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Abstract

This thesis presents situ Surface X-ray Diffraction (SXRD) studies of
surfaces and interfacei® both Ultra High Vacuum (UHV) and a electrochemical
environmentPrimarily Crystal Truncation & (CTR) measurements are utilised to
determine a model for the atomic structure at the interface.

A SXRD characterisation of the clean Ag(110) and Ag(111) surfaces in UHV
were determined as aference for theest of the work in this thesigollowing this
the growth conditions and structures of a silicene layer on Ag(111) were
investigated, by Low Energy Electron Diffraction (LEED) and preliminary SRXD
study of the interface structure is pnetesl.

A comprehensive study of the Ad()/alkaline interface is presented-ray
Voltammetry ERV) measurements have been performed to determine the potential
dependence of the system. CThieasurementtave beerused to determine the
structure at both thelectrode and electrolyte sides of the interface. The results reveal
large structural changes on the electrolyte side of the interface, with the response of
relaxation of the surface layers in the mefdie presence of specifically adsorbed
OH on the suUace stabilises cations in a compact double layeutit norcovalent
interactions.The studies were extended to determine the effects of saturating the
electrolyte gases, CO and On the double layer structure. The results indicate that
double layer strcture is subtly perturbed, and hints at a change in the nature of
bonding at the interface.

Time resolved SXRD measurements are utilised to determine the dynamics of
the restructuring of the electrolyte layering at the Ag(111)/Alkaline interface. In
orderto gain a comprehensive picture of the structural dynamics, two other systems
are studied; the Au(111) reconstruction to determine the timescale of the 1 x 1)

N WMo reconstruction, and the underpotential deposition of Ag on Au(111). The
results indicate that the mass transport of ions through electrolyte is on a timescale
comparable to the charge transfer, whereas the ordering of ions and surface metal

atoms occurs on much longer timescales.
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1 Introduction

The study of surfaces and interfaces
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to the coordination number of the surfa
relaxation effect 1ln&E( ®®&]( LThOet haed da rt d el
adsorbates on the surface can enhance, I
[ 5]
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The adsorption of hydroxide and oxygen species onto metal surfaces is also
vital to understand surface reactivity and catalytic behaviour at the electrochemical
interface. Whilst the electrochemistry of silver has been widely studied in the oxide
region, there have been considerably less studies in the underpotential oxide region,
where hydroxide (OH is specifically adsorbed. This region is of particular interest
as important electrochemical reactions occur; such as the Oxygen Reduction
Reaction (ORR), CO oxidation, amongst others. In 2010 it was proposed that non
specifically adstbed cations (cations which retain their hydration shellare
stabilised in a compact double layer by fomvalent( v an d e rinterd¢tiond 6 s )
with OH,gs and have been proven to play an important role in the kinetics of the
ORR on P{19]. Depending uporhe hydration energies of the cation the ORR can
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be inhibited by catiomydroxide clusters. An understanding of the electrolyte
layering at the interface is obviously of paramount importance as the structure of the
layering may be tuned in order to enharareinhibit electrochemical reactions.
Structural studies of Ag in electrochemical environments compared to other noble
metals, such as Au and Pt, is severely lacking, which is likely due to the difficulty in
preparingthe surface and obtaining atomrsicale structural information from a
reactive surface in the liquid environmeiihe majority of structural studies of Ag
have been made ex situ, hydroxide adsorption ormlidgwas investigated by
Horswell et al. [19,20] which indicated evidence of an ordereq ¢, ad

Ac¢ ¢ at highercoverageon the Ag(110) surfacahes structures are shown
schematically inFigure 1.1. An early model of the Ag(111)/alkaline interface was
proposed by Savino22], which identified the presence of cations in the interface

structure. More recently Luca®t al. [23] investigated the structure of the

c(2x6)

Figure 1.1 Proposed struares for the OH adlayer at negative potentials. White
circles, top row Ag atoms; grey circles, second row Ag atoms; red circles, adsorbed
OH'. The blue dashed rectangles indicate the unit cell of the hydroxide structure.



Ag(hkl/alkaline interface by SRD, and proposed which was consistent with
analogous results obtained on Pt electrdd®d; at positive potential cations are
stabilised in a compact double layer by adsorligid through norcovalent
interactons. In a similar study by Nakamuea al [24], in 0.1 M CsBr + 0.05 M
CsOH electrolyteCs' cations are found to interact with adsorbed Br through non
covalent interactions. It is essential to develop a detailed knowledge of the
Ag(hkl)/Alkaline interface to develop a fundamental understanding of the driving
forces behind important catalytprocesses and the stability of the eledés under
reaction conditions.
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2 Theoretical Principles

2.1 Introduction

The experiments in this thesis probe the atomic structure of both the
electrode/vacuum interface and the electrode/electrolyte interface primarily through
SurfaceX-ray Diffraction (SXRD) measurement$he scattered intensity of at-
ray beam from the surface is far weakiy ~10 , than scattering from the buénd
thus synchrotron radiation is required to probe the surfacd@-A). In this chapter
the theoretical principlebehind X-ray diffraction are built up, and the principles

behind Low Energy Electron Diffraction (LEED) are considered.

2.2 Electrochemistry
(Electrochemistry is the study of structures and processes at the interface
between an electronic conductor (the &lede) and an ionic conductor (the

electrolyte) or at the interface betwe
9



This definition of electrochemistry is taken from Schmickler and S48#sin this
section a bas description of the metalectrolyte interface is presented, which will
consider electrode reactions, and a discussion of the electrical double layer models.
Following this cyclic voltammetry and adsorption phenomena will be considered.

Further backgrood can be found in the source material referef£a32].

2.2.1 Electrode Reactions
At the electrochemical interface electrode reactions occur when there is
charge transfer between ions and the electrbiejg known as a Faradaic reaction
or redox reaction. When an electron is lost this is known as oxidation, and the
reverse process of gaining an electron is known as reduction. In an electrochemical
cell there are two half reactions where oxidation egmliction occurs. Oxidation
occurs at the anode, and reduction at the cathode.
Oxidation:
Y £EQ 0 (2.1)
Reduction:
0 £Q Y (2.2)
where O is lte oxidised species, R is the reduced species and n is the number of
electrons exchanged between them.
Energy levels
When a metal is brought into contact watlectrolyte their Fermi levels align,
this is shown irFigure2.1. When a potential is applied to a metal the energy of the
Fermi lewel either increases or decregs#ss is illustrated inFigure 2.2. When a

metal cones into contact with a solution charge is transféat the interface to
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Figure 2.2 Effect of applied potential orhé Fermi level in a metaApplying a

potential changes the energy of the Fermi level.

equilibrate the Fermi levels. When a negative potential is applied the Fermi level

increases anelectrons are transferred from the electrode to species in electrolyte.

This occurs when the energy of the Fermi level is above the lowest unoccupied
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molecular orbital (LUMO)Mhen a positive potential is applied the energy of the
Fermi level decreases below theghest ocupied molecular orbital (HOMO),

resulting in oxidation electron transfer to the electe.

We need to be able to measure and control the potential of the working
electrode in order to control the electrochemistry at the interface. The electrode
potential cannot be directly measured; instead it must be cethpgainst a standard
reference electrode. The cell potential is the sum of the standard potentials for each
half reaction:

(0] 0 © (23)
The superscript 6006 deoomddonsdie. TE208K) it i s
The reaction in the cell has a change in Gibbs free en@rgyhich can be related to
the cellpotential. Chemical energ¥s) can be converted to electrical enefgy
by:

0 ¢0 (2.4)
Where n is the number efectrons transferredndF is the Faraday constant.
If the reaction is under standardnditionsthen this becomes:

3’0 ¢ "Foua (2.5)
WhenE%is positive, the reaction is spontaneous and viifdés negative, the
reaction is nosspontaneous. From thermodynamics, the Gibbs energy change under
nonstandard conditions can be related to the Gibbs energy change under standard

conditionsvia the following equation

30 30 Y'Y 42— (2.6)
Where R is the gas constgnB.3 J KY), T is the absolute temperatuné and 2

are theconcentratiorof the reductant and oxidant.
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Substitding in for 3'OCand3-0O:

€00 £¢'0 YV JUV 27
Dividing both sides by ¢ "Qives

yo Yo IY‘l 4/—

€0 Y (2.8)

This is known as the Nernst equatiorhis equation indicates that the electrical
potential of the cell depends on the concentration of electroactive species. During a
redox reaction the concentration of tleeluctant and oxidant changes, which results
in a decrease in cell potential until the reaction is at equilibrium wdi@e T In

order to drive further reactiomspotentiaimust be applied.

2.2.2 Electric double layer models

When a metal electrode is brought into contact with electrolyte with different
chemical potentials the charge of the surface is balanced by an excessiohtae
electrolyte. The metal is an excellent conductor, which means its excess charge is
restricted to a depth ~ 1 A into the surface. Conversely, the conductivity of an
electrolyte is several orders of magnitude less than that of a metal (it is edepend
upon the concentration of ions), which results in an extended charge distribution over
a larger region ~ 520 A. The charge distribution at the interface is known as the
electric double layer. In aqueous electrolyte the voltage drop across thecatsrbf
the order of 1 V, this defines the electrochemical window. Outside the potential
limits the solution decomposes, at positive potential oxygen evolution sets in and at
negative potential hydrogen evolution sets in. The potential window is mueh wid
ionic liquid of the order of several volt3.he following sections describe how the

double layer region is modelled;schematic is shown Figure2.3.
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Figure 2.3 Schematic representation of electrical double layer models.

The Helmholtz model

In 1853, Helmholt434] proposed the first model of the electrode/electrolyte
interface. This model assumes that there are no Faradaic processes occurring at the
electroek surface, i.e there is no charge transfer occurring, and that the charge density
at the electrode surface;"qarising from excess or deficiency at the surface is
equalsed by the redistribution of ions in solutioh) maintaining charge neutrality on
theelectrode such that:

n n (2.9)

In this model it is assumed that the solvation shell around the ions determines their
closest approach, i.e. it prevents them from directly interacting wittsuhface.

This is known as the Outer Helmholtz Plane (OHP). A resulting potential drop
14



occurs in the region between the electrode surface and the OHP, which was
described by Hel mhol t z as t he el ectric

analogous to an ettrical capacitor:

6 A (2.10)
wher e &lectricspermittivity of the medium, anddistance of the Helmholtz

plane from the electrode surface.

Gouy-Chapman model

Gouy [35] and Chapmaij36] independently proposed that the charge was
spread over a diffuse layer as opposed to being concentrated at the OHP later
modified the Helmholtz model. This occurs due to Brownian motion opposing the
electrostatic attraction and repulsions of ions fribi@ electrode, thereby dispersing

excess charge over a diffuse laygne capacitance is given by:

ca0-6 ' . . & 0%
wEe

ot (2.11)
YUY Y'Y

where z ischarge on the ion, ar¥éis thetotal potential drop across solution side of

double layer

Stern model

In 1924 Sterr{37] proposed a model, which comled the previous two. He
assumed that there was a minimum distance of closest approach in the OHP where
the majority of charge was concentrated, and that charge also extended into the
diffuse layer.

The capacitance of this model behaves like two capaditoes Helmholtz

and GouyChapman capacitance) in series:

15



(2.12)

O=|

Grahame model

In 1947 Graham§g38] proposed that the ions could penetrate the OHP if they
lost part or all of their solvation shell and come idi@ct contact with the electrode,
these ions are said to be 6éspecifically

approach was termed the Inner Helmholtz Plane (IHP).

2.2.3 Potential of zero charge

The charge of an electrode can be controlled by anegppbtential; it can be
positively or negatively charged. Therefore, it must follow that there is some
potential where there is zero charge. This is called the potential of zero charge, pzc.
The pzc is a characteristic quantity which is different fonadtals, and also differs
for the different surface geometries of a metal. The pzc is related to the work
function,3 :

% B 0O (213

Where C is a constant which depends on the scale on which the electrode potential is
measured (the reference electrode). It is a useful quantity for caogpdifierent

surfaces.

2.2.4 Cyclic voltammetry

Cyclic voltammetry (CV) is an important technique for measuring the current
as a function of potential. This is a simple method of characterising an
electrochemical system. Features in the voltammogram can bbuted to
electrochemical processes such as adsorption and desorption at the interface, and

surface reconstruction. As cyclic voltammetry is a measure of electron transfer
16



peaks in the voltammetry can be integrated to give the charge transfer focalgmarti
process. The simplest way of measuring the current is to use a two electrode set up.
This consists of a working electrode, where the reaction of interest is taking place,
and a stable reference electrode that the potential at the working can beecheasu
against. The potential difference between the working electrode and reference
electrode is given by:

0 %o %o %0 %o QY (2.14
The first termin equation (2.14) % %o represents a voltage drop at the

electrode/electrolyte interfacéhe second %o %o is the voltage drop at the

reference electrode interface and the final téRifepresents the potential drop
between the two electrodes (solution resistance). For this to work, the iR term needs

to be negligible so thahe reference electrode is in equilibrium to have its standard

val ue, a | arge <current through the ref:
composition to break down. This set up works perfectly well for measurements
where only a small current is passedch as for microelectrodes, however, for larger
electrodes, as used throughout this thesis (Area = 0.7% enlarger current is
passedThis is avoided by using a thre¢ectrode set up shown ffigure 2.4. In
addition to the working and reference el
this is chosen to be a material that does not produce any substances that may affect
the behaviour of the working electrode.this configuration the voltage is measured
between the working electrode and the reference electrode, a high input impedance

restricts current being drawn from the reference electrode.
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Figure 2.4 Schematic of 3 electrode electrochemical cell. VWErking electrode,
C.E. counter electrode, R.E. reference electrdtie. potential is controlled between
the working and reference electrodes, and the current flows between the working and

counter electrodes.

In this configuration the voltage is measuredween the working electrode and the
reference electrode, a high input impedance restricts current being drawn from the
reference electrode.

The current is measured whilst the potential of the working electrode, with
respect to the reference electrodeswsept linearly between the cathodieegative)
and anodidqpositive) limits, E; and E respectively at a constant sweep rate seen in
Figure2.5. The shape of the forward and reverse scans shoidariar; howeve it
depends on the reversibility of the A/B redox couple. The cycle starts fiaande
scans linearly at tooxidisingspeciesB to speces A which is therreducedon the
reversenegativesweep.
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Figure 2.5 Schematic of cyclic voltammetry measurements (a) the variation of

potential with time (b) the current response of the system.

In Figure2.5 (b) an increase in current corresponds to an oxidation or redoloreact

where:

‘Q T peak current in oxidation process

O 71 electrode potential corresponding to the oxidation process
‘Q 1 peak current for in reduction process

‘O T electrode potential corresponding to the reduction process

Initially no current is passed as the potential is not great enough in order to
drive a reaction. Once the current is sufficiently positive enough the current begins to
increase, corresponding with the oxidation of the reduced species. The current
increaseso a peak currerif . The current grdually decreases until @f species A
is converted to BThe shape of a CV can also be influenced by external factors such
as scan ratethis is illustrated inFigure 2.6; features bemme much sharper at a
slower scan rate, and with higher concentration of ions in electrolyte more current

flows giving a larger CV shape.
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Figure 2.6 Effect of increasing scan rate on CV.

Although this is aguick method to perform in the lab, it is purely based on electron
transfer it lacks structural information of the interface; for this we need to combine
cyclic voltammetry with a structural technigire situ such as Scanning Tunneling

Microscopy (STM), 0 SXRD. SXRD is discussed at length in secfioh

2.2.5 Adsorption phenomena
As discussed in the double layer models, adsorption processes can occur at the

interface. The adsorption of ions falls into teategoris:

1) Chemisorption i Occurs in thelHP and involves chemical interactions

between the adsorbate and substrate. The bonding is either covalent

(electrons are shared) or ionic (electrons are transferred).
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2) Physisorptioni occurs in theOHP, involves weak elé®static interactions

mainly via van der Waals forces.

2.2.6 Chronoamperometry

This technique is used to measure the current response during a potential
step. The voltage is stepped from an initial potentigltda final potential E and
the current is meaured as a function of timéhe perturbation and response is shown
in Figure2.7. The shape of the resulting current evolution response, transients, gives
an indication of the process under study, for example, nieehanism of an
adsorption/desorption procedBy fitting an appropriatelineshape to thecurrent
transient, of exponential form, the time constant for the charge transfer processes can

be extracted.

Perturbation

v

Response

v

Figure 2.7 Potential step measurements (a) the change in potérhal potential is
stepped between two limits, resulting in a square wave fdbn,the current

evolution response.
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2.3 Basic theory of diffraction

The structure of a crystal can be determinedth®y way in which incident
waves interact with the sample. Diffraction occurs due to the interference effects
produced by the phase difference between elastically scattered waves from different
atoms in a crystal. The incident wave must have a wavelengtipazable to the
atomic spacing of a crystal for diffraction to occMrrays, neutrons and electrons

satisfy this.

2.3.1 Cirystallographic definitions

A crystal is a defined as a repeatlmgsicwith long-range order. The periodic
array can belescrivedby a pace lattice with a group of atoms attached to each
lattice point. The space lattice is defined by three ve@pbsand c such that any
integer multiple of the vectors from any point in the lattice will locate a similar point.
The unit cell is the parallepiped defined by the sidasb andc with| § & & Qare
the angles between therigure 2.8 shows the face centred cubic (fcc) crystal

structure, which is the structure of the single crystals used in this thesis.

Figure 2.8 The face centred cubic fcerystal structure. The (111) plane is
highlighted.
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The unit cell can be translated through space in all directions by:

{ 4 T4 4
(2.15)

where Ris an integer, which builds up the crystal structure.

2.3.2 Cirystal planes and Miller indices

There are an infinite number of 2D parallel planes in a 3D crystal structure.
These planes have a specific arrangement of atachgan be defined by its Miller
indices bkl). The Miller indices are determined by calculating the fraction of
intercepts of the plane with the a, b and ¢ axes and then taking the reciprocal.
Directions are denotechkl] and are perpendicular to thik() plane. This thesis
focuses on the three low index fokl) surface planes which are depicted-igure
2.9. Each set of parallel planes has an associated atomic arrangement, coordination

number and interplanar spag, di.

(100) (110) (111)

o

W

\
|
AN

o

C

Figure 2.9 schematic representation of the fadj low index planes.

The spacing between parallel planes is given by

w

o __°
nMo o

(2.16)



wherew is the lattice constant.

The scattering geometry from a set of parallel planes is showigure 2.10, the

planes are separated by a distange(the interplanar spacingyVhen two parallel

waves scatter from parallgllanes their path difference (the additional distance
travelled by the second wave to the lower plane) is given 2 d si nd . Const
interference occurs when the path difference is some integer number, n, of

wavel englthh s constructi[8®h gives us, Bragg

11 CAGEIT (2.17)

Figure 2.10 Geometric representation of Bragg's law considering scattering from

two crystal planes.
Al t h o u gdlanBleterngirgedthe conditions for constructive interference, it does
not consider the scattering power from the atoms in the crystal which one needs to

determine structural analysis.

2.4 X-ray Diffraction
The scattering crossection of X-rays is small, e the effects of multiple
scattering can be neglected and a kinematic approach can be taken. Scattering arises

from the electrons in an atom, this section will build up the theory-oéy
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diffraction starting from scattering from a single electron, taétedgag from the bulk
and surface layers of a crystal. The addition of adlayers and electrolyte layering will
also be consideredhe derivations in this chapter follow referen¢g8i 43], which
can be referred to f@a more rigorous explanation.
2.4.1 Momentum transfer

The important variable irK-ray diffraction is the momentum transfe,
which is defined in terms of the incident and diffrackeday wave vectorsk; andks

respectively:

(2.18)

Where the magnitude ofQ:

SA (2.19)
]

where_ is the X-ray wavelength. Using this Bragglaw can now be expressed in
terms of the momentum transfer and wave véshmwn schematically ifrigure

2.11):

oas 2.1)

Figure 2.11 Schematic showing construction of momentum transfer g, conserved in

in elastic scattering.

25



2.4.2 Scattering from an electron

When aphoton is incident on an electron its electric field exerts a force on
the electron causing it to oscillate and radiate a secondary wave with the same
wavelength as the incident wave. The amplitude of the scattered wave can be
described classically by th&hompson scattering formula which describes the
amplitude of a scattered wawe from an electron at positidn as a function of the

incident waved :

6 Q ‘QI O ﬁ_._'Q !3-
T aw'’Y
(2.20)

The — term arises from the spherical wave nature, tn&dprefactor term is the

Thompson scattering lengih . Equaton .20 can be rewritten in the

form:

(2.22)

Which gives the amplitude of the scattered wave in terms of the momentum transfer

A(where a

2.4.3 Scattering from a single atom
The scattering from an atom can be built up by considering its electron
density. Scattering from an atom arises from the constructive interference of

spherical waves from each electron in th@matThe electron density is peg where
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rois the position of the electron. The scattering from an atom is given by substituting
the positon vector of the electron and summing over the all electrons in the atom.
The scattering from an atom is given by

\
o [

ba oD O w > E (2.22)

S

6 b we 44. > (2.23)

and "Q A the atomic form factor, is given by

"R " peeQ W o (2.24)

The atomic fornfactor gives a g dependence to the scattering power of each atom,
when A=0 all electrons scatter in phase $bA =Z, as Aincreases electrorsegin to
scatter out of phasehe atomic form factors are tabulated for each element in the
InternationalTables for Crystallographi5]. The form factor also needs to account
for the resaant effect of photons at adsorption edges, the equation is modified by

dispersion correction®and @ashich are energy dependent:

A0 QA RO Qe (2.25)

2.4.4 Scattering from a unit cell
To evaluate the scattering from a unit cell the calculation mustostemall
the atoms in the unit cell. As the atoms in the unit cell may not be the same element,

the corresponding form fact@E A must be included

is the relative positionfo

thejth atom in the unit cell:
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QR QA > (2.26)

<~

i .
By 6978"0 A Q% (2.27)

1

where™O A is the structure factor, given by:

"OA MAQ > (2.29

The structure factor is the Fourier transform of the eleatikemsity, and dependent

on the position of the atoms in the unit cell.

2.4.5 Scattering from a crystal

To determine the electron density of a crystal the atomic distribution must be
considered. The next step is to sum the scattering over all the unit cebliscirystal,
where the crystal is defined by; NN, and N unit cells along the crystal axes. The

position of each unit cell is given by

Yokt g T4
(2.29)
The scattered amplitude is thus
5 b ,17"OA Q + t * (2.30)
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2.4.6 The scattered intensity
Experimentally it is the scattered intensity which is measured, the amplitude
is related to the scattered intensity'®a ® 9 s. Consider one term which is the

sum of a geometric progression written in the form:

Y a3k Qo+ FT:a (2.31)

Appl ying Eufera¥s “@io@amunukiplying the equation bysit

complex conjugate, it becomes:

) [ Q& a3FIg (2.32)
M O TtE

This is analogous to the -8lit interference functionThe interference function
reflects the periodic array of atoms in the crystal, which gives rise to diffraction
spots, Bragg reflections, in reciprocglase. The equations gives maxima when
A3E ¢ éwhere nis an integer.

The scattered intensity is defined as:

la 0O— $oag—— 4 -4 - (239

were "Ois the intensity of incident photon. When the following conditions are met,

the above equation produces maxima. These are the Laue amnétialiffraction:

A3E ¢'O
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Af ¢ o

L wn
A3F <D (2.34)

which satisfy the vectoa 'OF 04 04F where the reciprocal space vectors are

related to reabpacevectors by:

S s 2.3

T O A e
AL +

z « r (2.36)

L OFr

: + 1

Lz « 2.3

LI =2 o

When h, k and | are integer values they form a 3D lattice satisfying the Laue
conditions and can also be described by the Bragg condition.

The intensity at a particulgrvalue is given by:
0 Oy $04s0 G (2.39)

2.5 Surface X-ray Diffraction

2.5.1 Scattering from a surface

So far the calculaths have assumed scattering from a crystal which is
infinite in all directions. We are interested in the surface structure, and therefore we
must modify the equations to consider scattering from the surface. When the crystal
is terminated at the surfaceethaue condition for the c direction is no longer valid,

as the crystal is senmfinite along the c axis. This reduces equat®8) to:
30



0 -'o,i7 $OAS0 © m (2.39)
This equation produces sharp peaks in intensity for values where L is an,imeger
equation2.40, which corresponds to Bragg peaks due to scattering from the bulk. In
between the Bragg peaks the intensity is modulated along the surface normal, L,
direction Figure 2.13. These streaks of intensity have been termed as Crystal
Truncation Rods (CTRs) by RobinsptD].

2.5.2 Modelling surface structure
The equation abovesaumes a perfectly terminated crystal. This is not

usually the case. Factors such as surface roughnpessirface relaxations, and

occupation—-modify the shape of the CTR profile.

(a) Outward relaxation +& (b) Inward relaxation -¢
1“‘1"\\{"\""\‘{"*\
S NV, S S, YV SV . - 2 — e T e
KWY'Y'\ r\~r/'\\r/'\~'/'\§'/’\‘rl'
AAANS

d | d | SAANAAA
\Mj \MM)
(c) Coverage 6 (d) rms roughness o

Figure 2.12 Schematic representation of the structural parameters used to model the
surface Side view of a crystala) Top metal layer undergoes an outward relaxation,
where the layer relaxes away from the bulk (into vacuum, or electrdlytejeasing

the dspacing. (b) Top metal layer undergoes an inward relaxation; where the layer
relaxes towards the buikdecreasig the dspacing. (c) Change in coverage; given in

a fractional form of the butkerminated surface. (d) rms roughndéssaverage

displacement of atoms.
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The physical representation of these parameters is shokigure2.12. The effects

of these parameters are illustrated Figure 2.13. When surface undergoes a
relaxation {nwardsor outwardg this causes an asymmetry around the Bragg peaks
(Bragg peaks where intensity isTeaximum) Reduced surface occupation causes a
decrease in intensity between the Bragg peaks, which is most noticeable at-the anti
Bragg positionwhich is half way between two Bragg peakke position most
sensitive to the termination of the surfac@n increased surface roughness has a
similar effect, however, the decrease in intensity at theBxagg position which
becomes greater with increasing L. By careful modelling of the CTR data it is
possible to extract structural information such as the cgeersurface roughness,

and relaxationsf the crystal surface and of any adsorbed structures.

105
] —— Perfectly terminated
——=— +6 % expansion
——— -6 % relaxation
0.15 A rms roughness
——— 75 % occupation

105

10° 4

IF (a.u.)

10?2 4 f//'?f

102 e~

L (units of c*)

Figure 2.13 Demonstration of how changing different structural parameter modify
the CTR profile. The i#plane OR for a Ag(111) surfacevas simulated by a python

program The solid black line indicates the perfectly terminated surface.
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The specular CTR
Theq vector is entirely along the surface normal direction. It is unique in that

there is no momentum transfgomponent o)) in the surface plane.

Non-specular CTRs
Non-specular CTRs have an additionalplane momentum transfer, which is

sensitive to the iplane structure of the surface layers.

Fractional Order Rods FORs

If the termination of the surfaceconstructs, or there are ordered adsorbed
structures on the surface with a different symmetry to the bulk crystal lattice, then
the scattering becomes separate from the bulk. The structure gives rise to additional
rods of scattering termed fractionater rods (FORS) or superstructure rods.
In this thesis all three fckkl) low index surfaces have been studied. In following
sections, each surface will be treated in turn to determine the layering and structure

of the surface.

2.5.3 The (111) surface
The (111) surface is the most close packed of the three low index fcc
surfaces. The layer stacking is ABC with layer B in the fcc hollow sites and layer C

in the hcp hollow sites.
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Figure 2.14 Schematic of hcp (I€f and fcc (right) stacking. Atoms are arranged in a
hexagonal pattern in layer A, the second layer, B, is shifted so that the atoms fill the
hollow sites of layer A. In for hcp stacking the next layer lies directly above A
giving ABA stacking, or it isshifted with respect to both A and B, and lies in the
hollow sites of layer B giving ABC stacking.

The layer stackinglefines the c lattice paramet@s shownn Figure2.15 (a). The
layer stacking defines thearation of Bragg peaks in reciprocal space, in this case
the unit cell is repeated every 3 layers, thus the Bragg peaks are separated_py 3 in

as seen ifrigure2.15(c).

Figure 2.15 Schematic of fcc(111) (a) sideew real space structure (b) top view
real space structure (c) corresponding Bragg reflections in the reciprocal space

lattice
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