Multi-modal mechanophores based on cinnamate dimers

Zhang, Huan, Li, Xun, Lin, Yangju, Gao, Fei, Tang, Zhen, Su, Peifeng, Zhang, Wenke, Xu, Yuanze, Weng, Wengui and Boulatov, Roman ORCID: 0000-0002-7601-4279
(2017) Multi-modal mechanophores based on cinnamate dimers. NATURE COMMUNICATIONS, 8.

Access the full-text of this item by clicking on the Open Access link.


Mechanochemistry offers exciting opportunities for molecular-level engineering of stress-responsive properties of polymers. Reactive sites, sometimes called mechanophores, have been reported to increase the material toughness, to make the material mechanochromic or optically healable. Here we show that macrocyclic cinnamate dimers combine these productive stress-responsive modes. The highly thermally stable dimers dissociate on the sub-second timescale when subject to a stretching force of 1–2 nN (depending on isomer). Stretching a polymer of the dimers above this force more than doubles its contour length and increases the strain energy that the chain absorbs before fragmenting by at least 600 kcal per mole of monomer. The dissociation produces a chromophore and dimers are reformed upon irradiation, thus allowing optical healing of mechanically degraded parts of the material. The mechanochemical kinetics, single-chain extensibility, toughness and potentially optical properties of the dissociation products are tunable by synthetic modifications.

Item Type: Article
Uncontrolled Keywords: mechanical properties, polymers
Depositing User: Symplectic Admin
Date Deposited: 03 Nov 2017 13:03
Last Modified: 06 Oct 2022 06:06
DOI: 10.1038/s41467-017-01412-8
Open Access URL:
Related URLs: