Sample size determination: why, when, how?

Graeme L. Hickey
University of Liverpool

@graemeleehickey
www.glhickey.com
graeme.hickey@liverpool.ac.uk
Why?

Scientific: might miss out on an important discovery (**testing too few**), or find a clinically irrelevant effect size (**testing too many**)

Ethical: might sacrifice subjects (**testing too many**) or unnecessarily expose too few when study success chance low (**testing too few**)

Economical: might waste money and time (**testing too many**) or have to repeat the experiment again (**testing too few**)

Also, generally required for study grant proposals
When?

• Should be determined in advance of the study
• For randomised control trials (RCTs), must be determined and specified in the study protocol before recruitment starts
What not to do

Use same sample size as another (possibly similar) study
Might have just gotten lucky

Base sample size on what is available
Extend study period, seek more money, pool study

Use a nice whole number and hope no one notices
Unless you want your paper rejected

Avoid calculating a sample size because you couldn’t estimate the parameters needed
Do a pilot study or use approximate formulae, e.g. $SD \approx \frac{(\text{max} - \text{min})}{4}$

Avoid calculating a sample size because you couldn’t work one out
Speak to a statistician
Example

• A physician wants to set a study to compare a new antihypertensive drug relative to a placebo

• Participants are randomized into two treatment groups:
 • Group N: new drug
 • Group P: placebo

• The primary endpoint is taken as the mean reduction in systolic blood pressure \((BP_{sys}) \) after four weeks
What do we need?

<table>
<thead>
<tr>
<th>Item</th>
<th>Definition</th>
<th>Specified value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I error (α)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power ($1 - \beta$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimal clinically relevant difference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Errors

Hypothesis test

<table>
<thead>
<tr>
<th>Truth</th>
<th>No evidence of a difference</th>
<th>Evidence of a difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>No difference</td>
<td>True Negative</td>
<td>False positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type I error ((\alpha))</td>
</tr>
<tr>
<td>Difference</td>
<td>False negative</td>
<td>True Positive</td>
</tr>
<tr>
<td></td>
<td>Type II error ((\beta))</td>
<td></td>
</tr>
</tbody>
</table>

We will use the conventional values of \(\alpha=0.05 \) and \(\beta=0.20 \).
What do we need?

<table>
<thead>
<tr>
<th>Item</th>
<th>Definition</th>
<th>Specified value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I error (α)</td>
<td>The probability of falsely rejecting H_0 (false positive rate)</td>
<td>0.05</td>
</tr>
<tr>
<td>Power ($1 - \beta$)</td>
<td>The probability of correctly rejecting H_0 (true positive rate)</td>
<td>0.80</td>
</tr>
<tr>
<td>Minimal clinically relevant difference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Minimal clinically relevant difference

• Minimal difference between the studied groups that the investigator wishes to detect

• Referred to as minimal clinically relevant difference (MCRD) – different from statistical significance

• MCRD should be biologically plausible

• Sample size $\propto \text{MCRD}^{-2}$
 • E.g. if $n=100$ required to detect MCRD = 1, then $n=400$ required to detect MCRD = 0.5

• Note: some software / formula define the ‘effect size’ as the standardized effect size = MCRD / σ
Where to get MCRD or variation values

• Biological / medical expertise
• Review the literature
• Pilot studies

• If unsure, get a the range of values and explore using sensitivity analyses
Example: continued

• From previous studies, the mean BP\textsubscript{sys} of hypertensive patients is 145 mmHg (SD = 5 mmHg)

• Histograms also suggest that the distribution of BP is normally distributed in the population

• An expert says the new drug would need to lower BP\textsubscript{sys} by 5 mmHg for it to be clinically significant, otherwise the side effects outweigh the benefit

• He assumes the standard deviation of BP\textsubscript{sys} will be the same in the treatment group
What do we need?

<table>
<thead>
<tr>
<th>Item</th>
<th>Definition</th>
<th>Specified value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I error (α)</td>
<td>The probability of falsely rejecting H_0 (false positive rate)</td>
<td>0.05</td>
</tr>
<tr>
<td>Power ($1 - \beta$)</td>
<td>The probability of correctly rejecting H_0 (true positive rate)</td>
<td>0.80</td>
</tr>
<tr>
<td>Minimal clinically relevant difference</td>
<td>The smallest (biologically plausible) difference in the outcome that is clinically relevant</td>
<td>5 mmHg</td>
</tr>
<tr>
<td>Variation</td>
<td>Variability in the outcome (SD for continuous outcomes)</td>
<td>5 mmHg</td>
</tr>
</tbody>
</table>
Sample size formula*

\[n \approx 2 \frac{\left(Z_{1-\frac{\alpha}{2}} + Z_{1-\beta} \right)^2 \sigma^2}{(\mu_1 - \mu_0)^2} \]

- \(\mu_1 - \mu_0 \) is the MCRD
- \(Z_p \) is the quantile from a standard normal distribution
- \(\sigma \) is the common standard deviation

*based on a two-sided test assuming \(\sigma \) is known
Sample size calculation

\[n \approx 2 \frac{[1.96 + 0.84]^2 5^2}{5^2} \]

\[= 2 \frac{[1.96 + 0.84]^2 5^2}{5^2} = 15.7 \]

Therefore we need **16 patients per treatment group**

NB: we always round up, never down
Sensitivity analyses

- Sample size sensitive to changes in α, β, MCRD, σ
- Generally a good idea to consider sensitivity of calculation to parameter choices
- If unsure, generally choose the largest sample size
Sample size calculation software

- Standalone tools: G*Power (http://www.gpower.hhu.de/)
- Many statistics software packages have built-in functions
- Lots of web-calculators available
- Lots of formulae published in (bio)statistics papers
Practical limitations

• What if the study duration is limited; the disease rare; financial resources stretched; etc.?

• Calculate the power from the maximum sample size possible (reverse calculation)

• Possible solutions:
 • change outcome (e.g. composite)
 • use as an argument for more funding
 • don’t perform the study
 • reduce variation, e.g. change scope of study
 • pool resources with other centres
Estimation problems

• Study objective may be to estimate a parameter (e.g. a prevalence) rather than perform a hypothesis test
• Sample size, n, chosen to control the width of the confidence interval (CI)
• E.g. if a prevalence, the approximate 95% CI is given by

$$\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Margin of error (MOE)

where \hat{p} is the estimated proportion
Example

• David and Boris want to estimate how support among cardiothoracic surgeons for the UK to leave the EU
• They want the MOE to be <3%
• SE maximized when $\hat{p} = 0.5$, so need $\frac{1.96}{2\sqrt{n}} < 0.03$
• So need to (randomly) poll $n = 1068$ members
Drop-outs / missing data

• Sample size calculation is for the number of subjects providing data
• Drop-outs / missing data are generally inevitable

• If we anticipate losing $x\%$ of subjects to drop-out / missing data, then inflate the calculated sample size, n, to be:

$$n^* = \frac{n}{\left(1 - \frac{x}{100}\right)}$$
Sample size formula and software available for other...

• **Effects:**
 • Comparing two proportions
 • Hazard ratios
 • Odds ratios
 • ...

• **Study designs:**
 • Cluster RCTs
 • Cross-over studies
 • Repeated measures (ANCOVA)
 • ...

• **Hypotheses:**
 • Non-inferiority
 • Superiority
 • ...

Observational studies

Issues

• Study design features:
 • Non-randomized ⇒ bias
 • Missing data
 • Assignment proportions unbalanced
• Far fewer ‘closed-form’ formulae

How to approach (depending on study objective)

• Start from assuming randomization as a reference
• Correction factors (e.g. [1,2])
• Inflate sample size for PSM to account for potential unmatched subjects
• ...

Reporting

• Six high-impact journals in 2005-06*:
 • 5% reported no calculation details
 • 43% did not report all required parameters
 • Similar reporting inadequacies in papers submitted to EJCTS/ICVTS

• Information provided should (in most cases) allow the statistical reviewer to reproduce the calculation

• CONSORT Statement requirement

* Charles et al. *BMJ* 2009;338:b1732
Final comments

• All sample size formulae depend on significance, power, MCRD, variability (+ possible additional assumptions / parameters, e.g. number of events, correlations, ...) no matter how complex

• Lots of published formula (search), books, software, and of course... statisticians – need to find the one right for your study

• A post hoc power calculation is worthless
 • Instead report effect size + 95% CI
Thanks for listening
Any questions?

I need more power, Scotty
I just cannæ do it, Captain. I dinnae have the poower!

Statistical Primer article to be published soon!

Slides available (shortly) from: www.glhickey.com