Haas-Molnar Continued Fractions and Metric Diophantine Approximation.

Nair, R and Ma, L
(2017) Haas-Molnar Continued Fractions and Metric Diophantine Approximation. Труды Математического Института имени В. / Proceedings of the Steklov Institute of Mathematics / Trudy Matematicheskogo Instituta imeni V.A. Steklova, 299. 157 - 177.

[img] Text
Haas-Molnar-Continued-Fractions-III.pdf - Accepted Version

Download (423kB)


Haas–Molnar maps are a family of maps of the unit interval introduced by A. Haas and D. Molnar. They include the regular continued fraction map and A. Renyi’s backward continued fraction map as important special cases. As shown by Haas and Molnar, it is possible to extend the theory of metric diophantine approximation, already well developed for the Gauss continued fraction map, to the class of Haas–Molnar maps. In particular, for a real number x, if (p n /q n )n≥1 denotes its sequence of regular continued fraction convergents, set θ n (x) = q 2n|x − p n /q n |, n = 1, 2.... The metric behaviour of the Cesàro averages of the sequence (θ n (x))n≥1 has been studied by a number of authors. Haas and Molnar have extended this study to the analogues of the sequence (θ n (x))n≥1 for the Haas–Molnar family of continued fraction expansions. In this paper we extend the study of \(({\theta _{{k_n}}}(x))\)n≥1 for certain sequences (k n )n≥1, initiated by the second named author, to Haas–Molnar maps.

Item Type: Article
Depositing User: Symplectic Admin
Date Deposited: 21 Aug 2017 06:45
Last Modified: 09 Nov 2021 08:28
DOI: 10.1134/S0081543817080119
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3009061