7.4 – 19.2) <0.0001 

CD4 Exhausted 54.0 (31.3 – 66.9) 15.0 (9.3 – 23.6) <0.0001 

CD4 Senescent 14.8 (9.0- 23.9) 6.7 (3.6 – 9.03) <0.0001 

CD8 T cells CD8% 81.8 (83.5 – 95. 9) 41.1 (31.7 – 50.0) <0.0001 

CD8 CD38+HLA-DR- 24.2 (16.8 – 37.0) 23.9 (11.8 – 41.8) 0.85 

CD8 CD38+HLA-DR+ 34.1 (21.4 – 48.5) 11.2 (6.1 – 19.1) <0.0001 

CD8 CD38-HLA-DR+ 9.9 (5.6 – 17.1) 9.1 (5.4 – 22.5) 0.63 

CD8 Activated 78.6 (64.5 – 87.6) 59.6 (39.8 – 72.7) <0.0001 

CD8 CD57+PD1- 31.8 (22.8 – 42.2) 28.5 (18.6 0-37.6) 0.05 

CD8 CD57+PD1+ 20.3 (12.2 – 26.8) 10.3 (5.9 – 15.2) <0.0001 

CD8 CD57-PD1+ 17 (11.8 – 25.2) 9.6 (5.8 – 13.9) <0.0001 

CD8 Exhausted 37.7 (28.6 – 49.5) 20.9 (12.2 – 29.4) <0.0001 
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CD8 Senescent 53.6 (43.9 – 64.1) 39.7 (26.5 – 53.4) <0.0001 

 

 

Figure 5-17 Median % Senescent CD8 T cells according to age group and HIV status 
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Figure 5-18 Median % Senescent CD4 T cells according to age group and HIV status 

 

 

5.4.2 Description of monocyte cell surface subtypes according to HIV status     

There was no difference in distribution of monocyte subset according to HIV status as shown in 

Table 5-5. It had been hypothesised that in HIV infection, intermediate monocytes would be 

expanded due to their pro-inflammatory properties. However, instead it was noted that there was a 

marked expansion of the nonclassical monocyte subset in both HIV infected and uninfected 

participants. From this it was hypothesised that Malawian adults might have an expanded 

population of nonclassical monocytes due to repeated malarial or bacterial infections.  

Table 5-5 Distribution of monocyte subsets according to HIV status 

 HIV infected  

n=202 

HIV uninfected  

n=94 

P value 

Monocytes Classical 75.5 (66.3 – 82.5) 75.4 (64.9 – 80.7) 0.79 

Intermediate 9.9 (6.0 – 13.1) 9.4 (6.7 – 14.4) 0.99 

Nonclassical 9.0 (20.6 – 1.6) 13.1 (9.8 – 22.0) 0.59 
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5.4.3 Description of immune phenotypes in Non-Malawian participants   

To begin to test this hypothesis, we also performed immunophenotyping on 6 non-Malawian adults 

who were born in the UK and lived there until at least the age of 18 years. Volunteers were recruited 

from the local research institution or hospital. They all had HIV tests carried out to confirm HIV 

negative status and underwent a symptom screen to ensure there were no signs of current infection. 

Bloods were then drawn and processed according to the same protocol as the SHIELD participants. 

There were no differences between CD T cell expression of activation, exhaustion or senescence 

markers in the HIV uninfected Malawian group as compared to the non-Malawian group (Figure 

5-19). Expression of these markers in CD8 T cells tended to be higher in HIV uninfected Malawians as 

compared to non-Malawians, but these differences did not reach significance (Figure 5-20). 

However, when assessing monocyte subsets, there was a clear decrease in classical monocytes and 

increase in nonclassical monocytes in both HIV infected and uninfected Malawians compared to 

non-Malawians (Figure 5-21). There was no difference between either of the three groups in 

intermediate monocytes. 

Figure 5-19 Comparison of CD4 T cell phenotypes in non-Malawian adults 
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Figure 5-20 Comparison of CD8 T cell phenotypes in non-Malawian adults 
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Figure 5-21 Comparison of Monocyte subsets in non-Malawian adults 
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Table 5-6 Univariate correlations between immune markers and PWV or cIMT 

 PWV cIMT 

Spearman rho n=295 p value Spearman rho n=259 p value 

Absolute CD4 count (cells/uL) 0.002 0.98 0.07 0.34 

HIV viral load (copies/ml) 0.006 0.92 0.06 0.44 

CD4 T cells CD4/CD8 ratio 0.01 0.86 0.15 0.02 

CD4 % 0.01 0.85 0.15 0.02 

CD4 CD38+HLA-DR- -0.21 <0.01 0.13 0.13 

CD4 CD38+HLA-DR+ 0.05 0.45 -0.09 0.26 

CD4 CD38-HLA-DR+ 0.18 0.13 -0.08 0.32 

CD4 Activated -0.03 0.65 -0.07 0.40 

CD4 CD57+PD1- 0.13 0.07 0.10 0.22 

CD4 CD57+PD1+ 0.12 0.09 -0.05 0.55 

CD4 CD57-PD1+ 0.11 0.11 -0.09 0.28 

CD4 Exhausted 0.13 0.07 -0.08 0.35 

CD4 Senescent 0.15 0.04 0.06 0.51 

CD8 T cells CD8% -0.01 0.85 -0.15 0.02 

CD8 CD38+HLA-DR- -0.03 0.59 -0.05 0.48 

CD8 CD38+HLA-DR+ 0.04 0.50 -0.18 <0.01 

CD8 CD38-HLA-DR+ 0.05 0.37 0.13 0.05 

CD8 Activated 0.03 0.61 -0.14 0.03 

CD8 CD57+PD1- 0.04 0.11 -0.03 0.65 

CD8 CD57+PD1+ 0.11 0.05  -0.02 0.81 

CD8 CD57-PD1+ 0.01 0.91 -0.13 0.05 

CD8 Exhausted 0.10 0.09 -0.05 0.46 

CD8 Senescent 0.11 0.052  -0.01 0.87 

Monocytes Classical 0.17 0.09 -0.05 0.52 

Intermediate 0.09 0.17 0.01 0.86 

Nonclassical 0.04 0.57 0.06 0.42 
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5.4.4.2 Does immune activation, exhaustion or senescence explain the effect of HIV on PWV? 

Because HIV was found to be a risk factor for only PWV in the HIV models (see table 4-12), the role 

of immune activation markers in mediating an effect on outcomes was only assessed for PWV. Each 

immune marker with a univariate association with PWV and with a p value of less than 0.1 was 

added one at a time to the initial model examining HIV as a risk factor for PWV as outlined in section 

4.4.3.1. Models adding the percentage of CD4 and CD8 Exhaustion and Senescence are outlined 

below (Table 5-7, Table 5-8, Table 5-9, Table 5-10). When the percentage of either CD4 or CD8 

Exhausted T cells are added to the model, the effect of HIV is lost and the immune markers are 

retained in the model. This suggests that T cell exhaustion may be responsible for the effect of HIV 

on PWV. When the percentage of either CD4 or CD8 Senescent T cells are added, the effect of HIV is 

retained and the immune markers are lost from the model. The percentage of classical monocytes 

did not alter the effect of HIV on PWV either (Table 5-11). 

Table 5-7 Effect of CD4 Exhaustion on HIV as a risk factor for PWV in a multivariate model 

adjusting for confounders 

Variable Fold change in 

PWV 

P value 95% CI 

(min) 

95% CI 

(max) 

CD4 Exhaustion (per 10% 

increase) 

1.02 0.02 1.00 1.04 

HIV  >0.1   

Age (per 10-year increase) 1.16 <0.0001 1.10 1.21 

Female sex 0.83 <0.0001 0.76 0.92 

Systolic BP (per 10 mmHg 

increase) 

1.05 <0.01 1.01 1.08 

Haemoglobin  >0.1   

 

Table 5-8 Effect of CD4 Senescence on HIV as a risk factor for PWV in a multivariate model 

adjusting for confounders 

Variable Fold change in 

PWV 

P value 95% CI 

(min) 

95% CI 

(max) 



193 
 

CD4 Senescence  >0.1   

HIV 1.09 0.09 0.99 1.21 

Age (per 10-year increase) 1.16 <0.0001 1.10 1.23 

Female sex 0.85 <0.01 0.77 0.94 

Systolic BP (per 10 mmHg 

increase) 

1.05 <0.01 1.01 1.08 

Haemoglobin  >0.1   

 

Table 5-9 Effect of CD8 Exhaustion on HIV as a risk factor for PWV in a multivariate model 

adjusting for confounders 

Variable Fold change in 

PWV 

P value 95% CI 

(min) 

95% CI 

(max) 

CD8 Exhaustion (per 10% 

increase) 

1.03 0.03 1.00 1.05 

HIV  >0.1   

Age (per 10-year increase) 1.16 <0.0001 1.11 1.21 

Female sex 0.88 <0.01 0.81 0.95 

Systolic BP (per 10 mmHg 

increase) 

1.04 <0.01 1.02 1.07 

Haemoglobin  >0.1   

 

Table 5-10 Effect of CD8 Senescence on HIV as a risk factor for PWV in a multivariate model 

adjusting for confounders 

Variable Fold change in 

PWV 

P value 95% CI 

(min) 

95% CI 

(max) 

CD8 Senescence  >0.1   

HIV 1.11 0.06 1.00 1.23 

Age (per 10-year increase) 1.16 <0.0001 1.11 1.21 

Female sex 0.92 0.08 0.84 1.01 

Systolic BP (per 10 mmHg 

increase) 

1.04 <0.01 1.01 1.07 

Haemoglobin 1.22 0.09 0.97 1.53 
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Table 5-11 Effect of Classical Monocyte subset on HIV as a risk factor for PWV in a 

multivariate model adjusting for confounders 

Variable Fold change in 

PWV 

P value 95% CI 

(min) 

95% CI 

(max) 

Classical monocytes  >0.1   

HIV 1.15 <0.01 1.04 1.28 

Age (per 10-year increase) 1.19 <0.0001 1.13 1.25 

Female sex  >0.1   

Systolic BP (per 10 mmHg 

increase) 

1.03 0.07 1.00 1.06 

Haemoglobin 1.03 <0.01 1.01 1.05 
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5.4.4.3 Does the addition of immune markers to traditional cardiovascular risk factor models 

improve the risk prediction for arterial stiffness or intima-media thickness? 

Next we assessed whether substituting HIV status with immune markers associated with PWV or 

cIMT could improve the traditional cardiovascular risk factor model constructed in section 

4.4.4.Table 5-12 shows three models using traditional cardiovascular risk factors to predict PWV but 

with the addition of either HIV, CD4 T cell exhaustion or CD8 T cell exhaustion. Both CD4 and CD8 

Exhaustion are retained in the traditional cardiovascular risk factor model, with a weaker correlation 

than HIV status. The percentage of CD4 and CD8 T cells as well as the percentage of Activated CD8 T 

cells were added into the cIMT traditional risk factor model but none were retained.  
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Table 5-12 Addition of immune markers to traditional cardiovascular risk factors PWV models. 

Variable Traditional risk factors model with HIV 

status added 

Traditional risk factors model with CD4 

Exhaustion added 

Traditional risk factors model with CD8 

Exhaustion added 

 Fold 

change in 

PWV 

P value 95% CI 

(min) 

95% CI 

(max) 

Fold 

change in 

PWV 

P value 95% CI 

(min) 

95% CI 

(max) 

Fold 

change in 

PWV 

P value 95% CI 

(min) 

95% CI 

(max) 

Age (per 10-year 

increase) 

1.19 <0.0001 1.15 1.24 1.16 <0.0001 1.10 1.22 1.16 <0.0001 1.11 1.21 

Female sex 0.92 0.02 0.85 0.99 0.83 <0.0001 0.77 0.92 0.88 <0.01 0.81 0.95 

Systolic BP (per 

10mmHg increase) 

1.04 <0.001 1.02 1.07 1.05 <0.01 1.01 1.08 1.04 <0.01 1.02 1.07 

HIV infection 1.09 0.045 1.00 1.18 NA NA NA NA NA NA NA NA 

CD4 T cell 

exhaustion (per 

10% increase) 

NA NA NA NA 1.02 0.02 1.00 1.04 NA NA NA NA 

CD8 T cell 

exhaustion (per 

10% increase) 

NA NA NA NA NA NA NA NA 1.02 0.049 1.00 1.05 
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5.4.5 Principal components analysis of immune activation  

Principal components analysis of all immune markers was conducted to assess whether immune 

markers could be divided into common groups (the list of all markers included can be found in Table 

5-14). The dendogram for the cluster analysis is shown in Figure 5-22 and the various different 

cluster groups are shown in Table 5-13. The number of groups was arrived at by identifying the 

biggest jump in the pseudo-F statistic. When three groups were taken this also correlated visually 

with three main groups on the dendogram.   

Figure 5-22 Dendogram for cluster analysis of immunophenotyping markers  
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Table 5-13 Immune marker cluster group analysis 

 

 

The make-up of the three identified clusters according to HIV status is shown in Figure 5-23. Group 1 

was largely made up of HIV uninfected participants and Group 3 HIV infected participants. Group 2 

showed a mix of both HIV infected and uninfected participants. To further identify the immune 

marker composition of each group the median for each immune marker was calculated and 

presented in Table 5-14. Group 1 showed the lowest values of markers associated with immune 

activation, exhaustion or senescence and was termed the non-immune activated group. Group 3 

showed the highest percentages of expression of activation, exhaustion and senescence markers 

and was termed the high immune activation group. Group 2 values fell between these two groups 

and was termed the moderate immune activation group. These trends were seen, in particular with 

the T cell exhaustion and senescence markers. Interestingly the proportion of classical monocytes 

was highest and intermediate monocyte lowest in the high immune activation group, with no 

differences in non-classical monocytes across the three groups. This could imply that markers such 

as PD-1 expression, or possibly soluble markers of immune activation might act as biomarkers in 

both HIV infected as well as uninfected adults. 
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Figure 5-23 Cluster analysis of immune marker groups according to HIV status 

 

Group HIV uninfected  

(hollow circles) 

HIV infected  

(filled circles) 

Total 

1 (black dots) 32 4 36 

2 (green dots) 42 31 73 

3 (red dots) 1 48 49 

Total 75 83 158 

 

 

 

Table 5-14 Median values of immune markers for each cluster analysis group 
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Non-immune 
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CD4 

CD38+HLA-

DR+ 

19 (10 – 25) 6 (3 – 9) 33 (26 – 47) <0.001 

CD4 CD38-

HLA-DR+ 
16 (11 – 23) 7 (4 – 10) 23 (18 – 31) <0.001 

CD4 Activated 68 (57 – 76) 50 (40 – 67) 81 (75 – 89) <0.001 

CD4 

CD57+PD1- 
5 (3 – 11) 3 (2 – 6) 3 (2 – 7) <0.01 

CD4 

CD57+PD1+ 
7 (4 – 12) 2 (1 – 3) 12 (7 – 20) <0.001 

CD4 CD57-

PD1+ 
31 (22 – 41) 12 (7 – 19) 53(47 – 62) <0.001 

CD4 

Exhausted 
13 (9 - 22) 24 (15 – 35) 63 (53 – 72) <0.001 

CD4 Senescent 4 (3 – 7) 9 (5 – 17) 18 (9 – 22) <0.001 

CD8 

CD38+HLA-DR- 
20 (12 – 32) 28 (18 – 44) 19 (9 – 23) <0.001 

CD8 

CD38+HLA-

DR+ 

22 (13 – 35) 13 (6 – 24) 46 (35 – 55) <0.001 

CD8 CD38-

HLA-DR+ 
15 (9 – 29) 8 (5 – 17) 17 (9 – 23) <0.001 

CD8 Activated 68 (58 – 80) 60 (42 – 75) 85 (75 – 90) <0.001 

CD8 

CD57+PD1- 
32 (26 – 42) 29 (18 – 38) 27 (18 – 38) 0.13 

CD8 

CD57+PD1+ 
15 (12 – 20) 11 (6 – 19) 22 (18 – 27) <0.001 

CD8 CD57-

PD1+ 
16 (11 – 23) 11 (6 – 16) 29 (18 – 37) <0.001 
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CD8 

Exhausted 
17 (10 – 23) 30 (21 – 41) 43 (37 – 56) <0.001 

CD8 Senescent 31 (23 – 38) 53 (42 – 64) 50 (40 – 58) <0.001 

Monocytes 

Classical 74 (63 – 78) 76 (68 – 82) 80 (70 – 86) 0.01 

Intermediate 11 (9 – 15) 8 (6 – 13) 7 (5 – 12) <0.01 

Nonclassical 14 (11 – 23) 13 (10 – 19) 14 (9 – 19) 0.51 

 

When comparing participants in the highly immune activated group to HIV infected participants in 

the moderately immune activated group, there were signs of more advanced HIV disease (weight 54 

versus 59kg, p<0.01; haemoglobin 11.6 versus 13g/dL, p<0.00001; lymphocytes 1.3 versus 1.75 

x103/uL, p<0.001; HIV viral load 1.2 x106 versus 0.9 x106, p=0.03) and more evidence of acute 

infection (systolic BP 120 versus 128mmHg, p=0.09; heart rate 84 versus 72bpm, p<0.0001), but 

there was no difference in age (40 versus 36 years, p=0.62) or baseline PWV (7.3 versus 7.4 m/s, 

p=0.96). The HIV uninfected participants from the moderately immune activated group had a lower 

total lymphocyte count (2.0 versus 2.5 x103cells/uL, p=0.04) and were older (38 versus 32 years, 

p<0.01) than the HIV uninfected participants from the non-immune activated group.  

Differences were also noted in baseline PWV measures. Participants from the non-immune activated 

group had a lower PWV than both the moderately immune activated group (6.7 versus 7.4 m/s, 

p=0.01) and the highly immune activated group (6.7 versus 7.3 m/s, p=0.02). Although the 

moderately and highly immune activated groups had a higher median [interquartile range (IQR)] age 

[36 (30 – 39) and 40 (29 – 45) years respectively] than the non-activated group [33 years (30 – 39], 

the fold change in PWV associated with being in either the moderately or highly immune activated 

group compared to the non-activated group was 1.15 (CI 1.02 – 1.31, p=0.02) when adjusted for age. 

Figure 5-25 shows higher PWV values for age in the moderately immune activated group. Although 

the non-immune activated group had a lower median PWV than the uninfected participants in the 

moderately immune activated group (6.7 versus 7.7 m/s, p=0.01), the moderately immune activated 

group were older and there was no longer an effect of immune group amongst HIV uninfected 

participants after adjusting for age. However, there was a stronger correlation between PWV and 

age in the HIV uninfected moderately immune activated group (Figure 5-25).
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Figure 5-24 PWV according to age for each immune marker cluster analysis group 
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Figure 5-25 PWV according to age for HIV uninfected participants according to immune marker cluster analysis group 
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5.5 Discussion                                                                                                                                               

T cell activation, exhaustion and senescence were higher in HIV infected participants than 

uninfected. However, the extent of immune activation in HIV uninfected participants was also 

higher when compared to literature from high income settings [426]. Two aspects of the flow 

cytometry protocol may limit the generalisability of this finding. Firstly, FMOs were not 

performed for every run. Although FMOs were initially performed and then validated with a 

standardised method (meaning that samples within this study were comparable), the lack of 

FMOs limits the generalisability of these results to other published literature. FMOs were not 

included with every run because resources were not available to provide the amount of antibody 

that would have been required to do this on such a large number of cells. Secondly, a dead cell 

stain was not used for every run of cells. Although this should not have influenced the 

comparison of patients within this study (as all cells followed the same protocol), some dead 

cells may have accounted for seemingly activated cells giving falsely high activation results. 

However, cells were prepared from fresh and so dead cells would have been relatively few. 

Therefore, non-Malawian volunteers were recruited to ascertain whether the high activation 

rates were due to the study protocol or whether there was a higher level of immune activation 

in HIV uninfected Malawian controls. Although only a few non-Malawian volunteers were 

recruited, they demonstrated lower activation levels when compared to Malawian controls.  

Further, studies from other African countries have confirmed high proportions of activated CD4 

and CD8 T cells in HIV uninfected adults [427]. However, this difference was less pronounced in 

CD4 compared to CD8 T cells, suggesting that there is a higher background CD8 T cell activation 

in Malawian adults. Activated CD4 and CD8 T cells in a Ugandan cohort of HIV infected and 

uninfected were functionally more inflammatory than those of Italian HIV uninfected individuals 

[428]. HIV uninfected Ethiopian adults have been shown to have higher immune activation (at 

comparable proportions to our results) and lower CD4 T cell counts than those reported for 

Caucasians [429]. This difference was not seen in neonates, suggesting that it develops as a 

result of environmental triggers during early childhood [430]. High CD8 T cell activation in HIV 

uninfected Malawians may have implications for HIV transmission – even an increase from 0.8% 

to 1.3 % was associated with increased risk of HIV transmission during the iPrEx study [431]. Low 

CD4 T cell activation in HIV uninfected Africans may also be a marker of a cellular phenotype 

that is protective against acquisition of HIV infection in highly exposed adults [432].  
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Unexpectedly, there was no difference in proportion of monocyte subsets between HIV infected 

and uninfected participants [172]. Furthermore, this lack of difference was due to an expanded 

population of nonclassical monocytes which was not present in non-Malawian controls. It is 

important to consider that the proportion of nonclassical monocytes identified will be 

dependent on gating strategy. However, our gating strategy was standardised and 

independently verified. We also performed controls to ensure that we were not gating on NK 

cells which may also express CD16 and are of similar size. Only one study has previously 

described monocyte subsets in low income sub Saharan Africa populations. It reported an 

expanded population of CD16+ monocytes in healthy pregnant Malawian women to the same 

extent as we have shown in this study, which is 2 to 3 fold higher than the 10% expected in 

healthy individuals from high income settings [433].  

 

The role of nonclassical monocytes in disease has not been extensively described. Transcriptome 

characterisation of monocyte subsets has shown that nonclassical monocytes have diverse 

immunological functions, somewhat separate from the two other monocyte populations, that 

include antigen processing, monocyte activation, angiogenesis and potent induction of T cell 

proliferation [434, 435]. Although they have been shown to expand during acute infection, their 

primary function is thought to involve ‘patrolling’ of the endothelium. Pro-inflammatory 

responses are thought to be relatively less important in these cells when compared to 

intermediate monocytes and they act preferentially via TLR 7 pathways, meaning that they may 

activate in response to virus more than the typical TLR3/4 bacterial product activation [84, 436]. 

The expansion of nonclassical monocytes in this setting could be due to repeated exposure to 

acute infections such as malaria, pneumonia or gastroenteritis, possibly even from childhood. 

This, in turn, may be related to socio-economic factors. Or, a genetic component to proportions 

of monocyte subsets may have evolved in a population that has historically been exposed to a 

high burden of malaria and bacterial diseases. It should also be noted that the period of stay in 

the Malawian setting amongst the non-Malawian comparison group was not accounted for. 

Although the number of non-Malawian comparison adults here in this study is small, the low 

proportion of activated T cells and monocytes is comparable to proportions reported in other 

studies from high resources settings. The proportion of nonclassical monocytes is likely to have 

clinical implications for patients with HIV in SSA. Associations have been made with an increased 

risk of TB IRIS as well as cryptococcal meningitis [88, 437]. Additionally, it is known that CD16 

monocytes are more permissive to HIV and it may be that the high proportion of nonclassical 
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monocytes in HIV uninfected adults increases the risk of transmission and progression of HIV 

following infection [87] [438]. 

Both CD4 and CD8 T cell exhaustion and senescence were associated with PWV in univariate 

analysis. However, in adjusted analysis only CD4 and CD8 T cell exhaustion (PD-1+) were 

retained. Although the effect size was small, this would suggest that PD-1+ T cells either play a 

role in the effect exerted by HIV on PWV or signify a process that is important for vascular injury. 

This is in keeping with previous reports linking T cell activation and low CD4 counts (which share 

overlapping pathophysiological pathways) with arterial stiffness [163, 413]. It is possible that this 

is a bystander effect and that PD-1 expression on T cells could be triggered by the same 

mechanism that leads to arterial stiffness. Or, T cell activation and exhaustion could play a direct 

role in the pathogenesis of arterial stiffness [439]. Whether expression of PD-1 on CD8 T cells is 

associated with increased function can depend on the stage of differentiation and also the 

length of time exposed to ART. The exhausted CD8 T cell phenotype with chronic expression of 

PD-1 seems to persist in the context of established ART, whereas the acute phenotype is more 

associated with a pro-inflammatory hyper-functioning state [414, 440, 441].  Lastly, 

consideration should be given, in particular, to the possible contribution of CMV. Good evidence 

exists to implicate CMV reactivation in both endothelial damage and T cell exhaustion and this 

could be of particular relevance in this highly immune suppressed cohort [167] .  

In this study, HIV viral load was not an important factor for PWV or cIMT. Although Eller et al in 

Uganda found progression in patients with HIV seroconversion to be independently associated 

with clinical disease rather than T cell activation, they were looking at a group with much higher 

CD4 counts [427]. It may be that at lower CD4 counts, viral load becomes relatively less 

important. An analysis of a cohort of Malawian adults on long term ART was assessed using the 

same protocols and showed that arterial stiffness was independently associated with HIV viral 

load and default from treatment [442]. T cell activation and senescence have previously been 

associated with subclinical carotid artery disease in high income settings [183, 443], but these 

factors have not been studied in sub-Saharan Africa to date. At baseline, there was no clear 

association between monocyte subsets and PWV or cIMT. Nonclassical monocytes have recently 

been implicated in progression of subclinical atherosclerosis [444] and coronary artery 

calcification[445], but have been shown not to be associated when studied with T cells [446]. 

Single nucleotide polymorphisms of monocyte surface marker expression have recently been 

implicated in the pathogenesis of atherosclerosis [447], suggesting that genetics could influence 

the contribution of monocytes to CVD in an African population. 
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Principal components analysis identified three immune activation groups based on the extent of 

immune activation. HIV infected participants almost exclusively fell into the highly immune 

activated group or the moderately immune activated group. HIV uninfected participants almost 

exclusively fell into the non-immune activated or moderately immune activated group. 

Moderately activated HIV uninfected participants were older, had lower lymphocyte counts and 

had higher PWV values. The lower lymphocyte values found in moderately immune activated 

HIV uninfected Malawians suggests a role for exhaustion of lymphopoiesis even in this HIV 

uninfected cohort [448]. This finding, that a subset of HIV uninfected adults has chronic immune 

activation and higher arterial stiffness, has not been previously reported in the literature and 

requires further investigation.  

 Of note, the proportion of both CD4 and CD8 T cells with the CD38+HLA-DR- phenotype was 

inversely correlated with higher immune activation levels (as seen especially with the principal 

components analysis) and arterial stiffness. A Chinese group have recently published the same 

observation and suggested that during untreated HIV infection, CD38 and HLA-DR expression on 

T cells may represent different processes [449]. Increased HIV-specific responses, in particular, 

have been demonstrated in CD38-HLA-DR+ T cells and may be associated with better long term 

control of the virus [450]. Previous work by Ramzaoui et al at the beginning of the AIDS epidemic 

demonstrated that progressive increase in HLA-DR expression on CD38 positive cells was 

associated with disease progression [451]. The original work looking at the importance of CD38 

and HLA-DR identified the absolute number of molecules of CD38 per CD8 T cell as being highly 

predictive of development of AIDS [452] and it should be noted that here we have divided CD38 

expression into a binary state of either expressed or not expressed and the number of cells with 

that proportion, rather than the average intensity of expression of markers on cell surface. 

Together, it is likely that expression of CD38 but not HLA-DR is associated with better immune 

outcomes but further work would be required to identify whether this cell type conferred a 

functional benefit or whether it is decreased in immune activation as a consequence of 

compartmental dynamics and increases in other cell types.  

This is the first study to demonstrate a relationship between T cell activation and arterial 

stiffness in low income sub-Saharan Africa. We have shown, for the first time, that it is T cell 

activation rather than expansion of inflammatory monocytes that is important during ART 

initiation in this setting. Further we have demonstrated high background immune activation in 

HIV uninfected individuals characterised, in particular, by expansion of nonclassical monocytes 

and immune activated CD8 T cells. It should be noted that these associations are based only on 
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cell surface expression of activation markers. More work is required to characterise the function 

of both T cell and monocyte subsets in this setting and identify the mechanisms which lead to 

arterial stiffness.  

These data suggest that immune activation plays a different role in endothelial damage in low-

income sub Saharan Africa where frequent acute infections from an early age, poverty and 

malnutrition are common. Although they also implicate immune activation in the pathogenesis 

of endothelial damage, immune activation does not seem to be solely related to HIV infection in 

this setting and other factors should be examined. 

6 CHARACTERISATION OF CIRCULATING MICROPARTICLES  

6.1 Introduction 

Microparticles (MPs) are released into the circulation following activation or apoptosis of the 

affected cells [453]. Through a process of blebbing, microparticles are formed from the originating 

cell’s outer membrane. During this process, Annexin V molecules, which are normally located on the 

inner membrane of a cell, are flipped round to become expressed on the microparticle surface [454]. 

Therefore, molecules less than 3µm in size and expressing Annexin V are classified as microparticles. 

These microparticles also express the markers expressed on the surface of the cell of origin and so 

microparticle subsets are an indication of which cells are undergoing stress.  

MPs are involved in intercellular communication and play an important role in the pathogenesis of 

cardiovascular disease [455, 456]. In particular, endothelial microparticles (EMPs) act as a marker of 

damage either by exacerbating disease progression through attenuation of pro-atherogenic activity, 

or by triggering a repair response through induction of differentiation of endothelial progenitor cells 

(EPCs)[457]. In the Framingham Offspring cohort each tertile increase in Framingham risk score 

corresponded to a 9% log increase in EMPs[458].  

As well as EMPs, microparticles of cells from compartments affected by systemic inflammation can 

be measured, including leucocyte, platelet and smooth muscle microparticles [459]. Tissue factor 

(TF) is mainly expressed on leucocytes and is upregulated during the coagulation cascade leading to 

increased cell to cell adherence [460]. Some evidence suggests that an upregulation of TF on 

monocytes is associated with an increased risk of coronary events in patients with HIV infection 

[169].   
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We aimed to quantify the total number of circulating MPs as well as characterise MP subsets in adult 

Malawians and to help understand potential mechanisms underlying the effect of HIV on immune 

activation and endothelial damage.    

6.2 Specific objectives 

This chapter aims to use quantification and characterisation of microparticles to help address overall 

objective number 5: “Explore the mechanisms involved in endothelial dysfunction according to 

different HIV related immune phenotypes”. From this, two main specific objectives have been 

developed: 

1. In Malawian adults, is arterial stiffness associated with: 

a. the total number of circulating microparticles 

b. particular subsets of circulating microparticles 

2. In Malawian adults, is HIV infection associated with: 

a. the total number of circulating microparticles 

b. particular subsets of circulating microparticles 

 

6.3 Methods 

6.3.1 Study cohort 

SHIELD patients were first divided into HIV infected and HIV uninfected and then ordered according 

to baseline PWV values. Participants with a PWV in the highest quartile (>9 m/s) were chosen 

randomly in a 2:1 ratio to patients with a PWV below the highest quartile from the HIV infected 

cohort. This was to enrich the number of potential microparticles for subset analysis (we 

hypothesised they would be higher at higher ranges of PWV) whilst also capturing a range of values 

to analyse associations with total microparticle count. HIV uninfected participants were then 

matched as closely as possible on age, systolic BP and diastolic BP. Because we were comparing 

microparticles in HIV infected compared to HIV uninfected and there was an equal number of those 

identified from high and low PWV values this was not thought to introduce any risk of bias.  

6.3.2 Sample size calculations 

A convenience sample of 36 HIV infected participants and 36 HIV uninfected matched controls were 

chosen from across the spectrum of PWV values.  
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6.3.3 Statistical analysis 

Microparticle data was heavily left skewed and so Wilcoxon Ranksum and Chi2 were used to evaluate 

continuous and categorical variables respectively. Microparticles were analysed as continuous data.  

6.3.4 Study procedures 

6.3.4.1 Microparticle analysis training 

Onsite training was provided to the study PI and the study lab technician by Rijan Gurung, PhD 

student at ICH, UCL who also assisted in post-acquisition analysis of microparticle data.  

6.3.4.2 Isolation of microparticles 

Plasma samples frozen at -80C were thawed in a 37C water bath for 1 minute. 250uL was 

centrifuged at 5000g for 5 minutes in order to isolate platelet poor plasma (PPP). PPP was then 

centrifuged at 16000g for 60 minutes and the PPP was decanted to leave 20uL of microparticle 

pellet. Distilled water was filtered through 0.22 um syringe filter under a flow hood. Distilled filtered 

water was then added to Annexin V 10x buffer at a 1:10 dilution. Sufficient Annexin V 1x buffer was 

then added to the microparticle pellet to a volume sufficient to allow 35uL of microparticle/Annexin 

V buffer solution for each antibody combination being tested and controls.  

 

6.3.4.3 Microparticle staining panel 

In addition to a total microparticle count, further characterisation identified origins of microparticle 

subsets using cell surface markers indicative of the cell of origin. Endothelial, leucocyte, monocyte, 

platelet and smooth muscle microparticles were assessed and the staining panel is summarised in 

Table 6-1. Microparticles were identified by size and by the expression of Annexin V (AnV). 

Endothelial microparticles were those expressing either VCAM or E-selectin. PECAM was also taken 

to be an endothelial marker on particles that were not expressing CD41a (platelet marker). Given the 

high number of nonclassical monocytes identified in the PBMC analysis, CD14/CD16 double positive 

microparticles were also included to help assess the potential significance of this subset. 

Table 6-1 Microparticle staining panel 

Microparticle 

origin 

 AnV stain  MP origin stain 

Endothelial  AnV+ FITC  

(BD 

Pharmingen) 

VCAM+ PE (BD Pharmingen) 
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AnV+ FITC E-selectin+ PE (BD Pharmingen) 

AnV+ FITC PECAM+ APC Cy7  

(BD Pharmingen) 

CD42a- PE (BD 

Pharmingen) 

Leukocyte  AnV+ FITC CD66b+ PE (BD Pharmingen) 

AnV+ FITC  

 

CD16+ PE (BD Pharmingen) 

  

Monocyte AnV+ PE 

(BD 

Pharmingen) 

CD14+ APC Cy7 

(Biolegend) 

TF+ FITC  

(Sekisui Diagnostics) 

AnV+ FITC CD14+ APC Cy7 CD16+ PE 

Platelet AnV+ FITC CD42a+ PE (BD Pharmingen) 

Smooth Muscle  AnV+ FITC PDGFβ+ PE (R&D Systems) PECAM- APC Cy7 

AnV+ FITC Endoglin+ PE  

(BD Pharmingen) 

PECAM- APC Cy7 

AnV+ FITC NG2+ PE (R&D Systems) PECAM- APC Cy7  

AnV+ FITC ICAM1+ PE PECAM- APC Cy7 

 

Each antibody was diluted to a 1:100 concentration in either AnV buffer for AnV antibodies or in PBS 

for all remaining antibodies. 5uL of AnV antibody was added to each well containing 35uL of 

microparticle AnV buffer solution. The remaining origin stains were then added at a volume of 10uL 

for those tubes that only had one origin stain and 5uL for those tubes that had two origin stains. This 

was to ensure a total staining volume of 50uL for all samples. Single stain samples were also 

acquired for the purposes of compensation and isotype controls were analysed for the purposes of 

gating. For the isotype controls, 10uL of 1:40 isotype control antibody was added to the 35uL 

microparticle AnV buffer solution along with 5uL of AnV antibody (IgG1 PE, R&D Systems; IgG1k PE, 

IgG1 FITC, R&D Systems; IgG1k APC Cy7, BD Pharmingen; IgGMk PE, BD Pharmingen).  

Following staining plates were covered with foil and agitated at room temperature for 20 minutes. 

200uL AnV buffer was added to every well and then transferred to FACS tubes. A further 400uL AnV 

buffer was then added to every tube. Finally, 6uL of 3um latex beads (SIGMA) were added to 2ml of 

distilled filtered water and 10uL of that was added to 650uL distilled filtered water.  

6.3.4.4 Flow cytometer acquisition  

A microparticle protocol was created on the CyAn flow cytometer with the same voltage settings as 

the T cell and monocyte panels but with a lower capture threshold of 0.01% instead of 2%. This was 
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to ensure that microparticles were not excluded as debris. 350uL of each FACS tube was acquired 

and the plots were then transferred to Flow Jo (Tree star Inc.) for analysis.  

6.3.4.5 Microparticle gating 

After identification of singlets, the microparticle pellet was gated on forward scatter and AnV (FITC) 

to identify the microparticle population which was less than 3um in size and expressing AnV (see 

Figure 6-1). The microparticle population was then used to characterise further surface markers 

indicating the origin of the cells. Those tubes with two stains in addition to AnV staining were gated 

using crosshairs to identify 3 populations and those tubes with only one additional population was 

gated into two populations. Gates were applied using thresholds provided by isotype controls. 

Figure 6-1 Identification of the microparticle population 

 

 

6.3.5 Analysis of TF expression on monocyte subsets 

High TF expression was found on microparticle subsets and therefore to help further characterise 

the link between nonclassical monocytes, CD16+ microparticles and TF expression, a small subset of 

monocyte cells was also stained for TF (TF FITC, Sekisui Diagnostics) in addition to the existing 

protocol. Each batch of cells was compensated individually with compensation beads and the 

existing monocyte gating strategy was used to identify monocyte subsets. The mean fluorescence 

intensity of TF expression was then calculated for each monocyte subset, and the median value was 

used to compare groups.  
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6.4 Results 

6.4.1 Summary of characteristics of patients included in microparticle analysis  

Microparticle data were available for 36 HIV uninfected and 33 HIV infected participants. Sufficient 

plasma samples were not available for 3 HIV uninfected participants. The baseline clinical 

characteristics of the 69 participants with available microparticle data is given in Table 6-2. Median 

PWV was 1 m/s higher in the HIV infected participants with microparticle data and haemoglobin was 

2 units less.  

Table 6-2 Clinical characteristics of 67 SHIELD participants with microparticle data 

 HIV uninfected 

n=36 

HIV infected 

n=33 

Age (years, median IQR) 40 (34 – 48) 40 (35 – 50) 

Waist: height ratio  0.48 (0.45 – 0.53) 0.46 (0.42 – 0.50) 

Systolic BP  128 (118 – 134) 130 (118 – 135) 

Diastolic BP  76 (69 – 79) 79 (74 – 88) 

Haemoglobin  14 (13 – 15) 12 (11 – 12) 

Cholesterol 4.2 (3.7 – 4.9) 4.2 (3.6 – 4.7) 

Glucose 4.6 (4.2 – 5.4) 4.6 (4.2 – 5.0) 

Creatinine 66 (57 – 80) 69 (58 – 84) 

PWV 9.0 (8.1 – 10.3) 8.0 (6.7 – 8.7) 

Mean CCA 0.56 (0.55 – 0.64) 0.59 (0.54 – 0.66) 

Female (f, %) 15 (42%) 12 (39%) 

Primary school education or less  20 (57%) 17 (55%) 

Ever smoked 5 (14%) 6 (19%) 

Ever drank alcohol 12 (33%) 14 (45%) 

History of CVD 4 (11%) 3 (10%) 

Current infection 1 (3%) 3 (10%) 

 

6.4.2 Relationship between microparticles and clinical variables 

Total microparticle counts (x103) are given for categorical variables in Table 6-3 and associations 

between total microparticle count and continuous variables are given in Table 6-4. Microparticles 
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were significantly higher in the HIV infected participants compared to uninfected. Diastolic BP, heart 

rate, creatinine and PWV were all positively correlated with microparticles; lymphocytes and 

haemoglobin were negatively associated. 

 

Table 6-3 Comparison of total microparticle counts for categorical variables 

 
Median 

microparticle count 

x103 

P value  

HIV infected 5100 (2000 – 

18000) 

 

HIV uninfected 410 (200 – 6000) <0.00001 

Male 1000 (401 – 5100)  

Female 480 (300 – 3400) 0.17 

Primary school education or less 900 (260 – 5100)  

Greater than primary school education 730 (420 – 4700) 0.66 

Smoker or ex-smoker 900 (400 – 6700)  

Never smoked 680 (320 – 4700) 0.61 

Drinks alcohol or past alcohol 2700 (400 – 5100)  

Never drank alcohol 530 (290 – 4700) 0.12 

Pre-existing cardiovascular diagnosis 980 (400 – 1800)  

No previous cardiovascular diagnosis 790 (320 – 4100) 0.29 

Prescribed CV drugs 530 (400 – 980)  

Never prescribed CV drugs 870 (320 – 4900) 0.87 

Clinically hypertensive 1700 (320 – 17000)  

Not clinically hypertensive 600 (340 – 275) 0.16 

Current infection 2550 (1300 – 4100)  

No current infection 730 (320 – 4700) 0.42 

 

Table 6-4 Correlation between continuous variables and total microparticle count 

 
Spearman’s rho P value  
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Age 0.20 0.10 

Waist: height ratio -0.17 0.17 

Heart rate 0.30 0.01 

Systolic BP 0.14 0.26 

Diastolic BP 0.23 0.07 

Haemoglobin -0.23 0.07 

Fasting Cholesterol 0.11 0.40 

Fasting Glucose -0.14 0.28 

Creatinine 0.31 0.01 

Lymphocytes -0.26 0.04 

Monocytes 0.06 0.67 

PWV 0.42 <0.001 

Mean CCA 0.16 0.22 

 

When assessing correlations between microparticle subsets and PWV, PECAM+ and Eselectin+ 

microparticles (endothelial in origin) were closely associated (see Table 6-5). Leucocyte and 

monocyte particles also correlated significantly with PWV, except the non-classical monocyte 

phenotype. Platelet microparticles were closely associated with PWV as well as most smooth muscle 

markers. 

Table 6-5 Correlations between microparticle subsets and PWV 

 Spearman’s rho P value  

Total MPs 0.42 <0.001 

Endothelial 

 

PECAM+CD42a- 0.58 <0.00001 

PECAM+Eselectin- -0.31 0.01 

PECAM+Eselectin+ 0.52 <0.00001 

PECAM-Eselectin+ 0.49 <0.00001 

ICAM+PECAM+ 0.25 0.09 

VCAM+PECAM- 0.41 <0.01 

VCAM+PECAM+ 0.20 0.19 

Eselectin+ 0.57 <0.00001 

Leucocyte 

 

CD66b 0.44 <0.01 

CD16+TF- 0.43 <0.01 



216 
 

CD16+TF+ 0.47 <0.01 

CD16-TF+ 0.52 <0.001 

CD14-CD16+ 0.69 <0.00001 

Monocyte 

 

CD14+CD16+ 0.003 0.99 

CD14+TF- 0.52 <0.001 

CD14+TF+ 0.42 <0.001 

Platelet CD42a+ 0.56 <0.00001 

Smooth muscle 

 

NG2+PECAM- 0.52 <0.001 

PDGFRβ+PECAM- 0.47 <0.01 

Endoglin+PECAM- 0.43 <0.01 

Endoglin+PECAM+ 0.12 0.23 

ICAM+PECAM- 0.53 <0.001 

 

6.4.3 Effect of HIV on microparticles 

The total microparticle count was significantly higher amongst HIV infected participants compared to 

HIV uninfected Malawian and HIV uninfected non-Malawian controls (see Figure 6-2). The 

breakdown of the origin of these microparticles is shown in Figure 6-4. Axes for the HIV uninfected 

and infected groups have different ranges in order to accommodate the large difference in values for 

both groups. Platelet and Eselectin+ endothelial microparticles are greatly increased in HIV infected 

participants compared to HIV uninfected. Microparticles originating from both TF cells that were not 

CD16+ and CD16+ cells that were not monocytes were higher in HIV infected participants.  
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Figure 6-2 Total microparticle frequency according to HIV status 
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Figure 6-3 Frequency of microparticle subsets for HIV uninfected and infected participants 
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Figure 6-4 Endothelial microparticle frequencies for 3 HIV uninfected non-Malawian controls 

 

6.4.1 TF expression on monocyte subsets 

An example of monocyte gating of TF expression for each of the three monocyte subsets is 

presented in Figure 6-5. Figure 6-6 shows the mean MFI for each monocyte subset for 15 HIV 

infected and 9 HIV uninfected participants. Although TF expression was highest on nonclassical 

monocytes (in keeping with their hypothesised endothelial ‘rolling’ function), there was no 

significant difference in TF expression on monocytes from HIV infected and HIV uninfected 

participants and the frequency of CD16+ or CD14+ microparticles also staining for TF was not raised. 
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Figure 6-5 Tissue factor Mean Fluorescence Intensity on monocyte subsets 
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Figure 6-6 Mean Fluorescence intensity of Tissue Factor on monocyte subsets according to HIV status 
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6.4.2 Relationship between microparticles and immune markers including principal components 

analysis groups 

The relationship between the total number of circulating microparticles and their subsets was 

compared to immune activation markers using the three immune activation groups generated in the 

principal components analysis in section 5.4.5.  The total number of microparticles was significantly 

raised in the highly immune activated group compared to the moderately immune activated group 

which in turn were higher than the non-immune activated group, as analysed by Wilcoxon ranksum 

(Table 6-6).  As was the case when comparing HIV infected and uninfected individuals, the type of 

microparticles raised in the highly immune activated group compared to the moderately activated 

group were E selectin positive endothelial microparticles and platelet microparticles. Both median 

(IQR) platelet and non-monocyte TF positive microparticles were raised in HIV infected participants 

in the moderate group compared to those in the non-immune activated group [59 x103 (36 x103 – 75 

x103) versus 16 x103 (7 x103 – 22 x103), p<0.01 and 2 x103 (0.5 x103 – 10 x103) versus 0.02 x 103 (0 – 

0.08 x103), p<0.01 respectively]. Absolute CD4 and HIV viral load indices were not included in the 

PCA analysis because they were only available for HIV infected participants. Although there was no 

association between CD4 count and microparticles, TF positive monocyte microparticles were 

significantly associated with HIV viral load (spearman rho= 0.40, p=0.03).  
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Table 6-6 Comparison of median microparticle counts for each subset according to immune activation group 

 Highly activated 

[median (IQR) 

count x103] n=8 

Moderately activated 

[median (IQR) count 

x103] n=27 

P value  

(Highly activated 

compared to 

moderately activated) 

Non-activated 

[median (IQR) 

count x103] n=10 

P value  

(Non-activated 

compared to 

moderately activated) 

Total MPs 4000 

(2400 – 5600) 

440 (170 – 890) <0.001 270 (130 – 530) 0.10 

Endothelial 

 

PECAM+CD42a- 110 (64 – 220) 5.9 (1.9 – 43) <0.01 2.2 (1.9 – 11) 0.08 

PECAM+Eselectin- 0 (0 – 610) 0.12 (0 – 2.4) 0.69 0.02 (0 – 0.8) 0.07 

PECAM+Eselectin+ 670 (370 – 890) 52 (13 – 130) 0.01 47 (18 – 110) 0.74 

PECAM-Eselectin+ 3400 (730 – 48000) 250 (64 – 470) 0.02 120 (69 – 280) 0.22 

ICAM+PECAM+ 30 (4 – 52) 1.4 (0.31 – 4) 0.11 1.4 (0.94 – 33) 0.93 

VCAM+PECAM- 22 (16 – 32) 3.3 (1.3 – 8.0) <0.01 2.3 (1.3 – 3.4) 0.09 

VCAM+PECAM+ 2.0 (0 - 24) 0.16 (0 – 0.47) 0.48 0.31 (0 – 0.94) 0.39 

Eselectin+ 220 (68 – 370) 21 (6.4 – 43) 0.01 9.8 (5.9 – 34) 0.18 

Leucocyte 

 

CD66b 86 (64 – 96) 14 (5.6 – 3.2) 0.07 3.4 (1.1 – 6.9) 0.18 

CD16+TF- 130 (96 – 25) 8.7 (5.5 – 20) <0.01 8.8 (5.5 – 18.6) 0.83 

CD16+TF+ 34 (4.0 – 44) 1.1 – (0.47 – 5.3) 0.10 0.94 (0.31 – 3.9) 0.58 

CD16-TF+ 130 (96 – 25) 8.8 (5.5 – 20) <0.01 16 (6.6 – 22) <0.01 

CD14-CD16+ 490 (76 – 780) 33 (4.7 – 610) 0.18 6.0 (1.6 – 10) 0.32 

Monocyte CD14+TF- 90 (64 – 92) 6.4 (3.1 – 12) <0.01 3.6 (3.1 – 7.3) 0.19 
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 CD14+TF+ 40 (4.0 – 88) 1.4 (0.37 – 4.0) <0.01 0.47 (0.27 – 4.1) 0.72 

Platelet CD42a+ 1000 (750 – 1500) 35 (10 – 260) 0.01 17 (0.94 – 41) 0.06 

Smooth 

muscle 

 

NG2+PECAM- 8.6E4 (6.4E4 – 

9.6E4) 

1.4E4 (5.6E3 – 3.2E4) 0.02 7.8 (5.6 – 18.8) 0.24 

PDGFRβ+PECAM- 180 (80 – 240) 10 (5.0 – 28) <0.01 7.2 (4.7 – 9.5) 0.02 

Endoglin+PECAM- 230 (170 – 280) 14 (10 – 21) <0.01 12 (10 – 14) 0.61 

Endoglin+PECAM+ 18 (8.0 – 32) 0.94 (0.47 – 6.4) 0.11 0.94 (0.47 – 2.3) 0.77 

ICAM+PECAM- 160 (130 – 200) 11 (5.3 – 25) <0.01 7.3 (5.3 – 11) 0.24 
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Figure 6-7 Microparticle subsets according to Immune Activation PCA groups 
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6.5 Discussion 

By examining circulating microparticles we have provided further evidence that HIV infection and 

immune activation are associated with adverse pathophysiological consequences at a cellular level.  

Circulating microparticles are induced in response to cellular stress in the form of activation, 

apoptosis or physical shear stress [461]. The total proportion of circulating microparticles is a marker 

of the extent of apoptosis in response to this ongoing stress. We showed that the quantity of 

circulating microparticles is strongly associated with HIV infection, immune activation and PWV. 

Given that patients with and without HIV were not matched for heart rate, lymphocyte count or 

creatinine the finding that these measures were associated with the number of microparticles may 

simply reflect their association with HIV infection.  

The total number of circulating microparticles was over 40 fold higher in HIV infection than in those 

without HIV infection. For patients in the high immune activation group, the number of total 

circulating microparticles was 10 fold higher than the moderate immune activation group which was, 

in turn, twice as high as the non-immune activated group. Using the same protocols looking at adults 

from the UK, the total number of circulating microparticles was 10 fold higher in myocardial 

infarction and 20 fold higher in pulmonary artery hypertension as compared to Malawian adults with 

HIV infection (personal communication, Dr Rijan Gurung, UCL). The rise in total microparticles for 

both the HIV infected group as well as the higher immune activation groups consisted mainly of an 

increase in endothelial microparticles (PECAM-Eselectin+) and platelet microparticles (CD42a).  

Consistent with this finding, platelet microparticles have previously been shown to be more frequent 

and more activated in HIV infection as defined by upregulated expression of TF [462]. Additionally, 

da Silva et al showed that endothelial microparticles were 20 times higher in HIV infected compared 

to HIV uninfected participants (although endothelial microparticles were defined as CD51+ which 

limits comparison with our current results) [463]. Non-monocyte CD16 expressing cells were raised 

across all three immune activation groups and are likely to represent neutrophil microparticles 

(which make up a higher number of circulating white blood cells than NK cells). It should be 

remembered that the circulating microparticles were characterised from plasma from whole blood 

samples, not from PBMCs and therefore may have contained neutrophil microparticles even though 

we were unable to quantify neutrophil whole cells from the PBMC analysis in this study. It is 

therefore possible that neutrophil microparticles are frequent circulating microparticles in healthy 

HIV uninfected Malawian adults, even without immune activation. 

Total circulating microparticles were higher in HIV uninfected participants than in non-Malawian 

controls and were also mainly made up of endothelial and platelet microparticles. Although there 
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were only 3 non-Malawian controls and one had a higher number of microparticles than the other 

two, these were still significantly lower than the HIV uninfected Malawian participants. When 

comparing to data from healthy UK controls, the total number of circulating microparticles in HIV 

uninfected adult Malawians was approximately twice as high (personal communication, Rijan 

Gurung). There are no published data on circulating microparticles from a sub-Saharan Africa cohort 

either in HIV infected or uninfected individuals. Platelet microparticles and TF positive microparticles 

were elevated in HIV negative participants with moderate immune activation. The microparticles 

identified as expressing TF were CD14 negative and therefore unlikely to have been monocyte 

microparticles. Activation of platelets and TF expression in general would be in keeping with 

activation of pro-thrombotic pathways which have been previously identified in HIV infection [464], 

myocardial ischaemia [465] and stroke [466] and have been shown to improve with ART in HIV 

infected adults [467]. Studies from cancer models have shown that TF positive microparticles can 

induce platelet activation, leading to perpetuation of the pro-thrombotic state [468]. Similarly, 

platelet microparticles have been found to be key mediators of pathological thrombotic responses 

[469] and interestingly, can differentiate between severity of Dengue Virus infection in plasma from 

patients with acute infection [470]. The significance of the discovery of a high level of pro-

thrombotic microparticles in an otherwise healthy population is unknown.  

The number of circulating microparticles as well as the majority of subtypes of microparticles were 

closely associated with PWV including endothelial, leucocyte, smooth muscle and platelet 

microparticles. Classical monocytes with and without expression of TF were associated with PWV, 

but not monocytes expressing CD16. An analysis of EMPs in the Framingham Cohort demonstrated a 

9% increase in EMPs for each tertile of the Framingham risk score [458]. EMPs have been directly 

correlated with arterial stiffness [471, 472] and endothelial damage [456]. Further, EMPs are 

reduced following use of aspirin in patients with diabetes [473] and have been associated with a 

reduction in arterial stiffness in patients being treatment for hypertension and hyperlipidaemia 

[474]. 

We also assessed whether microparticle data could help shed light on whether the highly expanded 

group of nonclassical monocytes identified in Malawian adults is of functional significance. Firstly, 

we studied TF expression on monocyte cells, which has been previously implicated in atherosclerosis 

and is also related to pro-inflammatory coagulation pathways [169]. We found that in a small 

number of patients, nonclassical monocytes had the highest expression of TF and there was no 

difference found in the TF expression of monocyte subsets according to HIV status. When looking at 

microparticles, classical monocyte microparticles expressing TF and those not expressing TF were 
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both positively associated with PWV, but there was no difference in these microparticle subtypes in 

those with and without HIV. Because TF is also a soluble factor, it is possible that some of the TF 

results identified in microparticle analysis may be explained by adherence of soluble TF to circulating 

microparticle membranes. Even if this was the case, this would still represent increased circulating 

levels of TF which would contribute to a pro-inflammatory state. Monocyte-platelet aggregates are 

also common in inflammatory states and lead to upregulation of expression of CD16 on the 

monocyte cell surface as well as increased adhesion to endothelial cells [475]. It is also therefore 

possible that an increase in nonclassical monocyte microparticles is not seen due to a consumption 

rather than underproduction. Interestingly, the only type of microparticle that was associated with 

HIV viral load were TF expressing monocytes, suggesting that the production of TF may be more 

closely related to viral stimulus, possibly explaining the upregulation of nonclassical subtypes which 

have been shown to respond via viral pathways. 

So far we have largely discussed circulating microparticles in reference to their role as biomarkers of 

endothelial damage. However, a growing body of research suggests that microparticles play an 

important functional role in cellular communication and disease pathogenesis. For example, TF 

expression on microparticles has been associated with high rates of deep venous thromboembolism 

(DVT) [476, 477]. Endothelial microparticles may have different actions depending on the 

environment under which they were produced: microparticles produced under apoptosis can lead to 

increases in nitric oxide and bystander apoptosis, whereas those produced under activation can 

propagate inflammation, recruit cells and promote angiogenesis [478]. Microparticles may also 

transfer important material to other cells. EMPs have been shown to transfer TF to monocytes [475] 

and the CCR5 receptors may be transferred to endothelial cells from leucocyte derived 

microparticles potentially rendering them permissible to direct HIV infection [479].More recently, 

the clinical utility of microparticle quantification and characterisation as biomarkers and potential 

therapeutic targets is being recognised [480].  

This is the first characterisation of circulating microparticles in sub-Saharan Africa. The 

characterisation of microparticles in this study lends weight to a model where active and significant 

immune activation is strongly related to endothelial damage. Although this finding is more 

pronounced in people with HIV, perturbations in the inflammatory axis have been shown in HIV 

uninfected adults. Further research into the relationship between immune activation and 

endothelial damage in adult Malawians is therefore warranted.  
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7 CHAPTER 7: CHANGES IN ENDOTHELIAL DAMAGE AND IMMUNE 

ACTIVATION FOLLOWING 46 WEEKS OF ART 

7.1 Introduction 

Significant improvements in immune activation on effective ART are well documented [481, 482]. 

This is closely related to CD4 reconstitution, viral suppression and improvement in inflammatory 

markers [483]. However, for a significant proportion of patients, a state of chronic immune 

activation persists despite suppressive therapy [484]. Chronic immune activation is closely 

associated with low nadir CD4 counts and therefore we chose a cohort of patients with marked 

immune suppression to enable analysis of chronic immune activation in this vulnerable group of 

patients [485].  

Most longitudinal studies assessing the change in endothelial damage on ART have focussed on 

soluble biomarkers [486], showing that they resolve early  [487] but remain elevated compared to 

HIV uninfected individuals for up to at least 12 years [488]. The same pattern was observed in a 

cohort of South African patients during a median follow up of 7 months where coagulation markers 

improved but did not normalise compared to HIV uninfected controls [489]. Two studies have shown 

improvement in flow-mediated dilatation (a measurement of endothelial function) sustained at 6 

months of ART, starting as early as 4 weeks post ART initiation [490, 491]. No studies have assessed 

longitudinal changes in endothelial damage on ART in a sub-Saharan Africa setting. 

ART itself contributes to endothelial damage, but evidence suggests that the effect of ART is 

accumulated over time and is less important during early ART treatment [492]. One advantage of 

studies from a setting like Malawi is that the majority patients are on the same ART (and with few 

regime changes) and therefore this variable is standardised across patients. The first three months 

following the initiation of ART is a particularly high risk period in terms of AIDS related morbidity and 

mortality [493]. Notably, it is associated with a high risk of acute stroke which may be related to the 

higher risk of Immune Reconstitution Inflammatory Syndrome (IRIS) amongst patients initiating ART 

with a low CD4 count [494]. The reconstitution of immune cells and unmasking of underlying co-

infections may increase the risk of developing endothelial damage during this time.   

The REALITY interventions focus on reducing mortality within the first three months of ART 

treatment. Each intervention may also target an underlying pathway for the development of chronic 

immune activation. The enhanced prophylaxis arm may treat or prevent co-infections including TB, 

cryptococcal meningitis and invasive bacterial infection. The addition of an integrase inhibitor may 

lead to a more rapid decrease in viral load and a lower viral load set point leading to less continued 
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viral replication and an earlier recovery of immune activation. RUSF may lead to a reduction in the 

production of oxidised lipids and may increase the potential for immune recovery. These 

interventions may reduce immune activation and therefore have an effect on endothelial damage, 

or may reduce endothelial damage through mechanisms independent of the resolution of immune 

activation.  

This chapter aims to detail changes in both immune activation and endothelial damage during the 

first 46 weeks of ART therapy and to use the REALITY interventions to begin to understand potential 

pathogenic mechanisms and therapeutic targets for endothelial damage during early ART therapy.   

7.2 Specific objectives 

This chapter will address specific objectives 6 and 7: 

6. Describe the extent to which resolution of immune activation on ART alters endothelial 

dysfunction as measured by arterial stiffness 

 

7. Investigate whether intensified initial management of HIV confers a larger decrease in 

endothelial dysfunction as measured by arterial stiffness, compared to standard ART 

7.3 Methods 

7.3.1 Study procedures 

The patient cohort, measurement of arterial stiffness and immunophenotyping methods have been 

described in 2.33.1, 3.2 and 5.3.2 respectively. An overview of the follow-up schedule for the 

longitudinal data capture is provided in Figure 3-7. 

7.3.2 Sample size calculations 

Sample size calculations for objective 6 are provided in section 3.6. Objective 7 is exploratory and as 

such has no formal sample size calculation.  

7.3.3 Statistical analysis 

Univariate and multivariate analysis was performed as described in previous chapters.  

Two different types of outcomes were assessed within this chapter. Firstly, absolute PWV at all time 

points measured were individually analysed. In other words, baseline factors predictive of PWV at 

week 10, 22 and 44 as well as week 44 factors associated with PWV at week 44. This type of 

outcome is referred to throughout the chapter as ‘absolute PWV’ at any given time point. Secondly, 

factors that predicted a change in PWV from baseline were measured – i.e. baseline factors that 
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affected change in PWV from baseline to week 10, baseline to week 22 and baseline to week 44 

were assessed. This outcome is referred to as ‘change in PWV’ from baseline to any given time point. 

For the longitudinal analysis of acute co-infections, patients who had an acute infection at the time 

of recruitment up until the time of exit were counted as having had an infection during the study 

period. Therefore, this included anyone who had an infection at baseline plus anyone who 

developed an acute infection during the study but after enrolment. Data reporting CD4 counts and 

viral loads include only HIV infected participants as these variables were not measured in HIV 

uninfected participants. HIV viral load at baseline and change in viral load between baseline and 

week 44 were handled as continuous data, but HIV viral load was handled as a categorical factor 

(suppressed or not suppressed) at week 44 because the majority of patients had a suppressed viral 

load and a continuous variable would not have been meaningful at that point. REALITY and SHIELD 

participants had viral loads measured on different platforms and therefore the lower limit of 

detection for viral loads for REALITY participants was 50, but for SHIELD participants it was 150. It is 

important to highlight here that SHIELD viral loads were carried out at 2 weeks and 46 weeks post 

ART initiation whereas REALITY viral loads were carried out at ART initiation and at 48 weeks after.  

Models looking at the effect of individual factors on PWV were adjusted for confounders identified 

during the baseline analysis (age, sex, haemoglobin and diastolic blood pressure - see section 

4.4.3.1). Models assessing the effects of variables recorded at week 44 were adjusted for diastolic 

blood pressure and haemoglobin at the time of the week 44 visit. Otherwise, baseline variables were 

used.  

If univariate and multivariate analysis of factors contributing to PWV at individual time points was 

found to be significant, further analysis of those factors was performed using mixed effects models. 

Spaghetti plots and hierarchical clustering were first used to ensure that change in PWV followed a 

linear trend and that different groups of trends were not present. Hierarchical clustering was 

agglomerative average linking clustering as this was felt to be the most accurate approach to 

differentiating between groups of trends in change in PWV. A mixed effects model was constructed 

using time as a predictor variable. Additional covariates were added individually as appropriate 

based on multivariate analysis at individual time points to determine whether these variables 

influenced the intercept for PWV at baseline. The covariate of interest was then added as an 

interaction term to assess whether it influenced the slope of change in PWV over time. 
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7.4 Results 

7.4.1 Description of patient follow-up      

An overview of the number of patients retained at each study visit and reasons for patient loss is 

given in Figure 7-1. Fifty-one patients (13%) did not complete the protocol from enrolment to exit 

visit and 24 of those (6% of the total number recruited) were due to deaths. One HIV uninfected 

patient died and had hypertension diagnosed during their enrolment visit. Despite being started on 

anti-hypertensives she died shortly after from a haemorrhagic stroke. There were 23 deaths 

amongst the HIV infected group which included 6 cases of pulmonary or disseminated TB, 3 

cryptococcal meningitis, 3 Kaposi sarcoma, one gastroenteritis and one TB meningitis. The cause of 

death was unknown for 9 patients. The large difference in mortality between the REALITY and 

SHIELD cohorts (12.5% versus 8%) is explained by a high mortality in the first two weeks following 

ART initiation: REALITY patients were recruited to SHIELD 2 weeks following ART initiation whereas 

non-REALITY HIV-infected patients were recruited directly at ART initiation (although enrolment 

procedures were carried out 2 weeks post ART initiation on both HIV infected cohorts).  

Eight patients withdrew from the SHIELD study. Of the 5 patients who gave a reason for study 

withdrawal, one could not take part in two studies, one felt the travel to the clinic was too difficult, 

one could not come due to travelling with work, one could no longer take part because their family 

disagreed and one moved away from Blantyre. Twenty patients were lost to follow-up after all 

attempts at getting in contact through telephone or home visits were exhausted. Common reasons 

for not being able to trace patients included an incorrect map or patients no longer residing in the 

area and relatives unaware of their new location. 
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Figure 7-1 Overview of number of patients attending SHIELD study visits according to 

recruitment group 

 

Table 7-1 Compares major characteristics for those patients with HIV infection who died or were lost 

to follow-up with the overall HIV infected cohort. The proportion of patients with a history of 

cigarette smoking or alcohol consumption was much greater in both groups of lost patients than in 

the overall cohort. In addition, the HIV infected patients who died had a lower weight, BMI and 

haemoglobin compared to the overall HIV infected group (p values <0.01, 0.02 and 0.03 respectively) 

but had a higher pulse wave velocity, current infection rate and new hypertension diagnoses (p 

value 0.05, <0.001 and <0.01 respectively). There were no significant differences in mean age or BP 

and although there was a higher proportion of men in the group of HIV infected patients who died, 

this did not reach statistical significance (p=0.13).  

Table 7-1 Comparison of baseline characteristics for HIV infected patients who died or were 

lost compared to all HIV infected participants 

 
 

HIV 

infected 

n=279 

HIV 

infected 

participants 

who 

HIV 

infected 

participants 
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withdrew 

or were 

lost n=28 

who died 

n=23 

Demographic 

variables 

Age 37.5 (+/- 

9.8) 

36.1 (+/-

10.7) 

39.8 (+/-

12.1) 

 No. Male 157 (56%) 10 (45%) 16 (70%) 

 Primary school 

education or less 

136 (53%) 10 (67%) 8 (57%) 

Traditional CV risk 

factor variables 

Weight 54.6 (+/ -

9.8) 

50.2 (+/- 

7.1) 

48.2 (+/- 

4.6) 

 Waist: height ratio 0.46 (+/- 

0.06) 

0.44 (+/- 

0.04) 

0.44 (+/- 

0.05) 

 BMI  20.6 (+/- 

3.5) 

19.2 (2.5 

+/- 2.5) 

18.8 (+/-

2.7) 

 Systolic BP 119 (+/- 15) 115 (+/- 19) 116 (+/- 14) 

 Diastolic BP 74 (+/- 9) 71 (+/-9) 77 (+/- 12) 

 History of smoking 56 (20%) 18 (82%) 18 (78%) 

 History of alcohol 119 (43%) 16 (73%) 16 (70%) 

 Pre-existing 

cardiovascular 

diagnosis 

1 (0.4%) 1 (4%) 0 

 Prescribed CV drugs 4 (1.5%) 0 0 

 Pre-existing diabetes 1 (0.4%) 0 0 

 Pre-existing 

Hypertension 

5 (2%) 1 (4%) 0 

 New diagnosis of 

hypertension 

88 (32%) 11 (39%) 13 (57%) 

 Fasting cholesterol 3.7 (+/- 1.1) 3.6 (+/-0.9) 3.2 (+/- 1.3) 

 Fasting glucose 5.0 (+/- 1.1) 4.9 (+/- 0.8) 6.1 (+/- 2.3) 

 Creatinine 69.1 (+/- 

23.6) 

64.3 (+/-

21.9) 

77.4 (+/- 

31.8) 
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Infection related 

variables 

Heart rate 86 (+/- 18) 90 (+/- 20) 97 (+/-23) 

 Haemoglobin 11.5 (+/- 

2.1) 

10.8 (+/- 

2.1) 

10.5 (+/- 

1.8) 

 Current infection 57 (21%) 2 (7%) 11 (48%) 

Immune related 

variables 

Lymphocytes 1.3 (+/- 0.7) 1.3 (+/- 0.6) 1.1 (+/- 0.9) 

 Monocytes 0.52 (+/-

0.54) 

0.67 (+/- 

0.43) 

0.67 (+/-

0.60) 

 PWV 7.5 (+/-1.3) 7.1 (+/- 1.6) 8.1 (+/- 1.1) 

 Mean CCA 0.58 (+/-

0.07) 

0.54 (+/- 

0.4) 

.59 (+/- 

0.11) 

 

 

7.4.2 Description of clinical cohort at 44 weeks 

Table 7-2 gives an overview of the clinical characteristics of patients followed up until their exit visit 

at 44 weeks (46 weeks post ART initiation). For comparison, the same clinical characteristics at 

baseline are reported in Table 4-1. A diagnosis of an infection at the exit visit includes any acute 

infection episode diagnosed within the study period (eg malaria, TB, pneumonia, gastroenteritis). At 

the 44-week visit, patients with HIV infection still had significantly lower weight, haemoglobin and 

lymphocyte count but significantly higher heart rate and frequency of infection diagnosis (especially 

TB, pneumonia and gastroenteritis but not malaria). Other traditional cardiovascular risk factors 

were similar between the two groups, including BP.  

Table 7-2 Clinical characteristics of HIV uninfected and infected participants at 44 weeks 

 44 weeks 

HIV uninfected 

(n=103) 

HIV infected 

(n=228) 

P value 

Traditional CV risk 

factor variables 

Weight 63.7 (+/- 13.4) 60.7 (+/-11.7) 0.08 

Waist: height ratio 0.49 (+/-0.07) 0.49 (+/-0.07) 0.95 
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BMI  24.1 (+/-5.5) 22.8 (+/-4.3) 0.14 

Systolic BP 117 (+/-16) 117 (+/-16) 0.11 

Diastolic BP 75 (+/-10) 73 (+/-11) 0.40 

History of smoking 16 (15%) 57 (20%) 0.12 

History of alcohol 28 (25%) 121 (43%) <0.01 

Pre-existing 

cardiovascular diagnosis 

7 (8%) 17 (8%) 0.60 

Prescribed CV drugs 8 (9%) 8 (4%) 0.06 

Pre-existing diabetes 1 (1%) 1 (0.4%) 0.65 

New diagnosis of 

hypertension 

25 (27%) 41 (18%) 0.11 

Creatinine 60.8 (+/- 13.3) 63.5 (+/-16.7) 0.22 

Infection related 

variables 

Heart rate 76 (+/- 13) 81 (+/-14) <0.001 

Haemoglobin 13.0 (+/-2.1) 12.5 (+/- 2.2) 0.09 

History of infection 15 (16%) 111 (45%) <0.0001 

TB 0 (0%) 10 (11%) <0.001 

Cryptococcal meningitis 0 (0%) 5 (2%) 0.19 

Pneumonia 2 (2%) 23 (10%) <0.01 

Gastroenteritis 3 (3%) 26 (12%) 0.01 

Malaria 6 (6%) 7 (3%) 0.15 

Immune related 

variables 

Lymphocytes 2.1 (+/- 0.7) 1.6 (+/-0.6) <0.00001 

Monocytes 0.34 (+/-0.19) 0.36 (+/-0.40) 0.78 

 

7.4.3 Description of change in PWV on ART 

Figure 7-2 gives the PWV values for HIV infected and uninfected participants at each SHIELD time 

point. SHIELD participants were recruited 2 weeks following the initiation of ART. Although there is 

an unadjusted increase in PWV in the HIV infected cohort at the SHIELD baseline visit (2 weeks after 

ART initiation), this difference is lost at the week 10, 22 and 24 time points.  
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Figure 7-2 Pulse Wave Velocity (PWV) for HIV infected and uninfected participants during 

four SHIELD study visits 

 

 Baseline Week 10 Week 22 Week 44 

HIV 

infected 

(red) 

7.3 (6.6 – 8.2) 7.2 (6.4 – 8.1) 7.1 (6.3 – 7.9) 7.15 (6.4 – 7.9) 

HIV 

uninfected 

(blue) 

7.2 (6.2 – 8) 7.1 (6.2 – 8.1) 7.2 (6.4 – 8) 7.0 (6.3 – 7.8) 

P value 0.05 0.47 0.37 0.57 

 

However, when the PWV values were adjusted using the model developed for the baseline 

assessment (see Table 4-12), PWV was significantly higher in patients with HIV infection. This model 

is shown in Figure 7-3. The adjusted effect size was similar at week 10 and baseline. HIV was not 

associated with PWV after adjusting for confounders at week 22 and 42. Figure 7-4 shows the fold 

change in PWV for patients with HIV infection compared to those without, adjusted for confounders 

at each SHIELD visit. To assess survivor bias a sensitivity analysis was carried out only on patients 
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alive at the exit visit which did not affect the effect size or statistical significance of these differences 

at enrolment and week 10.  

 

Figure 7-3 Multivariate model for effect of HIV status on absolute Week 10 PWV after 

adjustment for confounders 

Variable Fold change in 

PWV 

P value 95% CI 

(min) 

95% CI 

(max) 

HIV 1.14 0.02 1.02 1.27 

Age (per 10-year increase) 1.23 <0.0001 1.17 1.29 

Female sex 0.94 >0.2 0.85 1.04 

Diastolic BP (per 10 mmHg 

increase) 

1.08 <0.01 1.03 1.13 

Haemoglobin 1.01 0.12 1.00 1.04 

 

Figure 7-4 Adjusted fold change in PWV for participants with HIV infection compared to 

those without adjusted for confounders over study visits 

 

 

In order to further assess whether change in PWV over time was dependent on HIV status, a mixed 

effects model was constructed. Spaghetti plots were assessed for the presence of different patterns 
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of change in PWV over time. This was done for HIV infected (Figure 7-5 ) and uninfected (Figure 7-6 ) 

participants. A minority of HIV infected participants started off with very high PWV values at 

enrolment and week 10 which then resolved. No other distinct groups were visualised. Furthermore, 

no distinct groups were identified when using a hierarchical clustering approach as demonstrated in 

Figure 7-7. Therefore, it was assumed that change in PWV over time was largely linear.  

Figure 7-5 Spaghetti plot of changes in PWV over time for HIV infected participants 
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Figure 7-6 Spaghetti plot of changes in PWV over time for HIV uninfected participants 

 

Figure 7-7 Hierarchical clustering dendogram of patterns of change in PWV over time 

 

A mixed effects model approach showed a significant effect of time on change in PWV [fold change 

in PWV per visit -0.004 (-0.008 - -0.0004) p=0.03]. When HIV was added as a covariate to the model 
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looking at the effect of time, it was significantly associated with change in PWV [fold change in PWV 

in HIV infected participants 0.35 (0.04 – 0.66), p=0.03]. When HIV was added as an interaction term, 

the slope was reduced in HIV infection by a coefficient of -0.008 (-0.02 – 0.00, p=0.06). Other 

potential confounders were not adjusted for in this model – it only assessed the risk of HIV and time 

on PWV.  

7.4.4 Clinical predictors of absolute PWV at week 10 visit 

On univariate analysis, the only baseline variables associated with a change in PWV between 

baseline and 10 weeks were waist height ratio, systolic BP, haemoglobin and CD4% [spearman rho (p 

value) 0.07 (0.18), -0.09 (0.10), -0.09 (0.13) and -0.16 (0.07) respectively]. Entering these variables 

into a multivariate analysis, the fold change in PWV difference (CI min – CI max, p value) for waist 

height ratio, systolic BP, haemoglobin and CD4% was 0.25 per 0.1 cm-1 (-26.4 - 26.9, 0.06) -0.10 per 

10mmHg (-0.21 - 0.01, 0.07), -0.01 g/dL (-0.9 - 0.07, 0.83) and -0.05 per 10% increase (-0.12 - 0.02, 

0.13).  

7.4.5  Clinical predictors of absolute PWV at week 22 visit 

In univariate analysis HIV infection and co-infection at enrolment were associated with a fold 

decrease in change of PWV of -0.42 (CI -0.89 – 0.04, p=0.07) and -0.14 (CI -0.31 – 0.04, p=0.07) 

respectively, but were not significantly associated on multivariate analysis.  

7.4.6 Clinical predictors of absolute PWV at week 44 visit 

Firstly, clinical variables measured at week 44 were checked for univariate associations with PWV at 

week 44 and are shown in Table 7-3 and Table 7-4. The final model for clinical variables measured at 

44 weeks and associated with PWV at 44 weeks, retained age [fold change 1.27 (CI 1.20 – 1.34) per 

10 years, p<0.00001), diastolic BP [1.11 (1.07 – 1.16) per 10 mmHg, p<0.01] and female sex [0.92 

(0.84 – 1.01), p=0.07]. 

Table 7-3 Univariate associations between clinical variables measured at 44 weeks and 

absolute PWV at 44 weeks for continuous data 

 
Spearman’s rho P value  Included in model 

Age 0.16 <0.00001 X 

Weight 0.16 <0.01  

Waist: height ratio 0.17 <0.01 X 

BMI  0.09 0.12  

Heart rate 0.03 0.65  
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Systolic BP 0.34 <0.00001 X 

Diastolic BP 0.38 <0.00001  

Haemoglobin -0.08 0.19 X 

Creatinine 0.07 0.28  

Lymphocytes 0.01 0.84  

Monocytes 0.03 0.64  

 

 

Table 7-4 Univariate associations between clinical variables measured at 44 weeks and 

absolute PWV at 44 weeks for categorical data 

 
Median PWV (m/s) P value  Included in model 

HIV infected 7.0 (6.4 – 7.8)   

HIV uninfected 7.2 (6.4 – 7.9) 0.70  

Male 7.2 (6.5 – 7.8)   

Female 6.7 (6.1 – 7.8) <0.01 X 

Primary school education or less 7.0 (6.4 – 7.9)   

Greater than primary school education 7.1 (6.4 – 7.8) 0.85  

Smoker or ex-smoker 7 (6.4- 7.8)   

Never smoked 7.2 (6.4 – 7.9) 0.80  

Drinks alcohol or past alcohol 7.1 (6.4 – 7.8)   

Never drank alcohol 7.1 (6.2 – 7.9) 0.73  

Cardiovascular diagnosis 7.5 (6.9 – 8.4)   

No previous cardiovascular diagnosis 7 (6.4- 7.8) 0.08  

Prescribed CV drugs 8.1 (7.4 – 8.9)   

Never prescribed CV drugs 7 (6.4 – 7.8) <0.01 X 

Clinically hypertensive 7.6 (6.9 – 8.7)   

Not clinically hypertensive 6.8 (6.3 – 7.7) <0.00001  

Infection during study period 7.1 (6.3 – 7.8)   

No infection during study period 7.1 (6.4- 7.9) 0.48  

 

Next, clinical variables measured at baseline were assessed for associations with PWV at week 44. 

Table 7-5 and Table 7-6 show univariate associations and factors included in the final multivariate 
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model. Table 7-7 gives the final model with the baseline clinical characteristics retained for 

predicting week 44 PWV. In addition to age and male sex, diastolic BP and creatinine at baseline are 

associated with a higher PWV at week 44.  

Table 7-5 Univariate associations between clinical variables measured at baseline and 

absolute PWV at 44 weeks for continuous data 

 
Spearman’s rho P value  Included in model 

Age 0.58 <0.0001 X 

Weight 0.29 <0.0001 X 

Waist: height ratio 0.18 <0.01  

BMI  0.21 <0.001  

Heart rate -0.02 0.69  

Systolic BP 0.26 <0.00001  

Diastolic BP 0.32 <0.00001 x 

Haemoglobin 0.14 0.01 x 

Creatinine 0.19 <0.001 x 

Fasting cholesterol 0.17 <0.01 x 

Fasting glucose -0.02 0.76  

Lymphocytes 0.05 0.34  

Monocytes 0.03 0.64  

 

 

Table 7-6 Univariate associations between clinical variables measured at baseline and 

absolute PWV at 44 weeks for categorical data 

 
Median PWV (m/s) P value  Included in model 

HIV infected 7.0 (6.3 – 7.8)   

HIV uninfected 7.2 (6.4 – 7.9) 0.70   

Male 7.2 (6.5- 7.8)   

Female 6.7 (6.1 – 7.8) <0.01 X 

Primary school education or less 7.0 (6.4 – 7.9)   

Greater than primary school education 7.1 (6.4 – 7.8) 0.85  

Smoker or ex-smoker 7.2 (6.4 – 7.8)   
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Never smoked 7.0 (6.4 – 7.9) 0.95  

Drinks alcohol or past alcohol 7.1 (6.4 – 7.8)   

Never drank alcohol 7.1 (6.2 – 7.9) 0.78  

Cardiovascular diagnosis 7.7 (7.0 – 8.4)   

No previous cardiovascular diagnosis 7.0 (6.4 – 7.8) 0.04 x 

Prescribed CV drugs 7.8 (7.1 – 8.6)   

Never prescribed CV drugs 7.1 (6.4 – 7.8) 0.07  

Clinically hypertensive 7.8 (7.1 – 9.1)   

Not clinically hypertensive 7.0 (6.4 – 7.8) 0.04  

Current infection 7.1 (6.3 – 7.4)   

No current infection 7.1 (6.4 – 7.9) 0.75  

 

Table 7-7 Clinical baseline variables predictive of absolute Week 44 PWV 

Variable Fold change in 

PWV 

P value 95% CI 

(min) 

95% CI 

(max) 

Age (per 10-year increase) 1.23 <0.00001 1.17 1.29 

Female sex 0.92 0.08 0.84 1.01 

Diastolic BP (per 10 mmHg 

increase) 

1.03 <0.00001 1.00 1.05 

Creatinine (per 10 umol/L) 1.11 0.02 1.05 1.16 

 

Finally, clinical variables measured at baseline were assessed for univariate associations with the 

change in PWV between baseline and week 44 (Table 7-8 and Table 7-9) and those with p value<0.2 

were entered into the model. The final model using clinical variables collected at baseline to predict 

change in PWV at week 44 retained only current infection [fold change 0.43 (CI 0.15 – 1.25), p=0.12]. 

When the model was run without current infection, only HIV was retained [fold change 0.56 (CI 0.24 

– 1.30), p=0.18].  

Table 7-8 Univariate associations between clinical variables measured at baseline and 

change in PWV between baseline and 44 weeks for continuous data 

 
Spearman’s rho P value  Included in model 

Age 0.05 0.35 x 
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Weight 0.10 0.07 X 

Waist: height ratio 0.09 0.11  

BMI  0.10 0.08  

Heart rate -0.07 0.26  

Systolic BP -0.03 0.59  

Diastolic BP -0.05 0.35  

Haemoglobin -0.003 0.96  

Creatinine -0.01 0.83  

Fasting cholesterol 0.05 0.38  

Fasting glucose -0.11 0.06 X 

Lymphocytes 0.05 0.43  

Monocytes 0.04 0.54  

 

Table 7-9 Univariate associations between clinical variables measured at baseline and 

change in PWV between baseline and 44 weeks for categorical data 

 
Median PWV (m/s) P value  Included in model 

HIV infected -0.40 (-1.00 – 0.20)   

HIV uninfected -0.10 (-0.79 – 0.70) 0.02 x 

Male -0.30 (-0.90 – 0.20)   

Female -0.20 (-0.90 – 0.40) 0.33  

Primary school education or less -0.40 (-1.00 – 0.20)   

Greater than primary school education -0.20 (-0.90 – 0.50) 0.18 X 

Smoker or ex-smoker -0.50 (-1.20 – 0.30)   

Never smoked -0.20 (-0.90 – 0.40) 0.18 X 

Drinks alcohol or past alcohol -0.25 (-0.90 – 0.40)   

Never drank alcohol -0.30 (-0.90 – 0.20) 0.58  

Cardiovascular diagnosis -0.35 (-0.95 – 0.00)   

No previous cardiovascular diagnosis -0.20 (-0.90 – 0.40) 0.23  

Prescribed CV drugs -0.20 (-0.40 – 0.00)   

Never prescribed CV drugs -0.30 (-0.90 – 0.40) 0.79  

Clinically hypertensive -0.20 (-0.90 – 0.30)   

Not clinically hypertensive -0.40 (-1.10 – 0.45) 0.46  

Current infection -0.20 (-0.90 – 0.40)   
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No current infection -0.50 (-1.00 – 0.00) 0.12 x 

 

7.4.7 Description of change in T cells surface immune phenotypes between baseline and week 44 

visits   

Overall, the absolute CD4 count increased from screening to the week 44 visit from 44 to 150 

cells/mm3 as shown in Figure 7-8 (p<0.00001). An improvement was also seen in the CD4/CD8 ratio 

in the HIV infected participants (p<0.01), but remained much lower than HIV uninfected participants 

(Figure 7-9). CD4 and CD8 activation at baseline (2 weeks after ART initiation) and at week 44 visit 

for HIV uninfected and HIV infected participants is shown in Figure 7-10. CD4 activation but not CD8 

activation decreased significantly at week 44 compared to baseline (p<0.00001 and p=0.21 

respectively). The percentage of exhausted cells decreased over the same period for both CD4 and 

CD8 T cells, with the bigger effect seen in the CD4 T cell population (p<0.00001 and <0.01 

respectively – see Figure 7-11).  However, there was no improvement in T cell senescence between 

the two time points and CD8 T cell senescence actually increased (p=1.00 and <0.001 respectively – 

see Figure 7-12). There were no differences between the baseline and week 44 immune parameters 

within the HIV uninfected group.  
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Figure 7-8 Absolute CD4 counts for HIV infected participants at ART initiation and at week 44 visit 
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Figure 7-9 CD4/CD8 ratio in HIV uninfected and infected adults at baseline and week 44 
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Figure 7-10 % Activated CD4 and CD8 T cells at baseline and week 44 in HIV uninfected and 

infected participants 
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Figure 7-11 % Exhausted CD4 and CD8 T cells at baseline and week 44 in HIV uninfected and 

infected participants 
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Figure 7-12 % Senescent CD4 and CD8 T cells at baseline and week 44 in HIV uninfected and 

infected participants 
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Figure 7-13 Proportion of monocyte subsets at baseline and week 44 in HIV uninfected and 

infected participants 
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were retained in the multivariate model when replaced for HIV, but at a p value which was not 

statistically significant with this number of participants (see Table 7-11).  

Table 7-10 Univariate associations between immune markers at Week 44 and absolute PWV 

at Week 44 

 
Spearman rho 

n=273 
p value 

Absolute CD4 cell count (cells/L) -0.09 0.23 

CD4 T cells CD4/CD8 ratio 0.02 0.69 

CD4 % 0.03 0.67 

CD4 CD38+HLA-DR- -0.13 0.03 

CD4 CD38+HLA-DR+ -0.06 0.32 

CD4 CD38-HLA-DR+ 0.03 0.58 

CD4 Activated -0.17 <0.01 

CD4 CD57+PD1- 0.07 0.23 

CD4 CD57+PD1+ -0.005 0.94 

CD4 CD57-PD1+ -0.05 0.41 

CD4 Exhausted -0.04 0.56 

CD4 Senescent -0.01 0.84 

CD8 T cells CD8% -0.004 0.95 

CD8 CD38+HLA-DR- 0.02 0.77 

CD8 CD38+HLA-DR+ 0.004 0.94 

CD8 CD38-HLA-DR+ 0.06 0.33 

CD8 Activated 0.01 0.93 

CD8 CD57+PD1- 0.06 0.33 

CD8 CD57+PD1+ 0.03 0.66 

CD8 CD57-PD1+ -0.03 0.58 

CD8 Exhausted 0.02 0.78 

CD8 Senescent 0.07 0.25 

Monocytes Classical -0.08 0.21 
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Intermediate -0.02 0.69 

Nonclassical 0.10 0.12 

 

Table 7-11 Multivariate analysis for association between CD438+HLA-DR- CD4 T cells and 

absolute PWV at Week 44 after adjusting for confounders 

Variable Fold change in 

PWV 

P value 95% CI 

(min) 

95% CI 

(max) 

Age (per 10-year increase) 1.26 <0.0001 1.21 1.32 

Female sex 0.91 0.03 0.84 0.99 

Diastolic BP (per 10 mmHg 

increase) 

1.12 <0.0001 1.08 1.16 

%CD4 CD38+HLA-DR- 0.98 0.15 0.95 1.01 

 

7.4.9.2 Can baseline immune markers predict change in PWV over 44 weeks? 

Next, we examined whether the effects of immune activation on PWV identified at baseline 

impacted PWV at week 44. Table 7-12 shows the univariate associations between immune markers 

measured at baseline and week 44 PWV. Higher proportions of CD4 activation (and, in particular, the 

CD38+HLA-DR+ phenotype), CD4 exhaustion, CD4 senescence and intermediate monocytes at 

baseline are associated with a lower PWV at Week 44. There is also a trend towards a less 

favourable CD4/CD8 T cell ratio also being associated with lower PWV at week 44. Taken together, 

this would suggest that those with the least favourable CD4 T cell percentages and immune 

activation profiles at baseline are those that are more likely to have a lower PWV after 44 weeks of 

ART. On multivariate analysis of the association between HIV and week 44 PWV, adjusted for 

confounders, there was a trend towards HIV being associated with a lower PWV at week 44 (see 

Table 7-13). When substituted with HIV in this model, CD4/CD8 ratio, percentage of CD4 CD38+HLA-

DR+ and percentage of intermediate monocytes at baseline were all retained as predictors for PWV 

at week 44, albeit with p values above statistical significance (see Table 7-14, Table 7-15 and Table 

7-16).  
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Table 7-12 Univariate associations between immune markers at baseline and PWV at Week 

44 

 
Spearman rho 

n= 248 
p value 

Absolute CD4 count (cells/uL) 0.07 0.26 

HIV viral load (copies/ml) 0.03 0.71 

CD4 T cells CD4/CD8 ratio 0.11 0.08 

CD4 % 0.11 0.08 

CD4 CD38+HLA-DR- 0.09 0.23 

CD4 CD38+HLA-DR+ -0.18 0.02 

CD4 CD38-HLA-DR+ -0.10 0.18 

CD4 Activated -0.17 0.03 

CD4 CD57+PD1- -0.09 0.23 

CD4 CD57+PD1+ -0.22 <0.01 

CD4 CD57-PD1+ -0.14 0.07 

CD4 Exhausted -0.16 0.04 

CD4 Senescent -0.20 <0.01 

CD8 T cells CD8% -0.11 0.08 

CD8 CD38+HLA-DR- -0.002 0.97 

CD8 CD38+HLA-DR+ -0.03 0.66 

CD8 CD38-HLA-DR+ -0.03 0.60 

CD8 Activated 0.03 0.66 

CD8 CD57+PD1- -0.01 0.85 

CD8 CD57+PD1+ -0.10 0.12 

CD8 CD57-PD1+ -0.03 0.59 

CD8 Exhausted -0.06 0.34 

CD8 Senescent -0.07 0.29 

Monocytes Classical 0.04 0.51 

Intermediate -0.19 <0.01 
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Nonclassical 0.08 0.21 

 

 

Table 7-13 Multivariate analysis for association between HIV status and PWV at week 44 

after adjusting for confounders 

Variable Fold change in 

PWV 

P 

value 

95% CI 

(min) 

95% CI 

(max) 

Age (per 10-year increase) -0.01 0.90 -0.18 0.16 

Female sex 0.07 0.67 -0.25  0.39 

Diastolic BP (per 10 mmHg 

increase) 

0.14 0.08 0.00 0.28 

HIV -0.31 0.08 -0.63 0.05 

 

 

Table 7-14 Multivariate analysis for association between CD4/CD8 ratio at baseline and PWV 

at week 44 after adjusting for confounders 

Variable Fold change in 

PWV 

P 

value 

95% CI 

(min) 

95% CI 

(max) 

Age (per 10-year increase) 0.20 0.05 0.01 0.39 

Female sex 0.29 0.09 -0.05 0.63 

Diastolic BP (per 10 mmHg 

increase) 

0.15 0.06 -0.01 0.30 

CD4/CD8 ratio (per 0.1-unit 

increase) 

0.01 0.17 0.00 0.03 
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Table 7-15 Multivariate analysis for association between HIV %CD38+HLA-DR+ CD4 T cells at 

baseline and PWV at week 44 after adjusting for confounders 

Variable Fold change in 

PWV 

P 

value 

95% CI 

(min) 

95% CI 

(max) 

Age (per 10-year increase) 0.28 0.02 0.04 0.51 

Female sex 0.49 0.03 0.06 0.91 

Diastolic BP (per 10 mmHg increase) 0.16 0.12 -0.04 0.36 

%CD4 CD38+HLA-DR+ (per 10% 

increase) 

-0.12 0.10 -0.25 0.02 

 

 

Table 7-16 Multivariate analysis for association between %intermediate monocytes at 

baseline and PWV at week 44 after adjusting for confounders 

Variable Fold change in 

PWV 

P 

value 

95% CI 

(min) 

95% CI 

(max) 

Age (per 10-year increase) 0.14 0.19 -0.07 0.36 

Female sex 0.17 0.39 -0.21 0.54 

Diastolic BP (per 10 mmHg 

increase) 

0.19 0.04 0.01 0.37 

%Intermediate monocytes -0.28 0.10 -0.61 0.05 

 

7.4.9.3 Is change in immune activation markers related to a change in PWV over 44 weeks? 

Finally, we analysed whether the change in immune activation markers between baseline and week 

44 was predictive of PWV at the three different time points it was measured over 44 weeks. Table 

7-17 gives the univariate associations between the change in each immune marker from baseline to 

44 weeks and PWV at the three time points. There is a trend towards an increase in the CD4 

CD38+HLA-DR- phenotype being associated with PWV at all three time points, which again likely 

accounted for the association between an increase in CD4 activation and a lower PWV at week 44. It 

is possible that the CD4 CD38+HLA-DR- phenotype is an immune marker of protection against 

endothelial damage at week 44. In contrast, a decrease in the proportion of CD4 T cells expressing 

both CD57 and PD-1 markers was associated with a lower PWV at week 44. Interestingly, a decrease 
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in the percentage of CD8 T cells was associated a lower PWV at week 44, but this association wasn’t 

seen for CD4 T cells or the overall CD4/CD8 T cell ratio, suggesting that a high proportion of CD8 T 

cells rather than a low proportion of CD4 cells over time might play a more important role in 

establishing endothelial damage. However, of note, changes in CD8 T cell activation, exhaustion or 

senescence were not associated with PWV at week 44 indicating that any resolution in endothelial 

damage comes from a reduction in CD4 T cell rather than CD8 T cell immune activation. Additionally, 

a reduction in intermediate monocytes is associated with PWV at both 24 and 42 weeks. Although 

no difference was found in the proportion of intermediate monocytes according to HIV status at 

baseline, improvement in these subsets is associated with improvement in PWV.  

Table 7-17 Univariate analysis of associations between baseline immune markers and 

change in PWV from baseline at 10, 22 and 44 week visits 

 
Week 10 Week 22 Week 44 

Spearman 

rho 

n=196 

p 

value 

Spearman 

rho 

n=199 

p 

value 

Spearman 

rho 

n= 210 

p 

value 

Absolute CD4 cell count 

(cells/uL) 

0.02 0.76 0.09 0.20 0.06 0.39 

HIV viral load (copies/ml) -0.03 0.63 -0.02 0.77 0.08 0.27 

CD4 T cells CD4/CD8 ratio 0.09 0.19 -0.02 0.83 -0.07 0.29 

CD4 % 0.03 0.74 -0.16 0.04 -0.04 0.64 

CD4 

CD38+HLA-DR- 
-0.15 0.08 -0.13 0.11 -0.15 0.07 

CD4 

CD38+HLA-DR+ 
-0.02 0.85 -0.04 0.62 0.06 0.49 

CD4 CD38-HLA-

DR+ 
-0.04 0.63 -0.05 0.52 -0.06 0.51 

CD4 Activated 0.00 0.96 -0.06 0.44 -0.17 0.03 

CD4 

CD57+PD1- 
0.08 0.35 0.19 0.03 0.07 0.42 

CD4 

CD57+PD1+ 
0.00 0.97 0.05 0.53 0.20 0.02 
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CD4 CD57-

PD1+ 
0.01 0.87 0.00 0.93 0.08 0.36 

CD4 Exhausted -0.07 0.44 -0.10 0.26 0.04 0.67 

CD4 Senescent 0.03 0.69 0.06 0.45 0.10 0.22 

CD8 T cells CD8% -0.06 0.43 0.08 0.24 0.29 <0.01 

CD8 

CD38+HLA-DR- 
-0.07 0.32 -0.04 0.62 -0.02 0.79 

CD8 

CD38+HLA-DR+ 
-0.07 0.36 -0.04 0.62 -0.04 0.57 

CD8 CD38-HLA-

DR+ 
0.07 0.31 0.00 0.97 0.04 0.61 

CD8 Activated -0.09 0.19 -0.10 0.15 -0.06 0.36 

CD8 

CD57+PD1- 
0.04 0.56 -0.01 0.92 -0.01 0.90 

CD8 

CD57+PD1+ 
0.06 0.42 -0.05 0.53 0.06 0.38 

CD8 CD57-

PD1+ 
-0.06 0.43 -0.03 0.63 -0.01 0.87 

CD8 Exhausted 0.03 0.64 0.00 0.89 0.08 0.25 

CD8 Senescent -0.02 0.77 -0.02 0.81 -0.01 0.87 

Monocytes Classical -0.08 0.31 -0.10 0.19 -0.11 0.12 

Intermediate 0.07 0.36 0.18 0.02 0.14 0.06 

Nonclassical 0.00 0.95 0.03 0.65 0.00 0.98 

 

7.4.10 To what extent does the diagnosis of another infection during the study period contribute to 

immune activation? 

7.4.10.1 Immune activation related to infection diagnosis 

Analysis so far has shown that higher immune activation at baseline is associated with a lower PWV 

at week 44. Although this is associated with HIV infection, it is possible that treatment of co-

infections throughout the study period might contribute to improvement in immune activation, and 

therefore PWV, in some participants. We therefore examined whether those patients diagnosed 
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with an acute infection during the study period had higher immune activation at baseline showing an 

improvement at week 44. Table 7-18 shows the univariate associations between immune markers at 

baseline and week 44 and the diagnosis of an acute infection during the study period (see Table 7-2 

for a breakdown of co-infection diagnoses throughout the study). Overall immune activation 

markers decrease in participants who had a clinically diagnosed infection during the study period. 

Although CD4 and CD8 T cell activation and exhaustion (and to some extent senescence) are 

associated with having a diagnosis of infection during the study period, the majority of participants 

diagnosed with an acute infection were HIV infected.  

 

Table 7-19 and Table 7-20 present final models showing the association between an acute infection 

diagnosis and percentage of CD8 T cells expressing both CD38 and HLA-DR, adjusted for HIV status, 

age and sex. Acute infection is retained in both models, even after adjustment for HIV infection.  

Table 7-18 Univariate association between immune markers at baseline and Week 44 and a 

diagnosis of an acute infection during the study period 

 
Baseline Week 44 

No 

infection 

n=173 

Infection 

n=90 

P 

value 

No 

infection 

n=118 

Infection 

n=56 

P 

value 

Absolute CD4 count 

(cells/uL) 

39 (17 – 

59) 

43.0 

(19.0 – 

71.0) 

0.25 146 (94 – 

218) 

147 (108 

– 229) 

0.40 

HIV viral load (copies/ml) 110,977 

(41,492 – 

299,9965) 

108,086 

(39,451 – 

261,238) 

0.66 NA NA NA 

CD4 T cells CD4/CD8 ratio 0.23 (0.07 

– 1.23) 

0.15 

(0.05 – 

0.42) 

0.02 0.24 

(0.11 – 

0.72) 

0.16 

(0.09 – 

0.39) 

0.02 
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CD4 % 18.8 (6.7 

– 55.2) 

13.2 (5.0 

– 29.6) 

0.02 13.0 (7.1 

– 30.2) 

9.9 (4.5 – 

19.1) 

0.02 

CD4 

CD38+HLA-

DR- 

32.3 (20.5 

– 41.8) 

31.6 

(19.3 – 

43.0) 

0.97 31.8 

(20.4 – 

40.0) 

26.1 

(16.1 – 

38.3) 

0.09 

CD4 

CD38+HLA-

DR+ 

17.7 (6.2 

– 31.9) 

9.5 (4.2 – 

22.3) 

<0.01 7.8 (3.8 – 

13.4) 

9.9 (5.1 – 

18.9) 

0.03 

CD4 CD38-

HLA-DR+ 

12.2 (6.0 

– 20.5) 

13.1 (6.0 

– 18.9) 

0.82 11.8 (6.6 

– 20.5) 

16.2 (8.1 

– 24.4) 

0.05 

CD4 Activated 60.9 (44.8 

– 76.1) 

72.7 

(54.3 – 

85.5) 

0.02 56.6 

(46.4 – 

65.8) 

61.0 

(47.4 – 

70.6) 

0.07 

CD4 

CD57+PD1- 

3.4 (2.0 – 

7.8) 

5.2 (2.5 – 

9.9) 

0.12 4.2 (2.2 – 

6.7) 

4.7 (2.5 – 

7.1) 

0.48 

CD4 

CD57+PD1+ 

4.0 (2.0 – 

7.5) 

7.7 (2.5 – 

13.8) 

<0.01 3.6 (1.9 – 

5.8) 

4.8 (2.0 – 

8.4) 

0.05 

CD4 CD57-

PD1+ 

20.0 (10.2 

– 38.4) 

36.2 

(13.5 – 

51.8) 

0.01 18.7 

(11.5 – 

31.7) 

26.1 

(16.9 – 

39.4) 

<0.01 

CD4 

Exhausted 

24.7 (13.6 

– 50.3) 

48.8 

(17.1 – 

63.2) 

<0.01 23.4 

(13.8 – 

39.0) 

30.9 

(20.5 – 

47.7) 

<0.01 

CD4 

Senescent 

9.0 (4.7 – 

14.8) 

16.2 (7.3 

– 25.1) 

<0.01 9.0 (4.7 – 

14.8) 

16.2 (7.3 

– 25.1) 

<0.01 

CD8 T cells CD8% 81.2 (44.8 

– 93.2) 

86.7 

(70.4 – 

95.0) 

0.02 54.0 

(39.6 – 

63.6) 

58.2 

(47.4 – 

64.7) 

0.09 

CD8 

CD38+HLA-

DR- 

25.4 (16.4 

– 37.3) 

23.1 

(16.7 – 

38.9) 

0.99 32.9 

(22.1 – 

44.4) 

33.2 

(20.8) 

0.42 
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CD8 

CD38+HLA-

DR+ 

22.4 (12.9 

– 37.6) 

35.2 

(18.0 – 

48.8) 

<0.001 21.4 

(12.1 – 

31.9) 

25.8 

(15.7 – 

39.1) 

<0.01 

CD8 CD38-

HLA-DR+ 

11.1 (6.0 

– 18.4) 

9.3 (5.4 – 

17.4) 

0.25 9.8 (4.4 – 

15.7) 

10.2 (5.8 

– 16.4) 

0.19 

CD8 Activated 69.1 (55.0 

– 81.4) 

79.0 

(64.6 – 

87.7) 

<0.01 70.5 

(57.8 – 

80.5) 

74.6 

(66.0 – 

84.1) 

0.01 

CD8 

CD57+PD1- 

30.1 (20.7 

– 40.7) 

28.6 

(22.7 – 

38.7) 

0.98 35.7 

(22.8 – 

49.9) 

38.8 

(26.1 – 

49.2) 

0.58 

CD8 

CD57+PD1+ 

15.6 (8.2 

– 22.4) 

20.5 

(10.9 – 

27.7) 

<0.01 14.5 (8.3 

– 23.0) 

17.4 

(10.0 – 

27.0) 

0.11 

CD8 CD57-

PD1+ 

13.8 (8.6 

– 20.3) 

17.5 

(10.9 – 

27.1) 

0.01 10.7 (5.7 

– 18.2) 

13.7 (7.8 

– 19.7) 

0.05 

CD8 

Exhausted 

31.5 (20.1 

– 43.4) 

39.1 

(25.6 – 

50.3) 

<0.01 26.7 

(15.5 – 

43.6) 

31.3 

(20.8 – 

46.6) 

0.07 

CD8 

Senescent 

48.2 (35.5 

– 62.5) 

51.2 

(41.3 – 

61.9) 

0.17 55.4 

(41.0 – 

67.0) 

56.8 

(44.9 – 

67.0) 

0.43 

Monocytes Classical 75.6 (66.0 

– 82.1) 

74.5 

(65.3 – 

80.4) 

0.79 74.0 

(66.7 – 

80.6) 

74.7 

(65.5 – 

80.7) 

0.79 

Intermediate 9.8 (6.7 – 

13.6) 

10.2 (6.3 

– 13.7) 

0.81 8.1 (5.7 – 

11.8) 

8.7 (6.3 – 

13.1) 

0.39 

Nonclassical 14.0 (8.8 

– 21.0) 

13.0 (9.3 

– 21.6) 

0.68 16.0 

(10.9 – 

22.0) 

11.4 

(22.0 – 

2.0) 

0.90 
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Table 7-19 Final linear regression model for predictors of baseline %CD8CD38+HLA-DR+ T 

cells  

Variable Fold change in square root of baseline 

%CD8CD38+HLA-DR+ 

P value 95% CI 

(min) 

95% CI 

(max) 

Acute co-

infection 

0.39 0.06 -0.01 0.80 

HIV 2.00 <0.0001 1.55 2.41 

  

Table 7-20 Final linear regression model for predictors of Week 44 %CD8CD38+HLA-DR+ T 

cells  

Variable Fold change in square root of 

%CD8CD38+HLA-DR+ 

P 

value 

95% CI 

(min) 

95% CI 

(max) 

Female sex -0.44 0.04 -0.85  -0.03 

Acute co-

infection 

0.51 0.02 0.07 0.96 

HIV 0.78 <0.01 0.33 1.24 

 

7.4.10.2 Association between diagnosis of an acute infection and PWV 

PWV at week 10, 22 and 44 did not differ in patients with and without the diagnosis of an acute 

infection overall. 

When the HIV uninfected group was analysed separately, the diagnosis of an acute infection was 

associated with an increase in PWV during the study period [median change (IQR) 0.80 (0.10 – 1.5) in 

participants with an acute infection and decrease of -0.10 (-0.80 – 0.75) in those without (p=0.01]. 

All HIV uninfected participants were retested for HIV infection at the Week 44 visit and no patients 

had acquired a new infection during the study period.  
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7.4.11 Change in immune activation according to early enhanced HIV intervention groups   

There were no differences in CD4 counts according to REALITY intervention groups either at baseline 

or week 44. In addition, there were no statistically significant differences in HIV viral load at baseline 

or the number of patient reaching viral suppression at week 44.  

7.4.11.1 Raltegravir 

The median (IQR) proportion of classical monocytes was significantly lower at baseline in HIV 

infected participants receiving Raltegravir compared to HIV infected participants not receiving 

Raltegravir [70.5 (63.2 – 79.20) versus 77.5 (67.4 – 83.4) respectively, p=0.01], with higher 

proportions of nonclassical monocytes [18.0 (12.7 – 23.9) versus 12.3 (8.2 – 16.9) respectively, 

p<0.001]. At week 44, the median (IQR) proportion of both CD4 and CD8 HLA-DR+CD38- cells was 

reduced in the Raltegravir group [14.8 (8.1 – 21.8) versus 17.7 (12.0 – 26.9), p=0.02 and 8.1 (5.0 – 

15.6) versus 10.6 (6.2 – 17.1), p=0.07 respectively].  

7.4.11.2 Opportunistic infection prophylaxis 

The proportion of classical monocytes was also lower in HIV patients receiving enhanced 

opportunistic prophylaxis compared to those not receiving enhanced opportunistic prophylaxis 

[median (IQR) 69.7 (64.2 – 78.8) versus 78.4 (68.6 – 83.6), p<0.01] and nonclassical monocytes were 

reciprocally higher [median (IQR) 16.7 (12.6 – 24.1) versus 12.2 (7.9 – 18.0), p<0.0001]. This 

expansion of nonclassical monocytes in the enhanced opportunistic infection (OI) arm had resolved 

at week 44. The proportion of CD38-HLA-DR+ CD4 T cells and activated CD8 T cells were lower in the 

enhanced OI prophylaxis group at baseline [median (IQR) 13.1 (7.4 – 17.8) versus 18.8 (12.4 – 25.6), 

p<0.01 and 72.7 (62.2 – 82.9) versus 80.4 (68.3 – 89.4), p<0.01 respectively] and the proportion of 

CD4CD38+HLA-DR- CD4 T cells was higher [median (IQR) 37.5 (26.3 – 47.7) versus 20.5 (16.2 – 32.7), 

p<0.001]. Again, these differences did not remain at week 44. All of the markers that were 

significantly altered at baseline in the enhanced OI prophylaxis group showed a statistically 

significant change between baseline and Week 44.  

7.4.11.3 RUSF 

In HIV infected participants receiving RUSF, no significant differences in proportions of immune 

markers were found at baseline. However, the percentage of CD8 T cell exhaustion decreased more 

rapidly in this group [median change -29.4 (-43.4 - -10.0) versus -18.1 (-33.0 – 7.0), p=0.02] and 

remained significantly lower at week 44 compared to HIV infected participants not receiving RUSF 

[median 24.5 (16.6 – 42.6) versus 31.2 (21.9 – 49.5) p=0.03].  
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7.4.12 Change in pulse wave velocity according to early enhanced HIV intervention groups 

To address the final component of objective 7, we examined whether any of the REALITY 

interventions affected PWV.  

7.4.12.1 Raltegravir 

Absolute PWV was significantly higher at baseline in HIV infected participants receiving Raltegravir 

compared to those who were not receiving it (see Table 7-21). In addition, there was a significant 

decrease in PWV in the Raltegravir group between baseline and week 10 and between baseline and 

week 22 (see Table 7-22). The change in PWV for the Raltegravir intervention group compared to the 

non-intervention group is shown in Figure 7-14. 

Table 7-21 Absolute PWV values according to intervention with Raltegravir for each study 

visit 

Variable Raltegravir No Raltegravir P value 

Baseline 7.5 (7.0 – 8.3) 7.3 (6.3 – 8.2) 0.02 

Week 10 7.4 (6.5 – 8.2) 7.1 (6.4 – 8.1) 0.28 

Week 22 7.2 (6.3 – 7.7) 7.1 (6.3 – 8.0) 0.99 

Week 44 7.3 (6.4 – 7.8) 7.0 (6.3 – 7.8) 0.58 

 

Table 7-22 Change in PWV from baseline according to intervention with Raltegravir for each 

study visit 

Variable Raltegravir No Raltegravir P value 

Week 10 -0.30 (-1 – 0.30) -0.10 (-0.70 – 0.50) 0.06 

Week 22 -0.40 (-1.20 – 0.10) -0.20 (-0.85 -0.50) 0.03 

Week 44 -0.60 (-1.20 – 0.10) -0.25 (-0.90 – 0.20) 0.13 
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Figure 7-14 PWV in HIV infected patients receiving Raltegravir for the initial 12 weeks of ART 

therapy compared to those not receiving Raltegravir 

 

 

Changes in individual PWV over time for patients who received Raltegravir and patients who did not 

receive Raltegravir are shown in Figure 7-15 and Figure 7-16 respectively.  When Raltegravir was 

introduced into the mixed effects model looking at the effect of time on PWV, it was retained with a 

coefficient of 0.30 (-0.06 – 0.67, p=0.10). But when it was introduced as an interaction term, it did 

not significantly modify the slope of change in PWV (change in slope -0.003 (-0.01 – 0.006, p=0.54).  
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Figure 7-15 Spaghetti plot for changes in PWV in participants who received Raltegravir for 12 

weeks 
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Figure 7-16 Spaghetti plot for changes in PWV in HIV infected participants who did not 

receive Raltegravir 

 

 

7.4.12.2 Enhanced OI prophylaxis 

There were no differences in PWV in patients who received enhanced OI prophylaxis compared to 

those who did not (see Table 7-23 and Table 7-24).  

Table 7-23 Absolute PWV values according to intervention with enhanced OI prophylaxis for 

each study visit 

Variable OI prophylaxis No OI prophylaxis P value 

Baseline 7.4 (6.4 – 8.3) 7.3 (6.5 – 8.2) 0.78 

Week 10 7.2 (6.5 – 8.3) 7.2 (6.4 – 8.1) 0.88 

Week 22 7.2 (6.4 – 7.8) 7.0 (6.3 – 8.0) 0.57 

Week 44 7.1 (6.4 – 7.7) 7.0 (6.3 – 7.9) 0.64 
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Table 7-24 Change in PWV from baseline according to intervention with enhanced OI 

prophylaxis for each study visit 

Variable OI prophylaxis No OI prophylaxis P value 

Week 10 -0.10 (-0.80 – 0.50) -0.20 (-0.85 – 0.40) 0.80 

Week 22 -0.10 (-1.20 – 0.40) -0.40 (-0.90 – 0.40) 0.63 

Week 44 -0.40 (-1.05 – 0.20) -0.30 (-0.90 – 0.20) 0.62 

 

7.4.12.3 RUSF 

Equally, there were no differences in PWV in patients who received RUSF and those who did not (see 

Table 7-25 and Table 7-26).  

Table 7-25 Absolute PWV values according to intervention with RUSF for each study visit 

Variable OI prophylaxis No OI prophylaxis P value 

Baseline 7.5 (6.6 – 8.3) 7.4 (6.6 – 8.2) 0.79 

Week 10 7.3 (6.3 – 8.2) 7.2 (6.5- 8.3) 0.84 

Week 22 7.0 (6.1 – 7.8) 7.2 (6.4 – 7.9) 0.27 

Week 44 7.0 (6.3 – 7.7) 7.1 (6.4 – 7.8) 0.69 

 

Table 7-26 Change in PWV from baseline according to intervention with RUSF for each study 

visit 

Variable OI prophylaxis No OI prophylaxis P value 

Week 10 -0.2 (-0.8 – 0.4) -0.3 (-0.9 – 0.6) 0.91 

Week 22 -0.4 (-1.2 – 0.2) -0.4 (-0.9 – 0.3) 0.53 

Week 44 -0.4 (-1.1 – 0.1)1 -0.4 (-1.1 – 0.2) 0.87 

 

7.5 Discussion 

The elevation in PWV found in HIV infected participants compared to uninfected at baseline 

persisted at 10 weeks but then resolved by 22 weeks. Patients with HIV infection showed an 

overall decrease in PWV over the study period and this was most pronounced in patients who 

had higher immune activation levels at baseline. Although T cell activation has previously been 

shown to decrease over 6 months without any change in subclinical atherosclerosis as assessed 
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by cIMT [495],  T cell activation over 6.5 years of ART correlates with carotid artery stiffness in 

the WIHS [164]. Interestingly this study did not find any correlation between T cell activation and 

artery stiffness in HIV uninfected controls. Peripheral augmentation index was measured using 

an EndoPAT device in a cohort of 33 undernourished Zambians during the first 12 weeks of HIV 

treatment and showed that persistent rise in CRP, TNFα and soluble CD163 was associated with 

endothelial damage over that time period [496].  

Although only 6% of the overall cohort was lost to follow-up, there was a high overall mortality 

rate of 6% which was almost exclusively from the HIV infected cohort. The highest mortality rate 

was seen in the first two weeks following initiation of ART. Half of patient who died had been 

diagnosed with an acute infection (TB, pneumonia and gastroenteritis were more common in 

HIV infected participants but not malaria), and over half met blood pressure criteria for new 

hypertension (140/90mmHg) during their enrolment visit. PWV was also significantly higher in 

patients who died but this sample size was too small to evaluate independent predictors of 

mortality. PWV has been consistently associated with higher all-cause mortality in the literature 

- the risk of death is approximately twice as high for those with the highest tertile of arterial 

stiffness values compared to the lowest tertile [497]. Patients who had a raised BP during 

enrolment were managed according to clinical guidelines - therapeutic intervention and / or 

repeat measurements were taken as appropriate. However, BP measurements for study 

purposes were only captured on record at enrolment and exit visits. Despite the limited data to 

support the diagnosis of hypertension, it would be expected that overall those patients with HIV 

infection who were sick with opportunistic infection might have a lower blood pressure and this 

was indeed reflected when comparing BP in the HIV uninfected and infected cohorts. However, 

when specifically looking at those who died, there was a high proportion with elevated BP.  

Higher diastolic BP and creatinine at enrolment both independently predicted PWV at week 44.  

A greater resolution in CD4 activation than in CD8 activation was seen on ART. Exhausted CD4 

and CD8 T cells both decreased over time but, again, a more important decrease was seen in 

exhausted CD4 T cells. This might either represent a continued stimulus for CD8 activation over 

and above HIV infection such as CMV, EBV, TB or helminth infection. Or, because activation and 

exhaustion here are reported as percentages of the whole T cell compartment (CD3 positive 

lymphocytes), it is possible that the decrease in CD4 activation and exhaustion actually 

represents a relative increase in the proportion of naïve CD4 T cells through release and new 

production following ART initiation. In other words, rather than a reduction in activation of 
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existing CD4 T cells, an increase in the production of naïve non-activated CD4 T cells is making up 

a higher proportion of the T cell pool.  

There was no resolution seen in T cell senescence and it actually increased in CD8 T cells over 

the study period. This is in keeping with immunopathology of T cell senescence which results in 

an irreversible state of cell hyporesponsiveness meaning that these particular T cells are unable 

to return to the non-senescent pool. However, the maintenance of senescent T cells even on 

ART would suggest that the rate of generation of senescent T cells is more or less balanced with 

their rate of destruction implying that new senescent T cells continue to be produced. However, 

thymic migration markers were not measured in this study to support this hypothesis. It is likely 

that patients with such severe immunosuppression and likely resultant lymph node fibrosis 

would require longer periods on ART to restore immune function closer to that of HIV uninfected 

participants [8].  Consistent with literature from South Africa, markers of immune activation 

persisted even with ART treatment over and above those in HIV uninfected participants [411]. 

Persistent perturbations in CD4/CD8 ratio are associated with ongoing T cell activation and 

senescence and may be a useful biomarker for immune activation on ART [323]. Other studies 

have supported the observation that T cell population normalisation is slow on ART [498]. CD8% 

and /or CD4:CD8% ratio were important in predicting a change in PWV at 10 weeks. Although 

CD4 count increased by week 44, the vast majority of participants remained with a CD4 less than 

200 cells/uL. Inflammatory biomarkers normalised in HIV infected participants starting ART 

almost to HIV uninfected levels, but with some exceptions (including CRP, sGP130, sCD14 and 

TNF). Most inflammation that was going to resolve did so by one year [499]. 

The trend towards an increase in nonclassical monocytes in the HIV infected population during 

the study period was probably influenced by a few outliers and was otherwise similar to the 

changes seen in the HIV uninfected group. However, the trend towards an association between 

a decrease in intermediate monocytes and PWV was seen at week 22 and, to a lesser degree, at 

week 44.  The decrease in inflammatory monocytes on ART is consistent with previous results 

published from a South African cohort, however the proportion of intermediate monocytes in 

this untreated HIV population was approximately twice as high as our data from Malawi [117]. 

Greater declines in CD14 levels and IL-6 predicted lower cIMT in older Ugandans established on 

ART for 7 years [179].  

CD4 and CD8 activation was lower in the Raltegravir group at week 44. Addition of Raltegravir to 

a standard ART regime has been shown to reduce HIV DNA reservoirs without translation into a 

reduction in immune activation [500]. Here we show that both CD4 and CD8 T cell activation 
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parameters were significantly lower at week 44 in those who had 12 weeks or Raltegravir at ART 

initiation [442]. This finding is supported by a higher CD4 count in patients who received 

Raltegravir during the overall REALITY trial analysis [501]. This reduction did not translate into a 

reduction in PWV at week 44, but PWV was initially higher in those receiving the Raltegravir arm. 

PWV began higher in the Raltegravir arm but reduced more quickly in models of summary 

estimates but was not significant in the linear effects model. Only one previous study has 

assessed the effects of Raltegravir on endothelial damage, using Flow Mediated Dilatation as a 

measure of endothelial dysfunction. They showed that there was no overall reduction in 

cardiovascular risk when Raltegravir was added to a standard regime for 6 months in patients 

already virologically suppressed on ART [502].  However, it is likely that the greatest effect of 

Raltegravir would be during ART initiation when there is still the potential to reduce the viral set 

point which may, in itself, be a risk factor for chronic immune activation on ART. The use of 

Raltegravir in a group of severely immune compromised participants, with a more rapid drop in 

viral load, may have led to a more vigorous inflammatory response causing the acute and 

temporary increase in PWV seen in the patients who received Raltegravir. It is possible that this 

initial increase in PWV may have offset any benefit incurred by the reduction in immune 

activation at week 44. This assessment is limited by the lack of serial data on HIV viral loads and 

immune activation markers during the early stages of ART as the dynamics associated with 

Raltegravir addition have been shown to evolve rapidly during ART initiation [503].  

For the OI prophylaxis group the proportion of activated CD4 and CD8 T cells was lower at 

baseline compared to those who did not receive OI prophylaxis, but this benefit did not persist 

at week 44. This is an acute effect and may reflect treatment of bacterial infections with 

azithromycin or intestinal helminth infections with albendazole. Even in the first two weeks of 

therapy, OI prophylaxis may reduce T cell activation by preventing TB and cryptococcal 

meningitis. Although there were too few of these outcomes to assess this relationship within the 

SHIELD study, results from the REALITY trial showed that patients receiving OI prophylaxis had 

fewer TB and cryptococcal meningitis events [501]. Macrolides, including azithromycin 

demonstrate direct anti-inflammatory effects both in vitro and in vivo and are being used in 

trials of chronic lung disease [504, 505]. Although there was no difference in PWV between 

those who did and did not receive OI intervention, having an acute infection episode diagnosed 

at enrolment was associated with a trend towards a decrease in PWV at week 22 and at week 

44. Immune activation markers, activated CD8 T cells in particular, also decreased in those 

patients who had been diagnosed with an acute infection during the study period. Taken 

together these results could suggest that treatment of acute infections during early ART leads to 
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an acute reduction in immune activation but, possibly, a more sustained reduction in PWV. The 

likely importance of treating acute infections to modify endothelial damage has been considered 

previously [506]. CD8 T cell activation was higher in patients with TB than with HIV [507]. 

Schistosomiasis may increase [508] activation of T cell subsets as well as intestinal parasites 

[509]. In vitro malaria infection of PBMCs leads to increased productive HIV infection [510]. Non 

classical monocytes were higher at baseline in patients who were receiving Raltegravir and OI 

prophylaxis compared to those not receiving these interventions. This resolved by week 44. 

Switching from Efavirenz to Raltegravir in a previous study didn’t improve endothelial function, 

but did lead to a decrease in markers of monocyte activation [511]. It is also important to 

consider the role of cotrimoxazole in potentially treating and preventing acute infections. The 

routine use of cotrimoxazole in all HIV infected participants may account for the decrease in 

PWV in HIV infected participants even to below that of HIV uninfected participants. 

Cotrimoxazole has been shown to reduce infections caused by malaria, TB and helminths in SSA 

and also reduces all-cause mortality [512-515]. 

 

CD8 T cell exhaustion decreased more rapidly in the RUSF group and was lower at week 44 

compared to HIV uninfected participants not receiving RUSF. Improving nutritional intake may 

lead to a decrease in inflammation in the gut mucosa, thereby reducing microbial translocation 

and activation of gut CD4 T cells [516].  The addition of RUSF may also have led to the generation 

of a more immunologically favourable gut microbiome [517]. The contribution of weight, 

undernutrition and body composition in low-income sub-Saharan Africa is challenging to 

decipher [518]. Although the REALITY study showed that the addition of RUSF led to increased 

BMI, this mostly consisted of increases in adipose tissue rather than lean muscle bulk (personal 

communication, Jane Mallewa, College of Medicine University of Malawi). This may not 

necessarily confer a long term benefit in terms of immune activation because recent evidence 

shows that adipocytes may be reservoirs for the accumulation of activated T cells [519]. But on 

the other hand, high levels of inflammation and increased cardiovascular risk have been 

identified in a small group of South African patients with low BMI during the first 12 weeks of 

ART [496]. 

HIV infection treated with ART and cotrimoxazole and resolution of immune activation are 

predictors of improvement in PWV over 44 weeks in adult Malawians.  Treatment of an acute 

infection during this period is also a predictor of lower PWV, but the association is less clear and 
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further studies specifically designed to look at the effect of acute infection and its treatment on 

endothelial damage are warranted.   
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8 CHAPTER 8: General Discussion 

Overall this study reports data from a cohort which is relatively young in terms of cardiovascular 

risk and has few traditional cardiovascular risk factors, apart from hypertension which was highly 

prevalent. Despite this seemingly low traditional cardiovascular risk, the age adjusted proportion 

of adults reaching criteria for arterial stiffness or subclinical atherosclerosis in this cohort is 

higher than reported in previous cohorts from high income settings. PWV values were 1 m/s 

faster in our cohort and subclinical atherosclerosis occurred 5 years earlier compared to healthy 

European controls [408, 416].  

8.1 Aetiology of endothelial damage in adult Malawians 

8.1.1 Background immune activation is high in HIV uninfected adult Malawians 

The finding that background immune activation is high, even in apparently healthy HIV 

uninfected adults, suggests that immune activation has a different epidemiology in low-resource 

sub-Saharan Africa. HIV may only be one of several important infectious agents.  This work 

challenges the paradigm of traditional versus HIV related risk factors from high income 

countries. Both subclinical infections (such as CMV, EBV and latent TB) and recurrent acute 

infections (such as malaria and gastroenteritis) may contribute to chronic immune activation in 

HIV uninfected and HIV infected participants and the distinction between traditional risk factors 

and infection related risk factors is less clear. Figure 8-1 shows an overview of the proposed 

working hypothesis on determinants of endothelial damage in an adult Malawian population, 

highlighting that overlap exists between background and HIV related risk factors.  

 

8.1.2 HIV and immune activation impact vascular health during the first year of ART in adult 

Malawians with advanced HIV infection 

At ART initiation in severely immunocompromised patients, HIV and immune activation play an 

important role in arterial stiffness. Patients with HIV infection and high levels of immune 

activation see the greatest improvements in PWV on ART and cotrimoxazole and treatment of 

acute infections likely contributes to this picture. Immune activation and hypertension were the 

most important reversible determinants of arterial stiffness but treatment of acute infections 

may also have contributed to improvements in immune activation. Subclinical atherosclerosis, as 

measured by cIMT, although raised compared to cohorts in this age group from high income 
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settings, was less well defined in terms of risk factors. It is likely that arterial stiffness is more 

important in this cohort because they are younger and have hypertension as their main 

traditional risk factor. With the evolution of cardiovascular disease, arterial stiffness usually 

precedes atherosclerosis and this study may have captured a cohort earlier in this evolution 

where arterial stiffness is the main feature of arterial damage.  

The important limitations of this study were that dyslipidaemia and hypertension were not 

assessed in depth. It is possible that there may have been a derangement in cholesterol 

subtypes without seeing an increase in total cholesterol. This limited our ability to assess for 

metabolic syndrome which is an increasingly prevalent risk factor for CVD in SSA. Further 

research into cardiovascular risk in HIV should aim to include metabolic factors, especially in 

those patients established on ART [520]. Acute illness may have had an important effect on both 

blood pressure and, therefore PWV at enrolment. However, PWV was adjusted for blood 

pressure and haemoglobin (as a marker for plasma viscosity) and so these results should remain 

accurate. Blood pressure remained a consistent predictor of PWV both during the enrolment 

visit and the exit visit.  Arterial stiffness, the main outcome measurement, is a proxy measure for 

cardiovascular risk. It has not been validated in sub-Saharan Africa and therefore it is difficult to 

quantify the increased risk associated with HIV and immune activation in this study. However, 

PWV had a high intra-operator reliability, was associated with the expected variables as 

previously reported in the literature (blood pressure, haemoglobin and age) and had absolute 

values comparable to research published elsewhere. Additionally, viral loads were taken at 

different time points around enrolment for SHIELD and REALITY participants which may have 

limited interpretation of the viral load data and, in particular, the contribution of viral load to 

arterial stiffness at the baseline study visit. However, there was no correlation between HIV viral 

load and immune activation or PWV even within the SHIELD participants alone. A large number 

of immune markers was assessed and so it is possible that some of the associations identified 

may have been significant by chance. This was taken into account during the reporting of the 

results, which focussed on those results which presented biologically plausible patterns involving 

two or more markers or a pattern in change of related markers over time. The number of 

patients with acute infections was low and this study was not specifically designed to assess 

their contribution. Therefore, firm conclusions cannot be made about the contribution of acute 

infection to either immune activation or endothelial damage. It is possible that some acute 

infections went undiagnosed, especially in the HIV uninfected cohort and there may have been 

differences in management of those infections given that new symptoms in the HIV uninfected 

cohort would not have been managed in the ART clinic.  



278 
 

Overall, this is the first study to characterise changes in PWV during the first year of ART. We 

have shown that immune activation is an important component of endothelial damage during 

this time and is relatively more important than any contribution from HIV viral load or effects of 

ART itself. Figure 8-2 presents a basic overview of the proposed pathogenesis of endothelial 

damage at a cellular level in adults with HIV infection in a low resource SSA setting.  



279 
 

Figure 8-1 Overview of working hypothesis of the risk factors for endothelial damage in adult Malawians 
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Figure 8-2 Overview of the working hypothesis of the pathogenesis of endothelial damage in Malawian adults 

1.HIV infection activated T lymphocytes leading to the expression of HLA-DR, CD38 and PD1. CD16 expressing monocyte subsets are also 
expanded. 2. Activated T cells interact with the endothelium via ICAM and VCAM initiating endothelial activation. This produces a cascade of 
pro-inflammatory cytokines and chemokines which stimulate the recruitment of other leucocytes and platelets. 3. Leucocyte, platelet and 
endothelial cell activation leads to the production of microparticles which can also act as messengers to propagate the inflammation cascade. 4. 
Nonclassical monocytes expressing CD16 roll along the endothelium where they transcytose into the intima layer producing a subendothelial 
inflammatory reaction. The pro-inflammatory milieu favours elastin degradation and enables artery wall stiffening. 5. T lymphocytes, and 
possibly monocytes, eventually become senescent and depleted and are no longer able to respond to antigenic stimuli. Both HIV infection and 
CMV infection may directly bind to and infect endothelial cells. 6. Bacterial products either as a result of systemic infection or through microbial 
translocation further stimulate the innate immune system, continuing the cycle of immune activation and endothelial damage.  

1.  
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8.1.3 Aetiology of endothelial damage in the context of long term ART  

This work has focussed on the early stages of HIV treatment. As the immune system reconstitutes 

and viral load decreases, the relative toxic effect of ART to the endothelium, which is accumulated 

over time, becomes more important. Efavirenz, the first line NNRTI in Malawi national guidelines, 

has been shown to lead to increase in arterial stiffness but not cIMT in ApoE (-/-) mice [521]. It also 

increases rolling and adhesion of leucocytes inducing emigration of neutrophils and monocytes in rat 

venules [522]. In a human coronary artery endothelial cell model, Efavirenz increased endothelial 

permeability and decreased tight junction proteins [523]. Clinical studies have also demonstrated a 

higher risk of endothelial damage with Efavirenz [524]. Strong evidence exists implicating Tenofovir 

in the development of renal disease as well as osteoporosis in patients with HIV infection [525, 526]. 

Abacavir also increases the risk of cardiovascular disease as demonstrated in the DAD study and has 

been shown to induce leucocyte-endothelial interactions when compared with Tenofovir [151, 152, 

527]. Although several of the components of the current ART regime in Malawi may pose an 

increased risk for the development of cardiovascular disease, several studies have shown that long 

term ART, in general, can increase arterial stiffness [137, 528]. Given the increasing numbers of 

patients living for several decades on long term ART in sub -Saharan Africa, further research into 

optimum ART regimes to minimise risk of cardiovascular and other non-communicable complications 

is needed.  

Over and above the direct metabolic effects of ART itself, come cardiovascular risks associated with 

treatment default and treatment failure. A recent report from patients established on ART in QECH 

clinic for at least 18 months showed that ART default and detectable viral loads were associated with 

a higher PWV [442]. Further, poor virological response to ART is associated with higher levels of CD8 

T cell activation in an African cohort [529]. Therefore, in the longer term, better identification and 

management of viral break through and ART default may also help minimise cardiovascular risk in 

patients with HIV in Malawi [442].  

8.2 Improving vascular health in adult Malawians 

8.2.1 HIV, immune activation and recurrent acute infection are modifiable risk factors for 

endothelial damage in adult Malawians 

The three main points of potential therapeutic intervention to modify cardiovascular risk in adults 

living with HIV in Malawi is shown in Figure 8-3. Firstly, drivers of chronic immune activation could 
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be targeted. Interventions directed towards improved health of the gut mucosa could reduce 

microbial translocation. So far these have included agents such as probiotics and sevelemer [530].  It 

is possible in this setting that anti-infective, (such as albendazole for intestinal helminths and 

azithromycin for bacterial gastrointestinal infections) and nutritional supplements (such as RUSF) 

may reduce mucosal inflammation and therefore microbial translocation. Anti-CMV agents such as 

valganciclovir have shown limited results in previous studies aiming to reduce chronic immune 

activation but, in this setting, where the majority of adults have latent CMV infection and around a 

third of people presenting with HIV have a CD4<100 cells/mm3, reducing CMV viraemia could 

potentially have a more important impact [103]. Further investigation would be warranted into the 

value of screening for and treating latent TB infection and TB disease. The fact that this study has 

shown a decrease in PWV in those who had been diagnosed with an acute infection may mean that 

other participants had higher PWV values due to unrecognised infection. Given that TB is one of the 

most common co-infections in this setting, its role in chronic immune activation deserves further 

attention [531]. Reducing ongoing HIV replication may also be of relatively increased benefit in this 

setting. In patients with a high background immune activation, including expansion of the more HIV 

permissive CD16+ monocyte subset, it is possible that the viral set point could be higher. Use of 

drugs such as Raltegravir during early ART may help drive down that viral set point thereby reducing 

chronic immune activation and allowing better CD4 reconstitution in the longer term. We have 

shown here that the addition of Raltegravir acutely does reduce T cell activation in the longer term 

and the REALITY trial results have shown in the overall cohort that use of Raltegravir leads to higher 

CD4 counts at an earlier stage in this cohort. This is in contrast to studies from high income countries 

that have shown no immunological benefit to Raltegravir [532].  

Secondly, modulation of the immune response can be considered. The main stay of current trials 

around modification of inflammation in adults with HIV in high income countries revolves around 

statin therapy. Rosuvastatin, in particular, has been shown to reduce both monocyte and T cell 

activation after 24 weeks of therapy [533]. ACE inhibitors may confer benefits over and above 

reduction in blood pressure and are the only agents that have been shown to reduce arterial 

stiffness independently of effects on BP [534]. Chloroquine based agents have been trialled with 

some success in high income settings but may be more interesting in countries like Malawi where 

they are cheap and available [535]. Like co-trimoxazole, the potential mechanisms for reduction in 

cardiovascular risk could include anti-inflammatory actions as well as prevention of common 

infections. A separate analysis of the role of cotrimoxazole in reducing cardiovascular risk in adult 

Malawians could shed light on the importance of prevention of infectious diseases in HIV uninfected 

adults for reduction of chronic immune activation. More specialised agents such as anti-IL6 and anti-
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TNF monoclonal antibodies which are in use clinically for the treatment of rheumatoid arthritis, and 

PD-1 inhibitors which are being trialled as cancer therapy, are unlikely to be applicable in this setting 

due to the likelihood they would leave patients further immunosuppressed and at risk of increased 

infections [536, 537]. 

Lastly, it is important to consider more general down-stream targets include management of 

traditional risk factors, modification of pro-thrombotic pathways and protection of the endothelium. 

Because hypertension was the other important risk factor for endothelial damage in patients with 

HIV, guidelines for screening and targeted management of hypertension should be introduced in 

ART clinics to reduce the overall risk of cardiovascular disease. A simple blood pressure 

measurement could be added on to standard metrics recorded at ART clinic booking in addition to 

height and weight. An agreed guideline could then inform the need for further measurements and 

treatment recommendations. The use of 375mg of aspirin in all patients with HIV for prevention of 

cardiovascular events is currently being trialled in a high resource setting (NCT00783614, 

www.clinicaltrials.gov), but more data on region specific cardiovascular risk is needed before such 

trials are carried out in low income sub-Saharan Africa.  

http://www.clinicaltrials.gov/
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Figure 8-3 Potential points of therapeutic intervention to modify cardiovascular risk in adult Malawians 
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8.2.2 Areas for future research 

Based on the results of this study, three main prongs of future research are warranted: 

8.2.2.1 Prong 1. Characterisation of the determinants and burden of chronic immune activation 

in low income SSA 

Firstly, it is necessary to better define the nature of chronic immune activation in this setting. 

This would include an assessment of relative types of T cells within the T cell pool using 

proliferation studies and cell surface phenotyping to identify naïve, memory and effector T cell 

subsets. Characterisation of cell function is required and, in particular, examination of the 

relative functions of monocyte subsets in this setting. Investigation of the extent of lymph node 

fibrosis would be an important addition to characterising immune exhaustion and senescence 

and PCR based methods could be used to examine T cell receptor repertoire. These studies 

should include both HIV uninfected adults as well as patients starting ART at higher CD4 counts. 

With the advent of “Test and Treat” it will be important to quantify the risk of chronic immune 

activation in patients starting ART across the spectrum of immune suppression. In addition, 

studies including a wide range of age groups, including younger children may be helpful in 

pinpointing the development of chronic immune activation. It is possible that a genetic 

component exists to chronic immune activation which has been developed in the face of 

recurrent infections over many generations in SSA.  

Next, the pathophysiological consequences of chronic immune activation in this setting should 

be investigated. It is possible that if a high inflammatory state has been developed since 

childhood a tolerance of inflammation may have been developed and the threshold required to 

predispose to disease may be different. Or, it is possible that the relatively low levels of 

hyperlipidaemia, diabetes and obesity mean that the effects of inflammation are not yet 

manifest. To answer this question, future studies should assess the impact of chronic immune 

activation in patients with higher cardiovascular risk profiles. Ultimately, studies using 

interventions which reduce chronic immune activation would help to decipher whether 

reduction of chronic immune activation also leads to a reduction in clinical outcomes. Pilot 

studies into agents such as cotrimoxazole and chloroquine would be interesting in the first 

instance.  

Lastly, the determinants of chronic immune activation in this setting should be investigated. In 

terms of subclinical or recurrent acute infections CMV, TB, helminths, malaria and 
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gastrointestinal infections are all of interest. A cohort study that closely characterises acute and 

subclinical infections and their association with immune activation would also allow for the 

examination of anti-infective treatment on chronic immune activation in the short term as well 

as in the longer term. This study did not focus on the role of the gut inflammation and microbial 

translocation in chronic immune activation in low income SSA and given the increased 

prevalence of important environmental and socio-economic risk factors and the likely role of 

recurrent gut infections and malnutrition in facilitating microbial translocation, this warrants 

particular attention. Urban versus rural populations and participants from different socio-

economic backgrounds would provide interesting comparisons to help tease out the aetiologies. 

 

8.2.2.2 Prong 2. Characterisation of clinical cardiovascular disease and validating physiological 

markers in low income SSA 

In order to better understand the incidence and clinical phenotypes of cardiovascular diseases in 

this setting, a large observational cohort study would need to run for 5 to 10 years. We have 

shown that cIMT and PWV are feasible and potentially useful tools in a resource limited setting. 

However, accurate validation of these tools in this setting is essential if results are to be used to 

inform policy decisions. A clinical cohort study in an older population, with a higher prevalence 

of traditional cardiovascular risk factors could help validate these tools. The relative contribution 

of HIV related risk factors for cardiovascular disease are likely to change over time on ART, with 

the toxicity of the drugs themselves likely to become more important as the virus is controlled. 

Future cohort studies should include patients on ART and perform an in-depth analysis of 

metabolic factors including obesity, dyslipidaemia and glucose intolerance.  

 

8.2.2.3 Prong 3. Formulation of a cardiovascular risk assessment strategy and guidelines for 

screening and prevention 

Further to having a practical outcome measure, further data are required in order to generate 

tools for cardiovascular risk assessment in low income countries. If confirmed to be important, 

normative values for chronic immune activation would need to be established. Risk assessment 

tools should be generated from data produced in low income SSA and should be pragmatic.  A 

simple guideline introducing the assessment of hypertension in people with HIV infection could 
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be assessed for feasibility and clinical benefit. Lastly, agents such as aspirin, ACE inhibitors or 

statins could be trialled in those deemed to be at highest risk.  

 

In conclusion, cardiovascular risk in low income sub-Saharan Africa is a different playing field. 

Many of the potential risk factors identified here may be modifiable with simple interventions. A 

research platform is needed that can better characterise these risks and respond to changing 

risk factors and a dynamic clinical phenotype. The HIV epidemic has led to the rapid scale up of 

chronic disease infrastructure in SSA, which in turn could support the assessment and 

management of cardiovascular risk during the different stages of HIV treatment [203] and 

perhaps in the general population as well.  
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