Enhanced performance for plasma-catalytic oxidation of ethyl acetate over La<sub>1-x</sub>Ce<sub>x</sub>CoO<sub>3+δ</sub> catalysts



Zhu, Xinbo, Zhang, Shuo, Yang, Yang, Zheng, Chenghang, Zhou, Jinsong, Gao, Xiang and Tu, Xin ORCID: 0000-0002-6376-0897
(2017) Enhanced performance for plasma-catalytic oxidation of ethyl acetate over La<sub>1-x</sub>Ce<sub>x</sub>CoO<sub>3+δ</sub> catalysts. APPLIED CATALYSIS B-ENVIRONMENTAL, 213. pp. 97-105.

[thumbnail of ACB revised final no mark.pdf] Text
ACB revised final no mark.pdf - Author Accepted Manuscript

Download (1MB)

Abstract

In this work, plasma-catalytic oxidation of low concentration ethyl acetate (100 ppm) over La1-xCexCoO3+δ (x = 0, 0.05, 0.1, 0.3 and 0.5) perovskite catalysts was carried out in a coaxial dielectric barrier discharge (DBD) reactor. The effects of Ce-doping on the removal of ethyl acetate and COx (x = 1 and 2) selectivity in the plasma-catalytic oxidation process were investigated as a function of specific energy density (SED). Compared to the plasma reaction without a catalyst, the presence of the LaCoO3 catalyst in the plasma enhanced the removal of ethyl acetate and COx selectivity. The use of the Ce-doped catalysts further enhanced the performance of the plasma-catalytic oxidation process. The highest removal efficiency of ethyl acetate (100%) and COx selectivity (91.8%) were achieved in the plasma-catalytic oxidation of ethyl acetate over the La0.9Ce0.1CoO3+δ catalyst at a SED of 558 J L−1. The interactions between Ce and LaCoO3 resulted in an increased specific surface area (by 17.1%–68.6%) and a reduced crystallite size (by 13.5%–68.2%) of the Ce-doped LaCoO3 catalysts compared to pure LaCoO3, which favours the oxidation of ethyl acetate in the plasma process. Compared to the LaCoO3 catalyst, the Ce-doped perovskite catalysts showed higher content (maximum 54.9%) of surface adsorbed oxygen (Oads) and better reducibility, both of which significantly contributed to the enhanced oxidation of ethyl acetate and intermediates in the plasma-assisted surface reactions. The coupling of plasma with the Ce-doped catalysts also reduced the formation of by-products including NO2 and N2O. The possible reaction pathways involved in the plasma oxidation process have been discussed.

Item Type: Article
Uncontrolled Keywords: Plasma-catalysis, Oxidation, Perovskite, Non-thermal plasma, Gas clean-up
Depositing User: Symplectic Admin
Date Deposited: 02 Jun 2017 10:15
Last Modified: 12 Oct 2023 13:54
DOI: 10.1016/j.apcatb.2017.04.066
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3007784