A Sensor for Trace H$_2$O Detection in D$_2$O

Samuel G. Dunning1,3, Ana J. Nuñez1,2,5, Matthew D. Moore1,5, Alexander Steiner3, Vincent M. Lynch1, Jonathan L. Sessler1, Bradley J. Holliday4, Simon M. Humphrey1,6,*

email: smh@cm.utexas.edu

1Department of Chemistry, University of Texas at Austin, 6.336 Norman Hackerman Building, 100 East 24th Street, Stop A1590, Austin, TX 78712, USA
2Dow Chemical Company, Midland, MI 48667, USA
3Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
4Austin, TX, USA
$^*Corresponding author
$^+Co-first author
$^&Lead Contact

Summary
PCM-22, a metal-organic framework material comprising triphenylphosphine and Ln$^{3+}$ ions (Ln = Pr–Yb), exhibits solid-state luminescence at room temperature. Mixed-metal versions of PCM-22 that contain controlled amounts of Eu$^{3+}$, Gd$^{3+}$, and Tb$^{3+}$ function as highly sensitive, broad-scope solid-state sensors that can rapidly identify unknown solvents by providing a unique “eight-factor” fingerprint. The sensors allow for immediate solvent identification via color changes that are obvious to the naked eye and also permit quantitative chemical analysis by uncomplicated spectrophotometry. These same materials achieve quantitative detection of H$_2$O in D$_2$O from 10 to 120,000 ppm. The detection of trace H$_2$O is also demonstrated in a range of common solvents, including those incompatible with conventional laboratory titration methods.

A series of luminescent phosphine coordination materials show diverse sensing capabilities. These solid-state sensor materials can detect trace H$_2$O impurities in D$_2$O from 10 to 120,000 ppm and can rapidly identify unknown solvents.
Introduction

The photoluminescent properties of lanthanide (Ln)-based materials play an important role in modern light-emitting devices,1 optoelectronics,2 and chemical sensors.3 The emission characteristics of Ln3+ ions are particularly attractive for sensor development because their emission bands are narrow, occur predominantly in the visible and near-infrared spectral regions, and are highly element specific and their emission wavelengths are generally not perturbed by their coordination environments. Ln3+ ions are not easy to directly excite by incident photoradiation; therefore, indirect excitation is more commonly employed. Typically, this is achieved by incorporation of Ln3+ ions into organic chromophores.4 Light harvesting by the chromophore and efficient internal energy transfer to the Ln3+ ions results in Ln-based emission, often with high photoluminescent quantum yields (Φ_{PL}).5 Light emission from excited Ln ions is quenched by vibrational coupling to certain chemical bonds (e.g., O–H, N–H, and C–H). The emissive Φ_{PL} values of Ln-based complexes are therefore often acutely diminished in solution and in the presence of ambient moisture, thus limiting their applicability in devices. However, because the relative degree of quenching is directly related to the concentration and identity of the chemical bond(s) causing the quenching, Ln ions can be exploited as quantitative probes for a variety of analytes.6–8 A recognized challenge is to produce a stable, robust, sensitive, and tunable solid-state material that would allow these features to be exploited for sensing. Here, we report one such approach based on an organophosphine-based metal-organic framework (MOF). This system permits broad solvent identification and can detect and quantify trace amounts of H_2O in D_2O, as well as in a range of organic solvents. To the best of our knowledge, no previously reported examples of any material-based sensors are capable of detecting trace amounts of H_2O in D_2O—a highly challenging type of detection.

MOFs have emerged as ideal candidates for the preparation of new solid-state chemical sensors. MOFs are microporous crystalline materials with well-defined periodic structures and high surface areas.9 MOFs prepared with Ln3+ ions as the integral structural components provide access to materials with a high volumetric density of structurally identical emission centers, which enables a large photoluminescent sensor response from a small quantity of material.10 Rational design principles in MOF chemistry also permit a degree of control over Ln–Ln separation distances in the solid state. Such tunability allows for optimization of the luminescence properties; this parameter is virtually impossible to control in the solution phase. To date, a number of Ln-MOFs with specific sensing capabilities have been reported, for example, in the selective detection of anions,11 explosives,12 pH,13 temperature,14 and toxic contaminants.15 Despite this, Ln-MOFs have not yet been shown to have the ability to act as universally applicable sensors because of chemical incompatibility with a broad range of analytes and their inability to achieve the required limits of detection.

We have developed a unique family of MOFs based on arylphosphine ligands, referred to as phosphine coordination materials (PCMs). PCMs have a high volumetric density of guest-accessible Lewis basic P(III) sites inside the pores, which present a range of possibilities for solid-state chemical modifications. Unlike the types of ligands commonly utilized in MOF synthesis (i.e., planar poly(carboxylated) aromatics), trigonal pyramidal R$_3$P ligands constitute 3D building blocks that provide access to rare network topologies.16,17 In previous work, we demonstrated that tris(p-carboxylato)triphenylphosphine (P(C$_6$H$_4$-p-CO$_2$H)$_3$; tctpH$_3$) is an effective chromophore that allows for the efficient excitation of a number of Ln3+ ions.18 A recently identified material, named PCM-22, was prepared by direct reaction of Ln(NO$_3$)$_3$, and (tctpH$_3$) in an aqueous-organic-solvent mixture at 80°C. PCM-22 can be prepared...
in good yields with any Ln³⁺ source from Pr–Yb. Isostructural materials can also be prepared with mixtures of two or more Ln³⁺ ions, resulting in systems in which the ions are incorporated randomly throughout the lattice.

We show here that mixed-Ln versions of PCM-22 with systematically varied molar amounts of Eu³⁺ (a visible red-light emitter), Tb³⁺ (a visible green-light emitter), and Gd³⁺ (non-emissive in the visible region) can be used for rapidly differentiating between a wide range of solvents through a characteristic “eight-factor” fingerprint. These materials can also be used for visually indicating and spectrophotometrically quantifying the presence of trace water on the ppm scale in multiple solvents, including acetone, ethanol, and acetonitrile, which are incompatible with conventional water-detection methods (e.g., the standard Karl-Fisher titration⁹). Most notably, quantitative detection over the 10–120,000 ppm H₂O range in D₂O was achieved. D₂O is virtually physically indistinguishable from regular water; in addition to its use as a neutron moderator in nuclear reactors,¹⁹ high-purity D₂O is important in a myriad of spectroscopic and synthetic applications.²¹ Simple and quantitative analysis of D₂O purity is desirable, yet detection by atomic absorption spectroscopy²² or nuclear magnetic resonance can only detect down to 1%–5%.²³ Infrared laser spectroscopy can achieve ppm-level detection²⁴,²⁵ but is not convenient for rapid point-of-need detection.

Results and Discussion

Synthesis, Structure, and Solid-State Luminescence of Ln-PCM-22 Materials

Deprotonated tctp⁻ phosphine was reacted with Ln(NO₃)₃ to give charge-neutral and highly symmetric polymers with the formula unit [Ln(tctp) (OH₂)₃]⋅3(1,4-dioxane). As seen from the single-crystal X-ray diffraction structure of the Tb³⁺ version, PCM-22 consists of puckered 2D honeycomb sheets that are stacked in an eclipsed arrangement to give an infinite 3D solid with large hexagonal channels (Figure 1). Each Ln³⁺ center has nine coordinating ligands comprising three facial bis(chelating) carboxylates and three OH₂ ligands (Figure 1A). Alternating 3-connected phosphine-P and Ln³⁺ nodes give rise to infinite puckered sheets of fused hexagonal rings (Figures 1B and 1C). The 3,3-connected lattice topology is the same as that exhibited by the metallic phases of the group 15 elements (Figure 1D). PCM-22 inhabits the rarely observed polar space group P3c1; opposite faces of each sheet are chemically distinct (composed of either Ln or P atoms), and individual sheets are inherently chiral (adjacent sheets consist of the other enantiomer).
Figure 1 Chemical Structure of PCM-22 (A) Nodal connectivity in Tb-PCM-22. (B) Space-filling view along the c axis shows 1D hexagonal channels. (C) Space-filling view perpendicular to the channel direction shows close stacking of adjacent sheets (alternate sheets are shown in green for clarity). (D) 3,3-connected net version of (C) (P, pink; Tb, blue). (E) The closest inter-layer O⋯H interactions (dashed green bonds).

The eclipsed close stacking of sheets in PCM-22 (Figures 1C and 1D) is similar to that observed in covalent organic frameworks, where inter-layer π-π interactions dominate the supramolecular organization. Such stacking of 2D sheets to give ordered pseudo-3D materials results in large pores. Eclipsed packing is unusual for 2D MOFs, which more commonly adopt staggered-layer conformations that result in smaller void spaces, as previously observed for
Zn2+-based PCMs constructed with the same ligand. In PCM-22, eclipsing of sheets is ascribed to a network of close-range inter-layer hydrogen-bonding interactions between the Ln-bound OH\textsubscript{2} ligands and the carboxylate-O atoms (Figure 1E). The shortest O⋯O distances are 2.74 Å. Adjacent sheets are densely packed, resulting in Ln⋯Ln inter-layer distances of 5.77 Å (Figure 1C). The hexagonal channels have a maximum van der Waals accessible opening of 14.5 Å.

All forms of Ln-PCM-22 from Pr–Yb were synthesized according to the same procedure. Powder X-ray diffraction (PXRD) analysis confirmed the products as being isostructural (see Figure S1). Thermogravimetric analysis (TGA) provided support for the conclusion that the solvent of crystallization (1,4-dioxane; see Figure S2) present in the channels of the as-synthesized materials could be completely removed by heating to 100°C (observed, 29.5; calculated, 30.4 wt %). A further distinct mass loss was observed between 100°C and 190°C, which was attributed to the loss of a single coordinated H\textsubscript{2}O molecule per Ln3+ center (observed, 3.6; calculated, 3.1 wt %). This observation was supported by quantitative D\textsubscript{2}O emissive lifetime studies (see below). Above 190°C, no further mass loss occurred until the onset of framework decomposition at ca. 450°C. For all sensing studies, bulk samples were desolvated under vacuum at 75°C–100°C for 18 hr, resulting in BET (Brunauer, Emmett, and Teller) surface areas of between 303 and 455 m2 g-1 (CO\textsubscript{2}, 196 K; see Figure S3).

The accepted antenna mechanism responsible for Ln-centered emission in MOFs occurs by the generation of ligand-centered triplet (T\textsubscript{i}) excited states, followed by ligand-to-metal energy transfer. Energy transfer is most efficient when the T\textsubscript{i} level of the organic chromophore is ca. 2,000–4,000 cm-1 above the excited state of the Ln3+ ion.30,31 The phosphorescence spectrum of free tctpH dissolved in a frozen glass of 2-methyltetrahydrofuran at 77 K gave \(T_{1} = 24,390 \) cm-1. When incorporated into PCM-22, the \(T_{1} \) state of the tctp− ligand shifted slightly (\(T_{1} = 25,253 \) cm-1 at 77 K; obtained from the [non-emissive] Gd-PCM-22 surrogate; see Figure S4). On the basis of the excited-state energies of Tb3+ (\(\Delta T_{1} = 20,366 \) cm-1),30,31 we chose Tb-PCM-22 to assess the fundamental luminescence properties as a function of solvation.

The room-temperature emission spectrum of an as-synthesized sample of Tb-PCM-22 displayed features characteristic of Tb3+ emission with well-resolved electronic transitions between 491 and 648 nm, ascribed to \(^{7}F_{J} \leftrightarrow ^{1}D_{J} \) relaxations (\(J = 6, 5, 4, 3, 2 \); see Figure S5). In comparison with previous, Tb3+-based MOFs (\(\Phi_{PL} = 22\%–90\% \)), the average value observed for Tb-PCM-22 (\(\Phi_{PL} = 57\% \pm 3\% \)) was somewhat surprising because each Tb3+ is coordinated by three H\textsubscript{2}O molecules, and the structure also contains closely interacting 1,4-dioxane solvent molecules, both of which are known emission quenchers (see Figures 1E and S6). However, it is also known that the quenching efficacy of coordinated solvent decreases when hydrogen-bonding interactions perturb the normal vibrational frequencies of the oscillators that are responsible for quenching (e.g., O–H bonds in the case of H\textsubscript{2}O).33

The number of H\textsubscript{2}O molecules present within the quenching sphere of an emissive Ln3+ ion (\(q \)) can be approximated by comparison of the emissive lifetime with an analogous material prepared with OD\textsubscript{2} ligands. For Tb-PCM-22, this yielded \(q = 3.4 \pm 0.5 \) OH\textsubscript{2} per Tb3+, in agreement with all other characterization data. When the same Tb-PCM-22 sample was desolvated in vacuo at 75°C, the solid-state luminescence was dramatically diminished (\(\Phi_{PL} = 10.6\% \)). The corresponding temperature-dependent PXRD analysis indicated a loss of bulk crystallinity (see Figure S7); temperature-dependent Fourier transform infrared spectroscopy likewise showed a decrease in the intensity of the stretching bands, attributed to coordinated OH\textsubscript{2} above 80°C (ca. 3,400 cm-1; see Figure S8); in addition, exposure of the desolvated sample to a D\textsubscript{2}O-saturated N\textsubscript{2} atmosphere resulted in an emissive lifetime change corresponding to the
loss of one OH₂ ligand per Tb³⁺ (see Figure S9). Collectively, these observations are in direct agreement with the TGA studies (see above).

Luminescence quenching as a consequence of desolvation has been observed previously in the solid state. The loss of site symmetry of individual Ln³⁺ ions coupled to a decrease in the inter-layer Tb⋯Tb distances upon desolvation is likely to enable more non-radiative relaxation pathways. Through-space metal-to-metal energy transfer is only consequential between ions separated by <10 Å. The intra-layer Ln⋯Ln separation distance in PCM-22 is 13.7 Å, and significant contraction is not possible within each 2D sheet. In comparison, the inter-layer Tb⋯Tb separation distance when solvated is only 5.77 Å. Desolvation and removal of one OH₂ ligand from each Ln³⁺ disrupts the well-ordered H-bonding network, inducing disorder between adjacent 2D sheets and resulting in a loss of bulk crystallinity. In support of the idea that inter-layer Ln⋯Ln energy transfer is modulated by solvation, when the poorly emissive desolvated materials were re-exposed to the mother liquor (1:1:1 N,N-dimethylformamide [DMF]/dioxane/H₂O), the luminescence intensity was recovered in a matter of seconds (Figure 2; Φ₇ = 65% after 5s, 91% after 300 s). In addition, PXRD analysis confirmed that the initial bulk diffraction features were restored (see Figures S10 and S11). PCM-22 appears to display a soft crystalline behavior, whereby solid-state structural reorganization is possible without permanent loss of long-range order.

Figure 2 On-Off Luminescence of Tb-PCM-22 Temporal luminescence intensity response for Tb-PCM-22 upon three consecutive cycles of desolvation-resolvation; the light-green region shows the measurement error obtained from three independent studies. Inset: bar graphs showing the measured emissive lifetimes upon cycling.
The on-off luminescence switching behavior was preserved upon further cycles of desolvation and exposure to fresh solvent, without any marked loss of emission intensity or response time (Figure 2). The measured emissive lifetimes (Figure 2, inset) confirmed that the recovery of Tb\(^{3+}\)-centered emission was independent of changing surface characteristics of the crystallites upon desolvation and resolution. Finally, to rule out the alternative possibility, namely that the observed emission recovery upon resolvation was due to physical dissolution and recrystallization, we immersed a sample of desolvated Tb-PCM-22 in solvent and continually monitored it over a period of 15 days under an optical microscope equipped with a charge-coupled device camera. The macroscopic shape and volume of the crystals remained unchanged during this time, and there was no evidence of nucleation of new crystallites (see Figure S12).

Trace H\(_2\)O Detection in D\(_2\)O and Other Solvents by Eu:Tb-PCM-22

The incorporation of multiple lanthanides in MOFs can provide access to desirable hybrid emission properties. PCM-22 is particularly amenable toward incorporation of multiple Ln\(^{3+}\) ions in the standard synthetic protocol. Moreover, comparable product yields were obtained. We prepared a series of mixed Eu:Tb-PCM-22 materials to further probe the nature of inter-layer Ln\(\cdots\)Ln energy transfer. Eu\(^{3+}\) is emissive in the red visible spectral region but has an excited-state energy that is significantly lower than that of tctp\(^{3−}\). As a result, less effective sensitization was seen for Tb\(^{3+}\) (\(F_{54}^{\text{Tb}} \rightarrow D_{0} = 17,250 \text{ cm}^{-1}\); Eu-PCM-22 \(\Phi_{\text{PL}} = 11\% \pm 4\%\)). On the other hand, Eu\(^{3+}\) is known to undergo efficient excitation via downhill energy transfer from the \(5D_{4}\) Tb\(^{3+}\) excited state. Thus, a notable change in emission color is predicted upon desolvation of Eu:Tb-PCM-22 with a commensurate decrease in inter-layer Ln\(\cdots\)Ln separation.

The observed emission color of as-synthesized Eu\(_{x}\):Tb\(_{y}\)-PCM-22 was found to be continually tunable as a direct function of the relative site occupancies \((x, y)\) of the randomly distributed Eu\(^{3+}\) and Tb\(^{3+}\) ions (Figure 3A). The emission profile of the as-synthesized Eu\(_{1}\):Tb\(_{1}\)-PCM-22 showed net yellow emission. The normalized intensities of peaks at 616 and 543 nm (Tb\(^{3+}\) and Eu\(^{3+}\), respectively) gave a ratio of \(I_{543\text{nm}} / I_{616\text{nm}} = 0.78\). Upon desolvation in vacuo, the emission color became distinctly red with \(I_{543\text{nm}} / I_{616\text{nm}} = 0.54\) (see Figure S13). This finding is evidence of Tb\(^{3+}\)→Eu\(^{3+}\) energy down-transfer that becomes favored as the Tb\(^{3+}\)→Eu\(^{3+}\) contact distances decrease upon desolvation. It is also consistent with the Förster resonance energy-transfer mechanism. The Eu\(^{3+}\) emissive lifetimes measured for a range of Eu:Tb systems also showed a positive correlation with the Tb\(^{3+}\) concentration (\(\tau_{\text{Eu}^{3+}} = 243–624 \mu\text{s}\) for 0%–90% Tb\(^{3+}\), respectively; see Table S1).
Figure 3 Trace H2O Sensing Using Eu_x:Tb_y-PCM-22(A) Top left: CIE chart for various Eu_x:Tb_y-PCM-22 compositions and their corresponding CIE coordinates upon excitation at 365 nm; inset: photograph of the materials (Eu:Tb = 1:0, 5:1 3:1, 1:1, 1:3, 1:5, 0:1). Top right: photos of as-synthesized and desolvated Eu_x:Tb_y-PCM-22. Bottom: upon exposure of the same desolvated material to four different solvents (dioxane, DMF, H2O, and D2O).(B) Relative photoemission response ratio curves upon addition of H2O to activated Eu_x:Tb_y-PCM-22 samples that had been pre-soaked in dry solvents (ethanol, acetonitrile, and acetone). Inset: the visual response upon addition of H2O to acetone.(C) Relative photoemission response ratios obtained upon addition of trace H2O to Eu_x:Tb_y-PCM-22 pre-soaked in D2O show a linear response. Error bars were obtained from three separate experiments.

Re-exposure of the Eu:Tb materials to the DMF/dioxane/H2O mother liquor resulted in recovery of the original mixed-site emission, accompanied by restoration of bulk crystallinity. However, to our surprise, when desolvated samples of Eu:Tb-PCM-22 were resolvated with the individual components of the mother liquor, a unique emission profile and readily
visualized color was obtained for each solvent: red for DMF, orange for dioxane, and green for H2O (Figure 3A). Whereas most other organic solvents induced smaller differences in emission intensities than the activated samples, materials exposed to H2O displayed large emission changes (I543nm / I616nm = 1.61), ascribed to enhanced quenching of the Eu3+ excited state by H2O.

To explore Eu:Tb-PCM-22 as a possible trace water detector, we optimized the metal ratio to give the greatest red-to-green color contrast in response to addition of trace quantities of H2O (Eu:Tb; see Figure S14). The limits of detection were then assessed for trace H2O in acetone, acetonitrile, ethanol, and D2O for the reasons described above. The mixed Eu:Tb-PCM-22 could quantify H2O down to 0.1% v/v in these organic solvents; it also provided a visual response to H2O between 0.5% and 5% (Figure 3B, inset). This sensor material also had the remarkable ability to detect H2O in D2O in the range of 10–100 ppm (Figure 3C). Organic solvents showed a non-linear relationship between H2O concentration and the corresponding I543nm / I616nm ratio, presumably because H2O is able to coordinate directly to vacant Ln3+ sites. In contrast, the sensor response for H2O in D2O was essentially linear over the entire range of 10–120,000 ppm. Presumably, this reflects the fact that sites within the material were already fully solvated by coordinated OD2 before trace amounts of H2O were introduced. Because the O–D oscillator is a less effective Ln3+ excited-state quencher than O–H (particularly for Eu3+), the observed change in the I543nm / I616nm ratio is ascribed to OH2/OD2 exchange.

Ternary Eu:Gd:Tb-PCM-22 Materials for Eight-Factor Solvent Fingerprinting

To improve the sensitivity of PCM-22 toward a much broader range of analytes, a series of three-metal sensor materials (Eu1:Gd1:Tb1, Eu1:Gd1:Tb1, Eu3:Gd1:Tb1, and Eu1:Gd3:Tb1) were synthesized (for exact molar ratios, see Table S2). Gd3+ was employed as a site diluant; it is non-emissive in the visible region because of a large separation between the 6P7/2 excited state and 8S7/2 ground states, which inhibits ligand-to-metal energy transfer.31 Gd3+-based emission was not observed in the materials (ca. 315 nm). Instead, the ternary sensors displayed a broad emission band (ca. 510 nm) ascribed to ligand-based phosphorescence, which was not prominent in the binary metal sensors. The introduction of Gd3+ ions reduced the proportion of close-range Tb3+⋯Eu3+ interactions.

The Eu:Gd:Tb-PCM-22 materials were desolvated and exposed to 18 common solvents with diverse chemical functionalities and polarities (with dielectric constants, εr = 1.89–79.8). The resulting emission spectra were recorded for the generation of a unique eight-factor fingerprint profile for each solvent (Figure 4). The eight factors are derived from the emission CIE coordinates for the four Eu:Gd:Tb compositions and the relative emission intensities of each (Irelative = {I543nm / I616nm} / I510nm); see Figure S15). For the 18 solvents tested, the eight-factor fingerprints obtained were spectroscopically unique: Eu:Gd:Tb-PCM-22 acts as a sensor for very rapid solvent identification, which is internally calibrated by the monitoring of relative intensities at three wavelengths with only one excitation wavelength.
<table>
<thead>
<tr>
<th>Eu:Gd:Tb ratio</th>
<th>1:1:1</th>
<th>3:1:1</th>
<th>1:1:3</th>
<th>1:3:1</th>
<th>ε_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>As synth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>78.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D₂O</td>
<td>79.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td>47.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMF</td>
<td>38.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MeCN</td>
<td>36.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>32.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>24.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Propanol</td>
<td>20.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butanone</td>
<td>18.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyridine</td>
<td>12.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCM</td>
<td>9.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>4.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Et₂O</td>
<td>4.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>2.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>2.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxane</td>
<td>2.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>1.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4 Broad Solvent Sensing Using Euₓ:Gdᵧ:Tbᵦ-PCM-22Chart showing eight-factor fingerprint signatures obtained upon exposure to a range of chemical solvents. Each sphere is colored with the RGB coordinates obtained from the CIE charts (see examples on the right); the size of each sphere is representative of the relative brightness (emission intensity).

A reference chart was derived for comparison of the eight-factor fingerprints for each solvent (Figure 4). Each unique fingerprint is shown as four CIE colored spheres in which the visible size of each sphere is directly proportional to the magnitude of its brightness (I_{relative}). Solvents in the chart are organized by decreasing dielectric constant (polarity). Even for chemically similar solvents, the eight-factor fingerprint is definitive. For example, the C₁–C₉-alcohols are differentiated by a decrease in brightness with increasing alkyl chain length, as well as a shift toward redder emission. Common ketones (acetone and butanone) and aromatics (benzene, pyridine, and toluene) are distinctly identifiable. Selectivity is not limited to changes in molecular volume; the halogenated solvents CH₂Cl₂ and CH₃Cl also show distinct differences as a result of the different quenching abilities of C–H versus C–Cl bonds.

To demonstrate the potential applicability of our sensor materials in conventional paper-based disposable sensors, we prepared model dip-stick assemblies by simply depositing small amounts of the as-synthesized materials onto glass slides by using spray glue to adhere the crystallites. The materials were desolvated in air with a heat gun and then immersed in different solvents, which induced immediate color changes that were seen when viewed under a 354 nm lamp (Figure 5). The dip sticks were easily reactivated by further heating and could be used repeatedly to provide the same response (for relevant PXRD and emission spectra, see Figures S16 and S17, respectively).

Figure 5 Broad Solvent Sensing Using Euₓ:Gdᵧ:Tbᵦ-PCM-22Model dip-stick detectors demonstrated for H₂O sensing: (I) as-synthesized, (II) desolvated in air with a heat gun, (III) after exposure to H₂O, (IV) re-activation using a heat gun, and (V) re-exposure to H₂O.
Experimental Procedures

A detailed explanation of all experimental methods and techniques used can be found in the Supplemental Information.

Synthesis of Ln-PCM-22

All Ln-PCM-22 materials were synthesized by the same method with appropriate proportions of lanthanide(III) nitrate hydrate precursors: in brief, tris(p-carboxylato)triphenylphosphine, P(C₆H₄-4-CO₂H), (39 mg, 0.10 mmol) was dissolved in a DMF/dioxane/H₂O mixture (1:1:1, 4.0 cm³; degassed by bubbling N₂ for at least 10 min before use). A second solution of the requisite Ln(NO₃)₃·xH₂O salt(s) (0.20 mmol total) was prepared in the same solvent mixture (4.0 cm³). The two solutions were then combined and agitated briefly before being heated in a (20 cm³) scintillation vial by submersion to the solvent fill level in a pre-heated graphite thermal bath held at 80°C for 3–4 days. Crystalline products were recovered by decantation and washing with fresh solvent before being air dried. Full characterization and purification details for single-metal and mixed-metal Ln-PCM-22 materials are provided in the Supplemental Experimental Procedures.

Trace-Detection Studies

All dry crystalline materials were activated in small Schlenk flasks by heating at 100°C under vacuum via submersion for 18 hr in a silicone oil bath. Aliquots (2 mg) of the desolvated materials were used for each spectrophotometric measurement. Trace H₂O solvent mixtures were prepared by a series of serial dilutions from a known stock solution until the desired ppm concentrations were obtained. Further details, including the assembly of dip sticks, are given in the Supplemental Experimental Procedures.

Author Contributions

PCM-22 Synthesis and Characterization, S.G.D. and A.J.N.; Photophysical and Sensing Measurements, M.D.M.; Single Crystal XRD Data Analysis, A.S. and V.M.L.; Chemical Insight and Sensing Study Design, J.L.S.; Supervision of Photophysical Data Collection and Interpretation, B.J.H.; Project Design and Direction, S.M.H. All authors proofread, commented on, and approved the final version of this manuscript for submission.

Acknowledgments

We thank Prof. R.A. Jones for providing expert advice and for reviewing the manuscript and Dr. Nolan W. Waggoner for collecting BET data. This material is based on work supported by the National Science Foundation Division of Materials Research (DMR-1506994) and the Welch Foundation (F-1738 [S.M.H.] and chair funds [J.L.S.]).
Accession Numbers

The accession number for the data reported in this article is CCDC: 1518000.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures, 17 figures, and 2 tables and can be found with this article online at http://dx.doi.org/10.1016/j.chempr.2017.02.010.

References and Notes

35. I. Laulicht and S. Meirman, Direct evidence for excitation transfer from the 5D_4 manifold of Tb$_3$ to the 5D_1 manifold of Eu$_3$ in Tb$_{0.66}$Eu$_{0.33}$P$_2$O$_{14}$, *J. Lumin.* **34**, 1986, 287–293.