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Time-to-Contact (Tau, τ) theory posits that purposeful actions can be conducted by 

coupling the actor’s motion onto the so-called τ-guides generated internally by their central 

nervous system. While the authors have made significant advances in the application of τ for 

flight control purposes, little research has been conducted to investigate how pilots are able to 

adapt their τ-guidance strategy to different aircraft dynamics; or how a τ-guide based pilot-

aircraft model might be used to represent control behavior. This paper reports on the 

development of such a model to characterize the adaptation of pilot guidance to variations in 

aircraft dynamics using data obtained from a clinical pilot-in-the-loop flight simulation 

experiment. The results indicate that pilots tend to maintain a constant coupling between the 

dynamic system’s motion and the τ guide across a range of different configuration parameters. 

Simultaneously, the pilot modulates the guidance maneuver period to adapt to these different 

aircraft dynamics that result in changes in workload. Modelling the complete pilot 

stabilization and guidance function as a regulator plus inverter yields good comparative 

results between the pilot-aircraft model and simulator trajectory data and supports the 

hypothesis that the following of τ-based guidance strategies suppresses an aircraft’s natural 

dynamics.  

Nomenclature 
ag = acceleration due to gravity, ft/s2 

C = constant value 
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Gnm = neuromuscular action system 

k = coupling constant between motion and guide 

KL, KP = regulating parameters 

nw = white noise in visual cue model 

s = Laplace operator 

t =  time variable, sec 

T = maneuver time that first reaches the center of target for the first time, sec 

T1 = maneuver time that finally stops at the center of circle, sec 

v = rate of intrinsic gap closure, ft/s; pixel/s 

V(x, y) = inertial velocity in the x, and y axis, ft/s 

x = distance to go in the x direction, ft, pixel 

xx ,  = velocity and acceleration in the x direction, ft/s, ft/s2 or pixel/s, pixel/s2 

X(s) = Laplace transform of Δx 

y = distance to go in the y direction, ft; pixel 

Yc(s) = control element 

Γ(s) = Laplace transform of Δτ 

δ1c = lateral cyclic stick input, inch 

ζ = damping ratio 

σvis = variance of nw 

τ = optical tau, the instantaneous time to close on a goal or gap, sec 

ω = natural frequency, rad/s 

Subscript 

0 = initial condition 

g = intrinsic τ guidance 

nm = neuromuscular 

Dressing Symbol 

^ = normalized terms 



I.  Introduction 

HE three functions of flight management and control performed by a human pilot – stabilization, guidance, and 

navigation – are described in Refs. [1-3]. The navigation function is a relatively long period, cognitive activity whilst 

the stabilization and guidance functions shape the pilot control inputs in the shorter term. A pilot normally performs 

these latter two functions simultaneously when, for example, terrain-following or target tracking. The stabilization, or 

compensatory function refers to the pilot’s continuous correctional effort to avoid deviating from the desired flight 

state. This can be considered to be a relatively high-frequency control activity [1]. The guidance function is concerned 

with the avoidance of obstacles and the ground, essentially a flightpath management activity, and pilot control inputs 

are generally made at a lower-frequency than for the stabilization function. Of these, compensatory stabilization has 

been the most extensively studied for modelling the pilot-vehicle system [4-7]. The various features of a closed-loop 

system model associated with stabilization are well established, either through the development of new control 

algorithms or the creation of pilot models. However, studies of pilot guidance as a closed-loop function, the focus of 

this paper, are less common. This function is usually (and implicitly) implemented as a feedforward controller, through 

techniques such as inverse simulation [8;9] and nonlinear model inversion with feedback control [10]. Neural networks 

have also been used [11]. However, none of these approaches are particularly pertinent to an understanding of the 

underlying human dynamics. 

Tau (τ) theory, based upon the perception of the instantaneous time-to-contact from the available optic flow when 

approaching an object or surface, provides a plausible means to model a human’s perception and action for guiding 

movement [1;3;12;13]. This theory is based on the premise that purposeful actions are accomplished by coupling the 

actor’s motion with either externally or internally generated guidance sources – the so-called motion guides 

[12;14;15]. Motivated by its application to pilots’ visual perception, τ theory has already been applied to flight control 

and handling qualities [1;16-19]. The rationale for this line of investigation is that the overall pilot’s goal is to overlay 

or close the gap between the perceived optical flow field and the required flight trajectory. The pilot then works 

directly with the available optical variables to achieve prospective control of the aircraft’s future trajectory. One of 

the first applications of τ-coupling to aircraft flight considered τ-guide control strategies during a helicopter 

deceleration maneuver close to the ground [16]. An investigation of terrain-hugging flight reinforced the τ-based 

nature of the prospective control behavior of helicopter pilots [1;17;20]. Similar results have been found when 

applying τ-guide analyses to the landing flare maneuver of fixed-wing aircraft [18;19] and to the adverse aircraft-pilot 
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coupling phenomenon in a roll-step lateral re-positioning maneuver, described as boundary-avoidance-tracking [21]. 

In Ref. [3] it was suggested that pilots’ τ–based actions effectively suppress the natural aircraft dynamics and this 

important aspect will be investigated in the present paper. 

These previous studies generally support the hypothesis that the pilot adopts a τ-based strategy during guidance 

tasks. However, there are several potential barriers to the acceptance of such a hypothesis. First, within the psychology 

community, while there are advocates for τ theory, there are also its detractors, mainly due to very limited information 

known about perceptual timing [22]. Second, the use of time-to-contact and the associated τ-guides result in a 

fundamentally non-linear system that, at face value, adds mathematical complexity to the development of a guidance 

system and its subsequent analysis. Third, the use of τ-guides to control vehicle motion does not appear to be useful 

for pursuit guidance because of their apparent open-loop control structure. Finally, it is still an open research question 

as to how pilots use time-to-contact whilst having to adapt to the different vehicle dynamics that they encounter. 

Previous work has assumed that the τ-guide is a learned response, a mental model, to closing the desired motion gap 

[3]. Its position at the perceptual level for flight control is still unclear, whether it be compensatory, pursuit, or 

precognitive [6].  

Perhaps because of these issues, τ is rarely used directly as a feedback control variable in the literature. For 

example, the work in Ref. [23] studied pilot guidance strategy using an adaptive pilot model (APM) when performing 

the ADS-33 Acceleration-Deceleration maneuver. Reference [25] reported the development of a τ-following controller 

for automatic helicopter deck landings. However, despite notionally being studies into the use of τ, neither explicitly 

used τ within the control loops developed. Similarly, most studies in the unmanned aerial vehicle (UAV) and bio-

inspired guidance literature, which should be ripe for τ-based control, are usually based upon the maintenance of a 

constant ventral optical flow, rather than the adoption of a τ-guide guidance strategy [26-28]. However, a small number 

of research activities have used τ to provide vehicle guidance solutions. Here, τ is either computed indirectly by 

measuring the motion gap and the gap closure rate [29] or by extracting the time to contact from the observed optical 

flow using feature scales [30].  

Motivated by this apparent lack of adoption of τ as a useful guidance mechanism and control variable, this paper 

reports on a pilot-aircraft model developed to better understand how pilots might use τ guidance as a means of motion 

control that, in turn, allows some of the issues noted above to be addressed. The paper proceeds as follows. The key 

elements of τ theory pertinent to the paper are briefly reviewed in Section II. Section III describes the pilot-aircraft 



model structure used and Section IV provides a description of the experimental set-up used to help understand how 

the system model should be configured. Section V reports on the results of the experimental test campaigns and then 

Section VI discusses further developments of the τ-guide model. The results of the experiments and the pilot-aircraft 

model analysis are discussed and concluded in Section VII and VIII, respectively. 

II.  Review of Motion Guidance Using τ Coupling 

Tau theory is based upon the fundamental parameter, τ, the time-to-contact variable in the optical field [12],  

( , ) xx t
x

τ =


                                                                                          (1) 

where x is the perceived (negative) motion gap to be closed and x  is the instantaneous gap closure rate, as illustrated 

in Fig. 1.  

x

 

Fig. 1 Kinematics of closing a perceived motion gap  

The τ concept was formulated by Lee [12] when modelling how animals prospectively control their movement 

through a cluttered environment. The ‘motion-gap’ concept can be extended to encompass other parameters that can 

be sensed, such as tactile forces (e.g., when taking a step or grasping a handle) or auditory signals (e.g., whilst playing 

an instrument or singing a song) [15]. Critically, τ is hypothesized to be directly perceived by observers i.e. without 

the need for intermediate cognitive reasoning, to control the gap closure efficiently. It is further hypothesized that this 

is the result of natural evolutionary processes ‒ the guidance of movement should be simple, rapid, reliable, and 

biologically plausible. If this were not the case, the guidance process might be degraded by any associated delays and 

noise resulting from lengthy computations or cognitive thought processes [12;15]. Several examples offer evidence to 

support this hypothesis [12;14;15;17].  

In practice, there is often more than a single gap that needs to be closed, such as the coordination required between 

the lateral and longitudinal motions when an animal closes on its prey or forward and vertical motions required to land 

an aircraft [18]. Two motions, x(t) and y(t), are said to be τ coupled if the following relationship is satisfied, 



y xkτ τ=                                                                                      (2) 

The constant coupling term k in Eq. (2) regulates the dynamics of the motions in the x and y directions. By keeping 

the τ’s of motion gaps in a constant ratio, it can be shown that this τ-coupling results in effective guidance through a 

power law (for x < 0, and y < 0) [12],  

1/( ) ky C x= ⋅ −                                                                                  (3) 

The negative sign in Eq. (3) is due to the convention in τ theory that defines motion gaps as closing from negative 

values to zero [12]. Therefore, the constant C must also be negative in order for y to be negative. Τau-coupling can 

take two forms; extrinsic (x and y are physically observable) or intrinsic (x is physically observable while y is generated 

by the actor’s central nervous system). The second situation occurs when movements are self-guided and there is no 

second extrinsic motion gap to couple onto, such as when playing a piano. Here, there is a physical motion gap to 

close (between finger and key) but that gap closure must be coupled to the rhythm of the tune being played, which is 

internally generated [15]. Under these circumstances, the motion gap is hypothesized to be coupled onto a so-called 

‘intrinsic’ motion guide. Intrinsic τ-guidance is modelled using the relationship, 

x gkτ τ=                                                                                         (4) 

The intrinsic τ-guide, τg, defines a motion that is guiding a moving target with its own τ. It can take a number of 

different forms, but the most interesting and relevant for this paper is the Constant Acceleration Guide (CAG). This 

can be used to model Acceleration-Deceleration motions, e.g. guiding a rotorcraft from one hover position to another 

[1;15]. The detailed derivations of the motions for τg are given in Table A1 for completeness. In the Table, ag is the 

acceleration of the τ-guide and vg0 is its initial speed. The dressing ‘^’ indicates that the temporal variables are 

normalized by T, the duration of the maneuver, such that ˆ0 1t< ≤ . Examples of the motions that can be generated by 

varying the values of the coupling constant, k, are shown in Fig. 2. Finally, the interpretation of the various values of 

k, can be found in Table A2. From these derivations, it can be observed that τ-coupled motion is only dependent upon 

the parameters k and T. 
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Fig. 2 Examples of motion τ, gap, gap closure rate, and gap closure acceleration when coupled with a constant 

acceleration τ-guide 

III. Modelling of Pilot’s Visual Guidance Strategy 

A. Pilot-Aircraft Model Structure 

To model the pilot’s visual guidance strategy using an intrinsic τ-guide, an appropriate pilot-aircraft model 

structure must be established, characterizing the visual information available to the pilot that then flows through the 

controlled elements. This requires that the different behavioral features of the pilot model are characterized [6]. The 

classical types of pilot-vehicle system structure normally deal with the closed-loop control situation, where explicit 

external reference inputs are available. These are typically either compensatory, where the pilot closed-loop response 

is derived from certain errors (e.g., position or attitude), or pursuit, where the pilot follows a command input [7]. 

However, this kind of externally perceived error cue is not present for the present investigation, but rather it is 

postulated that the guidance signal is generated internally by the pilot based on the perceived visual cues. This is, of 

course, why the τ-guide of Eq. (4) appears to be open-loop. To address this issue, the pilot-vehicle closed-loop 

structure of Fig. 3 was used.  
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Fig. 3 Pilot model with constant acceleration guide  

The model structure of Fig. 3 emphasizes the visual control channel, which generally reflects the experimental set 

up described in this paper, where the visual stimuli are dominant. The reasons for proposing this model structure are 

outlined briefly below. 

First, a closed-loop error-correcting structure is assumed following the hypothesis that the pilot acts in response to 

the errors between the guidance command (kτg) and the perceived τx. The proposed structure complies with the 

fundamental hypothesis of τ theory i.e. the overall pilot’s visual guidance strategy is to overlay the perceived optical 

flow-field onto the required flight trajectory. The pilot then works directly with optical variables (τ) to achieve 

prospective control of the aircraft’s future trajectory (τx), by selecting the appropriate k and T values; the pilot’s 

selection will depend upon operational circumstances (e.g. need for agility) and the aircraft performance (e.g. thrust 

or power margin). The element of the pilot activity that achieves the desired tracking performance is modelled as a 

regulator driven by the error between the desired and perceived optical τ trajectories.  

Second, the pilot model operates directly on the optical τ information sensed from the available optic flow, instead 

of positional or velocity information as in Ref. [25] or, for example, Hess’s pursuit tracking pilot model [31]. This 

more appropriately reflects the hypothesis that τ information is perceived directly by the pilot, without the need for 

intermediate reasoning or computation. Thus, the main visual cue for the pilot model of Fig. 3 will be the τ variable 

sensed from the optical flow. As a result, the τ-guide pilot model of Fig. 3 can be differentiated from the τ-following 

feedback controller in, for example, Ref. [28]. 

 

 



B. Development of the Regulator 

The first task associated with the application of the proposed model in Fig. 3 is to design an appropriate form of 

regulator. Two points need to be considered here. First, what kind of control strategies are being used in the timing of 

the information perception process − continuous or intermittent [12;22]? The guidance strategy, mainly developed by 

Lee [12], assumes that a continuous control input (after the regulator) is activated by the visual system through the 

continuous stimulation of the retina. In contrast, an intermittent process uses optical τ information to modulate control 

activity only at discrete moments during the maneuver [32]. This paper adopts the continuous-feedback-control model 

using optical τ information on the premise that, for the simple experiment scenario being explored, the pilot’s control 

activity follows the information perception synchronously as there is only one visual task being undertaken.  

The second point to be considered when designing the regulator stems from the nonlinearity originating in the τ 

function defined in Eq. (1). This nonlinearity can result in a difficulty in constructing a linear regulator to achieve the 

desired closed-loop system tracking performance. Also, the τ function is numerically unstable from a computational 

point of view in that a small (or even zero) velocity in the initial (or final) phase of the maneuver can make the 

fluctuation of τ values large (or infinite) [13]. The (linear) regulator was developed to address this problem by 

linearizing the nonlinear τ variations, as follows.  

If, assuming a state (xb0, 0bx ) within which xb0 is the instantaneous gap to the possible target during the 

maneuvering period in Fig. 1, Eq. (1) can be linearized using a Taylor series expansion as shown in the following, 

1 2
0 0 0 0 0 0 0( , ) ( , ) ( ) ( )b b b b b b b b b b bx x x x x x x x x x xτ τ − −≈ + − − −                                                   (5) 

in which the higher-order terms are assumed to be small levels of noise in the perception process and therefore are 

ignored in the formula. Simplification of Eq. (5) thus yields the general solution for the change in τ in terms of x, 

1 2
0 0 0 0 0( , ) ( , ) ( , )b b b b b b b b b b bx x x x x x x x x x xτ τ τ − −Δ ≈ − = Δ − Δ                                                (6) 

in which 0b b bx x xΔ = −  and 0b b bx x xΔ = −   . The Laplace transform of Eq. (6) can be written as follows, 

1 2
0 0 0( ) ( ) ( )b b bs x x x s X s− −Γ = −                                                                        (7) 

in which Γ(s) and X(s) are the Laplace transform of Δτ and Δxb, respectively. Three points to note relating to the above 

procedure are as follows. First, the instantaneous gap (xb0) measuring the current distance to the target and the optical 

variable τ, by definition, are negative. However, the increments of both Δτ and Δxb are positive with a positive speed 



of approach to the target ( 0bx ). Second, the forms given in Eqs. (6) and (7) that rely on Δτ information are consistent 

with the findings of the recent study of information used to detect upcoming collisions by Bootsma and Craig [32]. 

They found that the information carried in Δτ is the most effective predictor for collision avoidance. Finally, the 

perception of the optical τ information is modelled in Eq. (7) as a lead equalization by the pilot, given by the following: 

0 0( ) ( 1) ( )b bs T s K X sΓ = +                                                                       (8) 

in which 1
0 0 0b b bT x x−= −  , the initial τ to the target and 1

0 0b bK x−=  . Considering this lead function in the closing of a gap, 

the following structure was proposed for the regulator: 

( ) ( )P
L

KC s s K
s

= +                                                                                 (9) 

in which KP and KL are the pilot gain and lead-equalization values, respectively. The gain term KP is used to achieve 

the desired tracking performance. The integrator was included to ensure zero steady-state error, even in the presence 

of controlled element variations [33]. The term (s + KL) was introduced to represent the lead equalization in Eq. (8) 

from the optical τ-perception process as described above.  

C. Modelling the Remaining Elements of the Pilot Model 

The neuromuscular action system (Gnm) of the pilot in Fig. 3 was modelled as a second-order transfer function as 

follows [31;34], 

2

2 22
nm

nm
nm nm nm

G
s s

ω
ζ ω ω

=
+ +

                                                                               (10) 

in which ζnm is the neuromuscular damping ratio and ωnm is the corresponding natural frequency. The generic values, 

0.30 and 9 (rad/s), from Ref. [35] were chosen for these two parameters (ζnm and ωnm), respectively. The visual model 

of Eq. (11) was adopted to reflect the quality of visual information sensed by the pilot in Fig. 3 [34], 

1(1 )
0.5 1wn

s
+ ⋅

+
                                                                                 (11) 

in which nw is a zero-mean, normally distributed random variable with variance σvis that is equivalent to the noise–

signal ratio of injected observation noise in algorithmic pilot models [36]. Eq. (11) indicates that the sensed visual cue 

is first contaminated by an external noise original nw and then passes thought a low-pass filter. The better the visual 

cues, or the useable cue environment [24], the lower is the value of σvis (σvis= 0 means no visual cue degradation). For 



the results presented in this paper, the σvis value was selected to be 0.02, to represent the good visual environment used 

for the experiment performed in the simulator for the study reported later [34]. 

IV.  Experimental Set-Up 

To establish the parameters of the τ-guide required for the pilot model, a ‘clinical’ investigation into single−axis 

control of an element, where the dynamics of the controlled system are defined precisely, is described in this Section.  

The aim of this experiment was to investigate the adaptation of a pilot’s guidance strategy using the pilot-aircraft 

model of Fig. 3, when the parameters of the controlled system are varied [3]. There were two requirements for this 

experiment. First, the selected task should be representative of a simple flight maneuver. Second, the investigation 

should span a wide range of dynamic properties for manned aircraft types, to make the conclusions generally 

meaningful. To meet these requirements, the following experimental configuration was developed. 

The experiment was conducted using the University of Liverpool’s (UoL’s) HELIFLIGHT simulator [37] shown 

in Fig. 4.  

 

Fig. 4 External and internal views of HELIFLIGHT research simulator at the UoL ([38]) 

A display was developed for HELIFLIGHT’s outside-world-center visual channel that contained a circular ‘ball’ 

and circular ‘target’. This is illustrated schematically in Fig. 5. The pilot’s task was to move the ball from rest at its 

initial left-hand position (A) and bring it to rest at the final right-hand position (B), inside the target using the lateral 

cyclic stick. This is akin to a highly simplified lateral-reposition task of the ADS-33 [24].  
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Fig. 5 Schematic of single-axis lateral-reposition pilot task [3] 

The dynamics between the lateral stick input (δlat) and the ball were modelled as a second-order system that 

characterizes a typical aircraft equivalent low-order system [1]: 

2

2 2
5.2( )
2

n

lat n n

X s
s s

ω
δ ζω ω

=
+ +

                                                                  (12) 

in which ωn is the natural frequency, ζ is the damping ratio, and X(s) is the Laplace transform of the motion gap x. The 

gain of 5.2 represents the scaling factor between stick (in inches) and visual gap (in pixels). For the system illustrated 

in Fig. 5, position A was the origin and position B was the target end position for the ball symbol, 600 pixels to the 

right. The motion gap, x, was then defined to be the negative distance from the current position to point B in pixels.  

The natural frequency (ωn) and damping ratio (ζ) have a significant influence on the ‘handling’ characteristics of 

a system [24]. How the dynamic properties might impact a pilot’s impression of the vehicle’s response is summarized 

in Fig. 6 [3].  



 

Fig. 6 Typical Pilot Opinions of the Handling Qualities in A Maneuvering Task with Simple Second-Order 

Dynamics [3] 

The configuration of the controlled system was changed by adjusting ωn and ζ. Twenty-four different 

configurations, represented by the circular dots shown in Fig. 6, were chosen for investigation. These were considered 

to be representative of the dynamic properties of a range of stable aircraft [3]. The parameter under investigation for 

each test point was always varied from the baseline or reference configuration defined by 4,  0.7nω ζ= = . This is the 

region in Fig. 6 where it is considered that pilots are able to achieve good performance with low ‘workload’ for 

tracking tasks [39]. This procedure was used to try to ensure consistent pilot performance for the different 

configurations. For example, having completed the test with a new (non-reference) configuration, the subjects were 

required to ‘re-fly’ the test using the reference configuration before commencing the next test with a new set of non-

reference parameters. 

Four subjects participated in the experiment: a rotary-wing test pilot (RWTP), a rotary-wing pilot (RWP) and two 

fixed-wing pilots (FWP1 and FWP2). The RWTP was only able to participate in 14 of the available dynamics 

configurations. Subjects were instructed to conduct the task promptly but whilst taking sufficient time to achieve the 

task of arresting the ball within the outer ring in Fig. 5, without overshoot. To be clear, this meant that during the 

conduct of each test, the subject could freely select the overall maneuver period of the task. The task was considered 



to be complete after pilots had maintained the ball within the target circle for 3 seconds. This is consistent with the 

input used for the pilot model in Fig. 3.  

V. Experimental Results 

A. Variable Dynamics Test Campaign Results 

The test required the subjects to close only one motion gap. The ball started at rest, was accelerated to some 

translational velocity and was then decelerated back to rest again within the target zone by using the lateral cyclic 

stick. The Acceleration-Deceleration motion profile is typical of motion generated by coupling the guided motion onto 

the intrinsic CAG discussed in Section II. Assuming the relationships of Eq. (4) and the motion profiles of Fig. 2 and 

Table A1, the values of k and T required to generate such a coupled motion can thus be computed from the time 

histories. In this case, the time T is defined as the time taken for the ball to be moved from position A to the first time 

that it reached position B. The results obtained for each of the various dynamic configurations tested are shown in Fig. 

7 and Fig. 8. 
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Fig. 7 Variation in coupling parameter k with system parameters 
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Fig. 8 Variation in maneuver time T with system parameters 

The distribution of the k values from all four subjects (with mean value ≈ 0.28) indicates a relative insensitivity 

of the pilot’s guidance strategy to the frequency and damping ratios of the controlled element (the ball). Moreover, 

the range of values of k between 0.2-0.4 means that the maximum velocity for the maneuver consistently occurred in 

its 2nd quartile i.e. all of the test subjects initiated the deceleration of the ball in the second quarter of the maneuver, 

before the half way point of the gap was reached (item 5 in Table A2).  

In contrast, the maneuver times (T) reduce as the natural frequency increases. Fig. 8 shows that pilots elect to slow 

the maneuver down as ωn decreases to deal with the deteriorating natural dynamics of the system (akin to vehicle 

handling qualities degrading). The inverse relationship between T and ωn suggested by the data in Fig. 8  reinforces 

the idea of an upper limit to achievable ‘task frequency’ for a given system frequency (Ref. [1], section 5.2.2). 

Moreover, the decreasing trend in T seems to be reasonably independent of the damping ratio used. The results show 

that the natural frequency of the controlled system has a more dominant influence on the adaptation of the controller’s 

guidance strategy than the damping ratio for this task. As would be expected, with faster dynamics (i.e. a larger ωn 

value), the subjects tend to accomplish the task in a shorter time.  

B. Ideal Control Inputs for the Intrinsic τ-Guide 

Tau theory posits that the control of movement uses the directly perceived motion information available from the 

optic flow [1]. Traditionally, this information flow process is described by the identification of the coupling terms 

(e.g., k and T values as investigated above) from the optical states. Therefore, with the estimated k and T values and 



the known intrinsic guidance strategy, the ‘ideal’ control activity may be determined inversely from the postulated 

intrinsic guidance signals for comparison with the measured control activity.  

The pilot control command (δlatg) required to perform this guidance maneuver can be predicted using Eq. (13).  

2
1 1 2( )

5.2latg
n n

x x xζδ
ω ω

= + +                                                                                (13) 

As far as the intrinsic CAG is concerned, the normalized motion gap, velocity, and acceleration required in Eq. 

(13) are determined from Table A1 and are the same for all dynamic configurations. 

The approach used to calculate δlatg is similar to the inverse-simulation methodology used to derive the required 

inputs for a given flight trajectory [9]. Importantly, the calculated ‘ideal’ input is not contaminated by any stabilizing 

control activity and, in fact, the natural dynamics (the poles of Eq. (12) of the aircraft model that become zeros in Eq. 

(13)) are not the dominant factors for determining the response characteristics of the required δlatg. The dynamics of 

the closed-loop motion are mainly determined by the zeros, not the original poles characterized by the ωn and ζ values 

in Fig. 6 [33;40]. Moreover, the linear 2nd-order system used in this paper is a minimum-phase system and has no 

zeros. Therefore, the inverted inputs are stable and their dynamics are uniquely determined by the ideal trajectory 

information provided (τx). The dynamics of the model are totally suppressed using these ‘ideal’ inputs, which of course 

vary as the natural frequency and relative damping vary. The results of three representative configurations flown by 

Pilot RWTP are compared with the ideal pilot inputs in Fig. 9.  
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Fig. 9 Comparison between the ideal and actual pilot inputs (Pilot RWTP) 

Case Fig. 9 (a) represents a case from the region of Fig. 6 that predicts good tracking performance, Case Fig. 9 (b) 

is the baseline configuration, and Case Fig. 9 (c) has dynamics where a poorer tracking performance would be 



expected. An Input Fitting Index (IFI) is proposed here to measure the fit between the ideal and actual pilot inputs. 

The lower the value of the index, the better the agreement between the two data sets.  
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The fit is computed through the integration of the difference between the actual pilot input and the ideal intrinsic 

τ-guided input. The IFI values from the experiments for all four pilots are shown in Fig. 10. 
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Fig. 10 Fit index for pilot control inputs and ideal τ-guided inputs 

The comparisons in Fig. 9 show that the pilot inputs generally match the ideal inputs used to move the ball from 

position A to B. These results support the hypothesis that the pilot response can be modelled assuming that the CAG 

is being followed during this task. The ideal control inputs are different for the different cases of course, but a common 

feature is that the natural dynamics are suppressed by τ-following control strategies. However, the actual pilot input 

for cases like e.g. 1,  0.2nω ζ= = in Fig. 9c, are ‘contaminated’ with minor oscillations due to the lower natural 

frequency and damping ratios that lead to increased pilot ‘stabilization’ activity being required. With no external 

disturbance, the stabilization is the corrective action to errors in the τ guidance that excite the system’s natural 

dynamics as illustrated in the model structure of Fig. 3. This higher-frequency control activity is absent from the model 

prediction in Eq. (13). The reason for this is given above i.e. the inversion process in Eq. (13) nullifies the natural 

dynamics of the system.  



The difference between actual and ideal control inputs shown in Fig. 10 is less than 15% across the different 

frequency and damping configurations tested. These findings are consistent with all the results obtained from the other 

three pilots used in the tests, which, for the sake of brevity, have been omitted from the paper.  

C. Workload Estimation 

The ideal pilot input (δlatg) derived using Eq. (13) represents only the guidance function of a pilot’s control activity. 

The difference between the actual and ideal pilot inputs shown in Fig. 10 is the test subject’s compensation for errors 

in judgement (guidance), which takes the form of additional high-frequency stabilization control activity required 

across the varying aircraft dynamics. However, the part of maneuver used in Eq. (13) only includes the period of 

moving ball from Position A to first reaching the center of Position B. As mentioned in Section IV, the test subjects 

were also required to stabilize the motion of the ball and to bring it to rest within the target circle (position B). This 

stabilization control activity contributes to, and can even dominate, the total pilot compensatory control effort as the 

ball approaches the desired rest position. This usually requires finer and more precise control inputs than for the initial 

guidance phase of the motion. Therefore, the results in Eq. (13) are incomplete in representing the total pilot’s 

compensatory activity during the experimental testing. 

In addition, the results in Fig. 8 indicate the reasonably high sensitivity of the maneuver times (T) to ωn, ranging 

from the shortest of 2 sec to the longest of 15 sec. The pilots appear to have dealt with the low ωn configurations by 

adopting a strategy of increasing the maneuver period. This can, in turn, increase the mental and temporal demands 

of the task. It may be that these demands can be understood by considering the maneuver time for the different dynamic 

configurations investigated in the paper. The time-weighted Total Compensatory Effort (TWTCE) is widely used in 

the control field to measure the performance of a system [41]. It is therefore proposed here as a means to account for 

the influence of the maneuver time on the pilot control activity, split between stabilization and guidance activity. In 

some sense, this might therefore be considered as a measure of pilot workload.  
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where T1 is the complete period during which the ball is being brought to rest at the center of the circle (position B). 

Equation (15) physically describes the percentage of the deviation of the timed-weighted actual control input from the 

timed-weighted ideal control input. The latter is defined as the ideal control effort required in Eq. (14) to achieve the 



lateral-reposition task without it being ‘contaminated’ by any stabilization activity. The results calculated from the 

experiment for the four test subjects using Eq. (15) are shown in Fig. 11. 
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Fig. 11 Total mean time-weighted compensatory effort for the whole lateral-reposition maneuver 

Fig. 11(a) represents the additional compensatory effort required after first reaching Position B and Fig. 11(b) 

represents the total compensatory effort from the beginning to the end (with the ball at rest at the center of the circle 

at Position B) of the maneuver. Each data point in Fig. 11(a, b) is the averaged TWTCE value for each dynamic 

configuration having the same ωn value but for all ζ. This has been done to strengthen the distribution characteristics 

of the pilot workload variation across ωn. The distribution in Fig. 11(a, b) is consistent with that of Fig. 6, showing 

the increasing difficulty in both guidance and stabilization for these configurations. There is an apparent small increase 

in workload for ωn = 6 rad/s. This may be due to the pilots’ need to apply additional control effort to overcome the 

sharper response of the system as the bandwidth of the system increases.  



VI. Configuration and Validation of the Pilot-Aircraft Model  

The results of Sections III and IV can be used to configure the postulated pilot model. Section V provides data 

against which the model can be compared. However, the regulator values, KP and KL, in Fig. 3, are not yet known. 

Once these were computed, the effectiveness of the model structure could be assessed. Assuming the modelling to be 

successful, it can then be used to aid understanding of the issues raised earlier in the paper, such as the difference 

between the ideal and actual pilot inputs shown in Fig. 9, and the apparent suppression of the vehicle dynamics, 

resulting in the motion response being dependent only on the maneuver period, T, and the coupling constant, k.  

A. Determination of Regulator Parameters 

The regulator gain values, KP and KL, in Fig. 3, were found by minimizing the squared feedback error of the two 

sets of tracking signals applied at the summing junction for τx in Fig. 3 (τx ‒ kτg): the ideal τ signals (annotated as ‘Ideal 

τ’ in the following) with k and T values in Fig. 8 and the τ signals based on the actual pilot activity (annotated as 

‘Piloted τ’ in the following) using Eq. (1). Comparisons of the KP and KL values obtained from these two sets of 

tracking signals should reveal the differences in actual and ideal pilot activities shown in Fig. 9 and in Fig. 10. The 

values obtained for the 14 test configurations of the controlled elements conducted by Pilot RWTP are illustrated in 

Fig. 12. 
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Fig. 12 KP and KL values for 14 configurations of controlled elements (RWTP) 



The results of Fig. 12a show that the two sets of KP values have a generally similar trend but deviate somewhat in 

magnitude for the configurations with the slowest motion (minimum ωn). This distribution resembles that of the 

estimated maneuver time (T) in Fig. 8. This may indicate that the pilot tends to adopt larger gains and take a longer 

time to achieve the slower-motion configurations. This is consistent with the larger time-weighted workload shown in 

Fig. 11 and with Eq. (13) in that larger inputs are required for smaller ωn to achieve the same response. Larger control 

inputs are to be expected as the response becomes more ‘sluggish’ [1].  

The pilot lead term in Fig. 12b, KL, is the inverse of a time constant in Eq. (9) and hence is an equivalent quantity 

to a frequency. This high-frequency term models the rapid perception, with the lead-equalization characteristic based 

on the linearized analysis in Eq. (8). Its values vary within the range 50 – 75 rad/s (see Fig. 12b). These are generally 

consistent with a human’s visual reaction bandwidth, estimated to be 30 – 70 rad/s, depending on the type of task 

attempted [13]. Moreover, Fig. 12b shows that KL becomes larger as the damping, ζ, increases. This is physically 

reasonable; as the system become less predictable (Fig. 6), the pilot needs to make improved anticipatory inputs to 

maintain the desired control performance.  

B. Effectiveness of the Proposed Pilot-Aircraft Model 

The effectiveness of the pilot-aircraft model in Fig. 3 was examined by driving the pilot-aircraft model, 

individually, using two τ commands: the Ideal τ using k and T values from Fig. 7 and Fig. 8, and the Piloted τ. These 

τ commands were applied at the summing junction for τx in Fig. 3, using the gain values of Fig. 12. The control inputs 

(after Gnm in Fig. 3) from these offline simulation processes, as well as the aircraft model outputs were then compared.  

The comparisons presented below uses data from Pilot RWTP (for 14 dynamic configurations). During the offline 

simulations, the τ-perception feedback loop of Fig. 3 is only activated when the closure velocity ( x ) is larger than 0.01 

pixel/s (the average maneuver speed is around 200 pixel/s), to avoid the singularity in Eq. (1) when 0x = . The 

adjustment of this activation timing should have little effect on the results, the pilots commenting that they adopted 

an open-loop control strategy for a short period in the initial phase of the maneuver; arguably before any τ-guidance 

was activated.  

Typical results from the offline simulation for three configurations in Fig. 9 are illustrated for both τ commands 

in Fig. 13 and Fig. 14, showing both the control inputs and the τ signals.  
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Fig. 13 Comparison between offline simulated and ideal pilot signals 
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Fig. 14 Comparison between offline simulated and actual pilot signals 

In Fig. 13, the Ideal τ using k and T values from Fig. 7 and Fig. 8 and the corresponding ideal control inputs from 

Eq. (13) are compared with the τ information (the feedback τx in Fig. 3) and the control input (after Gnm) from the 

offline simulation. In Fig. 14, the Piloted τ and actual pilot control inputs from the experiment are compared with the 

τ information (the feedback τx in Fig. 3) and the control input (after Gnm) from the offline simulation.  

The results for both the control inputs and the τ signals of the postulated pilot-aircraft model derived using the two 

different τ-command signals show good agreement. Moreover, the difference between them (IFI < 4%) is much smaller 

than between the ideal (calculated) and actual pilot inputs shown in Fig. 9 (IFI < 15%). These results suggest that the 

pilot-aircraft model works effectively as a system inverter of the natural dynamics, even in the presence of 



environmental noise (modelled in the visual quality model). This validates, to some extent, the controller structure 

adopted and its calculated gain values. The close fit indicates that the model, with the chosen KP and KL values in Fig. 

12, is appropriate for simulating the lateral-reposition task. 

The deviation between the actual and τ-guided ideal inputs, shown in Fig. 9, can now be revisited. The results of 

the offline simulation using the two sets of KP and KL values derived from the two τ-command signals in Fig. 12 reach 

a good fit, both with the Ideal τ and control inputs as shown in Fig. 13 and the actual piloted information shown in 

Fig. 14. The two sets of KP and KL values in Fig. 12 are therefore relevant to the actual input and τ-guided ideal input, 

respectively. The difference between the two sets of KP and KL values reflects the difference between the actual input 

and τ-guided ideal input shown in Fig. 9. As shown in Fig. 12, the corresponding lead terms KL are almost the same. 

Therefore, the differences shown in Fig. 9 will generally be related to the KP values of the ideal τ command that are 

generally larger than those obtained using the τ-command data from the actual pilot signal. In the regulator form of 

Eq. (9), the Kp term is, of course, the pilot gain. Larger predicted KP values indicate that the pilot is using higher gains 

to achieve the ideal tracking signal, i.e. attempting to follow the τ-guide with a high precision. However, in practice, 

the pilot may choose a lower gain through increasing T, as suggested by the trend in Fig. 8. This allows the maintenance 

of a similar compensatory effort across the different aircraft dynamics that can be seen in Fig. 10. In turn, this reduces 

the fit between the actual pilot control input and τ-guided control input shown in Fig. 9. 

Finally, the results in Fig. 13 and Fig. 14 again show that the natural dynamics of the system are suppressed in the 

overall dynamic response and the associated pilot inputs with both τ commands. For example, the oscillations in the 

actual pilot input shown in Fig. 14 are not present in the related input obtained from the offline simulation. This can 

be explained as follows. The command signal of the postulated pilot-aircraft model is generated from the guidance 

strategy following a CAG that depends only on the selected k and T values. Therefore, subject to properly selected KP 

and KL values, the response of the pilot-aircraft model in Fig. 3 will naturally follow the command signal, regardless 

of varying combinations of ωn and ζ values. In other words, the inner dynamics of the controlled element are masked 

by the intrinsic closed-loop τ-guide process. This shows that the τ-guide model in Fig. 3, configured with appropriate 

KP and KL values, works effectively as an inverter, functioning as in Eq. (13). However, the model accomplishes the 

inversion in terms of a closed-loop feedback system whilst Eq. (13) is a simple and direct model inversion process.  



VII. Discussion 

The theoretical and experimental results presented in this paper provide support for the hypothesis that the test 

subjects adopted τ-guide control strategies to guide the ball to the target. The results in Fig. 7 indicate that the coupling 

term k is relatively insensitive to the variation of system (aircraft) dynamics. This finding is consistent with the 

previous research highlighted earlier in the paper. Unsurprisingly, the chosen maneuvering period T appears to be 

significantly affected by the dynamic system’s natural frequency. As illustrated in Fig. 2, the shape of an ideal motion 

profile is uniquely determined by a given k value. The results therefore suggest that the pilot adapts T to the aircraft’s 

dynamics, to achieve the desired performance, a skill developed perhaps through developed through initial training 

and reinforced through recurrent trainings. Moreover, this adaptation of T reveals how a pilot can maintain similar 

compensatory effort (Fig. 10) by varying workload across a range of dynamic systems (Fig. 11).  

A linearization procedure has been used to model τ-perception as a lead process, which is reasonable in that τ 

theory posits that motion perception and control needs to be prospective, with some degrees of extrapolation into the 

future [14]. A question that arises from the pilot-aircraft model shown in Fig. 3, is which pathway does the τ-guide 

function reside at the perceptual level? The classic structure includes three perceptual pathways for pilot control 

activities: compensatory, pursuit, and precognitive [6]. Within this structure, the τ-guide is analogous to the definition 

given by McRuer et al. for precognitive pilot control [7]:  

“The operator with the precognitive control can generate neuromuscular commands, which are deft, discrete, 

properly timed, scaled, and sequenced so as to result in machine outputs which are exactly as ideal. The 

neuromuscular commands are selected from a repertoire of previously learned control movements.” 

As a directly perceived optical variable, τ, and the associated τ guidance, are therefore modelled as a kind of 

precognitive control, whereby the combination of the τ of the motion gap and the internal motion guide generate 

neuromuscular commands that result in the controlled element closing the ideal motion gaps [7]. Through practice 

and training, it may be that the pilot tends to use “preferred” k values (Fig. 7). This has been found in the above 

analyses as well as in [3;15;18]. These “preferred” values form the ideal tracking signal (τg) and then guide the motion 

of the controlled element using τ coupling. This type of high-level τ-guide control therefore appears to be open-loop, 

but essentially works in a closed-loop form in concert with the regulating operation introduced in Fig. 3. Therefore, 

the pilot-aircraft model structure proposed in Fig. 3 is actually a dual-model control structure, where the precognitive 



action initiates the control and guides the tracking process, and is augmented by a regulating process to reduce the 

tracking error. 

Previous research has shown that τ-guided flight appears to suppress the natural aircraft dynamics. The analysis 

presented in this paper shows that an important aspect of τ guidance is a system inversion process, generating 

appropriate pilot control inputs by regulating the available information from the optical field to follow the required 

trajectory, using the pilot’s selected k and T values. The suppression of the internal dynamics in Eq. (13) means that 

the open-loop poles in the aircraft dynamic system will not play a role in determining the dynamics of the closed-loop 

system. If this is interpreted within the closed-loop structure of the dual model in Fig. 3, the internal aircraft dynamics 

are effectively masked by the regulating closed loops.  

VIII. Conclusions and Future Work 

This paper has investigated pilot guidance adaptation to varying system dynamics with the aim of developing a 

pilot-aircraft model to describe motion control using time-to-contact (τ). The pilot-aircraft model proposed is modelled 

as a closed-loop feedback system, where, for the first time, the loop is closed using directly perceived τ information. 

A CAG is assumed to activate the guidance with the pilot adjusting the τ coupling k and maneuver time T. The 

experiments and analyses conducted and the model developed allow the following conclusions to be drawn. Firstly, it 

appears that pilots adopt a similar coupling constant, k, whilst adjusting the maneuver period, T, for varying system 

dynamics. Secondly, this paper provides a linearization process for sensing τ information that delivers excellent results 

in terms of matching pilot-aircraft model output and experimental results. Thirdly, the pilot-aircraft model proposed 

explains the apparent open-loop nature of τ guidance by showing that the pilot closes a feedback loop for stabilization 

and guidance functions as a regulator plus inverter; the τ-guidance strategy is behaving as the inverter of the aircraft 

dynamics, allowing the ideal/desired motion trajectory to be followed. Finally, based on the hypothesis that the τ-

guide is a learned response, a mental model for closing the desired motion gap, and within the hierarchical framework 

of perception, the results suggest that τ-guidance functions at a precognitive level. 

Whilst the proving or otherwise of τ theory as a perceptual mechanism is beyond the scope of this work, the success 

of a theory lies in its general explanatory power and the degree to which it is supported by empirical evidence. The 

data, analyses and results in this paper do indeed provide further evidence that τ theory is a useful mechanism for 

modelling piloting guidance strategies. It is planned to extend the current investigation of the pilot-aircraft model to 



unstable or non-minimum phase problems and to maneuvering tasks where the time to complete the task is constrained. 

Our research will also include investigations into the simultaneous closure of multiple gaps of which there are many 

examples in flight control. 
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Appendix 

A. Determination of Regulator Parameters 

Table A1 Derivations of motion forms for constant acceleration guide 
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Table A2 Aircraft kinematics with different k values; following an intrinsic τ guidance 

No. k Aircraft Motion
1 1.0k >  Increasing acceleration towards the goal/boundary 
2 1.0k =  Constant acceleration towards the goal/boundary 

3 0.5 1.0k< <  Acceleration-Deceleration, maximum velocity late in maneuver, stopping at the 
boundary with residual speed (hard stop) 

4 0.5k =  Acceleration-Deceleration, stopping just at the boundary 

5 0 0.5k< <  Acceleration-Deceleration, maximum velocity early in maneuver, stopping at the 
boundary with zero residual speed (soft stop) 
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