Energy Efficiency Oriented Cross-Layer Resource Allocation for Multiuser Full-Duplex Decode-and-Forward Indoor Relay Systems at 60 GHz

Zhongxiang Wei, Student Member, IEEE, Xu Zhu, Senior Member, IEEE, Sumei Sun, Fellow, IEEE, and Yi Huang, Senior Member, IEEE

Abstract—Energy efficiency (EE)-oriented green communication design is an important issue at 60 GHz due to high power consumption of devices working at such high frequency. In this paper, we investigate EE-oriented resource allocation for full-duplex (FD) decode-and-forward (DF) relay-assisted 60 GHz multiuser indoor systems. In contrast to the existing spectral efficiency (SE)-oriented designs, our scheme maximizes EE for FD relaying system under cross-layer constraints, addressing the typical problems at 60 GHz, such as the intermittent signal blockage caused by the small wavelength of millimeter (mm)-wave. A low-complexity EE-oriented resource allocation algorithm is proposed, by which the transmission power allocation, subcarrier allocation and throughput assignment are performed jointly across multiple users. Simulation results verify our analytical results and confirm that the FD relaying with the proposed algorithm achieves a higher EE than the FD relaying with SE-oriented approaches, while offering a comparable SE. In addition, a much lower throughput outage probability is guaranteed by the proposed resource allocation algorithm, showing its robustness against channel estimation errors. A full range of power consumption sources and imperfect self-interference cancellation are considered to rationalize our analysis.

Index Terms—Energy efficiency, full-duplex, cross-layer, resource allocation, decode-and-forward relay, 60 GHz

I. INTRODUCTION

Communication at 60 GHz, referred to as millimeter (mm)-wave communication, has attracted much attention, as the precedent 3 – 9 GHz bandwidth of 60 GHz enables multi-Gbps transmission and supports much richer multi-media services in short range communication scenario. Two fundamental distinguishing features of 60 GHz are the high propagation loss (PL) and blockage impact [1], e.g., the PL at 60 GHz is 28 dB higher than that at 2.4 GHz and 20 dB higher than that at 5 GHz. Therefore, relaying technique is a leverage to extend network coverage and maintain network connectivity at 60 GHz [2]. Relaying techniques can be classified as either half-duplex (HD) or full-duplex (FD). FD relay receives and transmits simultaneously on the same frequency and therefore has potentiality on high-speed transmission, enhancing the system spectrum efficiency (SE). However, FD operation suffers self-interference and requires effective self-interference mitigation [3]. On the other hand, the escalation of energy consumption at 60 GHz has been recognized as a major threat to environmental protection. This is because 60 GHz chips generally consume much more power than the chips working at a much lower frequency [4], and more power is needed by FD relays due to the self-interference cancellation operation [2]. Therefore, green communication design, which is energy efficiency (EE)-oriented, is important for 60 GHz FD relaying communications.

Thanks to recent advances in self-interference cancellation technologies [3] [5] [6] [7], FD relaying becomes feasible in practice, where the strong self-interference can be mitigated effectively. There are three main methods to suppress self-interference at relay node: passive suppression (PS), analog cancellation (AC) and digital cancellation (DC) [3]. The first stage of self-interference cancellation, PS, mitigates self-interference in the propagation domain, which benefits from directional antenna, antenna placement and antenna shielding [5]. After PS, self-interference can be further mitigated by AC before signal goes through low noise amplifiers [6]. The last stage, DC is applied in digital domain, which subtracts the residual self-interference after PS and AC in digital domain [7]. Up to 100 dB of cancellation amount can be achieved by existing methods [3] [8]. With recent advances in self-interference cancellation and hardware designs, FD is also considered in mm-wave communications for high-speed and low-latency transmission. A 60 GHz transceiver with FD fiber-optic transmit and receive chains was developed for short-range broadband application in [9], while [10] [11] explored the FD implementation in mm/sub-mm wave Si-constructed chips. The authors in [12] studied the self-interference cancellation in mm-wave FD systems. It has been found that, combined with PS, AC and DC, as much as 80 – 100 dB self-interference cancellation amount can be achieved in both line-of-sight (LOS) and non-LOS (NLOS). Also, benefiting from mm-wave transmission, PS at 60 GHz can be naturally higher than that at lower frequency, e.g., 2.4/5 GHz, which was also featured in [2]. Addressing the excessively high PL and sensitivity to blockage, the authors in [13] designed a transmit
and receive beamforming scheme for FD transmission at mm-wave frequency, obtaining a higher degrees of freedom (and therefore higher SE) compared to HD.

Much research has been conducted on optimal resource allocation for FD transmission in terms of maximizing SE. In [14], [15] and [16], SE maximization was investigated in bi-directional FD networks. In [14], the optimal transmission power policies at two communicating nodes were proposed to maximize ergodic capacity in a FD multi-input-multi-output (MIMO) communication system. In [15], a beamforming scheme was proposed to maximize SE in small cell networks, where a FD base station (BS) communicates with multiple HD users in the uplink and downlink channels simultaneously. In [16], the authors considered a single cell FD orthogonal frequency division multiple access (OFDMA) network, which consists of one FD BS and multiple FD users. The subcarrier and power allocation were jointly optimized in terms of sum-capacity. While in [17] [18] [19] and [20], SE maximization of FD relay-assisted networks was investigated. In [17], a joint relay selection and power allocation method for maximizing signal-to-interference-and-noise-ratio (SINR) was proposed in a multiple amplify-and-forward (AF) FD relay system. In [18], a joint precoding/decoding design was proposed to maximize end-to-end SINR in an AF FD relay network. In [19], the combination of opportunistic relay mode selection and transmit power adaptation at source was proposed to maximize SE. While in [20], resource allocation issue in multiuser MIMO networks was investigated in terms of SE. FD transmission in cognitive radio (CR) networks was researched in [21] and [22], respectively. Based on time division multiplex access (TDMA) (therefore HD transmission), the authors in [23] [24] studied the SE maximization in 60 GHz wireless personal area networks.

In terms of EE-oriented resource allocation, all existing work has focused on HD relaying [25] [26] [27] [28] or direct transmission (without relay) [29] [30] [31] [32]. In [25], maximizing EE was investigated for MIMO OFDMA based Long Term Evolution (LTE) cellular systems. While in [26], a power consumption model was presented for HD relay-assisted 60 GHz systems. However, it did not consider HD mode nor static circuit power, which is actually comparable with the transmission power in indoor environments. The authors of [27] studied the EE-SE trade-off in a multiuser cellular virtual-MIMO system with decode-and-forward (DF) type protocols, however, only transmission power was considered as power consumption. In [28], the position of HD relay was investigated to outperform direct (without relay) transmission in terms of EE. In [29], EE issue was researched for MIMO-orthogonal frequency division multiple (OFDM) systems with statistical quality-of-service (QoS) constraints, where only transmission power was considered. EE-oriented resource allocation of OFDMA networks in downlink was considered in [30] [31] [32]. The authors indicated that transmission power and circuit power need to be considered together to rationalize the power consumption model. Besides, EE-oriented designs in CR networks were given in [22] and [33]. In [34], the authors investigated the EE balance between downlink and uplink transmission in a single cell system, where a base station can communicate with users via time division duplex (TDD) transmission mode. Since uplink and downlink transmission were decoupled in orthogonal time slots, the self-interference can be avoided at the expense of SE. In [35], the EE-oriented resource allocation was investigated in heterogeneous networks with multiple access points, in which the multi-objective optimization problem was transformed into an equivalent single objective optimization problem by the weighted Tchebycheff method to find the Pareto optimal solution. Resource allocation for uplink in LTE networks was investigated in [36]. However, the authors took maximization of total uplink SE as objective function. Therefore, the EE may not be optimal due to the fully utilized transmission power. In [37], the EE-oriented resource allocation was investigated for uplink of LTE networks under QoS requirements. However, only transmission power was taken into account to trace the total power consumption. In [38], the power consumption model was investigated for LTE based macro/pico cell, revealing that MIMO may not lead to energy saving due to the increased circuit power consumption. Also, EE issues in 5G systems were extensively reviewed in [39], and a variety of EE optimization methods in uplink and downlink were discussed.

The aforementioned EE-oriented resource allocation methods designed for HD relaying or direct transmission may not be directly applied to FD relaying systems due to the presence of residual self-interference, while most existing work on resource allocation for FD relaying systems was presented to maximize SE. On the other hand, due to the significant PL of mm-wave communications, ultra-dense small cell network and WiFi access points are promising solutions for local-area connectivity, which act as front/back haul to provide seamless coverage in 5G systems [40]. The application of small cell network was presented in [41] [42] for indoor/outdoor use. It was also indicated that relay-assisted optimal resource allocation in mm-wave small cell is still challenging. The EE issue of FD transmission was investigated in our previous work [2]. However, it focused on the comparison between HD and FD with different self-interference cancellation schemes in a single user AF relay system, and also did not consider cross-layer design and multiuser scenarios. In [43], EE-oriented resource allocation in cellular networks with FD relaying was investigated. However, only physical layer (PHY) resource allocation was considered. Besides, the FD relaying power consumption model in [43] is not accurate since the power consumption for self-interference cancellation at FD relay was ignored. There lacks investigation of cross-layer EE-oriented resource allocation for multiuser FD relaying in the literature, which is the motivation of our work.

In this paper, we investigate cross-layer EE-oriented resource allocation for multiuser FD relay-assisted indoor systems, which is the first work to the best of our knowledge. Our work is different in the following aspects.

1. To address cross-layer design for FD relaying system at 60 GHz, throughput outage probability, a media access control (MAC) layer performance metric, is considered, while only PHY layer performance metrics were considered in our previous work [2]. This makes the proposed work more practical at 60 GHz than existing resource allocation works.
shown in Sections VI and VII, respectively. is given in Section V. Numerical results and conclusions are given in Section III. EE-oriented cross-layer resource allocation design is presented in Section IV and complexity analysis of outage probability constraint on EE is researched, showing the suitability of the proposed algorithm for 60 GHz. 5) Impact be modeled by Rician fading with a typical Rician factor of outage probability constraint on EE is investigated: 1) Impact of transmission power on EE is investigated. More aggressive throughput can be assigned while satisfying the target outage probability, which reflects the suitability of the proposed algorithm for 60 GHz. 5) Impact of outage probability constraint on EE is researched, showing that adopting stringent outage probability constraint does not necessarily guarantee a higher EE.

In Section II, the system model and problem formulation are presented. Analysis of throughput and power consumption is given in Section III. EE-oriented cross-layer resource allocation design is presented in Section IV and complexity analysis is given in Section V. Numerical results and conclusions are shown in Sections VI and VII, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the system model in Subsection II-A, and then present the optimization problem in Subsection II-B.

A. System Model

We consider a \(K \)-user FD DF relay-assisted system in the downlink, as illustrated in Fig. 1. It is assumed that the users can not hear the source directly [23]. This typical assumption corresponds to coverage extension scenarios due to high attenuation at 60 GHz [2]. The relay works in FD mode, causing self-interference to the receiver from its transmitter. Self-interference cancellation schemes, PS, AC and DC are applied at the relay, as shown in Fig. 1.

We assume OFDMA transmission with \(N \) subcarriers. Let \(h_{SR,k,n}, h_{RD,k,n} \) and \(h_{RR,k,n} \) denote the channel frequency responses of links source-to-relay (S-R), relay-to-user (R-D) and relay-to-relay (R-R) on subcarrier \(n \) for user \(k \), respectively. Also let \(l_{SR,k}, l_{RD,k} \) and \(l_{RR,k} \) denote the PLs of links S-R, R-D and R-R for user \(k \), respectively. The channels of the S-R and R-D links are modeled as Rician fading [45], which is widely used for 60 GHz channel modeling [46] [47]. Without loss of generality, we assume that the Rician factor \(\hat{k} \) is equal at the two links, i.e., \(h_{SR,k,n} \sim CN(\sqrt{k/(1 + \hat{k})}, 1/(1 + \hat{k})) \) and \(h_{RD,k,n} \sim CN(\sqrt{k/(1 + \hat{k})}, 1/(1 + \hat{k})) \). Normally, the Rician factor \(\hat{k} \) varies between 5 dB and 15 dB in 60 GHz indoor environment [45]. The self-interference channel is modeled as Rayleigh fading channel as the LOS between the transmitter and the receiver of the relay can be effectively blocked by antenna shielding and placement due to the very small wavelength at 60 GHz [2]. The self-interference waves are collected from reflected waves [48]. We assume that perfect CSI of link S-R can be obtained. Since both the BS and relay are static and fixed high in indoor environment and is immune to the blockage effect, the fading gain can be reliably estimated with negligible estimation error [49], whereas the channel estimation error of the link R-D is presented with imperfect channel estimate \(h_{RD,k,n} \) and estimation error \(\Delta h_{RD,k,n} \sim CN(0, \sigma_{\text{error}}^2) \), where \(\sigma_{\text{error}}^2 \) is the variance of the estimation error and is independent of \(k \) and \(n \). It is because the wavelength at 60 GHz is only 5 mm, any obstacles whose size is significant larger than the wavelength will cause serious blockage effect [50], e.g., mobility of human or small-size furniture can even eliminate the LOS transmission and penalize the link by 20 – 30 dB, resulting in time-varying channel state and out-of-date CSI of link R-D. Besides, the channel estimation error of link R-R is absorbed into the effect of cancellation amount \(\alpha \) [2], i.e., higher value of \(\alpha \) means more accurate estimation of link R-R and lower circuit distortion of the self-interference cancellation operation 1.

For OFDMA usage in multiuser scenario, define power allocation matrices \(P_k = [p_{k,n}]_{K \times N} \), \(P_r = [p_{r,k,n}]_{K \times N} \), whose elements \(p_{k,n} \) and \(p_{r,k,n} \) denote the transmission powers allocated at the resource and the relay node for user \(k \) on subcarrier \(n \), respectively. Define subcarrier allocation matrix \(\rho = [\rho_{k,n}]_{K \times N} \), whose element \(\rho_{k,n} \) denotes whether subcarrier \(n \) is assigned to user \(k \) (by 1) or not (by 0). Subcarrier mapping is not considered due to high complexity. \(z_{R,k,n}[i] \) and \(z_{D,k,n}[i] \) denote complex Additive White Gaussian Noise (AWGN) on subcarrier \(n \) introduced at the relay and user \(k \) in time slot \(i \), respectively, with zero mean and variance \(\sigma^2 \). Define end-to-end instantaneous capacity matrix \(C = [c_{k,n}]_{K \times N} \), whose element \(c_{k,n} \) denotes end-to-end capacity of user \(k \) achieved on subcarrier \(n \), and overall capacity is calculated as \(C = \sum_{k=1}^{K} \sum_{n=1}^{N} c_{k,n} \). In

\[1 \] There are other models which assume that the residual self-interference is proportional to the transmission power [44], or the residual self-interference increases the noise power by a coefficient \(\sigma \) regardless of the transmission power [16]. The first modeling of self-interference actually is the same method as we formulated, since the self-interference is the transmitted signal from the relay node itself and the power of residual self-interference is directly determined by the relay’s transmission power and the self-interference cancellation amount \(\alpha \). While the second one simplifies the self-interference model by ignoring the transmission power at the transmitter.
most cross-layer designs, capacity is a meaningful measure when the schedulers have perfect CSI. However, in practice, outage occurs whenever throughput exceeds the instantaneous capacity, which is caused by the channel estimation error [49]. Therefore, the per-subcarrier outage constraint is needed to ensure low frame error rate applications [51] and to avoid network congestion caused by the retransmission of lost message. Therefore, we define the instantaneous throughput $t_{k,n}$ of user k on subcarrier n, given by

$$t_{k,n} = \begin{cases} t_{k,n}^0, & t_{k,n}^0 \leq c_{k,n} \\ 0, & t_{k,n} > c_{k,n}. \end{cases}$$ (1)

Denote $T = [t_{k,n}]_{K \times N}$ as the throughput assignment policy and the overall throughput of system is calculated as $T = \sum_{k=1}^{K} \sum_{n=1}^{N} t_{k,n}$.

B. Problem Formulation

Define $\eta(\rho, P_s, P_r, T)$ as the EE (in bits/Joule), which is the ratio of the system throughput T to the incurred total power consumption P_{total}. Accordingly, the optimal EE resource allocation problem of the FD DF relaying system is formulated as

$$P1: \quad \arg \max_{\rho, P_s, P_r, T} \eta(\rho, P_s, P_r, T) = \frac{T}{P_{\text{total}}},$$ (2)

$s.t. \quad (C1): \sum_{k=1}^{K} \sum_{n=1}^{N} (p_{s,k,n} + p_{r,k,n}) \leq P_{\text{max}}, \quad (C2): \quad p_{s,k,n} \geq 0, \quad p_{r,k,n} \geq 0, \quad (C3): \sum_{k=1}^{K} \rho_{k,n} = 1, \quad (C4): \quad \rho_{k,n} \in \{0,1\}, \quad \text{and} \quad (C5): \quad Pr[t_{k,n} > c_{k,n} | h_{RD,k,n}] \leq \theta^t$ for $\forall k \in K$ and $n \in N$, where $(C1)$ is a joint power constraint for the source and relay with a maximum total transmission power P_{max}, which provides useful insight into the power usage of the whole system rather than the per-hop required power [49]; $(C2)$ implies non-negativity transmission power allocation at the source and relay; $(C3)$ and $(C4)$ are imposed to guarantee that each subcarrier is only used by one user; $(C5)$ represents a per-subcarrier throughput outage probability constraint for user k on subcarrier n with the estimated channel $h_{RD,k,n}$, i.e., the probability that the assigned throughput $t_{k,n}$ on subcarrier n exceeds its channel capacity $c_{k,n}$ is upper bounded by θ^t. $(C1) - (C4)$ are PHY constraints while $(C5)$ is a MAC layer constraint.

III. THROUGHPUT AND POWER CONSUMPTION ANALYSIS

The problem formulation in (2) includes the system throughput and total power consumption. Hereby, we analyze the throughput and power consumption in Section III. At the relay node, the received signal for user k on subcarrier n in time slot i is

$$r_{k,n}[i] = h_{SR,k,n} \sqrt{l_{SR,k} p_{s,k,n} x_{k,n}[i]} + h_{RR,k,n} \sqrt{l_{RR,k} c_{k,n} x_{k,n}[i]} + z_{R,k,n}[i],$$ (3)

where $x_{k,n}[i]$ is the transmitted signal from the source on subcarrier n for user k in time slot i. The DF relay decodes the received signal and re-encodes and forwards it to user k. Therefore, the transmitted signal $q_{k,n}[i]$ from the relay for user k on subcarrier n is given by

$$q_{k,n}[i] = \sqrt{P_{r,k,n}} x_{k,n}[i - \tau],$$ (4)

where the integer $\tau \geq 1$ is the symbol delay. At the user end, the received signal is

$$y_{k,n}[i] = h_{RD,k,n} \sqrt{l_{RD,k} P_{r,k,n} x_{k,n}[i - \tau]} + z_{D,k,n}[i].$$ (5)

Therefore, the SINRs at the first hop S-R and the second hop R-D are given by (6) and (7), respectively.

$$\gamma_{SR,k,n} = \frac{l_{SR,k} p_{s,k,n} x_{k,n}[i]}{\sigma^2},$$ (6)

$$\gamma_{RD,k,n} = \frac{l_{RD,k} P_{r,k,n} x_{k,n}[i - \tau]}{\sigma^2},$$ (7)

where $l_{SR,k}$ and $l_{RD,k}$ are channel-to-noise ratios (CNRs) of links S-R, R-D and R-R, respectively. For the FD DF relaying system, the end-to-end capacity on subcarrier n for user k is given by

$$c_{k,n} = \rho_{k,n} \min\{\log_2(1 + \gamma_{SR,k,n}), \log_2(1 + \gamma_{RD,k,n})\}. \quad (8)$$

On the other hand, for short-range communications, the power amplifier (PA) power is comparable with the circuit power [30] due to the small chip size in indoor environment and the low drain efficiency of 60 GHz chips [52], and is given by

$$P_{\text{PA}} = \rho_{k,n} \min\{\log_2(1 + \gamma_{SR,k,n}), \log_2(1 + \gamma_{RD,k,n})\}. \quad (9)$$
where ω is the drain efficiency. The circuit power includes the power consumed by all circuit blocks along the signal path, which can be divided into static circuit power, $P_{c,sta}$, and dynamic circuit power, $P_{c,dyn}$ [30]. A well-accepted model of dynamic circuit power is $P_{c,dyn} = \varepsilon T$, where the constant ε denotes the power consumption per unit data rate.

For FD relay, applying PS actually does not consume additional power, however, the power consumed by AC and DC is non-negligible. Besides, the power consumed by the involved chip components, such as attenuator, splitter and adder are not related to the throughput state [3], and therefore the power consumed by AC and DC, P_{AD}, is regarded as a constant. The total power consumption of FD relaying system is formulated as

$$
P_{total} = \frac{1}{\omega} \sum_{k=1}^{K} \sum_{n=1}^{N} (p_{s,k,n} + p_{r,k,n}) + P_{c,sta} + \varepsilon T + P_{AD}.
$$

(10)

IV. ENERGY EFFICIENT CROSS-LAYER RESOURCE ALLOCATION

Based on the derived throughput and total power consumption in Section III, substituting (1), (8) and (10) into (2) yields the EE-oriented resource allocation problem of the FD DF relaying system:

$$
P2 : \begin{align*}
\arg\max_{\rho, P_s, P_r, T} & \quad \frac{T}{\omega} \sum_{k=1}^{K} \sum_{n=1}^{N} (p_{s,k,n} + p_{r,k,n}) + P_{c,sta} + \varepsilon T + P_{AD}, \\
\text{s.t.} & \quad (C1) - (C5).
\end{align*}
$$

(11)

The policies of subcarrier allocation ρ, transmission power allocation P_s and P_r and throughput assignment T need to be optimized jointly, subject to the cross-layer constraints. To solve the non-convex problem P2 in a polynomial time, a series of transformations are needed, i.e., solving the original P2 is transformed into solving P3 and P4, as presented in Subsection IV-A. Final solution is demonstrated in Subsection IV-B, and discussion of EE-oriented design is given in Subsection IV-C.

A. Transformations of the Optimization Problem

We first introduce a new variable to combine $P_s = [p_{s,k,n}]_{K \times N}$ and $P_r = [p_{r,k,n}]_{K \times N}$ without the loss of optimality [20]. Let matrix $P = [p_{k,n}]_{K \times N}$ denote end-to-end transmission power policy, whose element $p_{k,n} = p_{s,k,n} + p_{r,k,n}$ represents end-to-end transmission power for user k on subcarrier n via hops S-R and R-D. For DF relaying, the maximum EE for user k on subcarrier n is achieved when $\Gamma_{1,k,n}^{FD} = \Gamma_{2,k,n}^{FD}$ (which is easy to prove by a counter example). Let $p_{r,k,n} = p_{k,n} - p_{s,k,n}$ and substitute it into $\Gamma_{1,k,n}^{FD} = \Gamma_{2,k,n}^{FD}$.

We can solve the quadratic function of $p_{r,k,n}$ and equivalent end-to-end capacity c_n of FD DF relaying on subcarrier n for user k is given by Lemma 1.

Lemma 1: The equivalent end-to-end capacity of FD DF relaying for user k on subcarrier n is given by (12).

Next we need to incorporate the MAC layer constraint in (C5) with the PHY layer parameters. The “\leq” sign in (C5) is replaced with an “$=$” sign, which is reasonable in low outage probability applications (e.g., $\theta_k \leq 0.01$) [49]. The equivalent outage probability constraint is given by Lemma 2.

Lemma 2: The outage probability constraint in (C5): $Pr[\tilde{r}_{k,n} > c_{k,n} \mid h_{RD,k,n}] = \theta_k$ for $\forall k \in K$ and $n \in N$, is equivalent to allocating throughput as $t_{k,n} = \log_2(1 + \Lambda_{k,n})$.

(13)

where \(\Lambda_{k,n} = \sqrt{4p_{k,n}\Phi_{k,n} + \Psi^2 - \Psi} \), $\Psi_{k,n} = \gamma_{RD,k,n} + \sum_{n'=1}^{N} \frac{\gamma_{RR,k,n} \Phi_{k,n} \cdot \hat{H}_{RR,k,n} \Gamma_{RD,k,n}}{\gamma_{RR,k,n} \Phi_{k,n} \cdot \hat{H}_{RR,k,n} \Gamma_{RD,k,n} + F_{k,n}^{-1}(\theta_k^2)}$. $F_{k,n}(\cdot)$ denotes the cumulative distribution function (cdf) of the non-central chi-square random variable, with 2 degrees of freedom, and non-central parameter $2|\mu\rho_{k,n}|^2 + \frac{1}{\sigma^2_{err,k,n}}$. $F_{k,n}^{-1}(\cdot)$ denotes the inverse function of $F_{k,n}(\cdot)$.

Proof: See Appendix A.

We then relax the combinational constraint (C4) caused by the subcarrier assignment. The binary variable $\rho_{k,n}$ is relaxed to a real number within the interval [0,1], indicating the time sharing factor of subcarrier n among K users. The relaxation of (C4) does not affect the optimality when the number of subcarriers goes to infinity ($N \to \infty$). Given a large number of subcarriers, the loss of optimality is negligible and the solution after relaxation is near-optimal [53]. Hence, the transformed problem P3 is given by (14).

Notice that (C1) and (C4) are transformed to (C7) and (C6), respectively, whereas (C5) can be omitted after the transform through Lemma 2. Therefore, optimizing $\eta(\rho, P_s, P_r, T)$ under constraints (C1) - (C5) is transformed into optimizing $\eta(\rho, P)$ under new constraints (C2) (C3) (C6) and (C7) through Lemmas 1 and 2. We now introduce Theorem 1 to help solve the problem P3.

Theorem 1: EE $\eta(\rho, P)$ is strictly quasi-concave or monoincreasing with respect to the total end-to-end transmission power P, under a maximum transmission power constraint P_{max}.

Proof: See Appendix B.

Theorem 1 confirms the existence and uniqueness of the global maximum $\eta(\rho, P)$. Obviously, the target function EE $\eta(\rho, P)$ is mono-increasing with respect to the total end-to-end throughput T with a fixed end-to-end transmission power P. According to Theorem 1, if there is a globally optimal end-to-end transmission power P^*, maximizing $\eta(\rho, P)$ is equal to maximizing the total end-to-end throughput with this P^* rather than P_{max}. Then the optimization problem P3 in (14) can be transformed into

$$
P4 : \arg\max_{\rho, P} \sum_{k=1}^{K} (1 - \theta_k^2) \sum_{n=1}^{N} \rho_{k,n} \log_2(1 + \Lambda_{k,n}),
$$

(15)
\[c_{k,n} = \rho_{k,n} \log_2 \left(1 + \frac{\sqrt{3} \Phi_{k,n} \gamma_{RD,k,n} \gamma_{SR,k,n} \gamma_{RR,k,n} + (\gamma_{RD,k,n} + \gamma_{SR,k,n})^2 - (\gamma_{RD,k,n} + \gamma_{SR,k,n})}{2 \gamma_{RR,k,n}} \right), \]

where \(P_3 : \arg \max_{\rho, \rho} \sum_{k=1}^{K} (1 - \theta^k) \sum_{n=1}^{N} \rho_{k,n} \log_2 (1 + \frac{\Delta_{k,n}}{\rho_{k,n}}) + P_{c sta} + \varepsilon \sum_{k=1}^{K} (1 - \theta^k) \sum_{n=1}^{N} \rho_{k,n} \log_2 (1 + \frac{\Delta_{k,n}}{\rho_{k,n}}) + P_{AD} \),

subject to \((C2), (C3), (C6): \rho_{k,n} \in [0,1] \) and \((C7): \sum_{k=1}^{K} \sum_{n=1}^{N} \rho_{k,n} \leq P_{max} \).

\[\text{satisfying } \rho_{k,n} \leq \frac{1}{2} \] notice that \(P_{max} \) is replaced by \(P^* \) in \((C8)\).

\section{Solution to the Cross-Layer Resource Allocation Algorithm}

After a series of transformations in Subsection IV-A, the problem \(P4 \) in \((15)\) is jointly-concave in terms of \(p_{k,n} \) and \(\rho_{k,n} \) which is proved in Appendix C. To solve the problem \(P4 \), Lagrange multiplier method \([54]\) is applied. The Lagrange function of \((15)\) is given by

\[L = \sum_{k=1}^{K} (1 - \theta^k) \sum_{n=1}^{N} \rho_{k,n} \log_2 (1 + \frac{\Delta_{k,n}}{\rho_{k,n}}) + \rho_{k,n} \sum_{k=1}^{K} \sum_{n=1}^{N} p_{k,n} \]

\[\mu (P^* - \sum_{k=1}^{K} \sum_{n=1}^{N} p_{k,n}) + \beta_n (1 - \sum_{k=1}^{K} \rho_{k,n}), \]

where \(\mu \) and \(\beta_n, \forall n \in N \) are Lagrange multipliers corresponding to the transmission power constraint and the subcarrier constraints, respectively. Let \(\mu^*, \beta_n^*, \forall n \in N \) denote the corresponding optimal Lagrange multipliers. Using the Karush-Kuhn-Tucker (KKT) conditions, we differentiate \((16)\) with respect to \(p_{k,n} \) and \(\rho_{k,n} \) respectively. By setting each derivative to 0, \((17)\) and \((18)\) are obtained.

The optimal end-to-end transmission power \(p_{k,n}^* \) on subcarrier \(n \) for user \(k \) can be derived from \((17)\):

\[p_{k,n}^* = \left[\frac{4 \Phi_{k,n} (1 - \theta^k)^2}{(\mu^* \log_2 (1 + \frac{\Delta_{k,n}}{\rho_{k,n}}))} - \frac{\Psi_{k,n}^2}{4 \Phi_{k,n}} \right] + \]

where operation \([x]^+ \) denotes \([x] = \max(0, x) \), \(\Xi_{k,n}^2 = \Psi_{k,n} - 2 \gamma_{RR,k,n} \). Accordingly, the optimal transmission power \(p_{k,n}^* \) at the source and \(p_{k,n}^* \) at the relay node are obtained by Lemma 1, and the optimal throughput \(t_{k,n}^* \) is obtained by substituting \(p_{k,n}^* \) into \((13)\).

Also, the optimal subcarrier allocation indicator \(\rho_{k,n}^* \) is obtained from \((18)\). It can be known that subcarrier \(n \) should be assigned to user \(k \) satisfying

\[\rho_{k,n}^* = \begin{cases} 1, k = k^* \ \\ 0, k \neq k^* \end{cases} \]

where \(k^* = \arg \max_k (1 - \theta^k) [\log_2 (1 + \Lambda_{k,n}^* - \frac{\rho_{k,n}^* \gamma_{RD,k,n} \gamma_{SR,k,n} \gamma_{RR,k,n} + (\gamma_{RD,k,n} + \gamma_{SR,k,n})^2 - (\gamma_{RD,k,n} + \gamma_{SR,k,n})}{2 \gamma_{RR,k,n}})]. \]

Also, \(\rho_{k,n}^* \) is obtained by substituting \(p_{k,n}^* \) into \(\Lambda_{k,n}^* = \frac{\sqrt{3} \Phi_{k,n} \gamma_{RD,k,n} \gamma_{SR,k,n} \gamma_{RR,k,n} + (\gamma_{RD,k,n} + \gamma_{SR,k,n})^2 - (\gamma_{RD,k,n} + \gamma_{SR,k,n})}{2 \gamma_{RR,k,n}} \).

\section{Properties of the EE-Oriented Resource Allocation}

Based on the theoretic analysis above, some useful properties of the EE-oriented resource allocation are discovered.

\begin{remark}
Impact of transmission power on EE
\end{remark}

In FD DF relaying system, EE shows a mono-increasing or mono-decreasing function with respect to transmission power. Therefore higher transmission power is non-decreasing with respect to \(\mu > 0 \), and thus the assigned throughput is also non-decreasing with respect to \(\mu \). The searching upper bound can be set as \(\mu_{upper} = \max \{ [\log_2 (\Xi_{k,n}^2 + \frac{8 \Phi_{k,n} (1 - \theta^k)^2}{\mu^* \log_2 (1 + \frac{\Delta_{k,n}}{\rho_{k,n}}))}] \} \), \(\forall k \in k, N \).

Based on the theoretic analysis, we propose a so-called quasi-concave based FD EE-oriented resource allocation (Q-FERA) algorithm, summarized in Algorithm 1, to optimize the EE of the multiuser FD DF relaying system, under cross-layer constraints. The proposed Q-FERA algorithm presented in Subsection IV-B relies on finding \(P^* \), which helps us transform the problem \(P3 \) into the problem \(P4 \). According to the characteristic of derivative, i.e., \(\frac{\partial \eta}{\partial P} \mid_{P^*} = \lim_{\Delta P \rightarrow 0} \frac{\eta(P^* + \Delta P) - \eta(P^*)}{\Delta P} \), \(P^* \) is readily obtained. The optimization results are summarized in TABLE I.
As can be seen from (8), the signal transmitted from the relay is treated as self-interference to the relay’s receiver. Therefore, higher transmission power P_r improves the power of self-interference with a poor self-interference cancellation. As a result, both throughput and EE are deteriorated.

There are other models that assume the residual self-interference only increases the noise power by a coefficient [16] or treat the residual self-interference as a noise-like constant (which are special cases of our generalized model). The residual self-interference in these models is independent of transmission power. Therefore, increasing transmission power P_r in this case guarantees a non-decreasing end-to-end throughput. However, EE may be degraded due to the increased transmission power. By replacing the residual self-interference in (13) as a noise-like constant, it is easy to prove that the EE is still mono-increasing or quasi-concave with respect to the transmission power.

Remark 2: EE-oriented water-filling for two-hop FD relaying system

By (20), it can be found that user k with lower $\gamma_{RR,k,n}$ has a higher opportunity to get subcarrier n, implying that it is preferable that a subcarrier be allocated to a user with less self-interference on that subcarrier. Similarly, it is obvious that more power will be allocated to subcarrier n with lower $\gamma_{RR,k,n}$ as shown in (19). It is different to the conventional water-filling algorithm in HD networks by taking the presence of residual self-interference and the channel conditions of links R-R, S-R and R-D into account, which can be classified as EE-oriented two-hop FD relaying water-filling policy.

Remark 3: Trade-off between EE and SE for two-hop FD relaying

For FD relaying with SE-oriented algorithms, the transmission power is fully utilized in the case of effective self-interference cancellation, where the power of the residual self-interference can be much lower than that of noise. However, the EE of SE-oriented FD relaying may be hindered by the incurred high total power consumption. Different from SE-oriented algorithms, FD relaying with EE-oriented algorithm makes trade-off between EE and SE, where the utilized transmission power may be lower than the available transmission power constraint. As a result, the total power consumption is lower than that of SE-oriented FD relaying, and higher EE can be obtained at the expense of SE.

Remark 4: Suitability of the Q-FERA for 60 GHz applications

With a fixed outage probability requirement, more aggressive throughput assignment matrix $\hat{T} = [\hat{t}_{k,n}]_{K \times N}$ can be achieved with a higher Rician factor $\hat{\gamma}$. Since cdf of chi-square

\[
\frac{\partial L}{\partial p_{k,n}}_{|p_{k,n}=p_{k,n}^*} = (1 - \theta^k) \frac{\Phi_{k,n}}{\ln(2)} \left[\frac{4 p_{k,n}^* \Phi + \Psi^2_{k,n} - \Psi_{k,n}}{2 p_{k,n}^* \gamma_{RR,k,n} + \sqrt{4 p_{k,n}^* \Phi + \Psi^2_{k,n} - \Psi_{k,n}}} - \mu^* \right] = \begin{cases} < 0, & p_{k,n}^* = 0 \\ \geq 0, & p_{k,n}^* = 1. \end{cases}
\]

\[
\frac{\partial L}{\partial p_{k,n}}_{|p_{k,n}=p_{k,n}^*} = (1 - \theta^k) \log_2 \left(1 + \frac{4 p_{k,n}^* \Phi + \Psi^2_{k,n} - \Psi_{k,n}}{2 p_{k,n}^* \gamma_{RR,k,n}} \right) - \frac{1}{\ln(2)} \left(4 p_{k,n}^* \Phi_k + \Psi^2_{k,n} - \Psi_{k,n} \right) = \begin{cases} < 0, & p_{k,n}^* = 0 \\ \geq 0, & p_{k,n}^* = 1. \end{cases}
\]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Optimization Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcarriers allocation policy $p_{k,n}^*$</td>
<td>$k^* = \arg\max_k (1 - \theta^k) \left(\log_2 (1 + \Lambda_{k,n}^) - \frac{\rho_{k,n}^ \gamma_{RR,k,n}}{\ln(2) \gamma_{RR,k,n}} \right)$</td>
</tr>
<tr>
<td>End-to-end power allocation policy $p_{k,n}^*$</td>
<td>$\rho_{k,n}^* = \frac{4 \Phi_k (1 - \theta^k)^2}{(\mu^* \ln(2) + \frac{8 \Phi_k (1 - \theta^k)}{\mu^* \ln(2) - \Xi_{k,n})})^2 - \frac{\Psi_{k,n}^2}{\Psi_{k,n}}$</td>
</tr>
<tr>
<td>Power allocation policy $p_{r,k,n}^*$ at relay node</td>
<td>$p_{r,k,n}^* = \sqrt{4 p_{k,n}^* \gamma_{RR,k,n} \gamma_{RD,k,n} \gamma_{RR,k,n} + (\gamma_{RR,k,n} + \gamma_{RD,k,n})^2 - (\gamma_{RR,k,n} + \gamma_{RD,k,n})^2}$</td>
</tr>
<tr>
<td>Power allocation policy $p_{s,k,n}^*$ at source</td>
<td>$p_{s,k,n}^* = p_{k,n}^* - p_{r,k,n}^*$</td>
</tr>
<tr>
<td>Throughput assignment policy $t_{k,n}^*$</td>
<td>$t_{k,n}^* = \log_2 \left(1 + \frac{4 \Phi_k p_{k,n}^* \Phi_k + \Psi^2 - \Psi}{2 \gamma_{RR,k,n}} \right)$</td>
</tr>
<tr>
<td>Lagrange multiplier μ^*</td>
<td>Obtained by solving equation (19) using bisection method, with the searching upper bound $\mu_{upper} = \max { \frac{\Phi_k}{\ln(2) \gamma_{RR,k,n}}, \forall k \in K, n \in N }$.</td>
</tr>
</tbody>
</table>
Algorithm 1 Quasi-concave based Full-Duplex Energy-Efficient Resource Allocation (Q-FERA) Algorithm

Input: $P_{\text{max}}, P_{\text{c,sta}}, P_{\text{AD}}, \omega, \varepsilon, \theta^k, h_{SR,k,n}, h_{RR,k,n}, l_{SR,k}, l_{RR,k}, \forall k \in K, n \in N$.

Output: Optimal subcarrier and end-to-end transmission power allocation policy ρ^*, P^*, and optimal throughput assignment policy T^*.

1: Set $P = P_{\text{max}}$
2: for $n = 1 : N$ do
3: for $k = 1 : K$ do
4: Allocate subcarrier n the user k satisfying (20), calculate end-to-end transmission power $p_{k,n}$ according to (19) and assign throughput $t_{k,n}$ according to (13).
5: end for
6: end for
7: Calculate $\frac{\partial n}{\partial P}$ at $P = P_{\text{max}}$.
8: if $\frac{\partial n}{\partial P}|_{P_{\text{max}}} \geq 0$ then
9: return $P^* = P_{\text{max}}, \eta^* = \eta(\rho^*, P^*, T^*)$
10: else
11: Initialize the left bound $P_L = 0$, and the right bound $P_R = P_{\text{max}}$
12: while $|\frac{\partial n}{\partial P}|_{P_{\text{max}}} < \delta$ (δ is a precision factor) do
13: $P_M = \frac{P_L + P_R}{2}$.
14: Do subcarrier and transmission power allocation policy and throughput assignment policy as did in steps 2–6, with total end-to-end transmission power $P = P_M$ and $P = P_L$, respectively.
15: if $\frac{\partial n}{\partial P}|_{P_L} \frac{\partial n}{\partial P}|_{P_M} \geq 0$ then
16: $P_L = P_M$
17: else
18: $P_R = P_M$
19: end if
20: end while
21: return $P^* = P_M, \eta^* = \eta(\rho^*, P^*, T^*)$
22: end if

function $F(\cdot)$ is mono-decreasing with respect to its non-centrality parameter. Inversely, the inverse function $F^{-1}(\cdot)$ is mono-increasing with respect to its non-central parameter, which is $\frac{2 h_{RD,k,n}^2}{\tilde{\sigma}^2_{\text{EVM}}}$ as derived. Higher Rician factor \tilde{k} leads to higher value of $\frac{\partial n}{\partial P}|_{P_{\text{max}}}$ and hence higher non-central parameter. As a result, higher throughput can be assigned while satisfying the target outage probability, and therefore higher EE is obtained.

The analysis above accords with intuition that, applying directional or narrow beam-width antenna provides strong LOS transmission and a higher Rician factor, e.g., \tilde{k} ranges from -5 to -15 dB in a typical 60 GHz indoor environment, where the channel is more flat with strong LOS components and poor NLOS components. In this case, more aggressive throughput assignment can be obtained while satisfying the outage probability naturally.

In some special scenarios, the channels at 60 GHz may follow Rayleigh distribution with the utilization of omnidirectional low gain antenna and long distance between transmitter and receiver [55]. By setting the Rician factor $\tilde{k} = 0$, our algorithm is easily extended to a Rayleigh scenario. Also, the Saleh-Valenzuela (S-V) and two wave with diffuse power (TWDP) channels were modeled at 60 GHz in [48], which can actually be approximated as Rician distribution when $\tilde{k} > 0$ and does not approach $+\infty$.

Remark 5: Impact of outage probability constraint on EE

Since capacity analysis does not capture the effect of outage with imperfect channel estimation, we introduce the definition of throughput and outage probability, which is constrained by θ^k. According to the theoretic analysis, the total average bits per second per Hz successfully delivered to users is given by $\sum_{k=1}^{K} (1 - \theta^k) \sum_{n=1}^{N} t_{k,n}$ [56]. With a coarse outage constraint θ^k, the throughput arrangement $t_{k,n}$ can be aggressive. However, the term $(1 - \theta^k)$ is degraded, indicating outage is more likely to occur. Inversely, with a stringent outage constraint θ^k, the term $(1 - \theta^k)$ is improved and it is likely more data can be delivered to users successfully. However, a stringent outage constraint θ^k leads to a smaller value of $F^{-1}(\theta^k)$ and hence a conservative value of $t_{k,n}$ (see, (13)). Considering an extreme case that outage probability θ^k is an infinitely small value that approaches 0 ($0^+ \to 0$). The first term $(1 - \theta^k)$ is equal to 1, indicating all encoded information can be readily delivered to users without outage. However, the second term $t_{k,n}$ approaches 0 since the value of $\lim_{\theta^k \to 0} F^{-1}(\theta^k)$ is equal to 0. Therefore, a stringent outage probability constraint does not necessarily guarantee higher EE or SE. Also, a coarse constraint may lead to poor EE.

V. COMPLEXITY ANALYSIS

In Section V, the complexity of the proposed algorithm is analyzed in terms of number of multiplications.

The Q-FERA algorithm is proposed to perform subcarrier allocation, transmission power allocation and throughput assignment jointly. At first, the gradient of EE is calculated at the maximum transmission power P_{max} and the complexity

<table>
<thead>
<tr>
<th>Designs</th>
<th>Algorithms</th>
<th>Complexities</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE</td>
<td>Q-FERA</td>
<td>$O(2N K</td>
</tr>
<tr>
<td>Max</td>
<td>QA-ERA in [25]</td>
<td>$O(N(K + 1)^3) log_2(\frac{1}{\delta})$</td>
</tr>
<tr>
<td>SE</td>
<td>4 FRAA in [16]</td>
<td>$O(</td>
</tr>
<tr>
<td>Max</td>
<td>5 FDRA in [20]</td>
<td>$O(N</td>
</tr>
</tbody>
</table>

\[\text{The number of iteration} |l_{\text{ite}}| \text{ depends on the number of multiplier variables in Lagrange function and the applied search algorithm,} \]
\[\text{i.e., ellipsoid searching is used in [25] while subgradient searching is used in [20].} \]

\[\text{The QA-ERA algorithm in [25] is applied in LTE-based MIMO-OFDMA systems, which considers individual minimum throughput requirement for different users, which means more K multipliers needs to be found during iterations by the ellipsoid searching method.} \]

\[\text{The FRAA algorithm in [16] is applied in FD OFDMA systems, and the local pareto optimality is used to solve the optimization problem.} \]

\[\text{For fair comparison, the complexity of the algorithm in [20] is calculated in a simplified two-antenna infrastructure relay (one transmit antenna and one receive antenna at relay node) and single relay configuration.} \]
If the complexity of the whole algorithm is allocated at the complexity searching algorithm. Once the globally optimal transmission at the transmission power algorithm. The coefficient 2 is induced by the twice computation of this step is \(O(2NK_{l\text{ite}1}) \), where \(l_{\text{ite}1} \) is the number of iterations required to obtain the optimal Lagrange multiplier \(\mu^* \) with given total transmission power \(P_{\text{max}} \), and is upper bounded by \(l_{\text{ite}1} \leq \log_2\left(\frac{P_{\text{upper}}}{\mu^*} \right) \) by bisection searching algorithm. The coefficient 2 is induced by the twice computation at the transmission power \(P_{\text{max}} \) and \(P_{\text{max}} + \Delta P \), respectively. If \(\frac{\partial P}{\partial P_{\text{max}}} \mid_{P_{\text{max}}} \geq 0 \), \(P_{\text{max}} = P^* \) is readily obtained and the algorithm terminates. Otherwise, the globally optimal transmission power \(P^* \) needs to be iteratively searched between \((0, P_{\text{max}}) \), within at most \(l_{\text{ite}2} \leq \log_2\left(\frac{P_{\text{max}} - P^*}{\kappa} \right) \) iterations by bisection searching algorithm. Once the globally optimal transmission power \(P^* \) is found, the subcarrier and power allocation are allocated at the complexity \(O(4NK_{l\text{ite}1}) \). Hence the total complexity of the whole algorithm is \(O(2NK_{l\text{ite}1}) + l_{\text{ite}2} \times O(4NK_{l\text{ite}1}) \).

Practically, the optimal transmission power always exists at the value that the transmission power related power consumptions (PA power \(P_{P_A} \), dynamic circuit power \(P_{c,dyn} \)) are comparable with the power consumption of the static power \(P_{c,sta} \). Since the static power of 60 GHz chip is high while the feasible transmission power range is limited, i.e., \(P_{\text{max}} \leq 16 \) dBm, \(P^* \) could be close to or even equal to \(P_{\text{max}} \). Therefore, very few or no iteration \(l_{\text{ite}2} \) is needed in finding the optimal total transmission power \(P^* \), and the whole complexity can be reduced to \(O(2NK_{l\text{ite}1}) \) in this case. As a result, the complexity of the proposed Q-FERA is comparable with that of the SE-oriented algorithms in [16] and [20], and is lower than that of the EE-oriented algorithm in [25], which is for direct transmission rather than for relaying.

VI. SIMULATION RESULTS

We use numerical results to verify our analysis in Section VI. In all figures, we use Q-FERA to denote the proposed cross-layer EE-oriented resource allocation, and FD dynamic resource allocation (FDRA) to denote the SE-oriented resource allocation by the algorithm in [20]. The PL model in [2] is adopted, as \(l = 68 + 10\log_{10}(d/d_0) \), where \(\nu = 3 \) is the PL exponent, \(d \) is the distance between two nodes, and \(d_0 = 1 \) m is the reference distance. The Rician factor \(\hat{k} \) is 15 dB except in Fig. 7. The total bandwidth is 2640 MHz with 512 subcarriers [58]. The AWGN power spectral density is -174 dBm/Hz. The S-R and R-D (all users and \(K = 5 \)) distances are all 5 m. The drain efficiency \(\omega \) of the PA is 25%. The static circuit power is 300 mW and the dynamic circuit factor \(\varepsilon = 50 \) mW/Gbps. The self-interference cancellation power is \(P_{AD} = 40 \) mW. The maximum transmission power constraint is set to \(P_{\text{max}} = 50 \) mW. The throughput outage constraint is \(\theta^k = 0.01 \) for all users, and the channel estimation error variance is set to \(\sigma^2_{\text{error}} = 10^{-3} \) except in Fig. 6. To evaluate the optimality of the proposed Q-FERA algorithm, we adopt the brand-and-bound (BnB) approach [59] as a benchmark, which yields a theoretic optimum on subcarrier allocation.

Fig. 2 shows the average optimal EE performances of FD with different algorithms. It can be observed that FD with the Q-FERA algorithm shows higher EE than FD with the SE-oriented FDRA algorithm across a wide range of self-interference cancellation amount. The Q-FERA algorithm has nearly the same performance as the BnB approach, which certifies that our Q-FERA algorithm is near-optimal. Also, all the EEs of the FD systems increase with the self-interference cancellation amount, since less residual self-interference is left.

Fig. 3 demonstrates the average EEs of FD with different values of the normalized relay’s position, which is defined as the ratio of the distance of S-R to the distance of S-D. Obviously, for all FD relaying curves, the optimal position of the FD relay is around in the middle between source and destinations. It is because with 80 dB of self-interference cancellation amount, the power of residual self-interference can be much smaller than the power of noise. The optimal EE performance is achieved when the throughputs of two links are equal. Besides, it can be seen that FD with the Q-FERA always outperforms FD with the FDRA in terms of EE at all distances. It indicates that FD relaying with the proposed Q-FERA algorithm maintains a high EE level. Last but not least, all the EE curves change rapidly with different relay’s
Average Outage Probability

$$k, n \text{ Pr}(t_{k,n} \in N, k \in K)$$

consumption of 60 GHz chips). While the probability of FD
easily exceeds the threshold of 500 mW (a reasonable power
portion of FD relaying exceeds a threshold
SE, with marginal loss of SE.

Q-FERA algorithm makes a proper trade-off between EE and
oriented FDRA algorithm. It means that FD with the proposed
oriented Q-FERA algorithm offers a comparable SE to the SE-
values of the normalized relay’s position. It shows that the EE-
impact on system throughput.

Position, since the high PL at 60 GHz results in a significant
impact on system throughput.

Fig. 4 demonstrates the average SEs of FD with different
values of the normalized relay’s position. It shows that the EE-
oriented Q-FERA algorithm offers a comparable SE to the SE-
oriented FDRA algorithm. It means that FD with the proposed
Q-FERA algorithm makes a proper trade-off between EE and
SE, with marginal loss of SE.

Fig. 5 shows the probabilities that total power consumptions of FD with
the Q-FERA and FD with the FDRA exceeds the thresholds
$$P_{\text{threshold}} = 500 \text{ mW}$$ and 550 mW, with self-interference cancellation amount $$\alpha = 80 \text{ dB}$$.

position, since the high PL at 60 GHz results in a significant
impact on system throughput.

with the Q-FERA maintains low, which is only 0.1 with
threshold 500 mW and $$P_{\text{max}} \geq 30 \text{ mW}$$.

This indicates that to obtain higher EE performance, the utilized transmission power
may be lower than the available transmission power constraint
$$P_{\text{max}}$$ and its EE may be quasi-concave with respect to the
transmission power. Fig. 5 confirms that the proposed EE-
oriented algorithm is a greener solution, with more carbon
footprint savings.

Fig. 6 shows the average outage probabilities of FD with the Q-FERA and FD with the FDRA. It can be observed that FD with the Q-FERA is robust against channel
estimation errors, even though the system has no accurate
channel information of the small-fading of the R-D link when
$$\sigma^2_{\text{error}} \rightarrow 1$$ (which represents a noisy estimation in [49]
[60]). This is because the channel condition of link R-D is
adopted in a probabilistic manner in the proposed Q-FERA
algorithm, as shown in Lemma 2. Therefore, the throughput
outage probability is satisfied naturally in our cross-layer
design. It is worth mentioning that the outage probability
was not considered in the SE-oriented algorithm in [20],
the throughput outage probabilities boosts with the increase of
channel estimation error $$\sigma^2_{\text{error}}$$.

Fig. 7 shows the optimal average EEs of FD with the BnB
approach. FD with the Q-FERA and FD with the FDRA under
different Rician factors $$k$$, whose value ranges from 5 dB to 15
dB in a typical indoor environment at 60 GHz. It is observed
that higher Rician factor can improve the EEs of all FDs,
since higher Rician factor means the R-D channel more flat
with less fluctuation, and throughput can be assigned more
aggressively while satisfying the preset outage probability.

However, the EEs keep unchanged when the Rician factor is
higher than 12 dB, this is because the LOS components almost
overwhelm the NLOS components, and thus the channel is
approximately a constant. Besides, it can be seen that FD with
the Q-FERA (with $$\alpha = 60 \text{ dB}$$) even shows higher EE than
FD with the FDRA (with $$\alpha = 80 \text{ dB}$$), which reflects that
FD with the Q-FERA can maintain a considerable EE value

Fig. 4. The average SEs of FD with the Q-FERA and FD with the FDRA vs.
different normalized distances between S-R, with self-interference cancellation
amount $$\alpha = 80 \text{ dB}$$.

Fig. 5. The average probabilities that total power consumptions of FD with
the Q-FERA and FD with the FDRA exceeds the thresholds
$$P_{\text{threshold}} = 500 \text{ mW}$$ and 550 mW, with self-interference cancellation amount $$\alpha = 80 \text{ dB}$$.

Fig. 6. The average outage probabilities that the assigned throughput is higher
than channel capacity, i.e., $Pr(t_{k,n} > c_{k,n})$ for all $n \in N$, under
different channel estimation errors, even though the system has no accurate
channel information of the small-fading of the R-D link when
$$\sigma^2_{\text{error}} \rightarrow 1$$ (which represents a noisy estimation in [49]
[60]). This is because the channel condition of link R-D is
adopted in a probabilistic manner in the proposed Q-FERA
algorithm, as shown in Lemma 2. Therefore, the throughput
outage probability is satisfied naturally in our cross-layer
design. It is worth mentioning that the outage probability
was not considered in the SE-oriented algorithm in [20],
the throughput outage probabilities boosts with the increase of
channel estimation error $$\sigma^2_{\text{error}}$$.

Fig. 7 shows the optimal average EEs of FD with the BnB
approach. FD with the Q-FERA and FD with the FDRA under
different Rician factors $$k$$, whose value ranges from 5 dB to 15
dB in a typical indoor environment at 60 GHz. It is observed
that higher Rician factor can improve the EEs of all FDs,
since higher Rician factor means the R-D channel more flat
with less fluctuation, and throughput can be assigned more
aggressively while satisfying the preset outage probability.

However, the EEs keep unchanged when the Rician factor is
higher than 12 dB, this is because the LOS components almost
overwhelm the NLOS components, and thus the channel is
approximately a constant. Besides, it can be seen that FD with
the Q-FERA (with $$\alpha = 60 \text{ dB}$$) even shows higher EE than
FD with the FDRA (with $$\alpha = 80 \text{ dB}$$), which reflects that
FD with the Q-FERA can maintain a considerable EE value
when self-interference cancellation performance is not very high, especially in a typically high Rician factor scenario at 60 GHz indoor environment.

Figs. 8 and 9 present the convergence behaviors of the Q-FERA algorithm under the maximum transmission power constraint $P_{\text{max}} = 50$ mW. Fig. 8 shows the convergence behavior of finding optimal transmission power P^*, while Fig. 9 shows the convergence behavior of finding the optimal multiplier μ^* with different values of given transmission power. It can be seen that the at most around 10 iterations are needed in both figures. Especially, if P_{max} is relatively small, EE may be mono-increasing in the range of $P_s \in (0, P_{\text{max}}]$, as analyzed in Theorem 1. In this case, the optimal transmission power P^* corresponding to the maximum EE is simply equal to P_{max}, and no iteration is needed in finding the optimal transmission power P^* in Fig. 8.

Fig. 10 presents the average EE performance with different outage probability constraints. It can be seen that EE approaches 0 given an infinitely small outage probability constraint, indicating a stringent outage probability constraint does not necessarily lead to better EE performance. Inversely, EE degrades significantly when constraint θ^k exceeds 0.1, which reveals that a coarse constraint may lead to poor EE and verifies Remark 5.

VII. Conclusion

In this paper, we have investigated EE-oriented resource allocation for indoor multiuser FD DF relay systems with cross-layer constraints. A novel low-complexity algorithm, referred to as Q-FERA, is proposed to perform transmission power allocation, subcarrier allocation and throughput assignment jointly to maximize system EE. Simulation results show a higher EE performance of the proposed EE-oriented design over SE-oriented design, at the cost of marginal SE loss. Also, the throughput outage probability of the proposed algorithm is much lower than that of the algorithm in [20] and is robust against channel estimation errors, addressing the intermittent blockage problem at mm-wave communications.
Besides, some useful properties of the EE-oriented resource allocation are discussed, such as the impact of transmission power on EE, EE-oriented water-filling power allocation, EE-SE trade-off for two-hop FD relaying system, the suitability of the Q-FERA algorithm for 60 GHz applications and the impact of outage probability constraint on EE. This work is extendable to a short-range wireless relaying system at a lower impact of outage probability constraint on EE. The work is of the Q-FERA algorithm for 60 GHz applications and the SE trade-off for two-hop FD relaying system, the suitability power on EE, EE-oriented water-filling power allocation, EE-allocation are discussed, such as the impact of transmission estimation error on system metrics can be found in [56] for CR networks.

APPENDIX A
DERIVATION OF LEMMA 2
Shannon capacity \(c_{k,n} \) is the maximum rate of reliable communication supported by subcarrier \(n \) for user \(k \). The quantity of \(c_{k,n} \) is a function of the random channel gains and is therefore random. Suppose the source sends data at a rate \(t_{k,n} \). If the arranged rate \(t_{k,n} \) is higher than its upper bound \(c_{k,n} \), then whatever code that was used by the transmitter, the decoding error probability cannot be made arbitrarily small. The transmission on subcarrier \(n \) is said to be in outage [60].

The outage probability in (C5) is equal to

\[
Pr\left[\tilde{h}_{RR,k,n} \left(2^{t_{k,n}} - 1\right) > \sqrt{4p_{k,n}\gamma_{SR,k,n} \gamma_{RR,k,n}\gamma_{RD,k,n} + \left(\gamma_{SR,k,n} + \gamma_{RD,k,n}\right)^2}
- \left(\gamma_{SR,k,n} + \gamma_{RD,k,n}\right) | h_{RD,k,n} \right] = \theta_{k,n}. \tag{22}
\]

The left hand of (22) can be re-sorted to

\[
Pr\left[\gamma_{RR,k,n}\left(2^{t_{k,n}} - 1\right)^2 + \left(2^{t_{k,n}} - 1\right)\gamma_{SR,k,n} > \gamma_{RD,k,n}\left(p_{k,n}\gamma_{SR,k,n} - \left(2^{t_{k,n}} - 1\right)\right) | h_{RD,k,n} \right]. \tag{23}
\]

Note that since \(p_{k,n} \gamma_{RR,k,n} \geq 0 \) and \(p_{k,n} = p_{k,n} + p_{r,k,n} \), it can be derived that \(\log_2 \left(1 + \frac{p_{k,n}\gamma_{SR,k,n}}{|h_{RD,k,n}|^2} \right) \leq \log_2 \left(1 + p_{k,n}\gamma_{SR,k,n}\right) \). Since perfect CSI of link S-R is available at the source, \(t_{k,n} \) will not exceed the real capacity of the S-R link as the corresponding perfect CSI is available at the scheduler, i.e., \(t_{k,n} \leq \log_2 \left(1 + \frac{p_{k,n}\gamma_{SR,k,n}}{|h_{RD,k,n}|^2} \right) \leq \log_2 \left(1 + p_{k,n}\gamma_{SR,k,n}\right) \). Therefore, \(2^{t_{k,n}} - 1 < p_{k,n}\gamma_{SR,k,n} \) is readily obtained. Therefore, (23) is transformed into

\[
Pr\left[|h_{RD,k,n}|^2 < \frac{\left(2^{t_{k,n}} - 1\right)^2\gamma_{RR,k,n} + \left(2^{t_{k,n}} - 1\right)\gamma_{SR,k,n}}{p_{k,n}\gamma_{SR,k,n} - \left(2^{t_{k,n}} - 1\right)} | h_{RD,k,n} \right]. \tag{24}
\]

Since (24) is a conditional probability, we know the estimated channel \(h_{RD,k,n} \) and \(h_{RD,k,n} = h_{RD,k,n} + \Delta_h_{RD,k,n} \). Therefore, (24) is equivalent to

\[
Pr\left[|\tilde{h}_{RD,k,n} + \Delta_h_{RD,k,n}|^2 < \frac{\left(2^{t_{k,n}} - 1\right)^2\gamma_{RR,k,n} + \left(2^{t_{k,n}} - 1\right)\gamma_{SR,k,n}}{p_{k,n}\gamma_{SR,k,n} - \left(2^{t_{k,n}} - 1\right)} | h_{RD,k,n} \right]. \tag{25}
\]

(25) can be seen as the cdf of a non-central chi-square distributed variable. Substituting (25) into (22), we get

\[
F\left(\frac{\left(2^{t_{k,n}} - 1\right)^2\gamma_{RR,k,n} + \left(2^{t_{k,n}} - 1\right)\gamma_{SR,k,n}}{p_{k,n}\gamma_{SR,k,n} - \left(2^{t_{k,n}} - 1\right)} \frac{2\sigma^2}{\tilde{l}_{RD,k,n}}\right) = \theta_{k,n}, \tag{26}
\]

where the operator \(F(\cdot) \) denotes the cdf of the corresponding non-central chi-square function [49], with degree of freedom 2 and non-central parameter \(\frac{2\tilde{l}_{RD,k,n}}{\sigma^2_{error}} \) [56] [61]. Finally, (26) leads to Lemma 2.

The inverse function \(F^{-1}(\cdot) \) is mono-increasing with respect to the non-central parameter, which is \(\frac{2\tilde{l}_{RD,k,n}}{\sigma^2_{error}} \) as derived. Hence, better channel estimation quality (smaller variance of channel estimation error \(\sigma^2_{error} \) leads to more aggressive throughput assignment and higher EE with a given outage probability constraint. A similar impact of channel estimation error on system metrics can be found in [56] for CR networks.

APPENDIX B
PROOF OF THEOREM 1
For simplicity, let \(T = \sum_{k=1}^{K} \left(1 - \theta_k\right) \sum_{n=1}^{N} \rho_{k,n} \log_2 (1 + \Delta_{k,n}) \). Define the superlevel set of \(\eta(P, \rho) \) is \(S_\alpha = \{ P > 0 | \eta(P, \rho) > \alpha \} \). From [2], \(\eta(P, \rho) \) is quasi-concave with respect to \(P \) if \(S_\alpha \) is convex for any real number \(\alpha \). When \(\alpha < 0 \), there is no physical meaning. When \(\alpha > 0 \), \(\alpha \) is equivalent to \(\alpha > 0 \). From [30], \(T' \) is strictly convex with respect to total transmission power \(P \) given a sufficiently large number of subcarriers. Besides, the linear part \(\frac{\alpha P}{\sigma^2_{error}} + \alpha (P_{c,sta} + P_{AD}) \) is convex (not strictly) with respect to \(P \). Therefore, the summation is strictly convex with respect to \(P \). As a result, \(\eta(P, \rho) \) is quasi-concave with respect to \(P \).

APPENDIX C
PROOF OF CONVEXITY OF THE PROBLEM IN (15)
For the proof purpose, we first define a new variable \(X_k,n = \sqrt{4p_{k,n}\Phi_{k,n} + \Psi_{k,n}^2} \) for simplicity. The objective function is transformed to \(u_1(\rho_{k,n}, X_k,n) = \rho_{k,n} \log_2 (1 + \frac{X_k,n - \Psi_{k,n}}{2p_{k,n}\gamma_{RR,k,n}}) \). We first prove that the objective function is jointly-concave in terms of \(\rho_{k,n} \) and \(X_k,n \). The Hessian matrix of the objective is

\[
H(u_1(\rho_{k,n}, X_k,n)) = \begin{pmatrix}
\frac{-\rho_{k,n}}{ln(2)\phi_{k,n}} & \frac{X_k,n - \Psi_{k,n}}{ln(2)\phi_{k,n}^2} \\
\frac{X_k,n - \Psi_{k,n}}{ln(2)\phi_{k,n}} & \frac{\rho_{k,n}}{ln(2)\phi_{k,n}^2}
\end{pmatrix}, \tag{27}
\]

where \(\varphi_{k,n} = (2\rho_{k,n}\gamma_{RR,k,n} + X_k,n - \Psi_{k,n})^2 \). (27) can be further reduced to

\[
H(u_1(\rho_{k,n}, X_k,n)) = X_k,n - \Psi_{k,n} \begin{pmatrix}
\frac{-\rho_{k,n}}{ln(2)\phi_{k,n}} & 1 \\
1 & \frac{-\rho_{k,n}}{ln(2)\phi_{k,n}}
\end{pmatrix}, \tag{28}
\]

\[
\begin{pmatrix}
\frac{-\rho_{k,n}}{ln(2)\phi_{k,n}} & 1 \\
1 & \frac{-\rho_{k,n}}{ln(2)\phi_{k,n}}
\end{pmatrix}, \tag{28}
\]
It is straightforward (28) is a negative semi-definite matrix, indicating that $u(\rho_{k,n}, X_{k,n})$ is jointly-concave in terms of $\rho_{k,n}$ and $X_{k,n}$.

Since $X_{k,n} = \sqrt{4\rho_{k,n}\Psi_{k,n} + \Psi_{k,n}^2 - \Psi_{k,n}}$ is non-decreasing in terms of $\rho_{k,n}$, $u(\rho_{k,n}, X_{k,n}) = \rho_{k,n}\log_2(1 + \frac{X_{k,n}}{\rho_{k,n}})\Psi_{k,n}$ is non-decreasing in terms of $\rho_{k,n}$ and $X_{k,n}$. As a result, $u(\rho_{k,n}, X_{k,n})$ is jointly-concave in terms of $\rho_{k,n}$ and $X_{k,n}$. Finally, it is easy to prove that $\sum_{k=1}^{K}(1-\theta_k)\sum_{n=1}^{N}\rho_{k,n}\log_2(1 + \frac{X_{k,n}}{\rho_{k,n}})$ is joint-concave in terms of $\rho_{k,n}$ and $p_{k,n}$.

REFERENCES

