On the Transformation Capability of Feasible Mechanisms for Programmable Matter

Othon Michail¹, George Skretas², and Paul G. Spirakis³

1 Department of Computer Science, University of Liverpool, UK
Othon.Michail@liverpool.ac.uk

2 Computer Engineering and Informatics Department, Patras University, Greece
skretas@ceid.upatras.gr

3 Department of Computer Science, University of Liverpool, UK & CTI
P.Spirakis@liverpool.ac.uk

Abstract
In this work, we study theoretical models of programmable matter systems. The systems under consideration consist of spherical modules, kept together by magnetic forces and able to perform two minimal mechanical operations (or movements): rotate around a neighbor and slide over a line. In terms of modeling, there are \(n \) nodes arranged in a 2-dimensional grid and forming some initial shape. The goal is for the initial shape \(A \) to transform to some target shape \(B \) by a sequence of movements. Most of the paper focuses on transformability questions, meaning whether it is in principle feasible to transform a given shape to another. We first consider the case in which only rotation is available to the nodes. Our main result is that deciding whether two given shapes \(A \) and \(B \) can be transformed to each other, is in \(P \). We then insist on rotation only and impose the restriction that the nodes must maintain global connectivity throughout the transformation. We prove that the corresponding transformability question is in \(PSPACE \) and study the problem of determining the minimum seeds that can make feasible, otherwise infeasible transformations. Next we allow both rotations and slidings and prove universality: any two connected shapes \(A, B \) of the same order, can be transformed to each other without breaking connectivity. The worst-case number of movements of the generic strategy is \(\Omega(n^2) \). We improve this to \(O(n) \) parallel time, by a pipelining strategy, and prove optimality of both by matching lower bounds. In the last part of the paper, we turn our attention to distributed transformations. The nodes are now distributed processes able to perform communicate-compute-move rounds. We provide distributed algorithms for a general type of transformations.

Keywords and phrases programmable matter, transformation, reconfigurable robotics, shape formation, complexity, distributed algorithms

1 Introduction

Programmable matter refers to any type of matter that can algorithmically change its physical properties. For a concrete example, imagine a material formed by a collection of spherical nanomodules kept together by magnetic forces. Each module is capable of storing (in some internal representation) and executing a simple program that handles communication with nearby modules and that controls the module’s electromagnets, in a way that allows the module to rotate or slide over neighboring modules. Such a material would be able to adjust its shape in a programmable way. Other examples of physical properties of interest for real applications would be connectivity, color [26, 5], and strength of the material.

There are already some first impressive outcomes towards the development of programmable materials (even though it is evident that there is much more work to be done in the direction of real systems), such as programmed DNA molecules that self-assemble into
desired structures [29, 13] and large collectives of tiny identical robots that orchestrate resembling a single multi-robot organism (Kilobot system) [30]. Other systems for programmable matter include [20, 23]. Ambitious long-term applications of programmable materials include molecular computers, collectives of nanorobots injected into the human circulatory system for monitoring and treating diseases, or even self-reproducing and self-healing machines.

Apart from the fact that systems work is still in its infancy, there is also an apparent lack of unifying formalism and theoretical treatment. Still there are some first theoretical efforts aiming at understanding the fundamental possibilities and limitations of this prospective. The area of algorithmic self-assembly tries to understand how to program molecules (mainly DNA strands) to manipulate themselves, grow into machines and at the same time control their own growth [13]. The theoretical model guiding the study in algorithmic self-assembly is the Abstract Tile Assembly Model (aTAM) [34, 28] and variations. Recently, a model, called the nubot model, was proposed for studying the complexity of self-assembled structures with active molecular components [35]. Another very recent model, called the Network Constructors model, studied what stable networks can be constructed by a population of finite-automata that interact randomly like molecules in a well-mixed solution and can establish bonds with each other according to the rules of a common small protocol [27].

The development of Network Constructors was based on the Population Protocol model of Angluin et al. [2], that does not include the capability of creating bonds and focuses more on the computation of functions on inputs. A very interesting fact about population protocols is that they are formally equivalent to chemical reaction networks (CRNs), “which model chemistry in a well-mixed solution and are widely used to describe information processing occurring in natural cellular regulatory networks” [14]. Also the recently proposed Amoebot model, “offers a versatile framework to model self-organizing particles and facilitates rigorous algorithmic research in the area of programmable matter” [10, 12, 11]. Other related work includes mobile and reconfigurable robotics [6, 24, 32, 19, 33, 8, 7, 4, 37, 1, 36], puzzles [9, 21], and passive systems [2, 3, 27, 18, 34, 28]. See the Appendix for more details on these areas.

It seems that the right way for theory to boost the development of more refined real systems is to reveal the transformation capabilities of mechanisms and technologies that are available now, rather than by exploring the unlimited variety of theoretical models that are not expected to correspond to a real implementation in the near future. In this paper, we follow such an approach, by studying the transformation capabilities of models for programmable matter, which are based on minimal mechanical capabilities, easily implementable by existing technology.

1.1 Our Approach

We study a minimal programmable matter system consisting of n cycle-shaped modules, with each module (or node) occupying at any given time a cell of the 2D grid (no two nodes can occupy the same cell at the same time). Therefore, the composition of the programmable matter systems under consideration is discrete. Our main question throughout is whether an initial arrangement of the material can transform (either in principle, e.g., by an external authority, or by itself) to some other target arrangement. In more technical terms, we are provided with an initial shape A and a target shape B and we are asked whether A can be transformed to B via a sequence of valid transformation steps. Usually, a step consists either of a valid movement of a single node (in the sequential case) or of more than one nodes at the same time (in the parallel case). We consider two quite primitive types of movement. The first one, called rotation, allows a node to rotate 90° around one of its neighbors either
clockwise or counterclockwise and the second one, called *sliding*, allows a node to slide by one position “over” two neighboring nodes. Both movements succeed only if the whole direction of movement is free of obstacles (i.e., other nodes blocking the way). More formal definitions are provided in Section 2. One part of the paper focuses on the case in which only rotation is available to the nodes and the other part studies the case in which both rotation and sliding are available. The latter case has been studied to some extent in the past in the, so called, *metamorphic systems* [16, 17, 15], which makes those studies the closest to our approach.

For rotation only, we introduce the notion of *color-consistence* and prove that if two shapes are not color-consistent then they cannot be transformed to each other. On the other hand color-consistence does not guarantee transformability as there is an infinite set of pairs \((A, B)\) such that \(A\) and \(B\) are color consistent but still they cannot be transformed to each other. At this point, observe that if \(A\) can be transformed to \(B\) then the inverse is also true, as all movements considered in this paper are *reversible*. We distinguish two main types of transformations: those that are allowed to break the connectivity of the shape during the transformation and those that are not and call the corresponding problems Rot-Transformability and RotC-Transformability. Our main result regarding Rot-Transformability is that Rot-Transformability \(\in \mathcal{P}\). To prove polynomial-time decidability, we prove that two shapes \(A\) and \(B\) are transformable to each other iff both have at least one movement available. Therefore, transformability reduces to checking the availability of a movement in the initial and target shapes.

We next study RotC-Transformability, in which again the only available movement is rotation, but now connectivity of the material has to be preserved throughout the transformation. The property of preserving the connectivity is expected to be a crucial property for programmable matter systems, as it allows the material to maintain coherence and strength, to eliminate the need for wireless communication, and, finally, enables the development of more effective power supply schemes, in which the modules can share resources or in which the modules have no batteries but are instead constantly supplied with energy by a centralized source (or by a supernode that is part of the material itself). Such benefits can lead to simplified designs and potentially to reduced size of individual modules. We first prove that RotC-Transformability \(\in \mathcal{PSPACE}\). The rest of our results here are strongly based on the notion of a *seed*. This stems from the observation that a large set of infeasible transformations become feasible by introducing to the initial shape an additional, and usually quite small, seed; i.e., a small shape that is being attached to some point of the initial shape. We investigate seeds that could serve as components capable of traveling the perimeter of an arbitrary connected shape \(A\). Such shapes are very convenient as they are capable of “simulating” the universal transformation techniques that are possible if we have both rotation and sliding movements available (discussed in the sequel). To this end, we prove that all seeds of size \(\leq 4\) cannot serve for this purpose, by proving that they cannot even walk the perimeter of a simple line shape. On the other hand, we manage to show that a 6-seed succeeds, and this provides a first indication, that there might be a large family of shapes that can be transformed to each other with rotation only and without breaking connectivity.

Next, we consider the case in which both rotation and sliding are available and insist on connectivity preservation. We first provide a proof that this combination of simple movements is universal w.r.t. transformations, as any pair of connected shapes \(A\) and \(B\) of the same order, can be transformed to each other without ever breaking the connectivity throughout the transformation (a first proof of this fact had already appeared in [15]). This generic transformation requires \(\Theta(n^2)\) sequential movements in the worst case. By a
potential-function argument we show that no transformation can improve on this worst-case complexity for some specific pairs of shapes and this lower bound is independent of connectivity preservation; it only depends on the inherent transformation-distance between the shapes. To improve on this, either some sort of parallelism must be employed or more powerful movement mechanisms, e.g., movements of whole sub-shapes in one step. We investigate the former approach, and prove that there is a pipelining general transformation strategy that improves the time to $O(n)$ (parallel time). We also give a matching $\Omega(n)$ lower bound. On the way, we also show that this parallel complexity is feasible even if the nodes are labeled, meaning that individual nodes must end up in specific positions of the target-shape.

Finally, we assume that the nodes are distributed processes able to perform communicate-compute-move rounds (where a movement can be both rotation and sliding) and provide distributed algorithms for a general type of transformations.

Section 2 brings together all definitions and basic facts that are used throughout the paper. In Section 3, we study programmable matter systems equipped only with rotation movement. In Section 4, we insist on rotation only, but additionally require from the material to maintain connectivity throughout the transformation. In Section 5, we investigate the combined effect of rotation and sliding movements. Section 6 focuses on distributed transformations having access to both rotation and sliding.

2 Preliminaries

The programmable matter systems considered in this paper operate on a 2-dimensional square grid, with each position (or cell) being uniquely referred to by its $x \geq 0$ and $y \geq 0$ coordinates. Such a system consists of a set V of n modules, called nodes throughout. Each node may be viewed as a spherical module fitting inside a cell of the grid. At any given time, each node $u \in V$ occupies a cell $o(u) = (\alpha_x(u), \alpha_y(u)) = (i, j)$ and no two nodes may occupy the same cell. At any given time t, the positioning of nodes on the grid defines an undirected neighboring relation $E(t) \subset V \times V$, where $(u, v) \in E(t)$ if and only if $\alpha_x(u) = \alpha_x(v)$ and $|\alpha_y(u) - \alpha_y(v)| = 1$ or $\alpha_y(u) = \alpha_y(v)$ and $|\alpha_x(u) - \alpha_x(v)| = 1$, that is, if u and v are either horizontal or vertical neighbors on the grid, respectively. A more informative way to define the system at a given time t, and thus often more convenient, is as a mapping $P_t : \mathbb{N}_{\geq 0} \times \mathbb{N}_{\geq 0} \to \{0, 1\}$ where $P_t(i, j) = 1$ iff cell (i, j) is occupied by a node.

At any given time t, $P_t^{-1}(1)$ defines a shape. Such a shape is called connected if $E(t)$ defines a connected graph. A connected shape is called convex if for any two occupied cells, the line that connects their centers does not pass through an empty cell. We call a shape discrete-convex if for any two occupied cells, belonging either to the same row or the same column, the line that connects their centers does not pass through an empty cell; i.e., in the latter we exclude diagonal lines. We call a shape compact if it has no holes.

In general, shapes can transform to other shapes via a sequence of one or more movements of individual nodes. Time consists of discrete steps (or rounds) and in every step, zero or more movements may occur. In the sequential case, at most one movement may occur per step, and in the parallel case any number of “valid” movements may occur in parallel. ¹ We consider two types of movements: (i) rotation and (ii) sliding. In both movements, a single node moves relative to one or more neighboring nodes as we just explain.

¹ By “valid”, we mean here subject to the constraint that their whole movement paths correspond to pairwise disjoint sub-areas of the grid.
A single rotation movement of a node u is a 90° rotation of u around one of its neighbors. Let (i, j) be the current position of u and let its neighbor be v occupying the cell $(i - 1, j)$ (i.e., lying below u). Then u can rotate 90° clockwise (counterclockwise) around v iff the cells $(i, j + 1)$ and $(i - 1, j + 1)$ ($(i, j - 1)$ and $(i - 1, j - 1)$, respectively) are both empty. By rotating the whole system 90°, 180°, and 270°, all possible rotation movements are defined analogously.

A single sliding movement of a node u is a one-step horizontal or vertical movement “over” a horizontal or vertical line of (neighboring) nodes of length 2. In particular, if (i, j) is the current position of u, then u can slide rightwards to position $(i, j + 1)$ iff $(i, j + 1)$ is not occupied and there exist nodes at positions $(i - 1, j)$ and $(i - 1, j + 1)$ or at positions $(i + 1, j)$ and $(i + 1, j + 1)$, or both. Precisely the same definition holds for up, left, and down sliding movements by rotating the whole system 90°, 180°, and 270° counterclockwise, respectively.

Let A and B be two shapes. We say that A transforms to B via a movement m (which can be either a rotation or a sliding), denoted $A \xrightarrow{m} B$, if there is a node u in A such that if u applies m, then the shape resulting after the movement is B (possibly after rotations and translations of the resulting shape, depending on the application). We say that A transforms in one step to B (or that B is reachable in one step from A), denoted $A \rightarrow B$, if $A \xrightarrow{m} B$ for some movement m. We say that A transforms to B (or that B is reachable from A) and write $A \rightsquigarrow B$, if there is a sequence of shapes $A = C_0, C_1, \ldots, C_t = B$, such that $C_i \rightarrow C_{i+1}$ for all i, $0 \leq i < t$. We should mention that we do not always allow m to be any of the two possible movements. In particular, in Sections 3 and 4 we only allow m to be a rotation, as we there restrict attention to systems in which only rotation is available. We shall clearly explain what movements are permitted in each part of the paper. Observe now that both rotation and sliding are reversible movements, a fact that we use extensively in our results. Based on this, it can be proved that the relation ‘\rightsquigarrow’ is a partial equivalence relation. When the only available movement is rotation, there are shapes in which no rotation can be performed. If we introduce a null rotation, then every shape may transform to itself by applying the null rotation, and ‘\rightsquigarrow’ becomes an equivalence relation.

The following are the main transformation problems that are considered in this work:

Rot-Transformability. Given an initial shape A and a target shape B (usually both connected), decide whether A can be transformed to B (usually, under translations and rotations of the shapes) by a sequence of rotation only movements.

RotC-Transformability. Special case of Rot-Transformability, where A and B are connected shapes and connectivity must be preserved throughout the transformation.

RS-Transformability. Variant of Rot-Transformability in which both rotation and sliding movements are available.

Minimum-Seed-Determination. Given an initial shape A and a target shape B determine a minimum-size seed and an initial positioning of that seed relative to A that makes the transformation from A to B feasible.

3 Rotation

In this section, the only permitted movement is 90° rotation around a neighbor. Our main result in this section is that Rot-Transformability $\in \mathbf{P}$.

Consider a black and red checkered coloring of the 2D grid. Any shape S may be viewed as a colored shape consisting of $b(S)$ blacks and $r(S)$ reds. Call two shapes A and B color-consistent if $b(A) = b(B)$ and $r(A) = r(B)$ and call them color-inconsistent otherwise. Call a transformation from a shape A to a shape C color-preserving if A and C are color consistent.

► **Observation 1.** The rotation movement is color-preserving. Formally, $A \rightsquigarrow C$ (restricted to
rotation only) implies that \(A\) and \(C\) are color-consistent. In particular, every node beginning from a black (red) position of the grid, will always be on black (red, respectively) positions throughout a transformation.

Based on this property of the rotation movement, we may call each node black or red throughout a transformation, based on its initial coloring. Observation 1 gives a partial way to determine that two shapes \(A\) and \(B\) cannot be transformed to each other by rotations.

▶ **Proposition 1.** If two shapes \(A\) and \(B\) are color-inconsistent, then it is impossible to transform one to the other by rotations only.

▶ **Proposition 2.** There is a generic connected shape, called line-with-leaves, that has a color-consistent version for any connected shape.

Proof. Consider a bi-color line starting with a black node and ending to a black node, such that all \(k\) blacks are exhausted. To do this, \(k - 1\) reds are needed in order to alternate blacks and reds on the line. Next, “saturate” every black by adding as many red nodes as it can fit around it (note that the maximum degree of every node in our model is 4).

Based on this, we now show that the inverse of Proposition 1 is not true, that is, it does not hold that any two color-consistent shapes can be transformed to each other by rotations.

▶ **Proposition 3.** There is an infinite set of pairs \((A, B)\) of connected shapes, such that \(A\) and \(B\) are color-consistent but cannot be transformed to each other by rotations only.

Proof. For shape \(A\), take a rhombus in which no node is able to rotate (see Appendix for a figure). By Proposition 2, any such \(A\) has a color-consistent shape \(B\) from the family of line-with-leaves shapes, such that \(B \neq A\). We conclude that \(A\) and \(B\) are distinct color-consistent shapes which cannot be transformed to each other, and there is an infinite number of such pairs, as the number of black nodes of \(A\) can be made arbitrarily large.

Propositions 1 and 3 give a partial characterization of pairs of shapes that cannot be transformed to each other. Observe that the impossibilities proved so far, hold for all possible transformations based on rotation only, including those that are allowed to break connectivity.

The next theorem states that the inclusion between RotC-Transformability and Rot-Transformability is strict, that is, there are strictly more feasible transformations if we allow connectivity to break. We prove this by showing that there is a feasible transformation, namely folding a spanning line in half, in Rot-Transformability\ RotC-Transformability.

▶ **Theorem 1.** RotC-Transformability \(\subset\) Rot-Transformability.

Aiming at a general transformation, we ask whether there is some minimal addition to a shape that would allow it to transform. The solution turns out to be as small as a 2-line seed (or bi-color pair) lying initially somewhere “outside” the boundaries of the shape. Based on the above assumptions, we prove that any pair of color-consistent connected shapes \(A\) and \(B\) can be transformed to each other. The idea is to exploit the fact that the 2-line can move freely in any direction and to use it in order to extract from \(A\) another 2-line. In this way, a 4-line seed is formed, which can also move freely in all directions. Then we use the 4-line as a transportation medium for carrying the nodes of \(A\), one at a time. We exploit these mobility mechanisms to transform \(A\) into a uniquely defined shape from the line-with-leaves family of Proposition 2. But if any connected shape \(A\) with an extra 2-line can be transformed to its color-consistent line-with-leaves version with an extra 2-line, then this also holds inversely
due to reversibility, and it follows that any A can be transformed to any B by transforming A to its line-with-leaves version L_A and then inverting the transformation from B to $L_B = L_A$.

Theorem 2. If connectivity can break and there is a 2-line seed provided “outside” the initial shape, then any pair of color-consistent connected shapes A and B can be transformed to each other by rotations only.

Proof. Without loss of generality (due to symmetry and the 2-line’s unrestricted mobility), it suffices to assume that the seed is provided somewhere below the lowest row l occupied by the shape A. We show how A can be transformed to L_A with the help of the seed. We define L_A as follows: Let k be the cardinality of the minority color, let it be the black color. As there are at least k reds, we can create a horizontal line of length $2k$, i.e., u_1, u_2, \ldots, u_{2k}, starting with a black, i.e., u_1 is black, and alternating blacks and reds. In this way, the blacks are exhausted. The remaining $\leq (3k + 1) - k = 2k + 1$ reds are then added as leaves of the black nodes, starting from the position to the left of u_1 and continuing counterclockwise, i.e., below u_1, below u_3, ..., below u_{2k-1}, above u_{2k-1}, above u_{2k-3}, and so on. This gives the same shape from the line-with-leaves family, for all color-consistent shapes (observe that the leaf to the right of the line is always placed). L_A shall be constructed on rows $l - 5$ to $l - 3$ (not necessarily inclusive), with u_1 on row $l - 4$ and a column j preferably between those that contain A.

First, extract a 2-line from A, from row l, so that the 2-line seed becomes a 4-line seed. To see that this is possible for every shape A of order at least 2, distinguish the following two cases: (i) If the lowest row has a horizontal 2-line, then the 2-line can leave the shape without any help and approach the 2-seed. (ii) If not, then take any node u of row l. As A is connected and has at least two nodes, u must have a neighbor v above it. The only possibility that the 2-line u,v is not free to leave A is when v has both a left and a right neighbor, but this can be resolved with the help of the 2-line.

To transform A to L_A, given the 4-line seed, do the following:

- While the minority color (color chosen for u_1) is still present in A:
 - If on the current lowest row occupied by A, there is a 2-line that can be extracted alone and move towards L_A, then perform the shortest such movement that attaches the 2-line to the right endpoint of L_A’s line u_1, u_2, \ldots.
 - If not, then use the 4-line to extract a single node from the lowest row of A. If that node fits to the right endpoint of L_A’s line, place it there, otherwise, transfer it to an unoccupied position below row $l - 7$ to be used later.

- Once the minority color has been exhausted from A, alternate the two colors until u_{2k-3} has been placed (u_{2k-1} and u_{2k} will only be placed in the end as they are part of the 4-line). To do this, use the 4-line to transfer nodes from A and from the “repository” maintained below L_A. When this occurs, if there are no more nodes left, run the termination phase, otherwise transfer the remaining nodes with the 4-line, one after the other, and attach them around the line of L_A, beginning from the position to the left of u_1 counterclockwise, as described above (skipping the position u_{2k}).

- Termination phase: the line-with-leaves is ready, apart from positions u_{2k-1}, u_{2k} which require a 2-line from the 4-line. If the position above u_{2k-1} is empty, then extract a 2-line from the 4-line and transfer it to the positions u_{2k-1}, u_{2k}. This completes the transformation. If the position above u_{2k-1} is occupied by a node u_{2k-1}, then place the whole 4-line vertically with its lowest endpoint on u_{2k}. Then rotate the top endpoint counterclockwise, to move above u_{2k+1}, then rotate u_{2k+1} clockwise around it to move to its left, then rotate the node above u_{2k} counterclockwise to move to u_{2k-1}, and finally
On the Transformation Capability of Feasible Mechanisms for Programmable Matter

restore u_{2k+1} to its original position. This completes the construction (the 2-line that always remains can be transferred in the end to a predefined position).

The natural next question is to what extent can the 2-line seed assumption be dropped. Clearly, by Proposition 3, this cannot be always possible. The following lemma gives a sufficient and necessary condition for dropping the 2-line seed assumption.

Lemma 3. A 2-seed can be extracted from a shape iff a single rotation move is available on the shape.

Theorem 4. Rotation-Transformability $\in \text{P}$.

Proof. By Lemma 3, if the input shapes are not equal, then it suffices to check if both have an available movement. These checks can be easily performed in polynomial time.

4 Rotation and Connectivity Preservation

In this section, we restrict our attention to transformations that transform a connected shape A to one of its color-consistent connected shapes B, without ever breaking the connectivity of the shape on the way. As already mentioned in the introduction, connectivity preservation is a very desirable property for programmable matter, as, among other positive implications, it guarantees that communication between all nodes is maintained, it minimizes transformation failures, requires less sophisticated actuation mechanisms, and increases the external forces required to break the system apart.

We begin by proving that RotC-Transformability can be decided in deterministic polynomial space.

Theorem 5. RotC-Transformability is in PSPACE.

As already shown, the connectivity-preservation constraint increases the class of infeasible transformations. A convenient turnaround in such cases, is to introduce a suitable seed that can assist the transformation. For example, we can circumvent the impossibility of folding a line u_1, u_2, \ldots, u_n in half, by adding a 3-line seed v_1, v_2, v_3, horizontally aligned over nodes u_3, u_4, u_5 of the line. Interestingly, adding the seed over nodes u_4, u_5, u_6 would not work. Therefore, the problem that we are facing in such cases, is to find a minimum seed and a placement of that seed, that can enable the otherwise infeasible transformation (Minimum-Seed-Determination problem). In the rest of this section, we try to identify a minimum seed that can walk the perimeter of any shape, hoping that it will be able to move nodes gradually to a predetermined position, in order to transform the initial shape into a line-with-leaves (as in Theorem 2, but without ever breaking connectivity this time).

Theorem 6. Any (≤ 4)-seed, cannot traverse the perimeter of a line.

Theorem 7. A 6-seed can traverse the perimeter of a discrete-convex shape without breaking the connectivity.

Another way to view this, is as an attempt to simulate the universal transformations based on combined rotation and sliding (presented in Section 5), in which single nodes are able to walk the perimeter of the shape.
5 Rotation and Sliding

In this section, we study the combined effect of rotation and sliding movements. We begin by proving that rotation and sliding together, are transformation-universal, meaning that they can transform any given shape to any other shape of the same size without ever breaking the connectivity during the transformation.

Theorem 8. Let \(A \) and \(B \) be any connected shapes, such that \(|A| = |B| = n \). Then \(A \) and \(B \) can be transformed to each other by rotations and slidings, without breaking the connectivity during the transformation.

Proof. It suffices to show that any connected shape \(A \) can be transformed to a spanning line \(L \) by rotations and slidings only and without breaking connectivity during the transformation. If we show this, then \(A \) can be transformed to \(L \) and \(B \) can be transformed to \(L \) (as \(A \) and \(B \) have the same order, therefore correspond to the same spanning line \(L \)), and by reversibility of these movements, \(A \) and \(B \) can be transformed to each other via \(L \).

Pick the rightmost column of the grid containing at least one node of \(A \), and consider the lowest node of \(A \) in that column. Call that node \(u \). Observe that all cells to the right of \(u \) are empty. Let the cell of \(u \) be \((i, j)\). The final constructed line will start at \((i, j)\) and end at \((i, j + n - 1)\).

The transformation is partitioned into \(n - 1 \) phases. In each phase \(k \), we pick a node from the original shape and move it to position \((i, j + k)\), that is, to the right of the right endpoint of the line formed so far. In phase 1, position \((i, j + 1)\) is a cell of the perimeter of \(A \). So, even if it happens that \(u \) is a node of degree 1, it can be proved that there must be another such node \(v \in A \) that can walk the whole perimeter of \(A' = A - \{v\} \). As \(u \neq v \), \((i, j + 1)\) is also part of the perimeter of \(A' \), therefore, \(v \) can move to \((i, j + 1)\) by rotations and slidings. But \(A' \) is connected, \(A' \cup \{(i, j + 1)\} \) is also connected, and also all intermediate shapes were connected, because \(v \) moved on the perimeter and, therefore, it never disconnected from the rest of the shape during its movement.

In general, the transformation preserves the following invariant. At the beginning of phase \(k, 1 \leq k \leq n - 1 \), there is a connected shape \(S(k) \) (where \(S(1) = A \)) to the left of of column \(j \) (\(j \) inclusive) and a line of length \(k - 1 \) starting from position \((i, j + 1)\) and growing to the right. Restricting attention to \(S(k) \), there is always a \(v \neq u \) that could move to position \((i, j + 1)\) if it were not occupied. This implies that before the final movement that places it on \((i, j + 1)\), \(v \) must have been in one of \((i + 1, j)\) and \((i + 1, j + 1)\), if we assume that \(v \) always walks in the clockwise direction. Observe now that from each of these positions \(v \) can perform zero or more right slidings above the line in order to reach the position above the right endpoint of the line. When this occurs, a final clockwise rotation makes \(v \) the new right endpoint of the line. The only exception is when \(v \) is on \((i + 1, j + 1)\) and there is no line to the right of \((i, j)\) (this implies the existence of a node on \((i + 1, j)\), otherwise connectivity of \(S(k) \) would have been violated). In this case, \(v \) just performs a single downward sliding to become the right endpoint of the line.

Theorem 9. The transformation of Theorem 8 requires \(\Theta(n^2) \) movements in the worst case.

Theorem 9 shows that the above generic strategy is slow in some cases, as is the case of transforming a ladder shape into a spanning line. A ladder is defined as a shape of the form \((i, j), (i - 1, j), (i - 1, j + 1), (i - 2, j + 1), (i - 2, j + 2), (i - 3, j + 2), \ldots \). We shall now show that there are pairs of shapes for which any strategy and not only this particular one, may require a quadratic number of steps to transform one shape to the other.
Definition 10. Define the potential of a shape A as its minimum “distance” from the line L, where $|A| = |L|$. The distance is defined as follows: Consider any placement of L relative to A and any pairing of the nodes of A to the nodes of the line. Then sum up the Manhattan distances between the nodes of each pair. The minimum sum between all possible relative placements and all possible pairings is the distance between A and L and also A’s potential.

Observe that the potential of the line is 0 as it can be totally aligned on itself and the sum of the distances is 0.

Lemma 11. The potential of a ladder is $\Theta(n^2)$.

Proof. We prove it for horizontal placement of the line, as the vertical case is symmetric. Any such placement leaves either above or below it at least half of the nodes of the ladder (maybe minus 1). W.l.o.g. let it be above it. Every two nodes, the height increases by 1, therefore there are 2 nodes at distance 1, 2 at distance 2, …, 2 at distance $n/4$. Any matching between these nodes and the nodes of the line gives for every pair a distance at least as large as the vertical distance between the ladder’s node and the line, thus, the total distance is at least $2 \cdot 1 + 2 \cdot 2 + \ldots + 2 \cdot (n/4) = 2 \cdot (1 + 2 + \ldots + n/4) = (n/4) \cdot (n/4 + 1) = \Theta(n^2)$. We conclude that the potential of the ladder is $\Theta(n^2)$.

Theorem 12. Any transformation strategy based on rotations and slidings and performing a single movement per step, requires $\Theta(n^2)$ steps to transform a ladder into a line.

Proof. To show that $\Omega(n^2)$ movements are needed to convert the ladder to a line, it suffices to observe that the difference in their potentials is that much and that one rotation or one sliding can decrease the potential by at most 1.

Remark. The above lower bound is independent of connectivity preservation. It is just a matter of the total distance based on single distance-one movements.

Finally, it is interesting to observe that such lower bounds can be computed in polynomial time, because there is a polynomial-time algorithm for computing the distance between two shapes.

Proposition 4. Let A and B be connected shapes. Then their distance $d(A, B)$ can be computed in polynomial time.

To give a faster transformation either pipelining must be used (allowing for more than one movement in parallel) or more complex mechanisms that move sub-shapes consisting of many nodes, in a single step. We follow the former approach, by allowing an unbounded number of rotation and/or sliding movements to occur simultaneously in a single step (though, in pairwise disjoint areas).

Proposition 5. There is a pipelining strategy that transforms a ladder into a line in $O(n)$ parallel time.

Proof. Number the nodes of the ladder 1 through n starting from the top and following the ladder’s connectivity until the bottom-right node is reached. These gives an even-numbered upper diagonal and an odd-numbered lower diagonal. Node 1 moves as in Theorem 8. Any even node $2 \leq w < n - 1$ starts moving as long as its upper odd neighbor has reached the same level as w (e.g., node 2 first moves after node 1 has arrived to the right of node 3).

3 The Manhattan distance between two points (i, j) and (i', j') is given by $|i - i'| + |j - j'|$.
Any odd node \(1 < z < n\) starts moving as long as its even left neighbor has moved one level down (e.g., node 3 first moves after node 2 has arrived to the right of 5). After a node starts moving, it moves in every step as in Theorem 8 (but now many nodes can move in parallel, implementing a pipelining strategy). It can be immediately observed that any node \(i\) starts after at most 3 movements of node \(i - 1\) (actually, only 2 movements for even \(i\)), so after, roughly, at most \(3n\) steps, node \(n - 2\) starts. Moreover, a node that starts, arrives at the right endpoint of the line after at most \(n\) steps, which means that after at most \(4n = O(n)\) steps, all nodes have taken their final position in the line.

Proposition 5 gives a hint that pipelining could be a general strategy to speed-up transformations. We next show how to generalize this technique to any possible pair of shapes.

\section*{Theorem 13}

Let \(A\) and \(B\) be any connected shapes, such that \(|A| = |B| = n\). Then there is a pipelining strategy that can transform \(A\) to \(B\) (and inversely) by rotations and slidings, without breaking the connectivity during the transformation, in \(O(n)\) parallel time.

\textbf{Proof.} The transformation is a pipelined version of the sequential transformation of Theorem 8. Now, instead of picking an arbitrary next candidate node of \(S(k)\) to walk the perimeter of \(S(k)\) clockwise, we always pick the rightmost clockwise node \(v_k \in S(k)\), that is, the node that has to walk the shortest clockwise distance to arrive at the line under formation. This implies that the subsequent candidate node \(v_{k+1}\) to walk, is always “behind” \(v_k\) in the clockwise direction and is either already free to move or is enabled after \(v_k\)'s departure. Observe that after at most 3 clockwise movements, \(v_k\) cannot block any more the way of \(v_{k+1}\) on the (possibly updated) perimeter. Moreover, the clockwise move of \(v_{k+1}\), only introduces a gap in its original position, therefore it only affects the structure of the perimeter “behind” it.

The strategy is to start the walk of node \(v_{k+1}\) as soon as \(v_k\) is no longer blocking its way. As in Proposition 5, once a node starts, it moves in every step, and again any node arrives after at most \(n\) movements. It follows, that if the pipelined movement of nodes cannot be blocked in any way, after \(4n = O(n)\) steps all nodes must have arrived at their final positions. Observe now that the only case in which pipelining could be blocked is when a node is sliding through a (necessarily dead-end) “tunnel” of height 1. To avoid this, the nodes shortcut the tunnel, by visiting only its first position \((i, j)\) and then simply skipping the whole walk inside it (that walk would just return them to position \((i, j)\) after a number of steps).

We next show that even if \(A\) and \(B\) are labeled shapes, that is, their nodes are assigned the indices \(1, \ldots, n\) (uniquely, i.e., without repetitions), we can still transform the labeled \(A\) to the labeled \(B\) with only a linear increase in parallel time. We only consider transformations in which the nodes never change indices in any way (e.g., cannot transfer them, or swap them), so that each particular node of \(A\) must eventually occupy (physically) a particular position of \(B\) (the one corresponding to its index).

\section*{Corollary 14}

The labeled version of the transformation of Theorem 13 can be performed in \(O(n)\) parallel time.

An immediate observation is that a linear-time transformation does not seem satisfactory for all pairs of shapes. To this end, take a square \(S\) and rotate its top-left corner \(u\), one position clockwise, to obtain an almost-square \(S'\). Even though, a single counter-clockwise rotation of \(u\) suffices to transform \(S'\) to \(S\), the transformation of Theorem 13 may go all the way around and first transform \(S'\) to a line and then transform the line to \(S\). In this particular example, the distance between \(S\) and \(S'\), according to Definition 10, is 2, while the generic
transformation requires $\Theta(n)$ parallel time. So, it is plausible to ask if any transformation between two shapes A and B can be performed in time that grows as a function of their distance $d(A, B)$. We show that this cannot always be the case, by presenting two shapes A and B with $d(A, B) = 2$, such that A and B require $\Omega(n)$ parallel time to be transformed to each other.

▶ Proposition 6. There are two shapes A and B with $d(A, B) = 2$, such that A and B require $\Omega(n)$ parallel time to be transformed to each other.

6 Distributed Transformations with Rotation and Sliding

In this section, we study the RS-Transformability problem in distributed systems and propose an algorithm that transforms a large family of shapes into a spanning line.

▶ Theorem 15. The Compact Line algorithm can transform any compact shape into a spanning line.

Algorithm description: The operation of the algorithm is split into 3 stages. The first stage consists of the leader starting from a random node. It sets the orientation for the current node by marking ports 0, 1, 2, 3 as “north”, “east”, “south”, “west” respectively. It then sends the orientation to all neighbours. All nodes receiving the orientation change their ports to coincide with the one the leader defined, and then propagate the message to their neighbours.

In the second stage the leader searches for the rightmost node. It begins by broadcasting two messages to all neighbours: tick and num. The tick message consists of the direction the message was sent to. The num message is a number which starts as 0 and each time it is propagated through nodes, we add the following number: 0 for north, +1 for east, 0 for south and −1 for west. When a non leader node receives these messages, it propagates them to its neighbours after appending up, right, down, left, for neighbours 0, 1, 2, 3 respectively, to the tick message and after adding the number to the num message following the method mentioned above. The node also sends a message called ack to the node who sent the tick and num. It then stores the node (path node) who sent the tick and marks himself. When a marked node receives a tick-num message it sends them to the path node along with an ack message. When the leader receives a num-tick message, it compares the num it received with the num′ it has in store. If the one it received is bigger, it replaces the num′ with num and keeps the tick′ message it received. Now, if the leader does not receive an ack for two consecutive rounds it starts following the path it has stored in the variable named line. Once it reaches the destination it marks the current node and starts moving west, marking all nodes in its path. It then returns to the node it marked first. The leader has now marked a designated line where it will move all other nodes to. This ends stage 2.

The third stage consists of a loop being performed until all nodes form a line. The leader moves randomly to nodes checking if they are on the correct line (flag = 1). If it finds one and it receives a message flag′ = 1, it marks it. If it finds one and it does not receive a message flag = 1, it checks two things. First it checks if the node has only one neighbour. Secondly it checks if the node has two neighbours not opposite to each other. If it does complete the second requirement, it sends a qu message to one of them asking it if the 2 nodes who are neighbours to it (the leader), have another common neighbour. The node then answers approve or reject. If any of those two checks are true (one neighbour, approve) the leader travels in a random fashion. Once it receives a message flag′ = 1, it marks the node. This completes the description of the loop.
References

14 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

