Gene-based pleiotropy across migraine with aura and migraine without aura

1Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia

2QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

3Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.

4Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.

5Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

6Harvard Medical School, Boston, MA, USA.

7Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA

8FORMI and Department of Neurology, Oslo University Hospital and University of Oslo,
Oslo, Norway.

9 Institut National de la Santé et de la Recherche Médicale (INSERM) Research Center for Epidemiology and Biostatistics (U897) - Team Neuroepidemiology, Bordeaux, France.

10 University of Bordeaux, Bordeaux, France.

11 Department of Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.

12 deCODE Genetics, Reykjavik, Iceland.

13 Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland.

14 Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany.

15 Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.

16 Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands.

17 Department of Radiology, Erasmus University Medical Centre, Rotterdam, The Netherlands.

18 Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands.

19 Department of Biological Psychology, VU University, Amsterdam, The Netherlands.

20 EMGO+ Institute for Health and Care Research, VU University Medical Centre, Amsterdam, The Netherlands.

21 Department of Neurology, Klinikum der Universität München, Munich, Germany.

22 Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.

23 Institute of Human Genetics, University of Bonn, Bonn, Germany.

24 Max Planck Institute of Psychiatry, Munich, Germany.

25 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
Institute of Clinical Molecular Biology, Christian Albrechts University, Kiel, Germany.

Department of Internal Medicine I, Christian Albrechts University, Kiel, Germany.

Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany.

Institute of Human Genetics, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.

National Institute for Health and Welfare, Helsinki, Finland.

Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.

Department of General Practice, Helsinki University Central Hospital, Helsinki, Finland.

Vaasa Central Hospital, Vaasa, Finland.

Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland.

Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.

Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK.

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Institute of Human Genetics, University of Ulm, Ulm, Germany.

School of Medicine, University of Iceland, Reykjavik, Iceland.

Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.

Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.

These authors contributed equally to this work.

These authors jointly directed this work.
Corresponding author:

Dale R Nyholt, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane QLD 4001, Australia.

Telephone: +61 7 31386000.

Email: d.nyholt@qut.edu.au
Abstract

Introduction: It is unclear whether migraine with aura (MA) and migraine without aura (MO) are distinct subtypes or are genetically related.

Aim: Using a novel gene-based (statistical) approach we aimed to identify individual genes and pathways associated with both MA and MO.

Methods: Gene-based tests were performed utilizing genome-wide association summary statistics results from the most recent International Headache Genetics Consortium study comparing 4,505 MA cases with 34,813 controls and 4,038 MO cases with 40,294 controls. After accounting for non-independence of gene-based test results, we examined the significance of the proportion of shared genes associated with MA and MO.

Results: We found a significant overlap in genes associated with MA and MO. Of the total 1,514 genes with a nominally significant gene-based P-value ($P_{\text{gene-based}} \leq 0.05$) in the MA subgroup, 107 also produced $P_{\text{gene-based}} \leq 0.05$ in the MO subgroup. The proportion of overlapping genes is almost double the empirically derived null expectation, producing significant evidence of gene-based overlap ($P_{\text{binomial-test}} = 1.6 \times 10^{-3}$). Combining results across MA and MO, six genes produced genome-wide significant gene-based P-values. Four of these genes ($\text{TRPM8}, \text{UFL1}, \text{FHL5}$ and LRP1) were located in close proximity to previously reported genome-wide significant SNPs for migraine; while two genes, TARBP2 and NPFF closely located on chromosome 12q13.13, represent novel candidate risk genes. The genes overlapping in both migraine types were enriched for functions involved in inflammation, cardiovasculature and connective tissue.
Conclusions: Our results provide novel insight into the likely genes and biological mechanisms that underlie both MA and MO, and when combined with previous data, highlight NPFF as novel candidate risk genes for both types of migraine.

Keywords

Migraine; aura; genome-wide; association; gene-based; pleiotropy
Introduction

Two common forms of migraine exist that are clinically distinguished by the presence of aura symptoms prior to the headache phase and hence are called migraine with aura (MA) and migraine without aura (MO) (1). The migraine aura is caused by cortical spreading depression (CSD), a slowly self-propagating wave of neuronal and glial depolarization in the cortex (2). The headache is caused by activation of the trigeminovascular system, which leads to abnormal processing of pain signals in the brain stem and subsequent activation of higher order brain centres giving the sensation of pain (3). CSD has been shown to activate this pain pathway in experimental animal studies, although such proof is essentially lacking in patients (4). Whereas the biological mechanisms in the early phase of an attack seem to differ between MA and MO, they may be similar in the headache phase. Supportive evidence for converging headache generating mechanisms in both migraine types comes from the fact that some drugs have equal efficacy in treating both types of migraines (5). Moreover, several studies have reported that MA and MO frequently coexist within the same family (6, 7). A large population-based study has reported high co-occurrence of MA and MO, and found that 13% of patients have both MA and MO, which is higher than expected from their individual prevalence (8). Thus, the frequent co-occurrence of the two disorders within families and individuals suggest MA and MO share—at least to some extent—the same biological mechanisms. In support of this idea, latent class and genetic analysis of migraine symptom data in large Australian (9) and Dutch (10) twin samples indicated the existence of a continuum of severity, with MA being more severe but not etiologically distinct from MO.

Genetics studies are starting to discover genes and loci associated with migraine. A recent genome-wide association (GWA) meta-analysis of 23,285 migraine cases and 95,425 controls of European ancestry that was conducted by the International Headache Genetics Consortium
The IHGC identified 142 single nucleotide polymorphisms (SNPs) at 12 independent loci significantly associated with migraine (P-values < 5×10^{-8}) (11). Many genes in or near these loci are involved in neuronal function, thus supporting a role for neuronal signaling in migraine etiology as had previously been shown for monogenic familial hemiplegic migraine, a subtype of migraine with aura (12). In addition, 1,168 SNPs at 134 loci showed suggestive association with migraine (P-values < 1×10^{-5}) (11). When considering only the genome-wide significant hits, GWA studies have been most successful utilizing case samples satisfying criteria for only MO, with six loci identified (11, 13) compared to only one locus utilizing case samples satisfying criteria for only MA (14). The remaining five genome-wide significant loci were identified by studying case samples satisfying MA and/or MO (11). A lack of detailed clinical data precluded a more in-depth analysis of migraine subtypes.

We previously compared the effects (odds ratios, OR) of the top SNPs from the 12 genome-wide significant loci in the only MA and only MO subgroups, and showed that four SNPs (rs10915437, rs9349379, rs13208321, rs10504861) had a heterogeneous effect size (P-value = 4.4×10^{-3}, 3.2×10^{-4}, 4.9×10^{-2}, 4.5×10^{-3}, respectively). However, for all 12 SNPs, the risk-increasing allele was the same across these subgroups and an analysis of ~23,000 independent SNPs found the majority of genome-wide SNP effects to be in the same direction across the MA and MO subgroups (15).

To more thoroughly assess the genetic overlap between MA and MO (i.e., beyond inspection of the genome-wide significant loci and individual SNP effects), we performed gene-based tests of association using GWA data for MA and MO from the IHGC meta-analysis. We evaluated the gene-level genetic relationship between MA and MO by testing whether the number of overlapping genes—i.e., genes with nominally significant gene-based association
P-values for both MA and MO—was more than expected by chance. The overlapping genes were also utilized in pathway and network analyses, to identify potential canonical pathways, biological functions, and molecular networks underlying both migraine with and without aura.
Methods

GWA data

GWA summary statistic results for MA and MO were obtained from the 2013 IHGC GWA meta-analysis (11). Of the 18 total GWA studies comprising the original GWA meta-analysis, summary statistics from 7 studies with case samples satisfying criteria for only MA, and 4 studies with case samples satisfying criteria for only MO were utilized (Table S1). The selected MA (total 4,505 MA cases versus 34,813 controls) and MO (total 4,038 MO cases versus 40,294 controls) studies do not contain overlapping individuals and are of similar total size.

Genome-wide SNP genotyping was performed independently in each cohort with the use of various standard genotyping technologies, and imputed for each study with reference to HapMap release 21 or 22 CEU-phased genotypes. Each study contributed summary statistic data from an association analysis performed using a frequentist additive model based on estimated SNP allelic dosages, adjusting for gender. SNPs were filtered on a per-study level based on inclusion criteria of minor allele frequency (MAF) > 0.1% and imputation quality measures of $I_A > 0.6$ (IMPUTE 2) or $r^2 > 0.3$ (MaCH). The 1,680,313 ‘consensus’ SNPs analyzed in the original IHGC GWA meta-analysis (11) were utilized in the present study. GWA summary statistic results for the 7 MA studies were meta-analyzed in a fixed-effect model using GWAMA (16). GWA summary statistic results for the 4 MO studies were analogously meta-analyzed using GWAMA (16). The resulting MA and MO GWA meta-analysis results were subsequently utilized in gene-based tests for association.
Gene-based association test

We obtained RefSeq gene information (hg19) from UCSC genome browser [download 20/03/14]. Overlapping isoforms of the same gene were combined to form a single full length version of the gene. Isoforms that didn't overlap were left as duplicates of that gene. For the duplicated genes, the gene with the lowest downstream gene-based P-value was retained. This led to 24,383 unique genes. The IHGC SNP positions were converted from hg18 to hg19 using the liftOver utility (https://genome.ucsc.edu/cgi-bin/hgLiftOver), and were assigned to genes if they mapped to between 15 kb 5’ of the transcription start site (TSS) and 15 kb 3’ of the transcription end site (TES). The 15-kb gene boundary extension was chosen based on the observation that 90% of SNPs effecting expression quantitative trait loci (eQTLs) were within this proximity (17). Gene-based association tests were performed using the GATES test (18) implemented in the Fast ASsociation Tests (FAST) package (19). GATES performs the gene-based test by adjusting the observed P-value of the most significant SNP located in a gene, by the effective number of independent SNPs tested across the gene.

Given the possibility that gene-based results of neighboring genes may in fact be correlated because the most significant SNPs are the same or in strong linkage disequilibrium (LD), we estimated the effective number of independent genes (gene-based tests) by examining the LD between the most significant SNPs within each gene. This calculation was performed using the Genetic type I Error Calculator (GEC) (20). GEC is a method addressing the multiple-testing issue with dependent SNPs. In short, GEC first divides the input SNPs into LD blocks, and assumes LD blocks as independent ($r^2 < 0.1$), then by examining the eigenvalues obtained from spectral decomposition of the LD correlation matrix of SNPs, GEC estimates the effective number of independent SNPs in the blocks.
Overlapping genes and statistic tests

After the gene-based test, we generated gene sets with gene-based association P-values less than three nominally significant thresholds (P-values < 0.01, < 0.05, or < 0.1) in the MA and MO datasets. For each gene set, the effective number of independent genes was calculated. Subsequently, we regarded the MA dataset as the ‘discovery’ set and the MO dataset as the ‘target’ set to test whether the proportion of overlapping genes between MA and MO for each of the thresholds is more than expected by chance. Here, the observed number of overlapping genes is defined as the effective number of genes with P-values less than the threshold in both the discovery (MA) and target (MO) sets. The observed proportion of overlapping genes is the observed effective number of overlapping genes divided by the effective number of genes with a P-value less than the threshold in the discovery set. The expected proportion of overlapping genes is the effective number of genes with a P-value less than the threshold in the target set divided by the total effective number of genes in the target set. The statistical significance of whether the number of overlapping genes was more than expected by chance was calculated using exact binomial statistical tests.

Pathway analysis

The pathway analysis was designed to discover biological mechanisms that are shared between MA and MO. Here, we used Ingenuity Pathway Analysis (IPA) software, which is widely used to identify pathways enriched in a gene-set based on biological interactions and functional annotations (21, 22). The significance of the identified pathways was evaluated by Fisher’s exact statistical test. The pathway data sources include “Canonical pathways”, “Biological Functions”, and “Networks”. “Canonical pathways” contain well-characterized metabolic and cell signaling pathways from specific journal articles, review articles, text books, and KEGG LIGAND. “Biological functions” are used to explore the enriched
functions and annotated diseases of input genes. “Networks” represent diagrams of known protein-protein interactions, and are generated based on the input data.

We performed the IPA analysis utilizing genes with a P-value < 0.1 in both the MA and MO GWA datasets. The results can potentially be biased due to non-independent (neighboring) genes. For example, one pathway may include multiple genes tagged with the same top SNP or SNPs that are in strong LD. We, therefore, checked the IPA results to ensure such bias did not contribute to the identified associated pathways.

Given that significant canonical pathways or biological functions may include redundant genes and gene-gene interactions, we explored their relationships by constructing customized networks. First, the genes overlapping between MA and MO were input into IPA. Subsequently, the focus genes (i.e., the subset of overlapping genes) involved in the significant canonical pathways/biological functions were again input into IPA but now to build functional networks for the significant canonical pathways/biological functions. As per IPA recommendations, biological functions were defined as significant if their P-values were < 0.01, and canonical pathways were considered significant if their P-values were < 0.05.
Results

Effective number of genes for migraine with aura and migraine without aura

For both MA and MO, we estimated the effective number of genes by inputting the most significant SNPs of all genes in our GEC analysis. Since we assigned the SNPs to genes, the total raw numbers of genes (21,116) are the same for the MA and MO datasets (Table 1). The slight difference in the effective number of total genes in the MA dataset (14,395) versus the MO dataset (14,485) results from differences in LD structure between the respective sets of most significant SNPs in each gene.

Gene-level genetic relationships of migraine with aura and migraine without aura

As shown in Table 2, significant overlaps were observed for genes with P-values <0.05 or <0.1 in both MA and MO, which indicates that a significant gene-level genetic relationship exists between MA and MO. Since the observed effective number of genes was higher than expected, we assumed that these genes have an increased probability to be truly associated with both disorders.

Combined gene-based association across migraine with aura and migraine without aura

Given the observed gene-based genetic overlap, we combined the evidence of gene-based association across MA and MO using the Fishers’ combined P-value method. As the effective number of independent gene-based tests ranged from 14,395 (MA) to 14,485 (MO), a gene-based P-value < 3.45×10^-6 (i.e., 0.05/14,485) is required to retain a Type I error rate of 5% and represent genome-wide significant association. Using this threshold value, six genes (TRPM8, UFL1, FHL5, TARBP2, NPFF and LRP1) were defined as genome-wide significantly associated with migraine (Table 3). The top significant SNPs for UFL1 and FHL5 on chromosome 6q16.1 are in strong LD, and the neighboring genes NPFF and
TARBP2 on chromosome 12q13.13 have the same top SNP (rs11170566), hence the most likely causative risk gene at these loci cannot be determined from the gene-based association results alone. Compared to results from the original migraine GWA meta-analysis of all 18 studies (11), in addition to implicating four genes in close proximity to three previously reported genome-wide significant SNPs (TRPM8 near rs7577262 on 2q37.1; UFL1 and FHL5 near rs13208321 on 6q16.1; and LRPI near rs11172113 on 12q13.3), this study identified two candidate migraine risk genes (NPFF and TARBP2) at a locus on chromosome 12q13.13, which was not previously implicated in the GWA meta-analysis of all 23,285 migraine cases and 95,425 controls (11).

Pathway analysis on overlapping genes

The significant biological functions, canonical pathways, and networks found in the overlap between MA and MO are shown in Tables S2-S4. The most significant biological function is “chronic inflammatory disorder” (Table 4). Notably, two genes linked to the function “chronic inflammatory disorder”: TRPM8 (2q37.1) and UFL1 (6q16.1) have Fisher’s combined gene-based P-values surpassing the genome-wide threshold (3.45×10^{-6}). The most significant canonical pathway is “Notch Signaling” (Table 4), which plays important roles in neuronal function and development (23-26). The most significant network is “Cardiovascular Disease, Organismal Injury and Abnormalities, Cardiac Stenosis” (Table 4). Other biological functions and networks that were significantly enriched in the overlap between MA and MO were mostly involved in cardiovascular, inflammation, development and connective tissue related functions (Tables S3-S4).

As shown in Tables S2-S3, several significant biological functions and canonical pathways share the same candidate genes, which indicate that these functions are related. In order to
find the relationship between them, we constructed networks by IPA (described in Methods). The significant canonical pathways and biological functions were combined into five networks without overlapping genes (Table 5).
Discussion

This study identified a significant gene-level genetic relationship between MA and MO by integrating gene-based tests and estimating the effective number of genes using the GWA summary statistic results for both disorders from the recent meta-analysis conducted by the IHGC (11). Our approach is different from single-SNP-based approaches, e.g., polygenic prediction (27) and SNP effect concordance analysis (SECA) (28) which previously showed a significant SNP-based genetic overlap between MA and MO (15), as it has the ability to identify genes across disorders in the presence of allelic heterogeneity. The latter is of great importance as only 12 out of 271 genes with gene-based P-values < 0.1 for both MA and MO were shown to be tagged by the same top significant SNP. The other advantage of our gene-based approach comes from the fact that genes are the predominant functional unit of the human genome and are therefore more closely related to biology mechanisms.

From the combined analysis of MA and MO gene-based P-values, six genes surpass our genome-wide significance threshold: *TRPM8, UFL1, FHL5, TARBP2, NPFF* and *LRP1* on chromosome 2q37.1, 6q16.1, 6q16.1, 12q13.13, 12q13.13 and 12q13.3, respectively. These results support the utility of our gene-based approach, especially given they are based on 14,742 fewer migraine cases and 20,318 fewer controls (~41% smaller effective sample size) compared to the original IHGC GWAS of 23,285 migraine cases and 95,425 controls. Four of these genes (*TRPM8, UFL1, FHL5* and *LRP1*) were located in close proximity to previously reported genome-wide significant SNPs, while two genes, *TARBP2* and *NPFF*, represent novel candidate risk genes for migraine.

The known molecular functions of *TARBP2*, TAR (HIV-1) RNA binding protein 2, that is encoded by the *TARBP2* gene, centers on its requirement for formation of the RNA-induced
silencing complex. TARBP2 binds between the bulge and the loop of the HIV-1 TAR RNA regulatory element and activates HIV-1 gene expression in synergy with the viral Tat protein. TARBP2 is also an integral component of the DICER1-containing complex and involved in miRNA processing (29). Together with the gene ontology (GO) molecular function terms assigned to TARBP2 (double-stranded RNA binding, protein binding, siRNA binding, miRNA binding, and protein homodimerization activity), there is no obvious functional link between TARBP2 and migraine risk.

The neuropeptide FF-amide peptide precursor (NPFF), encoded by the NPFF gene, has wide-ranging physiologic effects, including the modulation of morphine-induced analgesia, elevation of arterial blood pressure, and increased somatostatin secretion from the pancreas. The GO molecular functions assigned to NPFF are G-protein coupled receptor binding, receptor binding, and neuropeptide hormone activity. Notably, neuropeptide FF potentiates and sensitizes acid-sensing ion channels ASIC1 and ASIC3. The ASICs represent proton-gated channels that are able to flux Na$^+$ and Ca$^{2+}$. A recent study using whole-cell patch-clamp electrophysiology showed that a decrease in extracellular pH can directly excite primary dural-afferent neurons via the opening of ASICs and produce migraine-related pain behavior, suggesting ASIC inhibitors may represent novel candidates for migraine therapy (30). Indeed, the ASIC inhibitor amiloride was recently shown to block cortical spreading depression (CSD)—the neurophysiological correlate of migraine aura—and inhibited trigeminal activation in in vivo in animals, via an ASIC1 mechanism (31). These previous findings suggest that NPFF is the most probable migraine risk gene on 12q13.13.

To gain better understanding of the biological mechanisms that are involved in the two migraine subtypes, we also performed pathway analyses on the genes that showed nominal
association with both MA and MO. Pathway analysis based on biological functions provided 22 significant diseases/functions (Table S2). Among them, many were related to inflammatory disorders. A causal role for inflammation in migraine pathophysiology has been described previously, as CSD can activate an inflammatory cascade that can reach the meninges (32) where it may cause neurogenic inflammation and subsequent activation of trigeminal neurons and thereby activation of the migraine headache (32, 33).

Gene functions and networks related to cardiovascular and connective tissue disorders showed enrichment in the overlap between MA and MO as well (Tables 5, S1 and S3). A possible role for the cardiovascular system in migraine has been suggested by the high coincidence of migraine with stroke and several cardiac disorders (34). The high coincidence was also observed on migraine with aura in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) (35), which is caused by specific missense mutations in the NOTCH3 gene (36). Receptor NOTCH3 plays important roles in Notch signaling pathway. Interestingly, Notch signaling was indicated as one of the enriched pathways in the overlapping genes between MA and MO (Table 4). Although NOTCH3 was not indicated significantly associated with MA or MO in this study nor in any of the previous large migraine GWA studies (11, 13, 14, 37), candidate gene association studies have provided some genetic support for the relationship between NOTCH3 and migraine (38, 39).

In summary, these results show a significant gene-based overlap between the primary subtypes MA and MO, further explaining—at least partly—their co-occurrence within the same patient or family. Our results also highlight four genes (TRPM8, UFL1, FHL5 and LRP1) that had earlier surfaced in GWA studies and two novel genes (TARBP2 and NPFF) as
candidate risk genes for migraine, and indicate that inflammatory and cardiovascular processes may be involved in the etiology of both MA and MO.
Conflict of interest

None declared.

Acknowledgments

Huiying Zhao was supported by a National Health and Medical Research Council (NHMRC) Early Career Fellowship (APP1091816). Dale R Nyholt, was supported by the Australian Research Council (ARC) Future Fellowship (FT0991022) and NHMRC Research Fellowship (APP0613674) Schemes. Grant W Montgomery was supported by the NHMRC Fellowships Scheme (339446, 619667). This research was also supported by a grant from the NHMRC (APP1075175), and by the European Union’s Seventh Framework programme (2007-2013) under grant agreement no. 602633 (EUROHEADPAIN). See the original publication of the 2013 IHGC migraine GWA meta-analysis (11) for detailed cohort specific acknowledgments.
Article highlights

- A significant overlap in associated genes exists between the primary subtypes MA and MO, further explaining—at least partly—their co-occurrence within the same patient or family.
- Combining gene-based association results across MA and MO confirmed association of four genes at three previously implicated loci, and when combined with previous data, highlight NPFF as novel candidate risk genes for both types of migraine.
- Results from pathway analyses indicate that inflammatory and cardiovascular processes may be involved in the etiology of both MA and MO.
References

