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Abstract

The last two decades have seen the rise of cognitive-training research. Strong claims have
been made. Roaring refutations have been published. Then again counter-evidence supporting
the effectiveness of cognitive training has been produced. Definite conclusions are far from

being drawn.

Undoubtedly, due to the potential theoretical and practical implications, the idea of
enhancing cognitive function and, hence, a broad range of other real-life skills by training is
appealing. However, this idea is at variance with substantial research into the psychology of
expertise showing that performance in specific tasks relies massively on perceptual

information. In fact, such information is hardly transferable across different domains.

To solve these discrepancies, I ran a series of meta-analytic models to examine the
effects of several types of cognitive training (i.e., chess, music, working memory, video-
game, and exergame training) on cognitive and academic skills in different types of
populations. None of the five types of cognitive training exerted any meaningful effect on

any non-trained skill.

While confirming the previous findings of the research on expertise, these results
convincingly reject the cognitive-training hypothesis. The lack of generalization across
different domains of skills acquired by training appears to be a constant in human cognition.
The program of research of cognitive training has failed. Transfer of skills across loosely

related domains remains a chimera.

Keywords: cognitive training; expertise; meta-analysis; transfer.
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Rationale for Submitting the Thesis in an Alternative Format

This dissertation has been submitted in the alternative paper format. This format consists of
research chapters that are formatted to be suitable for submission to peer-reviewed scientific
journals. The policy of the University of Liverpool on submitting theses in this format
requires to: (a) call each paper a chapter; (b) include an introductory section for each paper
explaining how the study links to the previous and following ones; (c) to re-format the papers
according to the general guidelines (e.g., all the references listed together); and (d) the thesis
must include a general introduction and a general conclusion/discussion integrating and
discussing the results presented in the papers. All these requirements have been satisfied.

Five papers have been included in this dissertation. The first study (Chapter 4) has
been published in Developmental Psychology. The second study (Chapter 5) has been
published in Educational Research Review. The third study (Chapter 6) has also been
published in Educational Research Review. The fourth study (Chapter 7) has been submitted
and is currently under review at Psychological Bulletin. The fifth study (Chapter 8) has been
submitted and is currently under review at Neuroscience and Biobehavioral Reviews.

I am the first author of all the papers. I have been responsible for the design of the
studies, the extraction and coding of the data, running the analyses, and writing and revising
the papers. All the papers are co-authored with my supervisor for my Ph.D. program, Prof.
Fernand Gobet. He has supported me in all the phases of research.

I have submitted the dissertation in this format to offer the reader, when possible,
peer-reviewed material. I think that including such material is — beyond my professionalism

and effort — a further guarantee of quality for this dissertation.
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Chapter 1: Introduction

Transfer of learning is something all of us experience in our daily life. Knowledge of
Samsung smartphones transfers to iPhones. Driving one’s car generalizes to other models of
cars. Knowing how to cook spaghetti Bolognese is useful for cooking chicken pasta. All these
are examples of near transfer, that is, the generalization of a set of skills across two (or more)
domains tightly related to each other. However, another type of transfer has attracted the
attention of researchers for over a century: far transfer. Far transfer occurs when a set of
skills generalizes across two (or more) domains that are only loosely related to each other

(e.g., mathematics and Latin).

In a seminal article, Thorndike and Woodworth (1901) proposed their common
elements theory according to which transfer is a function of the extent to which two domains
share common features. The theory predicts that, while near transfer takes place often, far
transfer is much less common. This point has been echoed by extensive research into the
psychology of expertise and skill acquisition. For example, research on chess players has
established that expert performance relies, to a large extent, on perceptual information such
as the knowledge of tens of thousands of chunks (i.e., meaningful configurations of chess
pieces; Chase & Simon, 1973; Sala & Gobet, 2017a). Due to its high specificity, such
information is hardly transferable to other fields, as predicted by chunking theory (Chase &
Simon, 1973) and template theory (i.e., an extension of chunking theory; Gobet, 2016; Gobet
& Simon, 1996). However, research on expertise has also provided convincing evidence that
experts — such as chess masters and professional musicians — possess, on average, superior
overall cognitive ability. Importantly, domain-general cognitive abilities (e.g., intelligence,
processing speed, and working memory) are reliable predictors of success for outcomes such
as academic achievement (Deary, Strand, Smith, & Fernandes, 2007) and job proficiency
(Hunter & Hunter, 1984).
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At this point, I can see the reader waving their hands: this evidence establishes
correlation, but can we conclude that there is a causal relationship? Does training in
cognitively demanding activities make people smarter? Is it possible to train domain-general
cognitive abilities in one domain and hence obtain benefits in a vast number of areas? In

other words; does far transfer occur?

The answers to these questions have profound theoretical and practical implications.
In fact, establishing whether and under what conditions far transfer occurs would represent a
major contribution to our comprehension of how humans acquire and use knowledge. Also,
understanding whether and to what extent cognitive ability is malleable to training would
have huge societal implications. Consider the academic advantages of fostering cognitive
ability in youth or the benefits of slowing down cognitive decline in adulthood for the global
economy and public health. Increasing human cognition is thus one of the most influential

and potentially impacting scientific enterprises in cognitive science.

Due to the above potential implications, hundreds (if not thousands) of studies have
investigated the possible far-transfer effects of several types of cognitive training in the last
two decades. Examples include working memory training, executive function training, spatial
training, chess instruction, music training, video-game training, exergaming, and brain
training. The research into the effects of cognitive training has provided mixed results, and no
agreement among researchers has been reached. A perspicuous example of this divergence of
opinions is provided by two open letters about the benefits of commercial brain-training
programs. The first letter, issued by the Stanford Center on Longevity and the Max Planck
Institute for Human Development, has expressed serious doubts about the ability of brain
games to enhance overall cognitive ability (“A Consensus on the Brain Training Industry
from the Scientific Community,” 2014). The impact of such games seems to be task-specific,
and the effects transfer to similar tasks at best. In other words, people certainly improve their
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performance in the games they practice (and in similar games), but these benefits may not
transfer to real-life tasks. The second one, posted on the Cognitive Training Data website
(www.cognitivetrainingdata.org) and signed by a group of 133 researchers, has claimed that

specific cognitive-training regimens can benefit overall cognitive function.

1. Preview of The Dissertation

Due to the substantial disagreement between studies and researchers, this dissertation
is aimed at solving the discrepancies in the field by performing several statistical reviews of
the literature. I will run meta-analyses on some of the key domains in the field of cognitive
training, namely working memory training, chess instruction, music training, video-game
training, and exergames. To achieve this goal, I will use a broad range of meta-analytic
techniques. Meta-analysis comprises a set of statistical procedures for merging, correcting,
and modelling the results from all the studies concerning a specific topic. Meta-analysis can
thus estimate the actual size of the effect of a treatment far more reliably than the single
experiment. Moreover, meta-analysis allows one to calculate the degree of between-study
variability and test whether such variability is explained by some moderating variables,
missing studies, and outliers. Put simply, meta-analysis provides the necessary statistical

tools to account for the contradicting findings in the field of cognitive training.

Chapter 2 presents the theories of cognitive training and the accounts of the research
into the psychology of expertise about transferability of skills. Expert performance appears to
rely, to a large extent, on perceptual information (e.g., chunks). Crucially, such information is
believed to be hardly transferable across different domains. For instance, there is no evident
reason why memorizing the configuration of pieces in a particular chess opening helps one to
learn how to play music or solve a math problem. According to theories of expertise (e.g.,
template theory), the benefits of training do not go beyond the trained tasks. In other words,

substantial research into the psychology of expertise suggests that far transfer does not occur.
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To get around the problem of domain-specificity of the training, several researchers have
proposed that training domain-general cognitive skills is the most direct way to improve in a
broad range of skills (Strobach & Karbach, 2016; Taatgen, 2016). The idea is simple.
Cognitive skills such as working memory, focused attention, and fluid intelligence are
necessary to carry out a wide set of different tasks in many domains. Enhancing these skills
would necessarily lead to improving individuals’ academic and professional general
performance. This general hypothesis and its particular variants will be discussed with regard

to the most common cognitive-training programs.

Chapter 3 introduces the basic concepts of meta-analysis (e.g., effect sizes,
publication bias, and detection of outliers) and all the meta-analytic techniques used in the
following meta-analyses. Understanding the rationale behind these techniques is essential. In
fact, the meta-analyses included in the present dissertation often provide significantly
different results compared to previous meta-analytic investigations in the field of cognitive
training. These discrepancies are mainly due to the use of more precise methods for the

calculation of the effect sizes and more advanced sensitivity analyses.

Chapters 4 to 8 present the results of a series of meta-analyses evaluating the effects
of five types of cognitive-training programs on cognitive ability. All the relevant
experimental (i.e., treatment) studies will be inserted into a series of meta-analytic models. A
systematic search strategy and a set of statistical analyses will be adopted to estimate the

effect sizes and test the robustness of the results (for details, see Chapter 3).

Chapter 4 reports the findings of a meta-analysis about the effects of working memory
training on academic achievement, cognitive skills, and performance on working memory
tasks in typically developing children (Sala & Gobet, 2017b). Chapter 5 is a meta-analysis

regarding the impact of chess instruction on academic disciplines — such as mathematics and
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literacy — and several cognitive abilities (e.g., focused attention) in children (Sala & Gobet,
2016). Chapter 6 studies the effects of music training on children and young adolescents’
cognitive and academic skills (Sala & Gobet, 2017c). Chapter 7 presents a broad
meta-analytical investigation about the impact of the practice of action and non-action video
game on children, adults, and older adults’ cognitive skills (Sala, Tatlidil, & Gobet,
submitted-a). In Chapter 8, the effects of exergames —i.e., video games requiring both
cognitive and physical engagement — on participants’ cognitive skills will be assessed by a
meta-analysis including all the relevant randomized control trials (Sala, Tatlidil, & Gobet,

submitted-b).

Finally, Chapter 9 discusses the theoretical and practical implications of the findings.
As previously mentioned, establishing whether domain-general cognitive skills can be
enhanced and, hence, transferred to a broad range of domain-specific skills would have
profound consequences. A positive result would pave the way for a plethora of practical
applications in fields such as education, the professions, and cognitive rehabilitation. On the
other hand, a negative result would provide further corroboration for classical theories of
expertise and skill acquisition. Most importantly, a negative result would suggest that the lack

of generalization of skills acquired by training is a constant in human cognition.
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Chapter 2: Transfer, Expertise, and Cognitive Training

The question of the alleged benefits of cognitive training is strictly linked to the issue
of transfer of learning. Transfer of learning occurs when a set of skills acquired in one
domain generalizes to other domains (e.g., Barnett & Ceci, 2002). It is customary to
distinguish between near transfer —i.e., the transfer taking place across two domains tightly
related to each other — and far transfer, where the source domain and the target domain are
only loosely related to each other. In a seminal article, Thorndike and Woodworth (1901)
proposed that transfer of learning is a function of the extent to which two domains share
common features. Thorndike and Woodworth’s (1901) common elements theory thus predicts
that, while near transfer is fairly common, far transfer is infrequent at best. As a direct
consequence, the effects of cognitive training are expected to be limited to the trained task

and other similar tasks.

1. The Curse of Specificity: The Difficulty of Far Transfer
Thorndike and Woodworth’s (1901) common elements theory has received robust
corroboration from research on the psychology of expertise. For example, the research on
expert chess players has shown that expert performance relies, to a large extent, on domain-
specific perceptual information — such as chunks, that is, perceptual and meaningful
configurations of elements — acquired in years of training, as proposed by the chunking
theory and template theory (Chase & Simon, 1973; Gobet & Simon, 1996; Sala & Gobet,

2017a).

As proposed by Chase and Simon (1973), expertise in chess is acquired by learning,
through practice and study, a large number of chunks, which are units of both perception and
meaning; in chess, chunks consist of constellations of pieces occurring often together in

masters’ games. Experts’ superiority with meaningful material (game positions in chess) is
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explained by their ability to rapidly identify patterns present on the board, and retrieve

chunks from their long-term memory (LTM).

Template theory (Gobet & Simon, 1996) is an extension of chunking theory.
According to the theory, chunks that are frequently used in a specific domain can evolve into
more complex data structures called templates. Templates comprise two parts. The core
consists of stable information and is comparable to a chunk. The slots consist of variable
information, and their role is to encode information that occurs regularly but with some
difference. For example, let a castle-like configuration in a chess position be the template.
The core of such a template would be the position of the King and the Rook (stable
information), while the slots would encode the positions of the £, g, and 4 Pawns (variable
information). Crucially, due to its computational formulation, the template theory has been
implemented in a cognitive architecture (CHREST; Gobet, 2016), and its predictions have
been tested in both computer simulations and human participants (Gobet & Simon, 2000;

Gobet & Waters, 2003).

Beyond chess, the chunking mechanism and, hence, perceptual information have been
found to play an essential role in the acquisition of expertise in a wide range of fields, such as
music (Knecht, 2003; Sloboda, 1976), programming (Adelson, 1981; Guerin & Matthews,
1990), and sports (Allard, Graham, & Paarsalu, 1980; Allard & Starkes, 1980; Abernethy,
Neal, & Konig, 1994; Williams, Davids, Burwitz, & Williams, 1993). As predicted by
chunking theory (Chase & Simon, 1973) and template theory (Gobet & Simon, 1996),
perceptual information is scarcely transferable to other fields, or even across subspecialties in
the same fields (e.g., Bilali¢, McLeod, & Gobet, 2009; Rikers, Schmidt, & Boshuizen, 2002),

because of its high specificity (Ericsson & Charness, 1994; Gobet, 2016).
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2. Training Domain-General Cognitive Abilities: A Way to Get Around Far Transfer?
While domain-specific training rarely transfers across domains, some researchers
have argued that training domain-general cognitive abilities — rather than domain-specific
skills — can positively affect performance in a wide variety of fields that rely on those
cognitive abilities. This idea can be considered a modern and more sophisticated version of
formal discipline theory (James, 1890). According to formal discipline theory, cognition
consists of a set of domain-general abilities (e.g., reasoning, memory, and concentration) that

are thought to be malleable to training.

One theoretical foundation of the cognitive-training hypothesis is neural plasticity,
that is, the ability of the neural system to adapt and modify under the pressure of the
environment (Strobach & Karbach, 2016). Cognitive training is thought to lead to changes in
the neural system, which, in turn, are supposed to account for the improvements on cognitive
tests (Johnson, Munakata, & Gilmore, 2002; Karbach & Schubert, 2013). Another element in
favour of the putative broad effects of cognitive training is that domain-general cognitive
abilities correlate with performance in a wide variety of domain-specific skills. For example,
fluid intelligence predicts academic achievement (Deary et al., 2007; Rohde & Thompson,
2007) and general intelligence is positively associated with job proficiency (Hunter &
Hunter, 1984; Hunter, Schmidt, & Le, 2006). Thus, it is plausible to suggest that fostering
overall cognitive ability by training affects people’s academic and professional lives

positively.

According to Taatgen (2016), there are two ways to train domain-general cognitive
abilities: (a) deliberately training the particular skill(s) by practicing cognitive tasks (e.g., n-
back in working memory training); or (b) engaging in cognitively demanding activities (e.g.,
playing chess in order to train spatial working memory and planning). While in the former
case the improvement of general cognitive abilities is a direct consequence of training these
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abilities, in the latter case it is the by-product of learning domain-specific skills. Either way,
the enhancement of domain-general cognitive abilities is supposed to improve one’s
performance in activities requiring these cognitive abilities. Like the theories of expertise,
cognitive-training theories acknowledge the fundamental role of domain-specific information
in skill acquisition and expert performance. However, enhancing overall cognitive function is
thought to facilitate and accelerate the acquisition of domain-specific skills in a broad range
of areas. In other words, cognitive-training may make people smarter, and smarter people

learn faster and more easily.

2.1 Mixed Effects and The Problem of Design Quality

Both methods have been extensively investigated. Research into working memory
(WM) is a perfect example of the direct training of a particular cognitive ability. A classical
result in cognitive psychology is that WM capacity strongly correlates with fluid intelligence
(Kane, Hambrick, & Conway, 2005). Searching for a possible causal relationship, Jaeggi,
Buschkuehl, Jonides, and Perrig (2008) tested the effects of WM training on a test of fluid
intelligence (Raven’s Progressive Matrices) in a sample of healthy adults. The treated
participants showed a significant improvement compared to the control group. Following this
experiment, the research has been extended to the effects of WM training on other cognitive
abilities (e.g., cognitive control and spatial cognition) and academic achievement (e.g.,
mathematics, literacy). Despite the initial promising results, other studies have challenged the
idea that WM training fosters a broad range of cognitive abilities (for a review, see Shipstead,
Redick, & Engle, 2012). The topic is still lively debated, and no definitive conclusion has

been reached.

When the focus shifts to the potential far-transfer effects of engaging in cognitively
demanding activities, the story remains essentially unaltered. For example, the research on
chess training has reported mixed results. While some authors express optimism about the
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capability of chess to enhance cognitive abilities and academic achievement (e.g., Aciego,
Garcia, & Betancort, 2012; Taatgen, 2016), others seem more sceptical (e.g., Gobet &
Campitelli, 2006; Sala, Foley, & Gobet, 2017). The same applies to the field of music
training (for a review, see Miendlarzewska & Trost, 2013), video game training (e.g., Green
et al., 2017; Redick, Unsworth, Kane, & Hambrick, 2017), brain-training (e.g., Anguera et
al., 2013; Simons et al., 2016), and exergames (e.g., Mirelman et al., 2016; Stanmore, Stubbs,

Vancampfort, de Bruin, & Firth, 2017).

The quality of the design may be a major source of such between-study variability. In
the present dissertation, I examine two design-related features: (a) random (or non-random)
allocation of the participants to the study groups and (b) type of control group (active or

passive).

Randomization is essential to control for every potential difference at baseline. For
example, non-random allocation may lead to differences between experimental and control
groups in pre-test scores. In turn, such differences often produce statistical artefacts such as
positive effects due to regression to the mean at post-test. In other words, the lack of

randomization can inflate the effect size.

The type of control used to assess the effect of a particular treatment is important too.
Researchers agree that passive control groups (i.e., no-contact or business-as-usual control
groups) are not sufficient to establish the true impact of treatments (e.g., Moreau, Kirk, &
Waldie, 2016). In fact, passive control groups do not control for non-specific factors such as
placebo effects because simply belonging to a treatment group often affects behaviour.
Conversely, the use of control groups receiving an alternative treatment (i.e., active control

groups) contributes to rule out potential placebo effects. It is thus reasonable to expect that
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comparing experimental groups to active control groups provides, on average, smaller effect

sizes than passive control groups.

The quality of the study design has a crucial role in determining the size of the
observed effect of an experimental intervention. Thus, the meta-analyses presented in this
dissertation examine (when possible) whether type allocation and type of control group are

moderating variables in the meta-analytical models.

3. Different Types of Cognitive Training
I now introduce the most common and studied types of cognitive training. The current
state of the art and most relevant theories will be briefly discussed. For the detailed reviews,

see Chapters 4 to 8.

As already mentioned, there are two possible ways to enhance cognition. The first
method is to practice cognitive tasks such as n-back tasks in working memory training,
mental rotation tasks in spatial training, and brain training games. The second method is to
engage in intellectually demanding activities such chess, music, and video-games to train

domain-general cognitive abilities.

3.1 Practicing Cognitive Tasks

3.1.1 Working Memory Training

Working memory is the cognitive system used to store and manipulate the
information necessary to carry out cognitive tasks (Baddeley, 1992). A classical result in
cognitive psychology is that fluid intelligence correlates with measures of working memory
capacity (Engle, Tuholski, Laughlin, & Conway, 1999). Moreover, working memory capacity
is also associated with measures of cognitive control such as the Stroop task (Kane & Engle,
2003), the go/no-go task (Redick, Calvo, Gay, & Engle, 2011), and the dichotic-listening task

(Conway, Cowan, & Bunting, 2001).
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WM capacity is also related to academic skills (e.g., Conway & Engle, 1996; Peng,
Namkung, Barnes, & Sun, 2016), and plays a fundamental role in cognitive development.
Children with reading difficulties (Swanson, 2006), mathematical disorders (Passolunghi,
2006), attention deficit/hyperactivity disorder (ADHD; Klingberg et al., 2005), and language
impairment (Archibald & Gathercole, 2006) often suffer from deficits in working memory

capacity.

Several researchers have thus proposed that increasing working memory capacity by
training can enhance fluid intelligence (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008) and
boost cognitive control (Chein & Morrison 2010; for details, see 1. Introduction in Chapter
4). In turn, such an improvement is thought to transfer to other subject areas such as academic

achievement and professional performance.

These hypotheses have been tested extensively. A vast body of research has been
produced to determine whether working memory training can enhance fluid intelligence and,
more generally, overall cognitive ability. Despite such impressive amount of experimental
evidence, no definite conclusion has been reached. Also, the many meta-analyses and
systematic reviews that have dealt with the topic have provided opposite results. While some
of these reviews support the idea that WM training is a valuable tool for increasing fluid and
enhancing overall cognitive function (Au et al., 2015; Au, Buschkuehl, Duncan, & Jaeggi,
2016; Klingberg, 2010; Morrison & Chein, 2011), others seem far more pessimistic
(Dougherty, Hamovits, & Tidwell, 2016; Melby-Lervag & Hulme, 2013, 2016; Melby-
Lervag, Redick, & Hulme, 2016; Schwaighofer, Fischer, & Buhner, 2015; Soveri, Antfolk,

Karlsson, Salo, & Laine, 2017).
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3.1.2 Brain Training

Brain training usually refers to those programs that convert cognitive tasks into
computerized games (e.g., Lumosity®). The aim of brain-training programs is to enhance
overall cognitive ability by practicing cognitive tasks. The basic assumption is that the
improvements in the trained tasks generalize to real-life skills such as academic and
professional attainment. In addition, this transfer is thought to be facilitated by the
gamification of cognitive tasks that may encourage one’s engagement in training such tasks

(Anguera et al., 2013).

The research into the effects of brain training has mainly focused on adults and older
adults in both clinical (e.g., schizophrenia, Alzheimer’s disease, and brain trauma) and
non-clinical populations (healthy participants). Despite the claims of the companies involved
in the business, research has provided only modest evidence for the alleged cognitive benefits
of brain-training programs. For example, in an influential study by Anguera et al. (2013), a
small group of older adults played NeuroRacer, a multitasking brain-training program, and
were compared to an active control group (single-task condition of the program) and a
passive control group (no-contact). The multitasking group significantly outperformed the
active control group in only three out of 11 cognitive tests. This outcome suggests that the
treatment exerted little or no effect on the participants’ overall cognitive function.

A recent systematic review of the literature (Simons et al., 2016) has provided further
support to the hypothesis according to which brain-training programs do not provide any real
benefit. The review points out that many brain-training studies lack proper controls, include
very small samples (e.g., N <20 per group), and do not report all the results of the outcome
measures. Therefore, no definite conclusion can be drawn about this type of cognitive

training until more powerful and better-designed studies are carried out.
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3.2.2 Spatial Training

Another, relatively understudied, type of intervention to enhance cognitive ability is
spatial training. Spatial training includes activities such as 2D and 3D mental rotation, spatial
reasoning and visualizations (Sorby, 2011). Unlike working memory training and brain
training, this type of cognitive-training intervention is often intended to enhance
mathematical ability rather than overall cognitive function. However, given the difficulty of

far transfer to take place, why should spatial training increase mathematical ability?

Problem solving in mathematics and STEM disciplines largely relies on spatial ability
(Stieff & Uttal, 2015). Mechanical physics and engineering deal with movement and
interaction between elements in a geometrical space. Mathematicians work with functions
represented in 2D and 3D space. More generally, several branches of mathematics —
necessary to master disciplines such as physics and engineering — require the manipulation of

spatial relationships (e.g. geometry, calculus, topology).

The tight relation between spatial ability and mathematical ability has been
established empirically. These two separate constructs are highly correlated to each other
(Mix et al., 2016). Spatial abilities — such as mental rotation ability (Mix et al., 2016; Wai,
Lubinski, & Benbow, 2009) — are thus strong predictors of achievement in mathematics, in
children (Lauer & Lourenco, 2016), undergraduate and doctorate students (Wai et al., 2009).
Thus, several researchers have suggested that training spatial ability causes improvement in

mathematics achievement.

Before asking whether spatial training leads to improving mathematical skills such as
arithmetic or geometry, one has to verify whether spatial ability can be trained. A meta-
analysis carried out by Uttal et al. (2013) suggests that this is the case. Spatial training

appears to transfer both to the trained tasks and other spatial tasks not directly trained.
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Crucially, from a practical point of view, spatial ability seems to be malleable enough to be

significantly boosted by a short-term training (Uttal et al., 2013).

The evidence supporting the effectiveness of spatial training at improving
performance on spatial tasks appears to be quite solid. Regrettably, it is not possible to reach
the same conclusion for non-spatial tasks. The research on spatial training to improve STEM
achievement has provided promising results, but the number of studies is still relatively

limited.

In Hsi, Linn, and Bell (1997), a group of undergraduates improved their attainment in
an engineering course after attending a voluntary spatial training (3D orthographic
projections). However, the fact that the sample was self-selected casts serious doubts upon
the reliability of the outcome. More recently, Sorby (2009) reported that a group of
undergraduates in engineering with low spatial ability improved their course grades after
spatial training (Sorby, 2011), whereas a control group with no training did not show any
amelioration. These positive findings were replicated two years later (Sorby, Casey, Veurink,
& Dulaney, 2013). Less clear were the results in Miller and Halpern’s (2013) study. They did
find a moderate positive effect after delivering spatial training, but only in items related to

Newtonian mechanics. No benefits occurred in other courses.

The studies mentioned above dealt with university students. Cheng and Mix (2014)
focused on the effects of short-term (40 minutes) spatial training on children’s basic
arithmetical ability. The training consisted of 40 minutes of mental rotation and mental
translation exercises suitable for children (Ehrlich, Levine, & Goldin-Meadow, 2006). The
treatment group showed a small improvement (approximatively d = 0.20) in the test of
arithmetic, limited to one particular type of items (missing-term problems). A study by

Hawes, Moss, Caswell, and Poliszczuk (2015) found no significant effects of mental rotation
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training on a group of primary school children’s arithmetical ability. Xu and LeFevre (2016)
reported no transfer from spatial training to a number line task in a sample of kindergarten
children. Finally, Sala, Bolognese, & Gobet (2017) tested the effects of one-hour mental
rotation training on a sample of first-, second-, and third-grade children’s arithmetical

abilities. No significant effect was found overall.

In sum, the number of studies in this field is still too small to draw definite
conclusions (or to do a meta-analysis). To date, the evidence suggests that spatial training can
provide benefits for some specific spatial-related disciplines (e.g., mechanics) rather than

overall cognitive function.

3.2 Engaging in Cognitively Demanding Activities

3.2.1 Chess Training

Students’ poor achievement in mathematics has been the subject of debate both in the
United States (Hanushek, Peterson & Woessmann, 2012; Richland, Stigler, & Holyoak,
2012) and in Europe (Grek, 2009). Researchers and policy makers have investigated
alternative methods and activities with the purpose of improving the effectiveness of
mathematics teaching. One such activity is play. The rationale is that, because children are
highly motivated to play, they could learn important concepts in mathematics (and other
curricular domains) without realizing it, through implicit learning (Brousseau, 1997); they
could also acquire general cognitive skills such as concentration and intelligence, which
would positively affect their school results generally.

Several authors have argued that chess is an ideal game for educational purposes
(Bart, 2014; Jerrim, Macmillan, Micklewright, Sawtell, & Wiggins, 2016; Kazemi, Yektayar,
& Abad, 2012). Chess offers an optimal trade-off between complexity and simplicity, and the
balance between tactics and strategy is ideal. It combines numerical, spatial, temporal and

combinatorial aspects. In addition, unlike games such as awalé and Go, the diversity of pieces
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helps maintain attention — an important consideration with younger children. Altogether,
these characteristics of chess may foster attention, problem solving, and self-monitoring of
thinking (i.e., meta-cognition). Finally, there is some overlap between chess and mathematics
(e.g., basic arithmetic with the value of the pieces, geometry of the board, and piece
movements), which is an obvious advantage when using chess to foster mathematical skills.
Thus, like working memory training and brain training, playing chess is meant to enhance
domain-general cognitive abilities. In turn, these improvements (when any) are thought to
foster children’s academic achievement in general and mathematical ability in particular.

In recent years, considerable efforts have been made to validate these ideas
empirically. Not only has chess instruction been included in the school curriculum in several
countries, but several educational projects and studies involving chess are currently ongoing
or have recently ended in Germany, Italy, Spain, Turkey, the United Kingdom, and the
United States. Even the European Parliament has expressed its interest and positive opinion
on teaching chess in schools as an educational tool (Binev, Attard-Montalto, Deva, Mauro, &
Takkula, 2011). If successful, using chess in school for fostering academic achievement
would shed considerable light on the question of skill acquisition and transfer.

One psychological mechanism has been regularly proposed for explaining the putative
effects of chess instruction: being a cognitively demanding activity, chess improves pupils’
domain-general cognitive abilities (e.g., intelligence, attention, and reasoning), abilities that
then transfer to other domains, and therefore benefits a wide set of non-chess-related skills
(e.g., Bart, 2014). The idea is intuitive and attractive. This view of chess as a cognitive
enhancer has been mentioned in popular newspapers in the United Kingdom (e.g., Garner,
2012) and was the key theoretical assumption of a recent large experimental study that took

place in the United Kingdom (Jerrim et al., 2016).
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These explanations, albeit lacking detail, are plausible and provide the basis for the
hypothesis that chess instruction strengthens cognitive abilities that are positively correlated
to achievements in mathematics. Unfortunately, only a few studies have investigated the
effects of chess on both cognitive abilities and academic outcomes. The results so far have
been disappointing (Sala & Gobet, 2017d; Sala, Gobet, Trinchero, & Ventura, 2016; Scholz

et al., 2008). In brief, the causal mechanisms remain substantially untested.

With regard to correlational evidence, a recent meta-analysis (Sala et al., 2017)
reported that chess players outperformed non-chess players in several cognitive skills (e.g.,
planning, numerical ability, and reasoning). The difference between the two groups was
approximatively half a standard deviation. Another meta-analysis (Burgoyne et al., 2016)
found positive correlations between chess skill and cognitive abilities such as fluid
intelligence, processing speed, short-term and working memory (WM) memory, and
comprehension knowledge.

However, the positive relationship between chess skill and cognitive ability does not
necessarily imply that chess instruction enhances cognitive ability. An alternative explanation
is that individuals with better cognitive ability are more likely to excel and engage in the
game of chess. To establish causality, one needs to turn attention to studies where instruction

is under experimental control. This will be the aim of Chapter 5.

3.2.2 Music Training

The idea that learning how to play an instrument improves one’s cognitive abilities
and academic achievement is extremely popular. Music ability is often associated with talent
and superior cognitive skills. Blogs and newspapers often report enthusiastically on the
benefits of music for the intellect (e.g., Costandi, 2016; JauSovec & Pahor, 2017). Even the
popular TV series The Simpsons has echoed this common belief by defining musical
instruments as “the way to encourage a gifted child.”
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However, how is music training supposed to provide such diverse benefits? Learning
how to play a musical instrument engages executive functions such as cognitive control and
working memory (Bialystok & Depape, 2009). Also, music training requires focused
attention and learning complex visual patterns. Schellenberg (2004, 2006) has thus proposed
that the most likely explanation for the presumed broad set of benefits provided by music
training is that it enhances individuals’ overall cognitive function and general intelligence.
These cognitive skills are major predictors of academic achievement (e.g., Deary et al.,
2007), and it might be the case that some domain-specific abilities acquired by music training

generalize to other non-music skills.

One further theoretical foundation of the hypothesis according to which music
training exerts a positive influence on overall cognitive ability is neural plasticity. In fact,
musicians do exhibit specific anatomical and functional neural patterns. An increased density
of grey matter in musicians has been observed in areas involved in cognitive skills such as
auditory localization (right Heschl’s gyrus; Bermudez, Lerch, Evans, & Zatorre, 2009) and
language production (Broca’s area; Sluming et al., 2002). With regard to functional
differences, expert musicians seem to show, for example, an enhanced bilateral activation of
the Rolandic operculum (for a review, see Neumann, Lotze, & Eickhoff, 2016). Probably,
this activation reflects superior ability in the processing of auditory information (Koelsch,

Fritz, von Cramon, Miiller, & Friederici, 2006).

The hypothesis that music training induces significant anatomical and functional
changes in the brain which, in turn, lead to increased cognitive function, seems plausible.
Also, the improvements in cognitive ability are claimed to be both domain-specific — such as
superior memory for music-related material (Sala & Gobet, 2017a) — and domain-general

(e.g., fluid intelligence; Schellenberg, 2004, 2006).

38



Like in chess, a link between superior cognitive ability and music skill does exist. In a
study by Ruthsatz, Detterman, Griscom, and Cirullo (2008), a group of professional
musicians outperformed a group of novices in a standardized measure of fluid intelligence
(Raven’s Progressive Matrices). Also, Lee, Lu, and Ko (2007) found a correlation between
music skill and working memory. Finally, Schellenberg (2006) reported positive, yet
moderate, correlations between engagement in musical activities and IQ in a group of
children and undergraduates. Critically, this positive relationship remained even after
controlling for parental income and education. This finding was replicated in a more recent

study concerning 7- and 8-year-old children (Schellenberg & Mankarious, 2012).

Other correlational studies have shown that music ability is associated with academic
skills as well. Anvari, Trainor, Woodside, and Levy (2002) found that music perception skills
correlated with reading abilities in preschool children. Similarly, Forgeard et al. (2008)
reported that music discrimination skill correlated with phonological processing ability in a
group of dyslexic and typically-developing children. With regard to mathematical ability,
Cheek and Smith (1999) found that students who had received private music lessons achieved
better results in the mathematics portion of the lowa Test of Basic Skills. In line with the
latter three studies, Wetter, Koerner, and Schwaninger (2009) reported a positive relationship

between engagement in musical activities and overall academic attainment.

3.2.3 Video-Game Training and Exergames

Along with working memory training, video-game training is the most studied,
influential, and debated type of cognitive training. It is customary to distinguish between two
categories of video games: action video games and non-action video games. Since the
publication of Green and Bavelier’s (2003) seminal article, action video games have attracted
the attention of many researchers in the field. The practice of action video games such as

Unreal Tournament 2004 and Call of Duty 2 has been claimed to improve a variety of
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perceptual and attentional tasks. This improvement seems to occur in both quasi-experimental
studies — when regular video-game players are compared to non-players — and experimental
studies, when non-players are trained with action video games and compared to control

groups of non-action video game players (e.g., Bejjanki et al., 2014).

The “learning to learn” theory (Green, Gorman, & Pouget, & Bavelier, 2016) is the
most influential attempt to explain such results. According to this theory, the practice with
action video games leads to an improvement in probabilistic inference. It is proposed that
playing action video games makes people better at using and processing information. Then,
this ability can be transferred to other tasks (e.g., go/no-go and enumeration tasks). This
theory thus postulates the existence of a general learning system that can be trained by the
practice of action video games. Training this system allows one to extract and elaborate
relevant information from the environment more efficiently and, hence, learn to perform a
task more quickly. Put simply, action video games are claimed to improve the computational

ability of the brain in general.

Non-action video game training, albeit relatively understudied, has been claimed to
provide some cognitive benefits as well. For example, Okagaki and Frensch (1994) reported
that playing Tetris improved the spatial abilities in a group of older adolescents. Also, Basak,
Boot, Voss, and Kramer (2008) found positive effects of the practice of a real-time strategy
video game (Rise of Nations) on measures of short-term memory and spatial ability in a

group of older adults.

However, several studies have challenged the idea that video-game training can
positively impact on domain-general cognitive ability with regard to both action and
non-action video games. For example, Terlecki, Newcombe, and Little (2008) found no effect

of playing Tetris on mental rotation. Similarly, Minear et al.’s (2016) study failed to show
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any significant improvement in several measures of memory, spatial ability, and fluid
intelligence in individuals practicing a real-time strategy video game (Starcraft: Brood War).
The lack of replication of the initial positive results applies to action video-game training as
well. No significant effect of action video game training was found in cognitive tests such as
span and n-back tasks, enumeration, and perceptual tasks (e.g., Boot, Kramer, Simons,
Fabiani, Gratton, & 2008; van Ravenzwaaij, Boekel, Forstmann, Ratcliff, & Wagenmakers,
2014). Given the inconsistent results in the literature, Oei and Patterson (2013, 2014, 2015)
have offered an explanation alternative to the “learning to learn” theory. Action video game
training may foster only those skills necessary to engage in particular video games. This

hypothesis is consistent with Thorndike and Woodworth’s (1901) common elements theory.

Several meta-analyses have addressed the question of the effects of video-game
training on cognitive abilities (Powers & Brooks, 2014; Powers, Brooks, Aldrich, Palladino,
& Alfieri, 2013; Toril, Reales, & Ballesteros, 2014; Wang et al., 2016). All these
meta-analyses report positive overall effect sizes suggesting that video-game training (both
action and non-action) has some impact on cognitive function. However, these meta-analyses
suffer from several major methodological weaknesses that do not allow us to draw any

reliable conclusion (for details, see 2. The Meta-Analytical Evidence in Chapter 7).

A further source of scepticism comes from several recent cross-sectional and
correlational studies. For example, Gobet et al. (2014) found no differences between a group
of action video game players and a group of non-players in a flanker task and a change
detection task. Similar results were obtained in other investigations (e.g., Castel, Pratt, &
Drummond, 2005; Irons, Remington, & McLean, 2011; Murphy & Spencer, 2009). Finally,
Unsworth et al. (2015) found near-zero correlations between video game experience and
several measures of processing speed, WM capacity, and fluid reasoning in a large sample of
adults. Green et al. (2017) have questioned Unsworth and colleagues’ findings (see also
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Redick, et al., 2017). The debate is still ongoing, and the question of the alleged cognitive

benefits of video-game training is yet to be solved.

3.2.3.1 Exergames

Exergames are probably the most recent type of cognitive-training programs that has
been undergone experimental research. Exergames are video games combining cognitive and
physical training. The rationale behind such games is to exploit the benefits of physical
exercise (Fabel et al., 2009; Firth et al., 2016; Kempermann et al., 2010), cognitive exercise,
and trainees’ engagement stemming from the gamification of the tasks (Stine-Morrow et al.,
2014). Examples of such training regimens are interactive dancing, “cyber-cycling,” and

walking on a treadmill in a virtual environment.

A recent meta-analysis (Stanmore et al., 2017) has examined the impact of exergames
on cognitive function and found positive effects. However, this meta-analysis suffers from

severe flaws that have probably biased the results. This topic is covered in detail in Chapter 8.
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Chapter 3: Meta-Analytic Techniques

This chapter summarizes all the techniques used in the meta-analyses (Chapters 4 to
8). These techniques include formulas to calculate effect sizes, types of meta-analytical,
moderator and publication bias analyses, and other methods to correct effect sizes. As
mentioned in Chapter 1, it is necessary to know how these techniques work to understand the
findings presented in this dissertation. For an extensive discussion of these formulas and

meta-analytical techniques and models, see Schmidt and Hunter (2015).

1. Effect Sizes
The extraction of effect sizes is necessary to compare data from different studies and
tests. Thus, the correct calculation of effect sizes is fundamental to avoid biased results. For
the correct calculation of effect sizes in studies with an only-post-test design, the standardized

means difference (Cohen’s d) was calculated with the following formula:
d= (M, - Mc)/SDpooled (1

where SDpoolea 18 the pooled standard deviation and M, and M. are the means of the

experimental group and the control group, respectively.

For the studies with a repeated-measure design, the standardized means difference

was calculated with the following formula:
d= (Mg—e - Mg—c)/SDpooled—pre (2)

where SDpooled-pre 18 the pooled standard deviation of the two pre-test standard deviations, and

M. and M., are the gain of the experimental group and the control group, respectively.

For the studies with an ANCOVA design, the standardized means difference was

calculated with the following formula:

43



d= (Madj—e - Madj— )/SDpooled—pre 3)

where SDpooled 18 the pooled standard deviation of the two standard deviations of the
unadjusted means, and Mg — Maqj-c are the adjusted means of the experimental group and

the control group, respectively.

When means and standard deviations were not available, ¢-statistics referring to pre-
post improvements within groups were converted to ds and then subtracted to calculate the
standardized mean difference between the experimental and control groups. Alternatively, the
statistics referring to between-group differences at pre- and post-tests were converted to ds

and then subtracted. The conversion formula was:

d = txy/ (N, + No)/(Ne X N,) (4)

where N. and N. are the total sample size of the experimental group and control group,

respectively.
The standard error of Cohen’s ds was calculated with the following formula:

dZ
v T vz ()

st.err.=
where N, Ne, and N, are the total sample size of the study, experimental group, and control
group, respectively.

When correcting for the upward bias, Cohen’s ds were converted into Hedges’s g by

using the following formula:

9=d+0-(55) ©)

where N is the sample size of the study. The same correction was applied to standard errors.
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2. Fixed and Random Effect Models
Fixed-effect meta-analytic models assume that all the included studies share a
common effect size. In other words, the true effect is believed to be the same in all the
studies. Consequently, the difference between the observed effects is due to random error in

fixed-effect meta-analyses.

This assumption is not always met. The included studies share a set of common
features (the inclusion criteria). However, there is generally no reason to assume that the true
effect is the same across all the studies. More realistically, some factors (e.g., populations’
age, duration of interventions, different settings, etc.) may exert an influence on the effect
sizes. In this case, the overall effect size does not represent a single true effect. Rather, the

overall effect size is the product of several true effects.

Given that assuming only one true effect is a severe constraint, random-effect models
allow the potential occurrence of a distribution of true effect sizes (Borenstein, Hedges,
Higgins, & Rothstein, 2009). More specifically, every effect size is the combination of its
true effect and within-study error. The true effect is, in turn, determined by the overall effect
size and between-study error. Due to their superior flexibility, random-effect models were

used in all the meta-analyses of the present dissertation.

2.1 Assessing Heterogeneity

As just mentioned, the observed overall effect size is sometimes the mean of a series
of true effects rather than the true effect. It is thus imperative to evaluate whether between-
study variability is due only to random error or some moderating factor. Moreover, it is
necessary to estimate the ratio of between-study variability explained by random error and

moderating factors.
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To address this issue, meta-analysts use the test of heterogeneity and report the values
of the  statistic (for details, see Schmidt & Hunter, 2015). The F statistic refers to the
percentage of between-study variance due to true heterogeneity and not to random error
(Higgins, Thompson, Deeks, & Altman, 2003). The higher the value of the I statistic, the
higher the percentage of between-study variance due to true heterogeneity. When P is zero,
between-study error is zero. Consequently, in this case, random-effect models and fixed-

effect models produce the same results.

2.2 Moderator Analysis

In the presence of true heterogeneity, moderator analysis (or meta-regression) is run
to investigate the potential role of several study-related factors, that is, the moderators, in
determining the size of the effects. This technique is the meta-analytic homologous of linear
multiple-regression analysis. In fact, while in primary studies the unit of analysis is usually

the subject, in moderator analysis the unit is the effect size.

Like independent variables in a regression model, moderators are chosen by the
researcher to test specific hypotheses and control for potential confounding effects. Put
simply, the choice of what moderators should be included in the meta-regression model

should always be theory-driven.

3. Publication Bias
Publication bias occurs when studies with small samples and small effect sizes are
systematically suppressed from the literature. Thus, in the presence of publication bias,
overall effect sizes tend to be greater than the true effects. There are numerous techniques to

detect publication bias and estimate a corrected overall effect size.
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3.1 Trim-and-Fill

Trim-and-fill analysis (Duval & Tweedie, 2000) estimates the symmetry of a funnel
plot representing the relation between effect size and standard error. In the presence of
publication bias, effect sizes are missing from the bottom left part of the funnel plot (small
effect sizes with high standard error; e.g. Figure 16). That is, when standard error is high,
larger-than-average effects sizes (those on the bottom right) are more likely to be published
than smaller-than-average effect sizes (those on the bottom left). The trim-and-fill analysis
estimates the number of missing studies from the funnel plot and imputes the missing effect
sizes based on the observed data’s asymmetry to create a more symmetrical funnel plot and

calculate a corrected overall effect size.

3.2 PET-PEESE

PET estimator is the intercept of a weighted linear regression where the dependent
variable is the effect size, the independent variable is the standard error, and the weight is the
inverse of the standard error squared. PEESE estimator is obtained by replacing the standard
error with the standard error squared as the independent variable. If PET suggests the
presence of a real effect (i.e., intercept different from zero), PEESE estimator must be

considered as the corrected overall effect size (Stanley & Doucouliagos, 2014).

3.3 Begg and Mazumdar’s (1994) Rank Correlation Test

If publication bias occurs, this test assumes that there will be an inverse correlation
between standard error (which is driven primarily by sample size) and effect size. The rank
order correlation (Kendall's tau) between the treatment effect and the standard error tells us
whether publication bias occurs. However, this test does not provide a corrected overall effect

size.
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3.4 P-Curve

P-curve tests the presence of publication bias by analysing the distribution of only
statistically significant p-values (i.e., ps < .05) associated with the effect sizes (Simonsohn,
Nelson, & Simmons, 2014). The key assumption of this method is that real effects tend to be
highly significant (p <.01). Thus, if the p-values distribution is flat or left-skewed (i.e., no
difference or greater number of large p-values than small p-values), then publication bias is
likely. By contrast, if the distribution is right-skewed (i.e., more small p-values than large p-

values), then publication bias is unlikely.

3.5 Egger’s Regression Test

In this method (Egger, Smith, Schneider, & Minder, 1997), the inverse of the standard
error of the effect size (i.e., precision) is used as an independent variable in a regression to
predict the “standardized effect” —i.e., the effect size divided by its standard error. If the
intercept of this regression is zero, then there is no publication bias. By contrast, a positive
value for the intercept indicates the presence of publication bias because small-N studies are

associated with larger effect sizes.

3.6 Selection Models

Vevea and Woods’s (2005) selection model analysis estimates four adjusted values by
pre-weighted functions of p-values’ distributions. These distributions represent different
patterns of possible publication bias. If all (or most of) the four adjusted values are shown not
to differ significantly from the overall effect size, then it can be reliably concluded that the
results are not affected by publication bias (Schmidt & Hunter, 2015). Notably, this analysis

stays reliable even when the number of effect sizes is modest.
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4. Statistical Dependence of Effect Sizes
In the meta-analyses presented in this dissertation, the effect sizes were calculated for
each dependent variable reported in the studies. For each independent sample, those effect
sizes referring to the same type of measure (e.g., reaction times) and extracted from the same
test (e.g., different subscales) were meta-analytically merged into one effect size. This
procedure was used to calculate more reliable estimates and reduce the number of statistically

dependent effect sizes in the model (Schmidt & Hunter, 2015).

For those effect sizes that were statistically dependent and referred to different
constructs or were extracted from different tests, Cheung and Chan’s (2004) correction for
statistically dependent samples was applied. This method decreases the weight of dependent
samples in the analysis by calculating an adjusted (i.e., smaller) N in each meta-analytic

model.

The violation of the assumption of statistical independence does not necessarily cause
a systematic bias in the estimation of overall meta-analytic means. However, the violation of
the assumption of statistical independence is associated with an underestimation of sampling
error inflating the variability between studies (Schmidt & Hunter, 2015), with possible

consequent biases in moderator analysis.

Therefore, Cheung and Chan’s (2004) method allows one to build more powerful
models without losing any information from the primary studies, biasing the meta-analytic

mean, or artificially inflating the degree of heterogeneity.

5. Techniques for Detecting Outliers

5.1 Winsorizing
Winsorizing (Lipsey & Wilson, 2001; Tukey, 1962) is the reduction of extreme values

to reduce the effect of potential outliers on overall results. The definition of extreme values
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is, to some extent, subjective and depends on the distribution of the effect sizes. Therefore,

the major limitation of this procedure is its arbitrariness.

5.2 Influential Case Analysis

Viechtbauer and Cheung’s (2010) analysis of influential cases estimates whether
some effect sizes have a significantly greater impact on the overall effect size compared to
the other effect sizes in a model. Such impact can be due to the size of the effect or its weight
(i.e., large sample size). The main advantage of this technique is that influential cases are
detected via a series of estimated parameters rather than the meta-analyst’s subjective

judgment.
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Chapter 4: Meta-Analysis of Working Memory Training

Rationale for the Meta-Analysis in Chapter 4

Chapter 4 reports a meta-analysis on the effect of working memory training on
typically developing children’s cognitive abilities and academic achievement. As mentioned
in Chapter 2, there is substantial disagreement among researchers about the actual benefits of
working memory training. Typically developing children are the ideal population to test the
potential of working memory training as a cognitive enhancer. In fact, a child’s brain tends to
be more malleable to training than an adult’s one. Assuming that the benefits of cognitive
training are mediated by neural plasticity, the occurrence of far-transfer effects should be
more likely in children than adults. Therefore, a null result would represent robust evidence

against the alleged cognitive benefits of working memory training.

The studies included in this meta-analysis are listed in Appendix A.
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1. Introduction
Transfer of learning occurs when a set of skills acquired in a particular domain
generalizes to other domains. The occurrence of transfer is either a tacit assumption or a
deliberate objective of most educational interventions: any learned skills are meant to be
applied beyond the learning context (Perkins & Salomon, 1994). For example, one’s ability in

analytic geometry is supposed to generalize to calculus.

According to Thorndike and Woodworth’s (1901) common element theory, transfer is
a function of the extent to which two tasks share common features and cognitive elements. In
accordance with this hypothesis, while near-transfer — i.e., the transfer of skills between
strictly related domains (e.g., analytic geometry and calculus) — takes place frequently, far-
transfer — i.e., the transfer occurring between source and target domains weakly related to
each other (e.g., Latin and mathematics) — has rarely been observed (Donovan, Bransford, &
Pellegrino, 1999). Examples of failed far-transfer include teaching the computer language
LOGO to improve children’s reasoning skills (De Corte & Verschaftel, 1986; Gurtner, Gex,
Gobet, Nunez, & Restchitzki, 1990) and, as reported in a recent meta-analysis (Sala & Gobet,

2016), teaching chess to improve children’s cognitive and academic skills.

The training investigated in those studies was highly specific (learning a
programming language and chess, respectively). However, it is possible that boosting a
domain-general cognitive mechanism is an effective way to improve other cognitive and real-
life skills, such as academic achievement. This assumption is the key principle underlying the

research on WM training.

1.1 Working Memory Training
WM is the cognitive system used to store and manipulate the information necessary to

carry out cognitive tasks (Baddeley, 1992). Measures of WM capacity, such as the number of

52



items WM can store and the ability to keep information in active memory during interfering
tasks, correlate positively with fluid intelligence (Engle, Tuholski, Laughlin, & Conway,
1999) and measures of cognitive control such as the Stroop task (Kane & Engle, 2003), the
go/no-go task (Redick, Calvo, Gay, & Engle, 2011), and the dichotic-listening task (Conway,
Cowan, & Bunting, 2001). In addition, WM capacity is related to academic skills such as
reading comprehension (Conway & Engle, 1996) and mathematical ability (Peng, Namkung,
Barnes, & Sun, 2016). WM also seems to play a fundamental role in cognitive development.
Deficits in WM capacity in children are associated with reading difficulties (Swanson, 2006),
mathematical disorders (Passolunghi, 2006), attention deficit/hyperactivity disorder (ADHD;

Klingberg et al., 2005), and language impairment (Archibald & Gathercole, 2006).

Several hypotheses have linked WM to intelligence and academic achievement. It has
been proposed that WM and fluid intelligence share a common capacity constraint (Halford,
Cowan, & Andrews, 2007). The amount of information (e.g., the number of items) that can
be handled in WM is limited. Consequently, the number of interrelationships among elements
that can be held and manipulated by WM in a reasoning task (e.g., Raven’s progressive
matrices) is bounded. If such limits are alleviated by training, then an improvement in fluid
intelligence might occur (Au et al., 2015; Jaeggi, Buschkuehl, Jonides, & Perrig, 2008).
Crucially, such an improvement is supposed to generalize to subject areas such as
mathematics or literacy, because fluid intelligence is a key predictor of academic
achievement (Deary, Strand, Smith, & Fernandes, 2007; Rohde & Thompson, 2007). Another
related hypothesis concerns the role of attentional control processes in both working memory
and fluid intelligence (Gray, Chabris, & Braver, 2003). Chein and Morrison (2010), for
example, have suggested that WM training induces positive effects on measures of cognitive
control (e.g., Go/no-go, Stroop task), which, in turn, boosts performance in other tasks

outside the domain of WM. Finally, it has been hypothesized that WM training is especially
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beneficial for individuals with low WM capacity (e.g., children with ADHD or other learning
disabilities). The idea is simple. If one’s learning difficulties stem from reduced WM
capacity, then training that specific skill might help to improve academic performance. The
common assumption underlying these three hypotheses is that WM training boosts domain-
general mechanisms (WM capacity, cognitive control, and attention), and hence enhances

many other cognitive and academic skills.

However, in spite of a vast amount of research, no definite conclusion on the putative
effectiveness of WM training at boosting cognitive skills and academic achievement has been
reached yet. There is substantial agreement about the existence of near-transfer effects due to
WM training — such as improvements in measures of verbal and non-verbal WM and short-
term memory. However, while several reviews of the available experimental evidence have
upheld the idea that WM training is a valuable cognitive enhancement tool (Au et al., 2015;
Au, Buschkuehl, Duncan, & Jaeggi, 2016; Klingberg, 2010; Morrison & Chein, 2011), others
have challenged the hypothesis according to which WM training effects substantially transfer
to other cognitive skills outside the domain of WM (Dougherty, Hamovits, & Tidwell, 2016;
Melby-Lervag & Hulme, 2013, 2016; Melby-Lervag, Redick, & Hulme, 2016; Redick,
Shipstead, Wiemers, Melby-Lervig, & Hulme, 2015; Schwaighofer, Fischer, & Buhner,

2015; Shipstead, Redick, & Engle, 2010, 2012).

1.2 Working Memory Training in Children

Children represent an important population on which to test the ability of WM
training to boost cognitive and academic skills. During childhood, cognitive ability and
academic skills are still at the beginning of their development, and, thus, cognitive training is
likely to be more efficient than in adulthood. In agreement with this idea, research into
expertise has clearly established that the likelihood of far-transfer is inversely related to the
level of expertise in a discipline, which needs several years to acquire (Ericsson & Charness,

54



1994; Gobet, 2016). That is, WM training is more likely to improve, for example, a child’s
basic arithmetic abilities than an undergraduate student’s skill in solving differential
equations. In fact, while the skill to develop is quite general and based to some extent on
cognitive ability in the former case, it depends to a large extent on domain-specific
knowledge in the latter case. Thus, from a theoretical point of view, children are an ideal

population to test the occurrence of transfer.

Several recent reviews have addressed the issue of the putative benefits of WM
training in children, without reaching any agreement. According to Klingberg (2010), WM
training can be used as an effective remediating intervention. By contrast, Rapport, Orban,
Kofler, and Friedman’s (2013) meta-analysis reported little or no evidence of amelioration in
academic achievement in children with ADHD after WM training. In line with Rapport et
al.’s (2013) results, Redick et al.’s (2015) review showed that WM training did not provide
any benefit to academic performance in children with ADHD (e.g., Chacko et al., 2014) and
poor WM (e.g., Ang, Lee, Cheam, Poon, & Koh, 2015), or in typical developing children

(e.g., Rode, Robson, Purviance, Geary, & Mayr, 2014).

Evaluating the effects of WM training on children with no learning disability has
substantial practical and theoretical implications. If a brief training can improve overall
cognitive ability and academic achievement, the impact of such an intervention on
educational practices and policies would be profound. Any positive effect of WM training
would provide an advantage for a vast cohort of individuals, not just for a relatively small
sub-sample (children with ADHD or children with poor WM). However, it is yet to be
established whether increasing WM capacity in typically developing (TD) children with no
WM impairment can enhance academic achievement and cognitive abilities outside the
domain of WM. The aim of the present study is to quantitatively evaluate the available
evidence via meta-analysis.

55



1.3 The Present Meta-Analysis

The present meta-analysis focuses on the putative effectiveness of WM training at
enhancing cognitive and academic skills in TD children. While several previous meta-
analyses (e.g., Melby-Lerviag & Hulme, 2013; Melby-Lervag et al., 2016; Schwaighofer et
al., 2015) included studies dealing with the putative benefits of WM training in TD children,

no meta-analysis has yet been specifically devoted to this issue.!

The main purpose of this meta-analysis is to estimate the overall effect sizes obtained
with WM training with respect to near-transfer (i.e., WM-related outcomes) and far-transfer
(i.e., outcomes outside the domain of WM). Also, we aimed to test the possible effects of
several moderators, with particular attention to far-transfer measures (e.g., fluid intelligence,
cognitive control, and academic achievement measures). Therefore, the meta-analysis
followed five steps. First, to estimate the presence or absence of near-transfer and far-transfer
at the end of the intervention, we calculated the overall standardized difference between WM
training groups and control groups on (a) near-transfer measures (e.g., visuospatial working
memory, short-term memory) and (b) measures related to abilities outside the domain of WM

(e.g., fluid intelligence, cognitive control, mathematics).

Second, we carried out a moderator analysis. As noted in previous meta-analyses
(e.g., Melby-Lervag & Hulme, 2013; Schwaighofer et al., 2015), two methodological features
may be a major source of variability between intervention studies—random assignment to

groups and the presence of an active control group to control for potential confounding

' Weicker, Villringer, and Thone-Otto’s (2016) meta-analysis reported several overall effect
sizes regarding the effect of WM training on TD children’s cognitive abilities such as fluid

intelligence and processing speed. However, the total sample included only nine studies.
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effects (e.g., differences at baseline level between experimental and control groups,
Hawthorne effect). The absence of these features may result in an inflation of the positive
effects of the training due to confounds such as differences at baseline level, self-selection of
the treated sample, and placebos. Therefore, we evaluated the potential moderating effects of
the type of control group (active or passive control group) and the presence of randomization
for the assignment to the groups. We also investigated the potential moderating effects of the
age of the participants and the total duration of the training. Third, we focused on the far-
transfer effects and investigated whether WM training is more (or less) successful in boosting
particular academic/cognitive skills. Fourth, we performed publication bias analyses. Finally,

we calculated the follow-up overall effect sizes for near- and far-transfer measures.

2. Method

2.1 Literature Search
In accordance with the PRISMA statement (Moher, Liberati, Tetzlaff, & Altman,
2009), a systematic search strategy was used to find the pertinent studies. Using several

99 ¢¢y

cognitive,” “intervention,” and

2 ¢ 9 ¢¢

combinations of the terms “working memory,” “training,
“children”, we searched Scopus, ERIC, Psyc-Info, ProQuest Dissertation & Theses, and
Google Scholar databases to identify all the potentially relevant studies. Also, earlier

narrative reviews were examined, reference lists were scanned, and we e-mailed scholars in

the field (» = 13) requesting unpublished studies and inaccessible data.

2.2 Inclusion/Exclusion Criteria

The studies were included according to the following six criteria:

1. The design of the study included an intervention aimed to train working memory
skills (e.g., verbal working memory, visuospatial working memory); correlational

and ex-post facto studies were excluded;
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2. The study presented a comparison between a treated group and at least one control
group;

3. During the study, a measure of academic or cognitive skill other than working
memory was collected; importantly, to assess a genuine near-transfer effect, all
the measures of performance in the trained WM intervention task were excluded;

4. The participants in the study were aged three to sixteen;

5. The participants in the study were TD children without any specific learning
disability (e.g., ADHD) or borderline cognitive ability (e.g., low IQ, poor working
memory capacity);?

6. The data presented in the study (or provided by the author) were sufficient to
calculate an effect size.

To identify studies meeting these criteria, we searched for relevant published and
unpublished articles through April 1, 2016. We found 25 studies, conducted from 2007 to
2016, that met all the inclusion criteria. These studies included 26 independent samples and
104 effect sizes (30 for WM-related measures, see Table 1; 74 for non-WM-related measures,
see Table 2), with a total of 1,601 participants. Finally, a subsample of the included studies (n
= 6) reported follow-up effects. A total of 30 follow-up effect sizes were computed (6 for
WM-related measures, see Table 3; 24 for non-WM-related measures, see Table 4), with a

total of 249 participants.® The entire procedure is summarized in Figure 1.

2 In Shavelson, Yuan, Alonzo, Klingberg, and Andersson (2008), eight participants (out of 37)
had ADHD or learning difficulties. Since separate results were not available, we calculated
the effect sizes considering the whole sample of 37 participants.

3 In Soderqvist and Bergman-Nutley (2015), no post-test assessment was administered

immediately after the training, but only 24 months later. Thus, we included the effect sizes
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Search Features

Searching electronic databases (Scopus, ERIC, Psyc-Info, ProQuest
Dissertation & Theses) and Google Scholar, using combinations of the

Search

intervention; children;

requesting unpublished data

following search terms: working memaory; training; cognitive,

« Scanning reference lists in publications on working memory training
+« Sending e-mail requests to authors of articles on WM training

l

{n=approx. 4,700)

Records After Duplicates Removed

l

Inclusion Criteria
L]

« Mustinclude participants without any learni
* Must provide data sufficient to calculate an

Criteria for Study Inclusion

+« NMust include a working memory training intervention

+ Mustinclude a treated group and, at least, one control group
Must report a measure of cognitive or academic skill

+ Must include participants aged three to sixteen

ng disability
effect size

l

Abstracts Screened
(n = approx. 4,700)

¥

Abstracts Excluded
(n = approx. 4,420)

v

Eligibility

Full-Text Articles Evaluated
for Eligibility
(n = approx. 280)

¥

Studies Included
{n=25)
26 independent samples
104 post-test effect sizes
30 follow-up effect sizes

Total N = 1,601

Included

Full-Text Articles Evaluated
for Eligibility but Excluded

{n = approx. 255)

Mo working memaory

h J training intervention

Mo measure of cognitive or
academic skills

Mo typically developing
children aged three to
sixteen.

Mot enough information to
calculate effect size

Figure 1. Flow diagram of the studies included in the meta-analytic review.

extracted from this study in both the main models and the follow-up models.
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2.3 Moderators

We selected five potential moderators:

1. Random allocation (dichotomous variable): Whether the participants were randomly
allocated to the groups;

2. Type of control group (active or passive; dichotomous variable): Whether the WM
training-treated group was compared to another activity;

3. Duration of training (continuous variable): The total time of training in hours;

4. Age (continuous variable): The mean age (in years) of the participants; when the
mean age was not provided (n = 3) we used either the median age (n = 1) or an age
estimation based on the school grade (n = 2; e.g., third graders = 9-year-olds);

5. Domain (categorical variable): This variable, which was inserted only in the far-
transfer model, includes literacy/word decoding, mathematics, science, fluid
intelligence, crystallized intelligence, and cognitive control.*

The two authors coded each effect size for moderator variables independently. There was

no disagreement with respect to Random allocation, Type of control group, and Age.
Regarding the moderator Duration of training, 87% agreement was obtained. For the

moderator Domain, the Cohen’s kappa was x = .95. The authors resolved every discrepancy.

“ These broad categories were built by aggregating different outcomes related to a particular
domain (e.g., go/no-go task and Stroop task under the category of cognitive control). For all
the details about the reviewed studies, see Tables S1.1 to S1.4 in the Supplemental material

available online.
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Table 1

Studies and moderators of the 30 near-transfer effect sizes included in the meta-analysis
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Duration of Random Type of

Study Age training allocation control group
Bergman-Nutley

etal. 2011) - M1 4.27 6.25 Yes Active
Bergman-Nutley

etal. (2011)-M2 4.27 6.25 Yes Active
Henry, Messer, &

Nash (2014) 7.00 3.00 Yes Active
Karbach,

Strobach, &

Schubert (2015)  8.30 9.33 Yes Active
Kroesbergen,

Noordende, &

Kolkman (2014)

- Ml 5.87 4.00 Yes Passive
Kroesbergen,

Noordende, &

Kolkman (2014)

-M2 5.87 4.00 Yes Passive
Kuhn & Holling

(2014) - S1 9.00 5.00 Yes Passive
Kuhn & Holling

(2014) - S2 9.00 5.00 Yes Active
Kun (2007) - S1 -

MIl 12.84 8.00 Yes Active
Kun (2007) - S1 -

M2 12.84 8.00 Yes Active
Kun (2007) - S2 -

M1 13.52 14.58 Yes Active
Kun (2007) - S2 -

M2 13.52 14.58 Yes Active
Kun (2007) - S2 -

M3 13.52 14.58 Yes Active
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Lee (2014)

9.00

3.00

Yes

Active

Lindsay (2012)

5.49

3.00

Yes

Active

Passolunghi &
Costa (2016) - S1
- Ml

5.44

10.00

Yes

Active

Passolunghi &
Costa (2016) - S1
-M2

5.44

10.00

Yes

Active

Passolunghi &
Costa (2016) - S2
- Ml

542

10.00

Yes

Passive

Passolunghi &
Costa (2016) - S2
- M2

542

10.00

Yes

Passive

Pugin et al.
(2015) - M1

13.00

8.05

Passive

Pugin et al.

(2015) - M2

13.00

8.05

No

Passive

Rode, Robson,
Purviance, Geary,

& Mayr (2014)

9.00

7.14

Yes

Passive

Shavelson et al.

(2008) - M1

13.50

14.58

Yes

Active

Shavelson et al.

(2008) - M2

13.50

14.58

Yes

Active

St Clair-
Thompson,
Stevens, Huth, &
Bolder (2010)

6.83

6.00

No

Passive

Studer-Luethi,
Bauer, & Perrig
(2016) - S1

8.25

4.50

Yes

Active

Studer-Luethi,

8.25

4.50

Yes

Passive
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Bauer, & Perrig
(2016) - S2

Thorell,

Lindqvist,

Bergman, Bohlin,

& Klingberg

(2008) - S1 4.67 6.25

Active

Thorell,

Lindqvist,

Bergman, Bohlin,

& Klingberg

(2008) - S2 4.67 6.25

No

Passive

Witt (2011) 9.68 7.50

No

Passive
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Table 2

Studies and moderators of the 74 far-transfer effect sizes included in the meta-analysis
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Duration of

Type of control

Study Age training Random allocation  group Domain
Bergman-Nutley et al.

(2011) 4.27 6.25 Yes Active Fluid intelligence
Henry, Messer, &

Nash (2014) - M1 7.00 3.00 Yes Active Literacy/WD
Henry, Messer, &

Nash (2014) - M2 7.00 3.00 Yes Active Mathematics
Horvat (2014) not given not given No Passive Fluid intelligence
Jaeggi, Buschkuehl,

Jonides, & Shah

(2011) - M1 8.98 5.00 No Active Fluid intelligence
Jaeggi, Buschkuehl,

Jonides, & Shah

(2011) - M2 8.98 5.00 No Active Fluid intelligence
Karbach, Strobach, &

Schubert (2015) - M1~ 8.30 9.33 Yes Active Literacy/WD
Karbach, Strobach, &

Schubert (2015) - M2 8.30 9.33 Yes Active Mathematics
Karbach, Strobach, &  8.30 9.33 Yes Active Cognitive control

66



Schubert (2015) - M3

Karbach, Strobach, &

Schubert (2015) - M4 8.30 9.33 Yes Active Cognitive control
Kroensbergen,

Noordende, &

Kolkman (2014) - M1  5.87 4.00 Yes Passive Cognitive control
Kroensbergen,

Noordende, &

Kolkman (2014) - M2  5.87 4.00 Yes Passive Mathematics
Kuhn & Holling

(2014) - S1 9.00 5.00 Yes Passive Mathematics
Kuhn & Holling

(2014) - S2 9.00 5.00 Yes Active Mathematics
Kun (2007) - S1-M1 12.84 8.00 Yes Active Fluid intelligence
Kun (2007) -S1-M2 12.84 8.00 Yes Active Science

Kun (2007) -S2 -M2  13.52 14.58 Yes Active Science

Lee (2014) - M1 9.00 3.00 Yes Active Literacy/WD
Lee (2014) - M2 9.00 3.00 Yes Active Literacy/WD
Lindsay (2012) - M1 5.49 3.00 Yes Active Literacy/WD
Lindsay (2012) - M2 549 3.00 Yes Active Literacy/WD
Loosli, Buschkuehl, 9.50 2.00 No Passive Fluid intelligence
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Perrig, & Jaeggi
(2012) - M1

Loosli, Buschkuehl,

Perrig, & Jaeggi

(2012) - M2 9.50 2.00 No Passive Literacy/WD
Mansur-Alves &

Flores-Mendoza

(2015) - M1 11.17 13.33 Yes Passive Fluid intelligence
Mansur-Alves &

Flores-Mendoza

(2015) - M2 11.17 13.33 Yes Passive Fluid intelligence
Mansur-Alves, Flores-

Mendoza, & Tierra-

Criollo (2013) - M1 9.19 10.00 Yes Active Fluid intelligence
Mansur-Alves, Flores-

Mendoza, & Tierra-

Criollo (2013) - M2 9.19 10.00 Yes Active Fluid intelligence
Mansur-Alves, Flores-

Mendoza, & Tierra- Crystallized
Criollo (2013) - M3 9.19 10.00 Yes Active intelligence
Mansur-Alves, Flores- 9.19 10.00 Yes Active Literacy/WD
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Mendoza, & Tierra-

Criollo (2013) - M4

Mansur-Alves, Flores-

Mendoza, & Tierra-

Criollo (2013) - M5 9.19 10.00 Yes Active Mathematics
Mansur-Alves, Flores-

Mendoza, & Tierra-

Criollo (2013) - M6 9.19 10.00 Yes Active Literacy/ WD
Nevo & Breznitz

(2014) - M1 8.50 4.80 Yes Active Literacy/WD
Nevo & Breznitz

(2014) - M2 8.50 4.80 Yes Active Literacy/WD
Passolunghi & Costa

(2016) - S1 5.44 10.00 Yes Active Mathematics
Passolunghi & Costa

(2016) - S2 5.42 10.00 Yes Passive Mathematics
Pugin et al. (2015) -

MIl 13.00 8.05 No Passive Fluid intelligence
Pugin et al. (2015) -

M2 13.00 8.05 No Passive Cognitive control
Pugin et al. (2015) - 13.00 8.05 No Passive Cognitive control
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M3

Pugin et al. (2015) -
M4

13.00

8.05

Passive

Cognitive control

Rode, Robson,
Purviance, Geary, &

Mayr (2014) - M1

9.00

7.14

Yes

Passive

Mathematics

Rode, Robson,
Purviance, Geary, &

Mayr (2014) - M2

9.00

7.14

Yes

Passive

Mathematics

Rode, Robson,
Purviance, Geary, &

Mayr (2014) - M3

9.00

7.14

Yes

Passive

Literacy/WD

Rode, Robson,
Purviance, Geary, &

Mayr (2014) - M4

9.00

7.14

Yes

Passive

Literacy/WD

Shavelson et al.

(2008)

13.50

14.58

Yes

Active

Fluid intelligence

Soéderqvist &
Bergman-Nutley
(2015) - M1

9.85

not given

No

Passive

Literacy/WD

Soéderqvist &

9.85

not given

No

Passive

Mathematics

70



Bergman-Nutley
(2015) - M2

St Clair-Thompson,
Stevens, Huth, &
Bolder (2010) - M1

6.83

6.00

No

Passive

Literacy/WD

St Clair-Thompson,
Stevens, Huth, &
Bolder (2010) - M2

6.83

6.00

No

Passive

Mathematics

St Clair-Thompson,
Stevens, Huth, &
Bolder (2010) - M3

6.83

6.00

No

Passive

Mathematics

St Clair-Thompson,
Stevens, Huth, &
Bolder (2010) - M4

6.83

6.00

No

Passive

Mathematics

Studer-Luethi, Bauer,
& Perrig (2016) - S1-
M1

8.25

4.50

Yes

Active

Literacy/WD

Studer-Luethi, Bauer,
& Perrig (2016) - S1-
M2

8.25

4.50

Yes

Active

Mathematics

Studer-Luethi, Bauer,

8.25

4.50

Yes

Active

Crystallized
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& Perrig (2016) - S1-
M3

intelligence

Studer-Luethi, Bauer,
& Perrig (2016) - S1-

M4 8.25 4.50 Yes Active Fluid intelligence
Studer-Luethi, Bauer,

& Perrig (2016) - S1-

M5 8.25 4.50 Yes Active Cognitive control
Studer-Luethi, Bauer,

& Perrig (2016) - S2-

Mil 8.25 4.50 Yes Passive Literacy/WD
Studer-Luethi, Bauer,

& Perrig (2016) - S2-

M2 8.25 4.50 Yes Passive Mathematics
Studer-Luethi, Bauer,

& Perrig (2016) - S2- Crystallized

M3 8.25 4.50 Yes Passive intelligence
Studer-Luethi, Bauer,

& Perrig (2016) - S2-

M4 8.25 4.50 Yes Passive Fluid intelligence
Studer-Luethi, Bauer, 8.25 4.50 Yes Passive Cognitive control
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& Perrig (2016) - S2-
MS5

Thorell, Lindqvist,
Bergman, Bohlin, &
Klingberg (2008) - S1
- Ml

4.67

6.25

No

Active

Cognitive control

Thorell, Lindqvist,
Bergman, Bohlin, &
Klingberg (2008) - S1
- M2

4.67

6.25

Active

Cognitive control

Thorell, Lindqvist,
Bergman, Bohlin, &
Klingberg (2008) - S1
- M3

4.67

6.25

No

Active

Fluid intelligence

Thorell, Lindqvist,
Bergman, Bohlin, &
Klingberg (2008) - S1
- M4

4.67

6.25

No

Active

Cognitive control

Thorell, Lindqvist,
Bergman, Bohlin, &
Klingberg (2008) - S2

4.67

6.25

No

Passive

Cognitive control
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- Ml

Thorell, Lindqvist,
Bergman, Bohlin, &
Klingberg (2008) - S2
- M2

4.67

6.25

No

Passive

Cognitive control

Thorell, Lindqvist,
Bergman, Bohlin, &
Klingberg (2008) - S2
- M3

4.67

6.25

Passive

Fluid intelligence

Thorell, Lindqvist,
Bergman, Bohlin, &
Klingberg (2008) - S2
- M4

4.67

6.25

No

Passive

Cognitive control

Wang, Zhou, & Shah
(2014) - S1

10.50

6.67

Yes

Active

Fluid intelligence

Wang, Zhou, & Shah
(2014) - S2

10.50

6.67

Yes

Active

Fluid intelligence

Wang, Zhou, & Shah
(2014) - S3

10.50

6.67

Yes

Active

Fluid intelligence

Wang, Zhou, & Shah
(2014) - S4

10.50

6.67

Yes

Active

Fluid intelligence
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Witt (2011) 9.68 7.50 No Passive Mathematics

Zhao, Wang, Liu, &
Zhou (2011) 9.76 not given Yes Passive Fluid intelligence

Table 3

Studies and moderators of the 6 near-transfer follow-up effect sizes included in the meta-analysis

Study Age Duration of training Random allocation Type of control group
Henry, Messer, & Nash

(2014) 7.00 3.00 Yes Active
Karbach, Strobach, &

Schubert (2015) 8.30 9.33 Yes Active
Pugin et al. (2015) - M1  13.00 8.05 No Passive
Pugin et al. (2015) - M2  13.00 8.05 No Passive
Studer-Luethi, Bauer, &

Perrig (2016) - S1 8.25 4.50 Yes Active
Studer-Luethi, Bauer, &

Perrig (2016) - S2 8.25 4.50 Yes Passive
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Table 4

Studies and moderators of the 24 near-transfer follow-up effect sizes included in the meta-analysis

Type of control
Study Age Duration of training Random allocation group Domain
Henry, Messer, &
Nash (2014) - M1 7.00 3.00 Yes Active Literacy/WD
Henry, Messer, &
Nash (2014) - M2 7.00 3.00 Yes Active Mathematics
Jaeggi, Buschkuehl,
Jonides, & Shah
(2011) - M1 8.98 5.00 No Active Fluid intelligence
Jaeggi, Buschkuehl,
Jonides, & Shah
(2011) - M2 8.98 5.00 No Active Fluid intelligence
Karbach, Strobach, &
Schubert (2015) - M1 8.30 9.33 Yes Active Literacy/WD
Karbach, Strobach, &
Schubert (2015) - M2 8.30 9.33 Yes Active Mathematics
Karbach, Strobach, &
Schubert (2015) - M3 8.30 9.33 Yes Active Cognitive control
Karbach, Strobach, & 8.30 9.33 Yes Active Cognitive control
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Schubert (2015) - M4

Pugin et al. (2015) -

M1 13.00 10.00 No Passive Fluid intelligence
Pugin et al. (2015) -

M2 13.00 10.00 No Passive Cognitive control
Pugin et al. (2015) -

M3 13.00 8.05 No Passive Cognitive control
Pugin et al. (2015) -

M4 13.00 8.05 No Passive Cognitive control
Soéderqvist &

Bergman-Nutley

(2015) - M1 9.85 not given No Passive Literacy/ WD
Soéderqvist &

Bergman-Nutley

(2015) - M2 9.85 not given No Passive Mathematics

Studer-Luethi, Bauer,
& Perrig (2016) - S1-
MIl 8.25 4.50 Yes Active Literacy/WD

Studer-Luethi, Bauer,
& Perrig (2016) - S1-
M2 8.25 4.50 Yes Active Mathematics




Studer-Luethi, Bauer,

& Perrig (2016) - S1- Crystallized

M3 8.25 4.50 Yes Active intelligence
Studer-Luethi, Bauer,

& Perrig (2016) - S1-

M4 8.25 4.50 Yes Active Fluid intelligence
Studer-Luethi, Bauer,

& Perrig (2016) - S1-

M5 8.25 4.50 Yes Active Cognitive control
Studer-Luethi, Bauer,

& Perrig (2016) - S2-

M1 8.25 4.50 Yes Passive Literacy/WD
Studer-Luethi, Bauer,

& Perrig (2016) - S2-

M2 8.25 4.50 Yes Passive Mathematics
Studer-Luethi, Bauer,

& Perrig (2016) - S2- Crystallized

M3 8.25 4.50 Yes Passive intelligence
Studer-Luethi, Bauer,

& Perrig (2016) - S2-

M4 8.25 4.50 Yes Passive Fluid intelligence
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Studer-Luethi, Bauer,
& Perrig (2016) - S2-
M5

8.25

4.50

Yes

Passive

Cognitive control
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2.4 Effect Size
The standardized means difference (Cohen’s d) was calculated with the following

formula:
d= (Mg—e - Mg—c)/SDpooled—pre (D)

where SDpooled-pre 18 the pooled standard deviation of the two pre-test standard deviations, and
M. and M, are the gain of the experimental group and the control group, respectively
(Schmidt & Hunter, 2015).> The follow-up effect sizes were calculated by using the

standardized difference between the follow-up and the pre-test measures.

Finally, the Comprehensive Meta-Analysis (Version 3.0; Biostat, Englewood, NJ) software
package was used for correcting the effect sizes for upward bias (Hedges’s g; Hedges &

Olkin, 1985), computing the overall effect sizes (gs), and conducting statistical analyses.

2.5 Statistical Dependence of the Samples

The effect sizes were calculated for each relevant measure reported in the studies
(Schmidt & Hunter, 2015). When several subscales of a test were used to measure the same
construct (e.g. block recall and digit recall as measures of working memory), the measures
were averaged, following Schmidt and Hunter’s (2015) recommendation. Also, when the
study presented a comparison between the treatment group and two control groups (passive
and active), two effect sizes — one for each comparison with experimental and control groups
— were calculated. As this procedure violates the principle of statistical independence of the
samples, Cheung and Chan’s (2004) method was applied to all the meta-analytic models.

This method reduces the weight of dependent samples in the analysis by estimating an

> When only the #-statistics were available, the t-values were converted into Cohen’s ds (Lee,
2014; Witt, 2011).

80



adjusted (i.e., smaller) N (for a list of the adjusted Ns, see Tables 2.1 to 2.13 in the
Supplemental material available online; http://psycnet.apa.org/record/2017-05288-001).
Since the method of Cheung and Chan (2004) cannot be used for partially dependent
samples,® we ran our analyses as if the comparisons between experimental samples and two
different control groups were statistically independent. As shown by Bijmolt and Pieters
(2001) and Tracz, Elmore, and Pohlmann (1992), the violation of statistical independence has
little or no effect on means, standard deviations, and confidence intervals. Thus, the entire

procedure is a reliable way to deal with the statistical dependence of part of the samples.

3. Results
3.1 Near-Transfer Effects
The random-effects meta-analytic overall effect size was g = 0.46, 95% CI [0.35;
0.57], k=30, p <.001. The forest plot is shown in Figure 2. The degree of heterogeneity

between effect sizes was close to zero, 7 = 7.94.7

® In addition, in three studies, a few participants did not take part in all the tests (i.e.,
attrition). In these cases, we used the mean number of participants as the number to be
adjusted.

" The P statistic refers to the percentage of between-study variance due to true heterogeneity
and not to random error (Higgins, Thompson, Deeks, & Altman, 2003).
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Study name

Pugin et al. (2015) - M2

Lindsay (2012)

Kuhn & Holling (2014) - S1

Lee (2014)

Passolunghi & Costa (2016) - S1 - M1

Kuhn & Holling (2014) - S2

Pugin et al. (2015) - M1

Bergman-Nutley et al. (2011) - M2

Shavelson et al. (2008) - M1

Kun (2007) - S2 - M3

Kun (2007) - S1 - M2

Kun (2007) - S1 - M1

Kroesbergen, Noordende, & Kolkman (2014) - M2
Rode, Robson, Purviance, Geary, & Mayr (2014)
Kroesbergen, Noordende, & Kolkman (2014) - M1
Shavelson et al. (2008) - M2

Kun (2007) - S2 - M1

Passolunghi & Costa (2016) - S2 - M1
Studer-Luethi, Bauer, & Perrig (2016) - S2

St Clair-Thompson, Stevens, Huth, & Bolder (2010)
Studer-Luethi, Bauer, & Perrig (2016) - S1
Karbach, Strobach, & Schubert (2015)

Thorell, Lindgvist, Bergman, Bohlin, & Klingberg (2008) - S1
Passolunghi & Costa (2016) - S1 - M2

Witt (2011) - M1

Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2008) - S2
Bergman-Nutley et al. (2011) - M1

Henry, Messer, & Nash (2014)

Passolunghi & Costa (2016) - S2 - M2

Kun (2007) - S2 - M2

-2.00

Hedges's g and 95% CI

-1.00

0.00

$004999049¢19¢701

1.00 2.00

Figure 2. Forest plot of the near-transfer model. Hedges’s gs (circles) and 95% CIs (lines) are
shown for all the effects entered into the meta-analysis. The diamond at the bottom indicates
the meta-analytically weighted mean g. When studies had multiple samples, the table reports
the result of each sample (S1, S2, etc.) separately. Similarly, when studies used multiple
outcome measures, the table reports the result of each measure (M1, M2, etc.) separately.
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3.1.1 Moderator analyses

Age was marginally significant, Z(1) =—1.80, » =—0.03, p = .072. None of the other
three moderators were significant: Random allocation, Z(1) =—0.58, b =-0.08, p = .562;
Type of control group, Z(1) =-0.31, b =-0.04, p = .760; and Duration of training, Z(1) =

0.42,5=0.01, p=.678.

3.1.2 Publication bias analysis
To test whether our analysis was affected by publication bias, we examined a funnel
plot representing the relation between effect sizes and standard errors. The contour-enhanced

funnel plot (Peters, Sutton, Jones, Abrams, & Rushton, 2008) is shown in Figure 3.

0.141

Standard Error
0282
|

0422
1

0563
|
L]

-1.5 -1 0.5 0 0.5 1 15

Hedges'g

Figure 3. Contour-enhanced funnel plot of standard errors and effect sizes (Hedges’s gs) in
the near-transfer meta-analysis. The black circles represent the effect sizes included in the
meta-analysis. Contour lines are at 1%, 5%, and 10% levels of statistical significance.

The symmetry of the funnel plot around the meta-analytic mean was tested by Egger’s
regression test (Egger, Smith, Schneider, & Minder, 1997). The test showed no evidence of
publication bias (p = .217). In addition, the trim-and-fill analysis (Duval & Tweedie, 2000)
estimated no weaker-than-average missing study (left of the mean). Finally, a p-curve

analysis was run with all the p-values < .05 related to positive effect sizes (Simonsohn,

Nelson, & Simmons, 2014). The results showed evidential values (i.e., no evidence of
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publication bias), Z(9) =-3.39, p = .003 (Figure 4).
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Note: The observed p-curve includes 9 statistically significant (p<.05) results, of which 8 are p<.025.
There were no non-significant results entered.

Figure 4. p-curve analysis. The blue (continuous) line shows that most of the significant p-
values are smaller than .025, suggesting evidential value.

3.2 Far-Transfer Effects
The random-effects meta-analytic overall effect size was g = 0.12, 95% CI [0.06;
0.18], k=74, p <.001. The forest plot is shown in Figure 5. The degree of heterogeneity

between effect sizes was I = 0.00.
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Study name

Mansur-Alves, Flores-Mendoza, & Tierra-Criollo (2013) - M3
Mansur-Alves, Flores-Mendoza, & Tierra-Criollo (2013) - M5
Passolunghi & Costa (2016) - S1

Mansur-Alves, Flores-Mendoza, & Tierra-Criollo (2013) - M6
Karbach, Strobach, & Schubert (2015) - M2

Nevo & Breznitz (2014) - M1

Kun (2007) - S1- M2

Studer-Luethi, Bauer, & Perrig (2016) - S2- M4

Karbach, Strobach, & Schubert (2015) - M4

Bergman-Nutley et al. (2011)

Kun (2007) - S1 - M1

Lindsay (2012) - M2

Kun (2007) - S2 - M2

Studer-Luethi, Bauer, & Perrig (2016) - S2- M5

Mansur-Alves & Flores-Mendoza (2015) - M2

Karbach, Strobach, & Schubert (2015) - M3

Pugin et al. (2015) - M4

Studer-Luethi, Bauer, & Perrig (2016) - S1- M5

Mansur-Alves, Flores-Mendoza, & Tierra-Criollo (2013) - M4
Rode, Robson, Purviance, Geary, & Mayr (2014) - M4

Pugin et al. (2015) - M2

Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2008) - S1 - M3
Pugin et al. (2015) - M3

Jaeggi, Buschkuehl, Jonides, & Shah (2011) - M2

Wang, Zhou, & Shah (2014) - S1

Shavelson et al. (2008)

Kuhn & Holling (2014) - S2

Henry, Messer, & Nash (2014) - M2

Rode, Robson, Purviance, Geary, & Mayr (2014) - M1

Thorell, Lindgvist, Bergman, Bohlin, & Klingberg (2008) - S1 - M4
Mansur-Alves, Flores-Mendoza, & Tierra-Criollo (2013) - M1
Mansur-Alves & Flores-Mendoza (2015) - M1

St Clair-Thompson, Stevens, Huth, & Bolder (2010) - M3
Kroensbergen, Noordende, & Kolkman (2014) - M1

Henry, Messer, & Nash (2014) - M1

Lee (2014) - M2

Lee (2014) - M1

Nevo & Breznitz (2014) - M2

Loosli, Buschkuehl, Perrig, & Jaeggi (2012) - M1

Studer-Luethi, Bauer, & Perrig (2016) - S1- M4

Rode, Robson, Purviance, Geary, & Mayr (2014) - M3

Jaeggi, Buschkuehl, Jonides, & Shah (2011) - M1

Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2008) - S1 - M1
Rode, Robson, Purviance, Geary, & Mayr (2014) - M2

Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2008) - S2 - M1
Loosli, Buschkuehl, Perrig, & Jaeggi (2012) - M2

Studer-Luethi, Bauer, & Perrig (2016) - S2- M2

Studer-Luethi, Bauer, & Perrig (2016) - S1- M2

Lindsay (2012) - M1

Wang, Zhou, & Shah (2014) - S2

St Clair-Thompson, Stevens, Huth, & Bolder (2010) - M2

Wang, Zhou, & Shah (2014) - S3

St Clair-Thompson, Stevens, Huth, & Bolder (2010) - M1
Studer-Luethi, Bauer, & Perrig (2016) - S2- M1

Studer-Luethi, Bauer, & Perrig (2016) - S2- M3

Thorell, Lindgvist, Bergman, Bohlin, & Klingberg (2008) - S2 - M3
Pugin et al. (2015) - M1

Passolunghi & Costa (2016) - S2

Soderqvist & Bergman-Nutley (2015) - M2

Kroensbergen, Noordende, & Kolkman (2014) - M2
Studer-Luethi, Bauer, & Perrig (2016) - S1- M1

Studer-Luethi, Bauer, & Perrig (2016) - S1- M3

Soderqvist & Bergman-Nutley (2015) - M1

Zhao, Wang, Liu, & Zhou (2011)

Wang, Zhou, & Shah (2014) - S4

Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2008) - S2 - M4
Mansur-Alves, Flores-Mendoza, & Tierra-Criollo (2013) - M2
Thorell, Lindqvist, Bergman, Bohlin, & Klingberg (2008) - S2 - M2
Horvat (2014)

Thorell, Lindgvist, Bergman, Bohlin, & Klingberg (2008) - S1 - M2
Karbach, Strobach, & Schubert (2015) - M1

Kuhn & Holling (2014) - S1

Witt (2011)

St Clair-Thompson, Stevens, Huth, & Bolder (2010) - M4

Hedges's g and 95% CI
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Figure 5. Forest plot of the far-transfer model. Hedges’s gs (circles) and 95% Cls (lines) are
shown for all the effects entered into the meta-analysis. The diamond at the bottom indicates
the meta-analytically weighted mean g. When studies had multiple samples, the table reports
the result of each sample (S1, S2, etc.) separately. Similarly, when studies used multiple
outcome measures, the table reports the result of each measure (M1, M2, etc.) separately.

3.2.1 Moderators analysis

Random Allocation was a significant moderator, Z(1) =-2.76, b =-0.20, p = .006.
The overall effect sizes in randomized and non-randomized samples were g = 0.07, 95% CI
[0.00; 0.14], k=50, p =.046, and g = 0.27, 95% CI [0.15; 0.39], k =24, p < .001,
respectively. Type of control group was marginally significant, Z(1) =-1.83, b=-0.12, p =
.067. The overall effect sizes when WM training was compared to active and passive control
groups were g = 0.05, 95% CI [-0.05; 0.15], k=40, p =311, and g = 0.18, 95% CI [0.09;
0.26], k=34, p <.001, respectively. Also, the overall effect size in randomized samples with
active control groups was g = 0.03, CI[-0.07; 0.14], k= 34, p = .521. Finally, Duration of
training was marginally significant, Z(1) =—1.81, b =—-0.02, p = .070. No other moderator

was significant: Age, Z(1) =-1.60, b =-0.03, p = .110; and Domain, p = .703.

3.2.2 Additional meta-analytic models

We calculated the random-effects meta-analytic overall effect sizes of each of the six
domains. The only significant overall effect size was g = 0.20, 95% C1[0.03; 0.36], k=17, p
=.018, for mathematics. To test the robustness of the result, we ran two moderator analyses
for this domain. Random Allocation was a significant moderator, Z(1) =-2.01, 56 =-0.35, p =
.045. The overall effect sizes in randomized and non-randomized samples were g = 0.10,
95% CI[-0.05; 0.25], k=12, p=.193, and g = 0.49, 95% CI [0.11; 0.88], k=5, p = .012,
respectively. Type of control group was significant, Z(1) =-2.41, b =-0.43, p = .016. The

overall effect sizes when WM training was compared to active and passive control groups
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were g =—0.11, 95% CI [-0.38; 0.16], k=6, p = .426, and g = 0.31, 95% C1[0.13; 0.49], k =

11, p=.001, respectively.

Literacy/WD overall effect size was marginally significant, g = 0.11, 95% CI [-0.00;
0.22], k=17, p = .055. None of the other overall effect sizes was significant: g =0.11, 95%
CI[-0.02; 0.24], k=21, p = .101 for fluid intelligence; g = 0.09, 95% CI [-0.08; 0.26], k=
14, p = .302 for cognitive control; g =—0.02, 95% CI [-0.75; 0.71], k=3, p = .956 for

crystallized intelligence; and g =—0.20, 95% CI [-0.65; 0.25], k=2, p = .386 for science.

3.2.3 Publication bias analysis

The contour-enhanced funnel plot of the main model (k = 74) is shown in Figure 6.
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Figure 6. Contour-enhanced funnel plot of standard errors and effect sizes (gs) in the far-
transfer meta-analysis. Contour lines are at 1%, 5%, and 10% levels of statistical
significance.

Egger’s regression test showed no evidence of publication bias (p = .511). In addition, the

trim-and-fill analysis estimated no weaker-than-average missing studies (left of the mean).

Finally, we performed a p-curve analysis. Both the full and half p-curve tests were right
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skewed with p <.100 (Z(3) =-1.40, p = .081 and Z(3) = —1.38, p = .084, respectively)

suggesting evidential value (Simonsohn, Simmons, & Nelson, 2015; Figure 7).8

100% — Observed p-curve
Power estimate: 42%, Cl(5%,90%)
------- Null of no effect
Right skew tests: pry =.0809, phar=.0843
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Note: The observed p-curve includes 3 statistically significant (p<.05) results, of which 2 are p<.025.
There were no non-significant results entered.

Figure 7. p-curve analysis. The blue (continuous) line shows that most of the significant p-
values are smaller than .025, suggesting evidential value.

8 Since only three values were inputted, the results of this p-curve analysis might be
unreliable. However, it must be kept in mind that the occurrence of publication bias is quite

unlikely when the overall effect size is close to zero.
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A trim-and-fill analysis was performed for four additional meta-analytic models,
(fluid intelligence, cognitive control, mathematics, and literacy/WD models). In the fluid
intelligence model, five studies were filled in, and the point estimate was g = 0.03, 95% CI [
0.09; 0.15]. In the literacy/word decoding model, two studies were filled in, and the point
estimate was g = 0.08, 95% CI [-0.03; 0.19]. No missing study was found in the other two
models. Due to the scarcity of effect sizes, no publication bias analysis was run for the

science and crystallized intelligence models.

3.3 Follow-Up Effects
For near-transfer follow-up effects, the random-effects meta-analytic overall effect
size was g = 0.33, 95% CI [0.00; 0.65], k= 6, p = .049. The degree of heterogeneity between

effect sizes was I° = 40.50.

For far-transfer follow-up effects, the random-effects meta-analytic overall effect size
was g = 0.09, 95% CI [-0.02; 0.20], £ = 24, p = .122. The degree of heterogeneity between

effect sizes was I = 0.00.

3.3.1 Moderator analyses
Due to the small number of effect sizes, no moderator analysis was run for the near-
transfer effects model. (For the same reason, no publication bias analysis was carried out for

this model.) Regarding the far-transfer effects model, no moderator was significant.

3.3.2 Publication bias analysis

In the far-transfer effect model, Egger’s regression test showed no evidence of
publication bias (p = .345). In addition, the trim-and-fill analysis estimated no weaker-than-
average missing studies (left of the mean). No p-curve analysis was carried out because none

of the effect sizes in the model reached statistical significance.
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4. Discussion

The purpose of this meta-analysis was to evaluate the impact of WM training on TD
children’s cognitive and academic skills. The results showed a clear pattern. Similar to
previous meta-analyses (e.g., Melby-Lervag & Hulme, 2013; Schwaighofer et al., 2015), WM
training significantly affected WM-related skills (post-test overall effect size, g = 0.46, p <
.001) and remained several months after the end of training (follow-up overall effect size, g =
0.33, p =.049). However, we found little or no evidence that WM training enhances fluid
intelligence or domain-general processes such as cognitive control. The same applied to
academic abilities such as literacy or science. Only the mathematics-related overall effect size
was significant, albeit quite modest (g = 0.20, p = .018). However, methodological issues
cast some doubts on the authenticity of the effect (we will take up this point below). Thus, the
results of the meta-analysis do not support the hypothesis according to which WM training

benefits cognitive or academic abilities in TD children.

Interestingly, WM training seems to produce approximately the same negligible
effects on measures outside the domain of WM regardless of the age of participants and
domain. The significant (or marginally significant) moderators in the far-transfer main model
(k= 74) were the random allocation of the participants to the samples, the type of control
group, and duration of training. The overall effect size was much smaller in randomized
samples (g = 0.07, p = .046) than in non-randomized samples (g = 0.27, p <.001). This
outcome suggests that episodes of self-selection in the experimental groups or differences at
baseline level between experimental and control groups may have inflated the effect sizes in

samples with no random allocation.® Analogously, the overall effect size was smaller when

? In the present case, the difference between groups at baseline level in some of the dependent
variables seems to be the most likely explanation. In several studies (e.g., Thorell,
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the experimental group was compared to an active control group (g =0.05, p =.311) than a
passive control group (g = 0.18, p <.001). This finding corroborates the idea that the positive
effect sizes reported in some primary studies are due to placebos as well. Moreover, when
only the effect sizes in randomized samples with active control groups were considered, the
overall effect size was almost null (g = 0.03, p = .521). Finally, the duration of training seems
to be slightly inversely related to the size of the effects (b =—0.02). This result is difficult to
interpret. However, the null degree of heterogeneity suggests caution in interpreting these
outcomes. In fact, the moderator analyses may have detected effects due to random error
rather than true heterogeneity between-effect sizes (see footnote 7). In any case, far transfer

effects of WM training appear to be negligible or, at best, modest.

4.1 Theoretical and Practical Implications

The present meta-analysis reviewed the studies in which participants were TD
children. For this reason, the results we reported do not apply to other populations — such as
children with learning disabilities or adults. Nonetheless, the fact that, in the general
population of children, WM training induces improvements in WM-related outcomes but not
in other types of cognitive and academic measures suggests some theoretical and practical

implications.

To begin with, if far-transfer is more likely to occur in children than adults when

cognitive and academic skills are developing, then our findings cast serious doubts on the

Lindqvist, Bergman, Bohlin, & Klingberg, 2009), the control groups performed better than
the experimental groups at the pre-test. The difference between the groups decreased at the
post-test, suggesting that the positive effect size is probably due to some statistical artefact
(e.g., regression to the mean, ceiling effect).
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idea that training a domain-general mechanism such as WM improves fluid intelligence,
cognitive control, or academic achievement.'? Second, and linked to the first point, the lack
of an effect of WM training on fluid intelligence supports the idea that WM and fluid
intelligence are two different constructs (Ackerman, Beier, & Boyle, 2005; Hornung,

Brunner, Reuter, & Martin, 2011; Kane, Hambrick, & Conway, 2005).

However, it must be noted that the positive effects in near-transfer measures might
reflect an improvement in WM tasks performance, rather than a genuine enhancement in WM
capacity (Shipstead et al., 2012). In other words, participants learn how to do the task without
improving their WM capacity. If this is the case, nothing can be inferred about the
relationship between fluid intelligence (or any other far-transfer measure) and WM capacity.
Moreover, following this line of reasoning, the absence of fluid intelligence enhancement
could be interpreted as a failed improvement in WM capacity after the training (see also the
discussion in Melby-Lervdg & Hulme, 2013). Regrettably, the information provided in the

primary studies is not sufficient to solve the issue.

The fact that the participants showed improvements in a large variety of tasks
different from the WM trained tasks (see Table S1.1 in the Supplemental Material available
online; http://psycnet.apa.org/record/2017-05288-001) might suggest that WM capacity was
actually boosted. However, pervasive improvement in WM-related measures may stem from
amelioration in some general skill at performing WM tasks rather than an increased WM

capacity. Thus, testing whether WM training enhances WM capacity requires not only a set

19Tt must be noted that this argument does not apply to the population of older adults. In fact,
the aim of WM training in the elderly is to slow down cognitive decline, not to extend
developing cognitive abilities. For a review, see Karbach and Verhaeghen (2014).
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of multivariate measures of WM capacity, but also that task-related improvements occur
through a common factor that is measurement invariant across treatment and control groups
(i.e., training effects that are proportional to the factor loadings in a structural equation
model). If such conditions can be met in a well-powered single study, then it can be

convincingly claimed that WM capacity has been enhanced.

Beyond these theoretical aspects, the most obvious practical implication of our results
is that WM training, at the moment, cannot be recommended as an educational tool. WM
training seems to have little or no effect on far-transfer measures of cognitive abilities and
academic achievement. More generally, this meta-analysis provides further evidence that the
occurrence of far-transfer is too infrequent to offer solid educational advantages. For this
reason, cognitive and academic enhancement interventions should be as close as possible to

the skills that are meant to be trained.

4.2 Limitations of the Present Meta-Analysis

Near-transfer effects seem to remain even a few months after the end of the training.
However, the limited number of studies (n = 4) and effect sizes (k = 6) does not allow us to
draw any reliable conclusion about this. The same limitation applies, to a lesser degree, to the
far-transfer follow-up effects (n = 6, k = 24). In this case, however, the findings are consistent
with the immediate post-test outcomes: modest or null effects in both the measures. In fact, it
is hard to see why negligible effects immediately after training, such as those reported in this

meta-analysis, should become significantly larger several months after the end of training.

Finally, other potential moderators — such as the type of training program — were not
considered in the meta-analytic models because of the limited number of the effect sizes.
However, the small degree of heterogeneity in both the near- and far-transfer models

discourages us from thinking that other moderators could have affected the overall results.
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4.3 Conclusions

The findings of the present meta-analysis do not invite optimism about the
effectiveness of WM training at improving cognitive skills and academic achievement in TD
children. WM training seems to enhance children’s performance in WM- and STM-related
measures. However, with regard to skills outside the domain of WM such as fluid
intelligence, cognitive control, mathematics, and literacy, this training seems to have little or
no effect. Consistent with Thorndike and Woodworth’s (1901) common element theory, our

findings show that the occurrence of far-transfer is, at best, sporadic.
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Chapter 5: Meta-Analysis of Chess Training

Rationale for the Meta-Analysis in Chapter 5
Chapter 5 reports a meta-analysis on the effect of chess instruction on children’s
cognitive abilities and academic achievement. Chess is unanimously considered a “brain
game,” and chess skill is often associated with superior intellectual ability. Also, playing
chess requires a considerable amount of cognitive effort. In fact, the game requires
memorising thousands of positions, calculating hundreds of variants, and precise planning.
Thus, chess is a perfect domain to test the hypothesis according to which engaging in

intellectually demanding activities enhances domain-general cognitive function.

The studies included in this meta-analysis are listed in Appendix B.
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1. Introduction

Recently, many concerns have been expressed about pupils’ poor mathematics
achievement both in the United States (Hanushek, Peterson, & Woessmann, 2012; Richland,
Stigler, & Holyoak, 2012) and in Europe (Grek, 2009). Pupils’ low mathematical skills have
serious consequences well beyond the classroom, as the possibility of successfully majoring
in Science, Technology, Engineering, and Mathematics (STEM) subjects, and hence
obtaining STEM jobs, is limited by one’s mathematical skills. The job market demands more
graduates in STEM subjects than graduates in the humanities and has also become more
competitive worldwide in recent years, with increasingly high mathematical competences

being required (Halpern et al., 2007).

To address the issue of how to improve mathematics instruction, policy makers and
researchers have explored a number of avenues. One such avenue is to teach chess in schools.
Chess has recently started to become part of the school curriculum (as an optional subject) in
several countries. Chess-related research and educational projects are currently ongoing in the
United Kingdom, Spain, Turkey, Germany, and Italy, among other countries. Commenting on
a large project having introduced chess in the curriculum of 175 schools in the UK, chess
master Jerry Myers stated that chess “directly contributes to academic performance. Chess
makes children smarter” (Garner, 2012). The European Parliament has expressed its
favourable opinion on using chess courses in schools as educational tool (Binev, Attard-
Montalto, Deva, Mauro, & Takkula, 2011) and, similarly, the Spanish Parliament has
approved the implementation of chess courses during school hours. These initiatives have
been conducted because chess is considered an effective educational tool able to improve not
only mathematical skills, but also other academic skills such as reading and general cognitive

abilities such as concentration and intelligence, and even children’s heuristics and habits of
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mind (Costa & Kallick, 2009). Critically, efforts to promote chess in schools take for granted

that chess skill transfers to other domains.

1.1 Difficulty of Transfer

Transfer of learning occurs when a set of skills acquired in one domain generalizes to
other domains or improves general cognitive abilities. Transfer is an important question both
theoretically and practically. Mestre (2005) distinguishes between near-transfer, where
transfer occurs between closely related domains (e.g., transfer from geometry to calculus) and
far-transfer, where the source and target domains are only loosely related (e.g., transfer from
Latin to geography). It has been proposed that transfer is a function of the extent to which
two domains share common features (Thorndike & Woodworth, 1901) and cognitive
elements (Anderson, 1990). In line with this hypothesis, near-transfer is often observed,
although exceptions also exist. For example, research into expertise shows that transfer is
only partial between subspecialties of expertise such as cardiology and neurology (Rikers,
Schmidt, & Boshuizen, 2002). By contrast, substantial research in education and psychology
suggests that far-transfer is difficult (Donovan, Bransford, & Pellegrino, 1999). This includes
the research on teaching the computer language LOGO in order to improve children’s
thinking skills, which has obtained disappointing results (De Corte & Verschaffel, 1986;
Gurtner, Gex, Gobet, Nunez, & Restchitzki, 1990). In addition, the higher the level of a skill,
the more specific the features of a domain will be, and the lower the likelihood that there will
be transfer (Ericsson & Charness, 1994), in particular because a large number of domain-
specific perceptual chunks will be acquired (Gobet, 2016). Again, there are exceptions, and

some individuals have excelled in several different domains (Gobet, 2011; 2016).

The difficulty of transferring knowledge and skills raises a number of significant
practical issues, especially in education. Most educational interventions try to transmit

knowledge which, to some extent, is meant to be transferable from one domain of learning to
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another. In fact, transferability of skills is either a tacit assumption or a specific aim of nearly
every educational program (Donovan et al., 1999; Perkins & Salomon, 1994). Therefore,
educational institutions are interested in methodologies implementing school activities that
teach and boost transferable skills. One approach is to teach general strategies, such as
learning, problem-solving, and reasoning heuristics (Perkins & Grotzer, 2000), so that these
skills can be easily transferred to other domains. Another approach is to teach a specific
activity, with the hope that this activity will help individuals to develop skills that might be
useable in other domains. The game of chess is one such activity that has been used in that

way.

1.2 The issue of Transfer in Chess Research

A substantial amount of research has been devoted to understanding the cognitive
processes underpinning chess skill, and much is known about chess players’ perception,
learning, memory, and problem solving (for reviews, see Gobet, 2016, and Gobet, de Voogt,
& Retschitzki, 2004). Much less is known about the extent to which chess skill transfers to

other domains of learning.

Several studies (Bilali¢, McLeod, & Gobet, 2007; Doll & Mayr, 1987; Frydman &
Lynn, 1992; Grabner, Stern, & Neubauer, 2007) have shown that chess players tend to be
more intelligent than the general population. However, these studies were correlational in
nature and cannot establish that chess skill is the actual cause of better intellectual abilities. In
fact, the exact opposite causal explanation could be true: some individuals could excel at

chess due to their superior intellectual abilities (Gobet & Campitelli, 2002).

Assuming that skills acquired in chess will lead to benefits in domains such as
mathematics and reading clearly implies the presence of far transfer. In line with Thorndike

and Woodworth’s (1901) hypothesis, several studies have shown that chess players’ skill
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tends to be context-bound, suggesting that it is difficult to achieve far-transfer from chess to
other domains. For example, memory for chess positions fails to transfer from chess to digits
both in adults and children (Chi, 1978; Schneider, Gruber, Gold, & Opwis, 1993); chess
players’ perceptual skills do not transfer to visual memory of shapes (Waters, Gobet, &
Leyden, 2002); chess skill does not predict performance in the economic game known as
beauty contest (Biihren & Frank, 2010); and finally, chess planning skills do not help chess

players to solve the Tower of London task (Unterrainer, Kaller, Leonhart, & Rahm, 2011).

1.3 Chess in School

In spite of these negative results, several researchers have pursued the hypothesis that
skills acquired with chess can transfer to other domains. Two main explanations have been
adduced to support this hypothesis. First, chess requires decision-making skills and high-level
processes (such as acquiring and selecting relevant information from a problem) similar to
those used in mathematics and reading (Margulies, 1992). Second, since chess is a
cognitively demanding task involving focused attention and problem solving, playing chess
should strengthen these cognitive abilities and thus be beneficial for children’s school
performance (Bart, 2014). However, convincing experimental evidence of the effectiveness
of chess instruction is lacking. In a literature review, Gobet and Campitelli (2006) argued that
there was no strong evidence for the cognitive and academic benefits of chess. They found
only few studies, which included unpublished reports or master and doctoral theses. Most
importantly, many of these studies had a quasi-experimental design (no random assignment
to the experimental and control groups) and, in some cases, the experimental samples were

self-selected.

The difficulty of transferring chess skill is consistent with the literature on the transfer
of specific skills. At first blush, it is hard to see why knowing the strategic value of the bishop

pair or the correct way to handle a minority attack should offer any advantage in
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mathematics, understanding a text, or developing focused attention. Nevertheless, it is
possible that chess practice enhances some abilities shared with other domains, such as those
mentioned above, provided that chess is taught early on with children, when academic and
cognitive abilities are at the beginning of their development. This is the reason why chess
intervention studies have focused on the academic and cognitive skills of children rather than
adults: Children’s skills are less context-specific than adults’, and thus transfer of learning is

more likely in the former than in the latter.

Some recent studies (Sala, Gorini, & Pravettoni, 2015; Scholz et al., 2008; Trinchero,
2012; Trinchero & Sala, 2016) have provided more refined explanations as to why chess may
effectively enhance cognitive and mathematical skills. According to these researchers, chess
improves children’s mathematical skills because the game has some elements in common
with the mathematical domain and because it promotes suitable habits of mind (Costa &
Kallick, 2009). Through chess, children train several context-independent skills (such as the
ability to understand the existence of a problem or the need for correct reasoning), which may
transfer to the mathematical domain. This is possible because (primary school) mathematics
and chess share some common features (e.g., numerical and spatial relationships as well as
quantity-based problems), strategies to solve problems (e.g., focusing and interpreting
game/problem situations, selecting relevant information, or looking for correct arguments),
cognitive skills (e.g., attention) and meta-cognitive skills (e.g., planning). The aim of our
study is thus to test, comprehensively and quantitatively, these previous claims on the

putative benefits of chess instruction in school.

2. Scope, Aims, and Hypotheses of the present Meta-Analysis
Given the considerable attention that research on chess in school is attracting and the
potentially important implications for our understanding of transfer, it is important to provide

a scientific evaluation of the effects of chess instruction on academic and cognitive skills. A
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similar interest has been devoted to studies on the possibility that video-games improve
cognitive skills and that the benefits transfer to other domains (Green, Li, & Bavelier, 2010;
Green, Pouget, & Bavelier, 2010). Just like with the video-game literature, a possibility that
will have to be kept in mind in our meta-analysis is that the observed transfer from the source
domains to the target domains might be due to confounds such as the placebo effect (Boot,

Blakely, & Simons, 2011; Gobet et al., 2014).

Our meta-analysis'! is an investigation of studies regarding the potential benefits of
chess for children with respect to (a) mathematics skills, (b) reading skills, and (c) several
cognitive categories (general intelligence, meta-cognition, attention/concentration, and spatial
abilities). We chose these three categories of skills because they were the three categories

chess-related research has been focusing on.

Our study had two main aims. The first aim was to estimate the overall effect size of
the benefits of chess instruction by comparing experimental groups to control groups. The
second aim was to evaluate the potential role of several factors in moderating the effect of
chess instruction in children. The first four moderators addressed substantive aspects of the

studies, and the last two covered methodological aspects:

1. Outcome: Mathematics, reading, or cognitive skills;

' Two previous meta-analyses were carried out on the effect of chess instruction: Benson
(2006) and Nicotera and Stuit (2014). Neither calculated an overall effect size nor ran a
moderator analysis. Rather, they divided the meta-analytic means into sub-categories (such
as mathematics with chess instruction). The results they obtained were optimistic compared
to ours, as they included several studies that were not included in the present meta-analysis
because they did not satisfy the selection criteria.
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2. Duration of training (in hours);

3. Grade of the participants: Primary or secondary school;

4. Participants’ category: Children with special educational needs or not;

5. Publication: Published or unpublished studies, where “published” is defined as having
appeared in a peer-reviewed journal,

6. Design quality: Integer index (range 0 — 3, from poor to good) expressing the quality
of the study design. The index measures three methodological characteristics: random

allocation, administered pre-test, and avoidance of self-selection of the sample.

Along with the evaluation of the potential role of the above moderators, two specific
sets of hypotheses were tested. The first pair of hypotheses dealt with the general question as
to whether the skills acquired with chess instruction transfer to other domains. Two opposing
hypotheses were tested. Hypothesis 1a predicted that, consistent with the literature on
expertise and most of the literature on transfer, chess skill does not transfer to other domains,
or at best the transfer is small and mostly due to unspecific factors (such as placebo effects).
Hypothesis 1b, which reflects the view held by most researchers and practitioners in the field
of chess instruction, predicted that there is substantial transfer. The second hypothesis dealt
with the benefits of chess instruction on mathematics and reading. In line with Thorndike and
Woodworth (1901), it was predicted that transfer is stronger with mathematics than with

reading, as chess shares more elements with the former topic than with the latter.

3. Method

3.1 Literature Search
A systematic search strategy was used to find the relevant studies. The procedure is
summarized in Figure 8. Google Scholar, ProQuest (Dissertations & Theses), ERIC and

Psyc-Info databases were searched to identify all the potential relevant studies. In addition,
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previous narrative reviews were examined, and we e-mailed researchers in the field asking

for unpublished studies and data.

SEARCH FEATURES
Electronic databases (Google, ERIC, Psyc-Info, ProQuest)
Prior narrative reviews
E-mails requests to the researchers in the field

Studies found N = 64

Studies excluded N = 40

REASONS
Did not have chess instruction
Did not have academic or cognitive cutcome
Did not have a control group
Did not have K-12 pupils
The groups differed in terms of grade
The interventions were mixed
Did not report enough data to calculate an effect size

24 studies were included in the meta-analysis

Figure 8. Flow diagram of the studies considered and ultimately included in the meta-
analysis.

3.2 Inclusion/Exclusion Criteria

The studies were included according to the following seven criteria:

1. The design of the study was experimental or quasi-experimental; correlational and
ex post facto studies were excluded.
2. The independent variable (chess instruction) was successfully isolated; the studies

using chess instruction as one of several independent variables (such as other
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activities) in the experimental group were excluded.

3. The study presented a comparison between a chess intervention group and at least
one control group.

4. The treatment and the control groups did not differ in terms of grade (e.g. third
graders compared to fourth or fifth graders).

5. During the study, a measure of mathematical, reading, or cognitive skill was
collected.

6. The participants of the study were pupils from kindergarten to the 12 grade.

7. The data presented in the published study were sufficient to calculate an effect
size or the author(s) of the study, after having been contacted, provided the

necessary data.

We found 24 studies, conducted from July 1976 to July 2015, that met all the
inclusion criteria (see Table 5). These studies included 25 independent samples and 40 effect
sizes, and a total of 5,221 participants (2,788 in the experimental groups and 2,433 in the

control groups).
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Table 5

Summary of the 24 studies included in the meta-analysis

STUDY OUTCOME PUBLISHED HOURS DESIGN SPECIAL GRADE OUTCOME MEASURE
QUALITY EDUCATIONAL
NEEDS
Aciego, Garcia, Cognitive Yes 96 1 No Both WISC-R
& Betancort
(2012)
Aydin (2015) Maths & Cognitive Yes 48 1 Yes Secondar Unknown
y
Barrett & Fish Maths & Cognitive Yes 25 2 Yes Secondar TAKS
(2011) y
Christiaen & Maths & Reading Yes 42 2 No Primary DGB
Verhofstadt-

Deneve (1981)

DuCette (2009) Maths & Reading No Not 0 No Both PSSA
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Given

Eberhard (2003) Cognitive No 60 Yes Secondar CogAT; NNAT

y
Forrest, Maths & Reading No 37 No Primary WISC-R (arithmetic subtest);
Davidson, Neale test
Stucksmith, &
Glendinning
(2005)
Fried & Cognitive No Not Yes Primary WISC-R
Ginsburg (n.d.) Given
Garcia (2008) Maths & Reading No 90 No Primary TAKS
Gliga & Flesner Cognitive Yes 10 No Primary Krapelin test; Rey test
(2014)
Hong & Bart Cognitive Yes 20 Yes Both RPM
(2007)
Kazemi, Maths & Cognitive Yes 96 No Both TIMSS (mathematical literacy);
Yektayar, & Panaoura, Philippou & Christou
Abad (2012) test
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Kramer & Cognitive No 32 No Primary Unknown
Filipp (n.d.)
Margulies Reading No Not No Primary DRP
(1992) Given
Rifner (1992) Maths & Reading No 30 No Secondar CTBS/4

y
Romano (2011) Maths No 25 No Primary INVALSI
Sala & Maths & Cognitive No 10 No Primary OCDE-Pisa (mathematical
Trinchero (in literacy)
preparation)
Sala, Gorini, & Maths Yes 18 No Primary OCDE-Pisa (mathematical
Pravettoni literacy)
(2015)
Sala, Gobet, Maths & Cognitive No 15 No Primary = TIMSS (mathematical literacy);
Trinchero, & Panaoura & Philippou test
Ventura (2016)
Scholz et al. Maths & Cognitive Yes 24 Yes Primary  Arithmetic test designed by the

(2008)

authors; DL-KG
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Sigirtmac Cognitive Yes 50 No Primary Unknown

(2012)

Trinchero & Maths No 30 No Primary Unknown
Piscopo (2007)

Trinchero & Maths No 19 No Primary OCDE-Pisa (mathematical
Sala (2016) literacy)

Yap (2006) Maths & Reading No 50 No Primary Oregon State Assessment
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3.3 Effect Size'?
For the studies with an only-post-test design, the standardized means difference

(Cohen’s d) was calculated with the following formula:
d= (Me_Mc) /SDpooled (1)

where SDpoolea 18 the pooled standard deviation and M, and M. are the means of the
experimental group and the control group, respectively.!® For the studies with a repeated-
measure design, the standardized means difference was calculated with the following

formula:
d= (Mg-e_ Mg—c) / SDpooled—pre (2)

where SDpooled-pre 1S the pooled standard deviation of the two pre-test standard deviations, and
M. and M. are the gain of the experimental group and of the control group, respectively.
For the studies with an ANCOVA design, the standardized means difference was calculated

with the following formula:
d= (Madj_e - Madj—c) /SDpooled (3)

where SD poolea 1s the pooled standard deviation of the two standard deviations of the
unadjusted means, and Maug-e — Magj-c are the adjusted means of the experimental group and
the control group, respectively. To correct for the upward bias, every Cohen’s d was

converted into Hedges’s g by using the following formula:

12 All the formulas we used were taken from Schmidt and Hunter (2015).

13 If the ¢ or F statistics were provided, we used the regular formulas d = tx

JIN, + N.)/(N, x N) and d = \/F X (N, + N.)/(N, X N,).
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g=d/(1+0.75/(N-3)) (4
where N is the sample size of the study.

Where reliability coefficients were available, the effect sizes were corrected for

measurement error by using the following formula:

g'=g/a (5)

where a is the square root of the reliability coefficient. It was possible to apply this correction
to 31 effect sizes. Finally, there were three outliers whose residual errors had z scores greater

than 4. These were Winsorized to z scores equal to 3.99.

Since we believed that the effect sizes had to reflect the actual improvement of the
experimental groups and should not be the product of statistical artefacts, we adopted the
following criterion: when the control group performance decreased in the post test, the effect
size was calculated by considering M, (control group gain) equal to 0. Finally, the
Comprehensive Meta Analysis (Version 3.0; Biostat, Englewood, NJ) software package was

used for computing the effect sizes and conducting the statistical analyses.

4. Results
A random model (k = 40) was built to calculate an overall effect size!®. The overall

effect size was g = 0.338, 95% CI1[0.242; 0.435], p <.001. The degree of heterogeneity

14 This formula is an acceptable approximation of the one converting Cohen’s ds into

Hedges’s gs presented in Chapter 3.

15 Twelve studies had more than one effect size. However, according to Tracz, Elmore, and
Pohlmann (1992), violations of statistical independence have little or no effect on means,

standard deviations, and confidence intervals.
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between effect sizes was between moderate and high (I° = 57.227), suggesting the potential
effect of some moderators. A trim-and-fill analysis showed that there was no publication bias.
Consistent with this, a funnel plot analysis, depicting the relationship between standard error

and effect size, was approximately symmetrical (see Figure 9).

Funnel Plot of Standard Error by Hedges's g
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Figure 9. Funnel plot of standard errors and effect sizes (g). The diamond at bottom
represents the meta-analytically weighted mean Hedges’s g.

4.1 Moderator Analyses

The only two statistically significant moderators were Duration of Training, which
positively affected the effect sizes (Q(1) = 3.89, b = 0.0038, p < .05, two tailed, £ = 35), and
Publication, which also positively affected the effect size (Q(1) =10.17, b = 0.2941, p < .01,

two tailed, £ = 40).

Following Trinchero’s (2012) suggestion (see Discussion), we considered 25 hours as
a threshold for the moderator Duration of Training. The overall effect size in studies with 25
or more hours of treatment was g = 0.427, 95% CI [0.271; 0.583], p <.001, k =23, while the

overall effect size in studies with less than 25 hours of training was g = 0.303, 95% CI
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[0.189; 0.417], p <.001, k= 12. Regarding the moderator Publication, the overall effect size
of the published studies was g = 0.540, 95% CI[0.346; 0.735], p <.001, k=17, while the
overall effect size of the unpublished studies was g = 0.230, 95% CI1[0.149; 0.311], p <.001,

k=23.

4.2 Additional Meta-Analytic Models

Although outcome was not a significant moderator, we ran three additional random
models — one for each outcome — in order to investigate whether any outcome shows an
overall effect size appreciably superior (or inferior, see discussion) to the others, as stated in

Hypothesis 2.

The first model included the 17 mathematics-related effect sizes. The overall effect
size was g = 0.382, 95% CI [0.229; 0.535], p <.001. A trim-and-fill analysis showed that
there was no publication bias. The second model included the 16 cognitive-related effect
sizes. The overall effect size was g = 0.330, 95% CI [0.130; 0.529], p = .001. A trim-and-fill
analysis indicated that there was no publication bias. Finally, the third model included the
seven reading-related effect sizes. The overall effect size was g = 0.248, 95% CI [0.128;
0.368], p <.001. A trim-and-fill analysis showed a possible publication bias (one study
trimmed, left to the mean). The analysis showed that the point estimate was g = 0.241, 95%

C1[0.122; 0.359].

5. Discussion
There is currently much research and excitement about the benefits of teaching chess
in schools. The issue is theoretically important, since chess researchers’ and practitioners’
claims about the presence of far transfer are at variance with main theories of learning and

expertise, which consider far transfer as difficult. In order to evaluate these diverging
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predictions, the current meta-analysis examined the effect exerted by chess instruction on

academic (mathematics and reading) and cognitive abilities in children.

5.1 Substantive Results

The first hypothesis predicted overall transfer beyond placebo effects. The results of
the current meta-analysis suggest that chess instruction improves children’s mathematical,
reading, and cognitive skills moderately. Although this outcome seems promising, two
considerations should be borne in mind. First, the overall effect size is not large enough to
convincingly establish the effectiveness of chess instruction in enhancing the skills in
consideration. By using Hattie’s (2009) categorization, an overall effect size of g =0.338 is
not in the so-called “zone of desired effects,” that is d > 0.4, which is the median value of the
effectiveness of educational interventions estimated by Hattie’s second-order meta-analysis.
This suggests that chess instruction is no more effective in enhancing children’s cognitive
and academic skills than many (at least more than 50%) other possible educational
interventions. Moreover, the observed difference between treatment and control groups might
be due to chess instructors’ passion rather than chess itself, because the potential role of
placebo effects was rarely, if ever, controlled for in the studies under consideration (we will
take up this methodological point below). Thus, consistent with Thorndike and Woodworth’s
(1901) common-element theory, the results tend to lend more support to Hypothesis 1a (chess
skill does not transfer to other domains) than Hypothesis 1b (transfer will be substantial),
which is largely held by the field of chess-in-school research. These considerations — along
with the overall results of the meta-analysis — lead us to think that learning activities should
be as close as possible to the skills to train; for example, mathematics instruction should be

used to teach mathematical skills.

However, the positive influence of the hours of treatment on the results seems to
support the idea that chess skill does transfer to other domains. Trinchero (2012) has
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suggested that appreciable positive effects occur only after 25 — 30 hours of chess instruction.
For studies with a minimum of 25 hours of instruction, the overall g effect size was 0.427,
which is a value in the “zone of desired effects” (see above). It is thus unlikely that this
positive outcome is only the consequence of placebo effects, although this possibility cannot
be ruled out completely. This suggests that 25 — 30 hours of chess instruction is the minimum
amount of instruction in order to obtain a significant transfer of learning from chess to other

domains.

The second hypothesis, which was a more direct test of Thorndike and Woodworth’s
(1901) theory, predicted that transfer from chess should be stronger to mathematics than to
reading, as chess shares more common elements with the former than the latter. Consistent
with the hypothesis, the overall effect size was larger with mathematics than with reading (g
=0.382 vs. g = 0.248). Although outcome was not a significant moderator, reading seemed to
benefit less from chess instruction than mathematics, as the effect size was substantially
lower; this was despite the fact that five of the seven studies on reading used a long duration

(30 hours or more; no information about duration was available in the other two studies).

In the introduction, we presented Thorndike and Woodworth’s (1901) view that
transfer of skills occurs only between two domains that share components. It is plausible to
argue that chess and mathematics have some components in common, such as their problem-
solving nature and the importance of quantitative relationships. Therefore, the hypothesis that
chess is a medium (in the sense of Feuerstein, Feuerstein, Falik, & Rand, 2006) through
which cognitive skills are trained with some benefit for mathematics is plausible, even though
it has not yet been convincingly supported by empirical research. However, with respect to
reading, it is difficult to identify what components are shared with chess, unless we focus on
very general commonalities (e.g., chess playing and reading are both decision-making

activities). In their study of the effects of chess instruction on reading, Forrest, Davidson,
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Stucksmith, and Glendinning (2005) suggested that chess interventions enabled participants
with low self-esteem to gain more confidence, which improved their literacy skills. If true,
this suggestion — along with the small effect size (g = 0.248) — upholds the idea that the

effects of chess interventions on reading are non-specific.

5.2 Methodological Moderators

The index of design quality was not a significant moderator. This fact suggests that
the results have not been significantly biased by the design used in the studies included in the
meta-analysis. Nevertheless, as previously mentioned, the absence of an active control group
in almost all the studies was a potential design-related confound we could not control for. The
moderator Publication indicated that studies published in peer-reviewed journals have greater
effect sizes. That studies with good results are more likely to be published is a common

pattern in the literature (Schmidt & Hunter, 2015).

5.3 Limitations of this Study

Regrettably, like the vast majority of studies carried out to assess the effect of
educational methods, none of the studies considered in this review employed what Gobet and
Campitelli (2006) called the “ideal design.” This design includes the following requirements
in addition to a treatment group: pre-test and post-test; two control groups (a do-nothing
group and an active control group, necessary for removing the possibility of a placebo effect);
random allocation to group; different personnel for conducting the pre-test, the treatment, and
the post-test; and ideally — but nearly impossible to do in practice — experimenters’ and
testers’ unawareness of the nature of the assignment into groups, and participants’
unawareness of the goal of the experiment and the fact that they take part in an experiment.
The presence of an active control group is crucial for controlling the possibility of placebo
effects, and thus establishing the causal role of chess instruction in far transfer. Mechanisms
that could produce “placebo effects” include instructors’ motivation, the state of motivation
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induced by a novel activity, and educators’ expectations (e.g., Boot, Simons, Stothart, &
Stutts, 2013; Gobet & Campitelli, 2006). Without any active control group, it is not possible
to exclude the possibility that positive results are due to such confounds, rather than to chess
itself. It remains unknown whether a study with a more rigorous design would yield the same
results as the studies previously conducted. Since nearly no study in the current meta-analysis
had an active control group, which is necessary for ruling out possible placebo effects, the

effects of chess instruction could have been systematically overestimated.

Another limitation of this field of research is that too few studies reliably controlled
for moderator effects. In addition, the dependent variables were often very different between
the studies: for example, basic arithmetic skills and mathematical problem-solving skills are
not the same thing, and the same applies to meta-cognition, general intelligence, attention,
and spatial abilities. We classified the studies using three broad kinds of outcomes
(mathematical, reading, and cognitive skills) because, unfortunately, the small number of
studies did not allow us to reliably evaluate the specific skills assessed as potential

moderators.

5.4 Conclusions and Recommendations for Future Research

Even if chess, under specific circumstances, seems to positively affect children’s
skills, there still are serious doubts about the real effectiveness of its practice. There is a need
to clarify whether this positive influence is due to placebo effects or to chess instruction
itself. In the latter case, research should identify the mechanisms underpinning the link
between chess, the specific cognitive abilities involved and enhanced by the practice of the
game, and their potential influence on mathematics and reading skills. In addition, the field
should develop a detailed causal model explaining the cognitive processes that mediate
learning and transfer. Finally, the data suggest that chess enhances children’s mathematical
skills and cognitive abilities more than reading skills, although the moderator analysis was
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not statistically significant. With reading skills, both the data and the explanations provided
by researchers suggest that the positive effects of chess on children’s reading skills are due to

placebo effects. Further research should establish the reliability of these results.

Regarding future studies, we recommend to use an experimental design (random
allocation, pre-tests and post-tests) with two control groups (a do-nothing group and an active
control group). While logistically more complex, such a design is necessary in order to
establish whether the benefits putatively provided by chess instruction are genuine and not
caused by non-specific factors (e.g., placebo effect). Another important goal is to identify the
specific characteristics of chess that might improve children’s abilities, and which abilities
they foster (e.g., attention, spatial abilities, quantitative reasoning, or meta-cognition). For
example, is it the diversity of pieces on the board that help maintain attention? Does the
movement of the pieces help to boost visuo-spatial abilities? Does chess ideally combine
numerical, spatial, temporal, and combinatorial aspects? Does chess promote a better and
more conscious way of thinking? In particular, it is important to demonstrate whether these
features are common or not to other activities and games. Specifically, one should understand
whether some features (e.g., quantitative relationships between pieces and problem-solving

situations) are shared by other board games.

Thus, researchers should include (at least) two dependent variables — one academic
and one cognitive — in their experimental designs, in order to shed some light on the causal
relationships between chess instruction, and cognitive and academic skills. Many researchers,
for instance, have claimed that chess enhances mathematical skills because chess practice
relies on cognitive skills and mechanisms that, in turn, underlie mathematical skills. While
this hypothesis is plausible, too few studies have directly addressed the question by assessing
both a cognitive and an academic outcome, and the results have been contradictory. For
example, Scholz et al. (2008) and Sala and Trinchero (in preparation) found no effect of
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chess on focused attention and meta-cognition respectively, whereas Kazemi, Yektayar, and
Abad (2012) found a positive effect of chess practice on meta-cognitive abilities both in

primary and in secondary school participants.

Finally, since the effectiveness of chess in enhancing children’s intellectual skills
seems to be dependent on the duration of the training, it would be useful to directly
manipulate this variable in future studies, by systematically varying the duration of
treatments between groups. This would ascertain the minimal and optimal amounts of chess
instruction for far transfer: too short a duration might not provide enough time for progress,
while too long a duration might lead to diminishing returns. Other worthwhile topics of
investigation include a comparative study of different teaching methods with respect to their
efficiency (e.g., is instruction better with computers or without computers? Are group
activities preferable to individual activities, or is it the opposite? Are there more efficient
orders of covering the material?). Finally, there has been little research that has explicitly
mapped between chess and aspects of mathematics. Possible examples include bridging the
chess board with the Cartesian graph and bridging the way the king moves in chess with
block distance (as opposed to Euclidean distance). As it is known that awareness makes
transfer more likely (Gick & Holyoak, 1980; Salomon & Perkins, 1989), it is plausible that

making explicit the links between chess and mathematics could facilitate transfer.

In conclusion, the game of chess seems to exert a slight positive influence on both
academic and cognitive abilities. Further research is needed to shed light on the relationship
between cognitive and academic improvements, to evaluate the role of potential moderators
and confounds, and to understand the role, if any, of placebo effects and game elements non-

specific to chess.
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Chapter 6: Meta-Analysis of Music Training

Rationale for the Meta-Analysis in Chapter 6
Chapter 6 reports a meta-analysis on the effect of music training on children and
young adolescents’ cognitive abilities and academic achievement. Like chess, music is
considered a cognitively demanding activity, and correlational evidence links music skill with
superior cognitive ability. Music training is thus another relevant domain in which to test the

cognitive-training theory.

The studies included in this meta-analysis are listed in Appendix C.
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1. Introduction

Recently, the question of whether music-related activities in school improve young
people’s cognitive and academic skills has raised much interest among researchers,
educators, and policy makers. Several studies have tried to establish the effectiveness of
music training in enhancing children’s and young adolescents’ general intelligence (Rickard,
Bambrick, & Gill, 2012), memory (Roden, Kreutz, & Bongard, 2012), spatial ability and
mathematics (Mehr, Schachner, Katz, & Spelke, 2013), and literacy skills (Slater et al.,
2014), among others (for a review, see Miendlarzewska & Trost, 2013). Music training
comprises activities such as singing songs, playing instruments, clapping, and rhythm games
beyond many others. Notably, several specific curricula have been designed to develop those
cognitive skills involved in playing music (e.g., Kodaly method; Houlahan & Tacka, 2015).
The educational implications of this research are evident. If music training enhances
children’s and young adolescents’ cognitive skills and school grades, then schools might

consider implementing additional musical activities.

1.1 The Question of Transfer of Skills

Crucially, the importance of establishing whether music training provides any
educational advantage is not limited to the field of education. In fact, this topic addresses the
broader psychological question of transfer of skills. Transfer of learning takes place when
skills learned in one particular area either generalize to new areas or increase general
cognitive abilities. It is customary to distinguish between near- and far-transfer (Barnett &
Ceci, 2002; Mestre, 2005). Whilst near-transfer takes place between areas that are tightly
related (e.g., driving two different car models), far-transfer occurs where the relationship
between source and target areas is weak (e.g., transfer from music to mathematics). Thus,
postulating that music skill generalizes to other non-music-related cognitive and academic

abilities means assuming the occurrence of a far-transfer.
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According to Thorndike and Woodworth’s (1901) common-element theory, transfer
depends on the number of features that are shared between two areas; these features are
hypothesized to engage common cognitive elements (Anderson, 1990). A direct consequence
of this theory, well supported by empirical data in psychology and education, is that, while
near-transfer should be frequent, far-transfer should be rare (Donovan, Bransford, &

Pellegrino, 1999; Sala & Gobet, 2016).

1.2 Why Should Music Skill Transfer to non-Music Skills?

Music training has been claimed to enhance various cognitive and academic skills.
Given the well-known difficulty of far-transfer to occur, it is possible that music training
boosts context-independent cognitive mechanisms, which may, in turn, improve other non-
music cognitive and academic skills. According to Schellenberg (2004, 2006), the most likely
explanation for the alleged diverse benefits of music interventions is that such training
enhances individuals’ general intelligence, which correlates with many cognitive and
academic skills (Deary, Strand, Smith, & Fernandes, 2007; Rohde & Thompson, 2007).
Music training requires focused attention, learning complex visual patterns, memory, and fine
motor skills. Thus, such a demanding activity may enhance children’s and young adolescents’
overall cognitive skill, which, in turn, would increase their academic performance. This
hypothesis is corroborated by the fact that formal exposure to music in childhood appears to

correlate with 1Q scores and academic attainment (Schellenberg, 2006).

Another possible explanation relies on executive functions. Cognitive skills such as
working memory, cognitive control, and cognitive flexibility are important predictors of
academic achievement (e.g., Conway & Engle, 1996; Peng, Namkung, Barnes, & Sun, 2016).
Learning to play an instrument engages executive functions (Bialystok & Depape, 2009;
George & Coch, 2011) and it is not impossible that such improvements generalize to non-

music skills.
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1.3 Does Music Skill Transfer to non-Music Skills? A Look at the Empirical Evidence
Several correlational studies have shown that music skill is associated with non-
music-specific skills such as literacy (Anvari, Trainor, Woodside, & Levy, 2002; Forgeard et
al., 2008), mathematics (Cheek & Smith, 1999), short-term and working memory (Lee, Lu, &
Ko, 2007), and general intelligence (Lynn, Wilson, & Gault, 1989; Schellenberg, 2006;
Schellenberg & Mankarious, 2012). Anvari et al. (2002) found that music perception skills
predicted reading abilities in preschool children. Similarly, Forgeard et al. (2008) reported
that music discrimination ability correlated with phonological processing skill in a sample of
typically developing and dyslexic children. Concerning mathematical ability, Cheek and
Smith (1999) showed that students who had received private lessons of music performed
better in the mathematics portion of the lowa Test of Basic Skills. Consistent with the latter
two studies, Wetter, Koerner, and Schwaninger (2009) found a positive relationship between

being engaged in music activities and overall academic achievement.

Music skill seems to be positively associated to cognitive ability too. In Lee et al.’s
(2007) study, music-trained children and adults were compared to age-matched control
groups in a series of digit span and spatial span tasks. The music-trained groups outperformed
the controls in all the measures. Regarding overall cognitive ability, a convincing amount of
evidence suggests that music skill and general intelligence are significantly related. Lynn et
al. (1989) found a correlation between the scores on Raven’s Standard Progressive Matrices
(Raven, 1960) and a series of music tests in a group of 9-11-year-old children. Moreover,
Schellenberg (2006) reported a positive correlation between duration of the music training
and IQ in children and undergraduate students. Crucially, this result remained even after
controlling for potentially confounding variables, such as parental income and education.
Finally, this finding was confirmed in a more recent study involving 7- and 8-year-old

children (Schellenberg & Mankarious, 2012).
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However, such correlational studies cannot ascertain any far-transfer of skill from
music training to other areas, because no direction of causality can be inferred. For example,
both music and non-music skills could stem from innate intellectual abilities. Stronger
conclusions can be drawn from studies using an experimental design, where an experimental
group without previous formal musical instruction receives musical training. However, the
experimental studies on the benefits of music training have provided mixed results. For
example, while some studies have reported positive results (Kaviani, Mirbaha, Pournaseh, &
Sagan, 2014; Portowitz, Lichtenstein, Egorova, & Brand, 2009), others have showed modest
evidence of music training on children’s performance on intelligence tests (Rickard, et al.,
2012; Schellenberg, 2004). Analogously, studies investigating the effect of music training on
cognitive ability such as spatial- and memory-related skills have provided no clear pattern of
results. For example, in Bowels (2003), music training exerted a strong effect on children’s
visuospatial ability. Analogously, in Degé, Wehrum, Stark, and Schwarzer (2011) music
training significantly enhanced the participants’ visual and auditory memory. However,
Rickard et al. (2012) failed to find any effect in either of the above measure. With regard to
academic achievement, previous meta-analyses suggest that music training slightly enhances
students’ mathematical (Hetland & Winner, 2001; Vaughn, 2000) and literacy skills (Gordon,
Fehd, & McCandliss, 2015). However, the overall effect sizes reported in these meta-analyses
are modest, and the variability between studies is quite pronounced. Put simply, the effects of
music training on skills such as spatial ability, memory, academic performance, and general
intelligence are still controversial, and positive results have not always been replicated

(Miendlarzewska & Trost, 2013).

Such variability in the results may be due to the design features of the studies,
including (a) the age of the participants, (b) the random (or non-random) assignment to the

treatment and control groups, and (c¢) the presence (or absence) of a group engaged in an
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alternative activity to control for non-music-specific effects, such as placebos. Age may affect
the occurrence of transfer of skills in two ways. First, transfer effects may be a function of
neural plasticity (Buschkuehl, Jaeggi, & Jonides, 2012), which, in turn, is a function of age.
Second, as students grow up, the level of specificity of the activities they are engaged in
increases (e.g., mathematics, literacy, etc.). Crucially, research on expertise has shown that
the higher the level of a particular ability, the more specific the features of that ability will be,
and consequently, the lower the likelihood that transfer will occur (Ericsson & Charness,

1994; Gobet, 2016).

Quality design-related features may be important moderators too. Without random
allocation of the participants, it is not always possible to ensure the baseline equivalence
between experimental and control groups, especially if the experimental group is self-
selected. Controlling for placebo effects could be even more important. In fact, the
experience of a new activity such as music training may cause, ipso facto, an enhancement in
children’s and young adolescents’ cognitive and academic skills. Music-related activities are
usually a novelty for young students and may induce a state of motivation and excitement,
which, in turn, may be the real cause of the observed (and temporary) improvements.
Comparing music training with other enrichment activities is thus essential to understand
whether the observed benefits are specifically due to music, or just the consequence of non-

specific placebo effects.

1.4 Aims of the Present Meta-Analysis

Because of the theoretical implications for theories of transfer, the possible
educational applications, and the current general interest in this topic, it is imperative to
rigorously evaluate the putative benefits of music training for academic and cognitive skills.
Similar claims have been made about the possibility of obtaining transferable benefits, both

cognitive and academic, from playing video-games (Green, Li, & Bavelier, 2010; Green,
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Pouget, & Bavelier, 2010), working memory training (Melby-Lervidg & Hulme, 2013, 2016),
and playing chess in schools (Gobet & Campitelli, 2006; Sala & Gobet, 2016). However,
research in these fields suggests that optimism about the positive effects of music training
must be tempered by the possibility that the observed effects are due to confounding factors
such as placebo effects (Boot, Blakely, & Simons, 2011; Gobet et al., 2014; Sala & Gobet,

2016) and lack of random assignment of the participants to the groups.

Our meta-analysis, then, examines the potential cognitive and academic benefits of
music training for the general population of children and young adolescents (see 2.2.
Inclusion/Exclusion Criteria). In a first stage, we estimated the overall size of the effects of
music training on non-music cognitive and academic skills by comparing experimental
groups to control groups. In a second phase, we assessed the potential role of several possible
moderators on the effectiveness of music training. The analysis of these factors — along with
the estimation of an overall effect size — aimed to test: (a) whether music training enhances
students’ cognitive and academic skills, or whether far-transfer from music to other areas is
null or negligible; (b) whether music training improves some specific skills more than others;
(c) whether students’ age affects the benefits of music training; and (d) whether the
methodological quality of the studies reviewed — i.e., random allocation of participants and
comparisons with active (i.e., do-other) control groups to rule out placebo effects — influence

the results.

Points a) and b) were tested by calculating a general overall effect size (see Section 3.
Results) and the measure-specific overall effect sizes (see Sections 3.1 and 3.2), respectively.

Points c) and d) were addressed by performing a meta-regression analyses (see Section 3.1).
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2. Method

2.1 Literature Search

In line with the PRISMA statement (Moher, Liberati, Tetzlaff, & Altman, 2009), a
systematic search strategy was used to find the relevant studies. Using the following
combination of the keywords “music” AND (“training” OR “instruction” OR “education” OR
“intervention”), Google Scholar, ERIC, Psyc-Info, ProQuest Dissertation & Theses, and
Scopus databases were searched to identify all the potentially relevant studies. Also, previous
narrative reviews were examined, and we e-mailed researchers in the field (» = 11) asking for

unpublished studies and inaccessible data.'¢

2.2 Inclusion/Exclusion Criteria

The studies were included according to the following nine criteria:

1. The design of the study included music training; correlational and ex-post facto
studies were excluded;

2. The independent variable (music training) was successfully isolated; the studies
using integrated curricula (e.g., lessons of music and reading in the same
intervention) were excluded;

3. The study presented a comparison between a music-treated group and, at least,
one control group;

4. Music training was not merely environmental (e.g., background music, music
videos);

5. During the study, a measure of academic and/or cognitive skill non-related to

16 Unfortunately, no author replied to our e-mails.
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music was collected;

6. The participants of the study were pupils aged three to 16;

7. The participants of the study were pupils without any previous formal musical
training (as stated by the authors of the included studies);

8. The participants of the study were pupils without any specific learning disability
(e.g., developmental dyslexia) or clinical condition (e.g., autism);

9. The data presented in the study were sufficient to calculate an effect size.

To identify studies meeting these criteria, we searched for relevant published and
unpublished articles in the last 30 years (from January 1, 1986, through March 1, 2016), and

scanned reference lists.

Among the studies screened (n = 166), we found 38 studies, conducted from 1986 to
2016, that met all the inclusion criteria. These studies included 40 independent samples and

118 effect sizes, and a total of 3,085 participants.

2.3 Moderators

We selected four potential moderators. The first two, which we termed theoretical
moderators, referred to features of the dependent variables and the participants of the studies,
while the last two, which we termed methodological moderators, addressed more general

methodological aspects:

1. Outcome measure (categorical variable): This variable includes literacy, mathematics,

memory, intelligence, phonological processing, and spatial skills.!” Effect sizes that

17 These broad categories were built by aggregating different outcomes related to a particular

cognitive or academic ability (e.g., reading and writing both under the category of literacy).
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were not related to these categories (e.g., visual-auditory learning and visual attention)
were labelled as others;

2. Age: The age of the participants in years (continuous variable);

3. Random allocation (dichotomous variable): Whether participants were fully randomly
allocated to the groups;'®

4. Presence of active control group (dichotomous variable): Whether the music training

group was compared to another activity.

Table 6

Studies, dependent variables, and moderators of the 118 effect sizes included in the meta-

analysis

For all the details about the dependent variables of the reviewed studies, see Table 1. See the
Table S1 in the Supplemental material for more details about the descriptive statistics of the
studies.

¥ The category of “non-random” encompasses both pre-post-test studies and only-post-test
studies. Two studies reported only post-test results: Cardarelli (2003) and Geoghegan and

Mitchelmore (1996).
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Active

Outcome Age control

Study Dependent variable measure (years)® Randomization group
Working Memory

Bhide, Power, and Goswami (2013) - M1 (digit span) Memory 6.8 No Yes
Phonological Phonological

Bhide, Power, and Goswami (2013) - M2 awareness processing 6.8 No Yes

Bhide, Power, and Goswami (2013) - M3 Spelling Literacy 6.8 No Yes

Bhide, Power, and Goswami (2013) - M4 Reading Literacy 6.8 No Yes
Intelligence

Bilhartz, Bruhn, and Olson (2000) (vocabulary) Intelligence 4.5 No No
Spatial temporal

Bowels (2003) - M1 ability Spatial 6.5 Yes No

Bowels (2003) - M2 Reading Reading 6.5 Yes No
Phonological Phonological

Bowels (2003) - M3 awareness processing 6.5 Yes No
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Cardarelli (2003) - M1 Reading Reading 9.0 No No

Cardarelli (2003) - M2 Mathematics Mathematics 9.0 No No

Cogo-Moreira, de Avila, Ploubidis, and Mari (2013) - Phonological Phonological

MIl awareness processing 9.2 Yes No

Cogo-Moreira, de Avila, Ploubidis, and Mari (2013) -

M2 Reading Literacy 9.2 Yes No

Costa-Giomi (2004) - M1 Mathematics Mathematics 9.0 Yes No

Costa-Giomi (2004) - M2 Language Literacy 9.0 Yes No

Costa-Giomi (2004) - M3 Mathematics Mathematics 9.0 Yes No
Phonological Phonological

Deg¢ and Schwarzer (2011) - S1 awareness processing 5.8 Yes Yes
Phonological Phonological

Degé and Schwarzer (2011) - S2 awareness processing 5.8 Yes No

Degé, Wehrum, Stark, and Schwarzer (2011) - M1 Visual memory Memory 10.8 No No

Degé, Wehrum, Stark, and Schwarzer (2011) - M2 Memory (auditory) Memory 10.8 No No

Geoghegan and Mitchelmore (1996) Mathematics Mathematics 4.5 No No
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Phonological

Gromko (2005) Phonemic awareness  processing 5.5 No No

Gromko and Poorman (1998) Intelligence Intelligence 3.5 No No

Hanson (2001) - M1 - S1 Intelligence Intelligence 5.5 Yes No

Hanson (2001) - M1 - S2 Intelligence Intelligence 5.5 No Yes
Spatial-temporal

Hanson (2001) - M2 - S1 ability Spatial 5.5 Yes No
Spatial-temporal

Hanson (2001) - M2 - S2 ability Spatial 5.5 No Yes

Hanson (2001) - M3 - S1 Spatial recognition Spatial 5.5 Yes No

Hanson (2001) - M3 - S2 Spatial recognition Spatial 5.5 No Yes

Herrera, Lorenzo, Defior, Fernandez-Smith, and Costa-  Phonological Phonological

Giomi (2011) - M1 - S1 awareness processing 4.6 Yes Yes

Herrera, Lorenzo, Defior, Fernandez-Smith, and Costa- Phonological

Giomi (2011) - M2 - S1 Naming speed processing 4.6 Yes Yes

Herrera, Lorenzo, Defior, Fernandez-Smith, and Costa-  Phonological Phonological

Giomi (2011) - M1 - S2 awareness processing 4.6 Yes Yes
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Herrera, Lorenzo, Defior, Fernandez-Smith, and Costa- Phonological

Giomi (2011) - M2 - S2 Naming speed processing 4.6 Yes Yes

Hole (2013) Reading Reading 8.9 No Yes
Phonological Phonological

Hunt (2012) discrimination processing 3.5 Yes No
Working Memory

Janus, Lee, Moreno, and Bialystok (2016) - M1 (verbal) Memory 5.0 No Yes
Working Memory

Janus, Lee, Moreno, and Bialystok (2016) - M2 (spatial) Memory 5.0 No Yes
Executive Control

Janus, Lee, Moreno, and Bialystok (2016) - M3 (verbal fluency) Other 5.0 No Yes
Attention (sentence

Janus, Lee, Moreno, and Bialystok (2016) - M4 judgement) Other 5.0 No Yes
Attention (visual

Janus, Lee, Moreno, and Bialystok (2016) - M5 search) Other 5.0 No Yes

Kaviani, Mirbaha, Pournaseh, and Sagan (2014) - M1 Intelligence (IQ) Intelligence 5.5 Yes No

Kaviani, Mirbaha, Pournaseh, and Sagan (2014) - M2 Abstract reasoning Intelligence 5.5 Yes No
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Kaviani, Mirbaha, Pournaseh, and Sagan (2014) - M3 Verbal reasoning Intelligence 5.5 Yes No
Quantitative

Kaviani, Mirbaha, Pournaseh, and Sagan (2014) - M4 reasoning Intelligence 5.5 Yes No

Kaviani, Mirbaha, Pournaseh, and Sagan (2014) - M5 Short-term memory ~ Memory 5.5 Yes No

Legette (1993) - M1 Mathematics Mathematics 6.0 No No

Legette (1993) - M2 Reading Reading 6.0 No No

Lu (1986) Reading Reading 6.0 No Yes
Spatial navigation

Mehr, Schachner, Katz, and Spelke (2013) - M1 - S1 reasoning Spatial 4.0 Yes Yes
Spatial navigation

Mehr, Schachner, Katz, and Spelke (2013) - M1 - S2 reasoning Spatial 4.0 Yes No

Mehr, Schachner, Katz, and Spelke (2013) - M2 - S1 Visual form analysis  Spatial 4.0 Yes Yes

Mehr, Schachner, Katz, and Spelke (2013) - M2 - S2 Visual form analysis  Spatial 4.0 Yes No
Numerical

Mehr, Schachner, Katz, and Spelke (2013) - M3 - S1 discrimination Mathematics 4.0 Yes Yes

Mehr, Schachner, Katz, and Spelke (2013) - M3 - S2 ) Mathematics 4.0 Yes No
Numerical
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discrimination

Mehr, Schachner, Katz, and Spelke (2013) - M4 - S1 Receptive vocabulary Literacy 4.0 Yes Yes
Mehr, Schachner, Katz, and Spelke (2013) - M4 - S2 Receptive vocabulary Literacy 4.0 Yes No
Moreno et al. (2009) Reading Literacy 8.3 No Yes
Phonological
Moreno, Friesen, and Bialystok (2011) - M1 Rhyming processing 53 Yes Yes
Visual-auditory
Moreno, Friesen, and Bialystok (2011) - M2 learning Other 53 Yes Yes
Moritz, Yampolsky, Papadelis, Thomson, and Wolf Phonological
(2013) - M1 Rhyming processing 5.6 No No
Moritz, Yampolsky, Papadelis, Thomson, and Wolf Isolation of Phonological
(2013) - M2 phonemes processing 5.6 No No
Phonological
Myant, Armstrong, and Healy (2008) - M1 Alliteration processing 43 No No
Phonological
Myant, Armstrong, and Healy (2008) - M2 Rhyming processing 4.3 No No
Intelligence Intelligence 8.0 No No

Portowitz, Lichtenstein, Egorova, and Brand (2009) -
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Ml

Portowitz, Lichtenstein, Egorova, and Brand (2009) -

M2 Memory Memory 8.0 No No
Working Memory
Portowitz, Peppler, and Downton (2014) (spatial) Memory 9.5 No No
Rauscher and Zupan (2000) - M1 Working memory Memory 5.5 No No
Spatial-temporal
Rauscher and Zupan (2000) - M2 ability Spatial 55 No No
Phonological
Register (2004) - M1 - S1 Letter naming processing 6.0 No Yes
Phonological
Register (2004) - M1 - S2 Letter naming processing 6.0 No No
Phonological
Register (2004) - M2 - S1 Sounds fluency processing 6.0 No Yes
Phonological
Register (2004) - M2 - S2 Sounds fluency processing 6.0 No No
Register (2004) - M3 - S1 Reading Literacy 6.0 No Yes
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Register (2004) - M3 - S2 Reading Literacy 6.0 No No
Rickard, Bambrick, and Gill (2012) - M1 - S1 Memory Memory 12.7 No Yes
Rickard, Bambrick, and Gill (2012) - M1 - S2 Memory Memory 12.7 No Yes
Rickard, Bambrick, and Gill (2012) - M2 - S1 Intelligence (IQ) Intelligence 12.7 No Yes
Rickard, Bambrick, and Gill (2012) - M2 - S2 Intelligence (IQ) Intelligence 12.7 No Yes
Rickard, Bambrick, and Gill (2012) - M3 - S3 Reading Literacy 10.9 Yes Yes
Rickard, Bambrick, and Gill (2012) - M3 - S4 Reading Literacy 10.9 Yes No
Rickard, Bambrick, and Gill (2012) - M4 - S3 Writing Literacy 10.9 Yes Yes
Rickard, Bambrick, and Gill (2012) - M4 - S4 Writing Literacy 10.9 Yes No
Rickard, Bambrick, and Gill (2012) - M5 - S3 Speaking Literacy 10.9 Yes Yes
Rickard, Bambrick, and Gill (2012) - M5 - S4 Speaking Literacy 10.9 Yes No
Rickard, Bambrick, and Gill (2012) - M6 - S3 Space Spatial 10.9 Yes Yes
Rickard, Bambrick, and Gill (2012) - M6 - S4 Space Spatial 10.9 Yes No
Rickard, Bambrick, and Gill (2012) - M7 - S3 Number Mathematics 10.9 Yes Yes
Rickard, Bambrick, and Gill (2012) - M7 - S4 Number Mathematics 10.9 Yes No
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Rickard, Bambrick, and Gill (2012) - M8 - S3 Structure Mathematics 10.9 Yes Yes
Rickard, Bambrick, and Gill (2012) - M8 - S4 Structure Mathematics 10.9 Yes No
Rickard, Bambrick, and Gill (2012) - M9 - S3 Measurement Mathematics 10.9 Yes Yes
Rickard, Bambrick, and Gill (2012) - M9 - S4 Measurement Mathematics 10.9 Yes No
Rickard, Bambrick, and Gill (2012) - M10 - S3 Mathematics Mathematics 10.9 Yes Yes
Rickard, Bambrick, and Gill (2012) - M10 - S4 Mathematics Mathematics 10.9 Yes No
Roden et al. (2014) - M1 Visual attention Other 7.9 No Yes
Roden et al. (2014) - M2 Speed processing Other 7.9 No Yes
Working memory
Roden, Grube, Bongard, and Kreutz (2014) - M1 (visuospatial) Memory 7.5 No Yes
Working memory
Roden, Grube, Bongard, and Kreutz (2014) - M2 (phonological) Memory 7.5 No Yes
Working memory
Roden, Grube, Bongard, and Kreutz (2014) - M3 (CE) Memory 7.5 No Yes
Roden, Kreutz, and Bongard (2012) - M1 - S1 Verbal memory Memory 7.7 No Yes
Roden, Kreutz, and Bongard (2012) - M1 - S2 Verbal memory Memory 7.7 No No
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Roden, Kreutz, and Bongard (2012) - M2 - S1 Visual memory Memory 7.7 No Yes

Roden, Kreutz, and Bongard (2012) - M2 - S2 Visual memory Memory 7.7 No No

Schellenberg (2004) - S1 Intelligence (IQ) Intelligence 6.0 Yes Yes

Schellenberg (2004) - S2 Intelligence (IQ) Intelligence 6.0 Yes No

Schellenberg, Corrigal, Dys, and Malti (2015) Vocabulary Literacy 8.7 No No

Slater et al. (2014) - M1 Reading Reading 8.3 No No
Phonological Phonological

Slater et al. (2014) - M2 awareness processing 8.3 No No
Phonological Phonological

Slater et al. (2014) - M3 memory processing 8.3 No No
Phonological

Slater et al. (2014) - M4 Rapid naming processing 8.3 No No
Speech Prosody Phonological

Thompson, Schellenberg, and Husain (2004) - M1 - S1  (spoken utterance) processing 7.0 Yes Yes
Speech Prosody Phonological

Thompson, Schellenberg, and Husain (2004) - M1 - S2  (spoken utterance) processing 7.0 Yes No
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Speech Prosody (tone Phonological

Thompson, Schellenberg, and Husain (2004) - M2 - S1  sequence) processing 7.0 Yes Yes
Speech Prosody (tone Phonological

Thompson, Schellenberg, and Husain (2004) - M2 - S2  sequence) processing 7.0 Yes No
Phonological Phonological

Tierney, Krizman, and Kraus (2015) - M1 awareness processing 14.7 No Yes
Phonological Phonological

Tierney, Krizman, and Kraus (2015) - M2 memory processing 14.7 No Yes
Phonological Phonological

Tierney, Krizman, and Kraus (2015) - M3 awareness processing 14.7 No Yes
Phonological

Yazejian and Peisner-Feinberg (2009) - M1 Phoneme deletion processing 4.4 Yes No
Phonological

Yazejian and Peisner-Feinberg (2009) - M2 Rhyming processing 4.4 Yes No
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Note. For studies with multiple samples, the result of each sample (S1, S2, etc.) is reported separately, and for studies with multiple outcome

measures, the result of each measure (M1, M2, etc.) is reported separately.

When the mean age was not provided, the mid-point of the range was inserted in the model. Similarly, when the grade of the students was

provided the mid-point of the range was considered (e.g., first graders, six-year-olds).
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2.4 Effect Size"”’
For the studies with an only-post-test design, the standardized means difference (Cohen’s d)

was calculated with the following formula:
d= (M, — Mc)/SDpooled (1)

where SDpoolea 15 the pooled standard deviation, and M, and M. are the means of the experimental
group and the control group, respectively.?’ For the studies with a repeated-measure design, the

standardized means difference was calculated with the following formula:
d= (Mg—e - Mg—c)/SDpooled—pre (2)

where SDpooled-pre 1S the pooled standard deviation of the two pre-test standard deviations, and M,..
and M,.. are the gain of the experimental group and the control group, respectively (Schmidt &

Hunter, 2015, p. 353).

Analogously to other recent meta-analyses (e.g., Macnamara, Hambrick, & Oswald, 2014),
the effect sizes with z-scores greater than 3 (n = 9) or smaller than —3 (n = 2) were Winsorized to z-
scores equal to 2.99 and —2.99, respectively.?! This procedure was adopted to reduce the weight of
potential outliers in the analysis (Lipsey & Wilson, 2001; Schmidt & Hunter, 2015, pp. 235-236;
Tukey, 1962). Finally, the Comprehensive Meta-Analysis (Version 3.0; Biostat, Englewood, NJ)

software package was used for computing the effect sizes and conducting statistical analyses.

19 All the formulas we used were taken from Schmidt and Hunter (2015).

20 1f the ¢ statistic was provided, we used the regular formula d = tX+/(n, + n,)/(ny Xn,).

21 We also performed additional analyses without Winsorizing the 11 effect sizes. No significant
difference was found in the overall results (for details, see Section S1 and Table S3 in the
Supplemental material available online).
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2.5 Statistical Dependence of the Samples

The effect sizes were calculated for each dependent variable reported in the studies (Schmidt
& Hunter, 2015). Moreover, when the study presented a comparison between one experimental
group and two control groups (do-nothing and active), two effect sizes were calculated (one for
each comparison with experimental and control groups; see Table 6). As this procedure violates the
principle of statistical independence, the method designed by Cheung and Chan (2004) was applied
to both the main and the additional models (see Sections 3.1 and 3.2). This method reduces the
weight in the analysis of dependent samples by calculating an adjusted (i.e., smaller) N. Since
Cheung and Chan’s (2004) method cannot be used for partially dependent samples, we ran our
analyses as if the comparisons between experimental samples and two different control groups were
statistically independent. However, it must be noted that the violation of statistical independence
has little or no effect on means, standard deviations, and confidence intervals (Bijmolt & Pieters,
2001; Tracz, Elmore, & Pohlmann, 1992). Thus, the entire procedure is a reliable way to deal with
the statistical dependence of part of the samples. For the list of the studies and the adjusted Ns, see
Table S2 in the Supplemental material available online

(http://www.sciencedirect.com/science/article/pii/S1747938X16300641).

3. Results
The random-effects meta-analytic overall effect size was d = 0.16, CI1[0.09; 0.22], k=118,
p <.001. The degree of heterogeneity (Borenstein, Hedges, Higgins, & Rothstein, 2009) between

effect sizes was I = 46.94, suggesting that some moderators had a potential effect.??

22 A degree of heterogeneity (/°) around 50.00 is considered moderate, around 25.00 low, and
around 75.00 high.
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3.1 Meta-Regression Analysis

A meta-regression model including all the four moderators was run. The model fitted the
data significantly, O(9) = 49.06, R’ = .65, p < .001. Age was not a significant moderator, p = .944.
The statistically significant moderators were Outcome measure, Q(6) = 21.78, p = .001, Random
allocation, b =—-0.16, p = .010, and Presence of active control group, b =—0.25, p <.001. The last
two moderators show that studies with random allocation of participants and studies comparing
music treatment to another activity (active control group) tended to have weaker effect sizes. The
overall effect sizes in randomized and non-randomized samples were d = 0.09, CI [-0.01; 0.18], k=
57,p=.084,and d = 0.23, CI1 [0.14; 0.31], k=61, p < .001, respectively. The overall effect sizes
when music training was compared to active control and do-nothing control groups were d = 0.03,
CI[-0.07; 0.12], k=54, p = 562, and d = 0.25, C1 [0.17; 0.34], k = 64, p < .001, respectively.
Finally, the overall effect size in randomized samples with active control groups was d =—0.12, CI
[-0.27; 0.03], k=22, p = .113, while the overall effect size in the non-randomized samples without

active control group was d = 0.33, C1[0.23; 0.44], k=29, p <.001.

3.2 Additional Meta-Analytic Models

Since Outcome measure was a significant moderator, we calculated the random-effects
meta-analytic overall effect size of each of the seven measures, in order to investigate whether any
measure showed an overall effect size appreciably larger (or smaller) than the others. The overall

effect sizes are summarized in Table 7.

The meta-regression analysis showed that only memory- and intelligence-related overall
effect sizes were significantly different compared to the other measures (b = 0.26, p =.041, and b =

0.30, p = .029, respectively).
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Table 7

Overall effect sizes, confidence intervals, ks, and p-values in each outcome measure

Outcome Effect size (d) 95% CI k p-value
measure

Literacy —0.07 [-0.23; 0.09] 22 386
Mathematics 0.17 [-0.02; 0.36] 15 .085
Memory 0.34 [0.20; 0.48] 18 <.001
Intelligence 0.35 [0.21; 0.49] 13 <.001
Phonological 0.17 [0.04; 0.29] 32 .008
Processing

Spatial 0.14 [-0.06; 0.34] 12 168
Others —-0.01 [-0.25; 0.23] 6 919

3.3 Publication Bias Analysis

Begg and Mazumdar’s (1994) rank correlation test showed no evidence of publication bias

(p = .433, one-tailed). In addition, to test the robustness of results (Kepes & McDaniel, 2015), we

ran a p-curve analysis for the detection of publication bias (Simonsohn, Nelson, & Simmons, 2014).

We selected the ps according the following two rules: (a) only positive results (i.e., z > 0) were

considered; and (b) to avoid redundancy, only one p <.01 per study was inserted into the analysis.

The results had evidential value (i.e., no evidence of publication bias) because we found more low

p-values (p <.01) than high p-values (.01 <p <.05), z(14) =—4.24, p < .001 (Figure 10).
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Figure 10. p-curve analysis of the studies reporting significantly positive results. The blue
(continuous) line shows that most of the significant p-values are smaller than .01.

Finally, Duval and Tweedie’s (2000) method found no publication bias in any of the seven
models (i.e., no studies trimmed left of the mean).
3.4 Sensitivity Analysis

Since Rickard et al.’s (2012) study reported a large number of effect sizes (k = 20), we
conducted a sensitivity analysis by excluding those effect sizes from all the models. The random-
effects meta-analytic overall effect size was still modest, d = 0.20, CI [0.14; 0.27], k=98, p <.001.
The degree of heterogeneity between effect sizes was > = 39.31, suggesting that some moderators
had a potential effect. For the list of the studies and the adjusted Ns, see Table S4 in the

Supplemental material available online.
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A meta-regression model including all the four moderators was run. The model fitted the
data significantly, Q(9) = 36.94, R’ = .74, p < .001. The only two statistically significant moderators
were Outcome measure, O(6) = 20.16, p = .003 and Presence of active control group, b =—-0.17, p =
.0014. The overall effect sizes when music training was compared to do-nothing control and active
control groups were d=0.28, CI[0.19; 0.36], k= 56, p <.001, and d =0.08, CI[-0.03; 0.19], k=
42, p = .139, respectively. Compared to Table 7, no significant difference was found in six of the
seven Outcome measure-related overall effect sizes. The only exception was Mathematics (d = 0.35

vs d =0.17; Table 8).

Table 8

Overall effect sizes, confidence intervals, ks, and p-values in each outcome measure

Outcome Effect size (d) 95% CI k p-value
measure

Literacy 0.07 [-0.07; 0.21] 16 307
Mathematics 0.35 [0.16; 0.54] 7 <.001
Memory 0.39 [0.25; 0.54] 16 <.001
Intelligence 0.37 [0.21; 0.53] 11 <.001
Phonological 0.17 [0.04; 0.29] 32 .008
Processing

Spatial 0.15 [-0.10; 0.40] 10 248
Others —-0.01 [-0.25; 0.23] 6 919

Note. The 20 effect sizes calculated from Rickard et al. (2012) were excluded.

4. Discussion
The present meta-analysis aimed to test the hypothesis that music training improves
children’s and young adolescents’ cognitive and academic skills, and to evaluate the potential role

of moderating variables. Along with a small overall effect size (d = 0.16, CI [0.09; 0.22]), which
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indicates that far-transfer from music to non-music skills was limited, the results showed a slightly
greater positive effect of music training on some of the cognitive skills (i.e., intelligence and

memory) and a non-significant effect on all the academic skills. Moreover, the design quality of the
studies significantly affected the magnitude of the effects. A similar pattern of results was obtained

in the sensitivity analysis model.

We did not correct for attenuation due to measurement error because only about half of the
studies provided reliability coefficients. However, correcting for measurement error would not
significantly affect the effect sizes. For example, if we assume that the reliability coefficients are
between .80 and .90, then the corrected estimate of the overall effect size of the main model (i.e., d

=0.16) would be between 0.17 and 0.18, a difference of only 0.01 or 0.02 standard deviations.

4.1 Substantive Results

The outcomes of the present meta-analysis allow us to draw some important conclusions.
First, the small overall effect size upholds Thorndike and Woodworth’s (1901) common-element
theory. In line with previous research (Donovan et al., 1999; Sala & Gobet, 2016), far-transfer from
music to other cognitive or academic abilities seems to be small or null. Second, music training
appears to moderately foster intelligence- and memory-related outcomes. However, no significant
effect on academic skills was found (literacy, d =—0.07, CI [-0.23; 0.09], p = .386; mathematics, d
=0.17, CI1[-0.02; 0.36], p = .085). This outcome suggests that improvements in memory and
intelligence do not generalize to academic skills. Alternatively, and more likely, the observed
positive effects of music training in intelligence- and memory-related outcomes are due to
confounding variables (we will take up this point below). Either way, the hypothesis according to
which the multiple benefits of music training, including academic benefits, stem from an
improvement in general intelligence (or overall cognitive skill) is not corroborated. Third, the age of
the participants is not a statistically significant moderator. Fourth, the meta-regression model

accounts for a large proportion of the variance (R’ = .65) between the effect sizes. The latter result
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implies that the statistically significant moderators explain, to a large extent, why the research on
the effects of music training on children’s and young adolescents’ skills has produced mixed results

up to now.

4.2 Methodological Results

The meta-regression analysis shows that both methodological moderators (i.e., random
allocation of participants to the treatment groups and comparison to an active control group)
affected the effect sizes. In other words, the better the design quality, the smaller the effect sizes.
This outcome lends further support to the idea that the observed positive effects, when any, of music
training on non-music-related outcomes, are probably due to confounding variables, such as placebo

effects and lack of random allocation of participants.

Unfortunately, this conclusion seems to apply to memory- and intelligence-related effect
sizes too. In fact, despite the greater overall effect sizes in these two outcome measures (d = 0.34,
CI[0.20; 0.48] and d = 0.35, CI[0.21; 0.49], respectively), the reliability of these positive results
seems questionable. Only one study (Schellenberg, 2004) tested the effect of music training on
children’s intelligence using a rigorous experimental design (i.e., random allocation of participants
and active control group), and the effect was found to be modest (d = 0.16). Concerning the
memory-related outcomes, none of the reviewed studies adopted such a design. Furthermore, as
pointed out above, a genuine — i.e., not due to confounding variables — improvement in such critical

cognitive skills should leave a trace in students’ academic skills, at least to some degree.

The sensitivity analysis (Section 3.4) showed that when Rickard et al.’s (2012) study and all
its effect sizes were excluded, the overall effect size in mathematics became significantly positive.
However, the only study comparing a music training group to an active control group and with
random allocation of the participants to the groups — i.e., Mehr et al. (2013) — found a negative
effect size (d =—0.25). These considerations uphold the conclusion that music training does not

substantially enhance any non-music-related cognitive skill.
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4.3 Conclusions and Recommendations for Future Research

The results of this meta-analysis fail to support the hypothesis that music skill transfers to
cognitive or academic skills in the general population of children and young adolescents. Together
with previous findings in psychology and education, these results suggest a sobering conclusion:
when the potential occurrence of far-transfer is tested rigorously, the results are often, if not always,
disappointing. Thus, this study lends further support to the hypothesis according to which far-
transfer rarely occurs. Even when music training appears to foster some of the participants’
cognitive skills (intelligence and memory), the reliability of the results is doubtful. In fact, only one
study investigated, with a proper design, the effects exerted by music training on the participants’

intelligence- and memory-related skills.

Due to the lack of well-designed studies, the question of whether music training enhances
children’s and young adolescents’ intelligence- and memory-related skills is still unanswered. For
this reason, future studies should strive for proper designs that include both random allocation of the
participants and an active control group. Furthermore, future investigations should evaluate the
effects of music training on both cognitive (especially intelligence and memory) and academic
skills. Such a design makes it possible to empirically 