Emergent magnetism at transition-metal-nanocarbon interfaces



Al Ma'Mari, F, Rogers, M, Alghamdi, S, Moorsom, T, Lee, S, Prokscha, T, Luetkens, H, Valvidares, M, Teobaldi, G ORCID: 0000-0001-6068-6786, Flokstra, M
et al (show 6 more authors) (2017) Emergent magnetism at transition-metal-nanocarbon interfaces. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 114 (22). 5583 - 5588.

[img] Text
Emergent Magnetism at Transition-Nanocarbon Interfaces_rev_manuscript.docx - Accepted Version

Download (6MB)

Abstract

Charge transfer at metallo–molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with fullerenes and rf-sputtered carbon layers. These systems exhibit small anisotropy and coercivity together with a high Curie point. Low-energy muon spin spectroscopy in Cu and Sc–C60 multilayers show a quick spin depolarization and oscillations attributed to nonuniform local magnetic fields close to the metallo–carbon interface. The hybridization state of the carbon layers plays a crucial role, and we observe an increased magnetization as sp3 orbitals are annealed into sp2−π graphitic states in sputtered carbon/copper multilayers. X-ray magnetic circular dichroism (XMCD) measurements at the carbon K edge of C60 layers in contact with Sc films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher π*-molecular levels, whereas the dichroism in the σ*-resonances is small or nonexistent. These results support the idea of an interaction mediated via charge transfer from the metal and dz–π hybridization. Thin-film carbon-based magnets may allow for the manipulation of spin ordering at metallic surfaces using electrooptical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices

Item Type: Article
Uncontrolled Keywords: emergent magnetism, molecular spintronics, interfacial magnetism, charge transfer, nanocarbon
Depositing User: Symplectic Admin
Date Deposited: 19 May 2017 15:19
Last Modified: 16 Apr 2021 11:23
DOI: 10.1073/pnas.1620216114
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3007550