
 

  

 

Surface X-ray Diffraction Studies of 

Electrode/Vacuum and Electrode/Electrolyte 

Interfaces 

 

 

By 

Elizabeth M. Cocklin 

Department of Physics  

University of Liverpool 

This thesis is submitted in accordance with the requirements of the 

University of Liverpool for the degree of Doctor of Philosophy 

 
July 2017 



 

  

i 
 

 

Viva Voce Examination 

 
14:00, 3

rd
 May 2017 

Surface Science Research Centre, University of Liverpool 

 

Examiners 

Dr Chris Nicklin 

I07, Diamond Light Source 

 

Dr Hem Raj Sharma  

Department of Physics, University of Liverpool 

 

 
PhD Supervisors 

 
Primary: Dr David Martin 

 

Secondary: Prof. Christopher A. Lucas 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

ii 
 

 

Declaration  
 
I, Elizabeth Margaret Cocklin, declare this thesis is a presentation of my own work 

except where indicated in the text. It has not been previously submitted, in part or 

whole, to any university or institution for any degree, diploma, or other qualification. 

 

 

Elizabeth Margaret Cocklin 

 

 

 

 

3
rd

 March 2016 

 

Signed: Original submitted copy signed: Elizabeth Cocklin 
 

  



 

  

iii 
 

Surface X-ray Diffraction Studies of the Electrode/Vacuum and 

Electrode/Electrolyte Interface - Elizabeth Cocklin ï March 2017 

Abstract 

This thesis presents in situ Surface X-ray Diffraction (SXRD) studies of 

surfaces and interfaces, in both Ultra High Vacuum (UHV) and an electrochemical 

environment. Primarily Crystal Truncation Rod (CTR) measurements are utilised to 

determine a model for the atomic structure at the interface.  

A SXRD characterisation of the clean Ag(110) and Ag(111) surfaces in UHV 

were determined as a reference for the rest of the work in this thesis. Following this 

the growth conditions and structures of a silicene layer on Ag(111) were 

investigated, by Low Energy Electron Diffraction (LEED) and preliminary SRXD 

study of the interface structure is presented. 

A comprehensive study of the Ag(hkl)/alkaline interface is presented. X-ray 

Voltammetry (XRV) measurements have been performed to determine the potential 

dependence of the system. CTR measurements have been used to determine the 

structure at both the electrode and electrolyte sides of the interface. The results reveal 

large structural changes on the electrolyte side of the interface, with the response of 

relaxation of the surface layers in the metal. The presence of specifically adsorbed 

OH on the surface stabilises cations in a compact double layer through non-covalent 

interactions. The studies were extended to determine the effects of saturating the 

electrolyte gases, CO and O2 on the double layer structure. The results indicate that 

double layer structure is subtly perturbed, and hints at a change in the nature of 

bonding at the interface. 

Time resolved SXRD measurements are utilised to determine the dynamics of 

the restructuring of the electrolyte layering at the Ag(111)/Alkaline interface. In 

order to gain a comprehensive picture of the structural dynamics, two other systems 

are studied; the Au(111) reconstruction to determine the timescale of the (1 x 1)  P

ὴ Ѝσ reconstruction, and the underpotential deposition of Ag on Au(111). The 

results indicate that the mass transport of ions through electrolyte is on a timescale 

comparable to the charge transfer, whereas the ordering of ions and surface metal 

atoms occurs on much longer timescales. 
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1 Introduction 

 

 

 

 

The study of surfaces and interfaces is of paramount importance to the 

development of new materials for a variety of technological areas such as 

nanotechnology, and renewable energy. The ability to understand the structure on an 

atomic level is important to be able to tailor new stable and efficient materials, and 

tune their properties. In order to do this it is important to understand simple model 

systems to determine the driving force behind structure formation and catalytic 

activity. Consequently there has been a wealth of research utilising single crystal 

electrodes; as they have well defined atomic arrangements with specific adsorption 

sites. 

  Over the years there have been a vast amount of techniques developed to 

characterise the atomic structure of single crystal surfaces, for example many early 

surface characterisation studies were carried out in Ultra High Vacuum (UHV) 
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utilising techniques such as Low Energy Electron Diffraction (LEED) and X-ray 

Photoemission Spectroscopy (XPS); which probe the electrode-gas interfaces. These 

techniques were later extended to probe the structure of electrochemical systems ex 

situ, where a sample would be transferred from an electrochemical cell to the UHV 

environment. Whilst a wealth of knowledge has been obtained from ex situ studies, 

one cannot be certain that the structural models obtained are a true representation of 

the electrochemical interface. Without potential control structures may not be stable, 

and weakly adsorbing ions in the double layer may be lost on emersion. To bridge 

the gap in the knowledge, it is essential to develop and exploit in situ structural 

techniques (where the system remains under potential control) to develop a dynamic 

picture of the electrochemical interface. Scanning Tunneling Microscopy (STM) and 

Surface X-ray Diffraction (SXRD) have been instrumental in this. The primary 

technique used in this thesis is SXRD.  The disadvantage of using SXRD is the need 

for high intensity X-rays, as scattering from surface is very weak in comparison to 

the bulk; synchrotron radiation is therefore required. 

Understanding the structure of clean surfaces is a vital starting place in which 

correlations between surface structure and adsorption can be made. When a crystal is 

terminated the properties of the atoms in the top few layers differ to that in the bulk; 

the coordination number at the surface is reduced and the electron distribution is 

modified. As a response the top atomic layers may reconstruct (in-plane symmetry is 

different to the bulk crystal lattice) or undergo relaxations (displacement from the 

bulk equilibrium position along the surface normal). In UHV only a few noble metals 

are known to reconstruct under specific preparation conditions (Pt, Au, Ir)[1], whilst 

nearly all metals experience vertical relaxations of the top metal layers [2]. The 

reconstructions and relaxations of a metal differ between the low index surfaces due 
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to the coordination number of the surface; for example for fcc metal surface the 

relaxation effect increases in the order (111)<(001)<(110) [2ï4]. The addition of 

adsorbates on the surface can enhance, lift or even induce reconstruction of surfaces 

[5]. 

The majority of work presented in this thesis concerns the silver (Ag) low 

index surfaces. Silver is a noble metal which does not experience in-plane 

reconstruction without the addition of adsorbates, such as oxygen [6] or alkali metals 

[5]. Ag has been extensively studied in UHV, to determine the relaxations of the 

clean surface [7ï15]. The adsorption of oxygen species on Ag surface is of particular 

interest due to the role of surface oxide in the catalytic gas phase reactions of organic 

molecules, such as; ethylene epoxidation and methanol oxidation [16]. Atomic 

resolution (STM) images of the oxygen-promoted restructuring of the Ag(111) 

surface
 
[17] have been combined with density functional theory (DFT) calculations 

[18] in an attempt to understand the function of silver as an oxidation catalyst.  

The adsorption of hydroxide and oxygen species onto metal surfaces is also 

vital to understand surface reactivity and catalytic behaviour at the electrochemical 

interface. Whilst the electrochemistry of silver has been widely studied in the oxide 

region, there have been considerably less studies in the underpotential oxide region, 

where hydroxide (OH
-
) is specifically adsorbed. This region is of particular interest 

as important electrochemical reactions occur; such as the Oxygen Reduction 

Reaction (ORR), CO oxidation, amongst others. In 2010 it was proposed that non-

specifically adsorbed cations (cations which retain their hydration shell), are 

stabilised in a compact double layer by non-covalent (van der Waalôs) interactions 

with OHads, and have been proven to play an important role in the kinetics of the 

ORR on Pt [19]. Depending upon the hydration energies of the cation the ORR can 
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be inhibited by cation-hydroxide clusters. An understanding of the electrolyte 

layering at the interface is obviously of paramount importance as the structure of the 

layering may be tuned in order to enhance or inhibit electrochemical reactions. 

Structural studies of Ag in electrochemical environments compared to other noble 

metals, such as Au and Pt, is severely lacking, which is likely due to the difficulty in 

preparing the surface and obtaining atomic-scale structural information from a 

reactive surface in the liquid environment. The majority of structural studies of Ag 

have been made ex situ, hydroxide adsorption on Ag(hkl) was investigated by 

Horswell et al. [19,20] which indicated evidence of an ordered ς  φ, and 

Ãς  ς at higher coverages on the Ag(110) surface, these structures are shown 

schematically in Figure 1.1. An early model of the Ag(111)/alkaline interface was 

proposed by Savinova [22], which identified the presence of cations in the interface 

structure. More recently Lucas et al. [23] investigated the structure of the 

 

Figure 1.1 Proposed structures for the OH- adlayer at negative potentials. White 

circles, top row Ag atoms; grey circles, second row Ag atoms; red circles, adsorbed 

OH
-
. The blue dashed rectangles indicate the unit cell of the hydroxide structure.  
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Ag(hkl)/alkaline interface by SXRD, and proposed which was consistent with 

analogous results obtained on Pt electrodes [19]; at positive potential cations are 

stabilised in a compact double layer by adsorbed OH through non-covalent 

interactions. In a similar study by Nakamura et al. [24], in 0.1 M CsBr + 0.05 M 

CsOH electrolyte, Cs
+
 cations are found to interact with adsorbed Br through non-

covalent interactions. It is essential to develop a detailed knowledge of the 

Ag(hkl)/Alkaline interface to develop a fundamental understanding of the driving 

forces behind important catalytic processes and the stability of the electrodes under 

reaction conditions. 

In addition to its properties as an electrode, silver has gained renewed interest in 

the past 5 years as the primary substrate for growth of a new two-dimensional 

material, silicene; the silicon analogue of graphene which would have the advantage 

over graphene of being compatible with the established silicon electronics industry. 

Unlike graphene, silicene is not freestanding as it cannot be exfoliated from bulk 

silicon and thus requires a substrate to grow on.  

The low tendency for alloy formation makes silver the ideal substrate, and 

consequently the majority of studies are on silver [25]. Silicon nanostructures have 

been formed on all three low index Ag surfaces. The majority of studies have 

focussed on Ag(111) with the aim to grow a honeycomb sheet of silicene. A 

preliminary SXRD investigation of silicene on Ag(111) is reported in Chapter 4 of 

this thesis. 

 

An outline of the content in this thesis is as follows; 

 

¶ Chapter 2 discusses theoretical principles behind the work in this thesis. The 
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chapter begins with a discussion of the electrochemical interface and the 

models which have been developed in order to describe it. Following this the 

theoretical background to SXRD, and the principle behind LEED are 

described. 

 

¶ Chapter 3 describes the experimental details such as sample preparation, the 

different types of electrochemical cells used and experimental setup. A 

description of the data acquisition procedure, in addition consideration of the 

necessary correction factors and data fitting procedures are provided. 

 

 

¶ Chapter 4 As the majority of this thesis concerns silver single crystals, it is 

important to establish the clean electrode/vacuum structure as a reference in 

order to determine the effect of electrolyte and adsorbates on the structure of 

the electrode surface. Chapter four begins with an SXRD study of the 

Ag(111) and Ag(110) surfaces in UHV. There are currently no reported 

SXRD studies of the relaxations of clean Ag(110) surface. The surface has 

predominantly been studied by LEED [7ï9,26] and Rutherford Back 

Scattering (RBS) [9,10], however there are large discrepancies between 

different studies, it is therefore important to determine the structure with 

SXRD to provide a useful comparison throughout this thesis.  

 

¶ Chapter 5 investigates the growth and structure of a silicene layer on 

Ag(111). The growth of silicene is challenging, with the temperature of the 

crystal during deposition, and the deposition rate, being key factors. Only a 
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narrow temperature range exists in which the growth takes place, thus, 

careful control over the growth conditions is necessary. These conditions 

were successfully optimised and are described in this chapter. The growth 

conditions and structures of silicene sheets on the Ag(111) surface were 

investigated by LEED, and preliminary structural SXRD analysis is also 

presented.  

  

¶ Chapter 6 presents a comprehensive in situ study of the Ag(hkl)/alkaline 

interface in the underpotential oxide region, i.e. the region where OH
-
 is 

reversibly adsorbed. X-ray Voltammetry (XRV) measurements were 

performed to highlight the potential dependent structural changes at the 

interface. A model for the interface structure was determined through analysis 

of Crystal Truncation Rod (CTR) data taken at fixed potentials, 

corresponding to the regions where the surface is free of adsorbates, and 

where OH is adsorbed. The study highlights the sensitivity of the electrolyte 

layering on the atomic geometry of the surface. The studies were extended to 

effects of saturating the electrolyte gases, CO and O2 on the double layer 

structure. 

 

¶ Chapter 7 One of the most important aspects of electrochemistry is to 

determine the dynamics of structural rearrangement of the electrochemical 

interface. SXRD is ideally suited to probe the structural evolution of the 

interface in real time. In Chapter 7 time resolved SXRD measurements are 

utilised to determine the dynamics of the restructuring of the electrolyte 

layering at the Ag(111)/Alkaline interface. In order to gain a comprehensive 
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picture of the structural dynamics, two other systems are studied; the Au(111) 

reconstruction to determine the timescale of the ρ  ρ P  ὴ Ѝσ 

reconstruction, and the underpotential deposition of Ag on Au(111). 

 

¶  Chapter 8 Finally a conclusion of the main results and discussion of future 

work is presented, with a consideration for the study of the Ag(111)/silicene 

system in an electrochemical environment.  

 

 

 

 

 

 

 

 

  



 

  

9 

 
 

 

 

 

 

 

 

2 Theoretical Principles 

 

 

 

 Introduction  2.1

The experiments in this thesis probe the atomic structure of both the 

electrode/vacuum interface and the electrode/electrolyte interface primarily through 

Surface X-ray Diffraction (SXRD) measurements. The scattered intensity of an X-

ray beam from the surface is far weaker, by ~10
6
 , than scattering from the bulk and 

thus synchrotron radiation is required to probe the surface (~1-10 Å).  In this chapter 

the theoretical principles behind X-ray diffraction are built up, and the principles 

behind Low Energy Electron Diffraction (LEED) are considered. 

 

 Electrochemistry 2.2

óElectrochemistry is the study of structures and processes at the interface 

between an electronic conductor (the electrode) and an ionic conductor (the 

electrolyte) or at the interface between two electrolytes.ô 
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This definition of electrochemistry is taken from Schmickler and Santos [27]. In this 

section a basic description of the metal-electrolyte interface is presented, which will 

consider electrode reactions, and a discussion of the electrical double layer models. 

Following this cyclic voltammetry and adsorption phenomena will be considered. 

Further background can be found in the source material references [27ï32]. 

 

2.2.1 Electrode Reactions 

At the electrochemical interface electrode reactions occur when there is 

charge transfer between ions and the electrode, this is known as a Faradaic reaction - 

or redox reaction. When an electron is lost this is known as oxidation, and the 

reverse process of gaining an electron is known as reduction. In an electrochemical 

cell there are two half reactions where oxidation and reduction occurs. Oxidation 

occurs at the anode, and reduction at the cathode. 

Oxidation: 

 Ὑ ὲὩ ὕ (2.1) 

Reduction: 

 ὕ ὲὩ Ὑ (2.2) 

where O is the oxidised species, R is the reduced species and n is the number of 

electrons exchanged between them. 

Energy levels 

When a metal is brought into contact with electrolyte their Fermi levels align, 

this is shown in Figure 2.1. When a potential is applied to a metal the energy of the 

Fermi level either increases or decreases, this is illustrated in Figure 2.2. When a 

metal comes into contact with a solution charge is transferred at the interface to  
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Figure 2.1 Energy levels (a) ion in solution (b) metal in solution - Fermi levels align. 

 

Figure 2.2 Effect of applied potential on the Fermi level in a metal. Applying a 

potential changes the energy of the Fermi level. 

equilibrate the Fermi levels. When a negative potential is applied the Fermi level 

increases and electrons are transferred from the electrode to species in electrolyte. 

This occurs when the energy of the Fermi level is above the lowest unoccupied 
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molecular orbital (LUMO).When a positive potential is applied the energy of the 

Fermi level decreases below the highest occupied molecular orbital (HOMO), 

resulting in oxidation ï electron transfer to the electrode. 

 

We need to be able to measure and control the potential of the working 

electrode in order to control the electrochemistry at the interface. The electrode 

potential cannot be directly measured; instead it must be compared against a standard 

reference electrode. The cell potential is the sum of the standard potentials for each 

half reaction: 

 Ὁ  Ὁ Ὁ  (2.3) 

The superscript ó0ô denotes that it is under standard conditions (i.e. T = 298 K).   

The reaction in the cell has a change in Gibbs free energy, G, which can be related to 

the cell potential. Chemical energy (G) can be converted to electrical energy (Ὁ  

by: 

 ɝὋ ὲὊὉ  (2.4) 

Where n is the number of electrons transferred, and F is the Faraday constant. 

If the reaction is under standard conditions then this becomes: 

 ɝὋπ ὲὊὉὧὩὰὰ
π  (2.5) 

When E
0
 is positive, the reaction is spontaneous and when E

o
 is negative, the 

reaction is non-spontaneous. From thermodynamics, the Gibbs energy change under 

non-standard conditions can be related to the Gibbs energy change under standard 

conditions via the following equation: 

 
ɝὋ ɝὋ ὙὝÌÎ

ὕ

2
 

(2.6) 

Where R is the gas constant (~8.3 J K
-1

), T is the absolute temperature, ὕ and 2 

are the concentration of the reductant and oxidant. 
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Substituting in for ɝὋ and ɝὋ : 

 
ὲὊὉ ὲὊὉ ὙὝÌÎ

ὕ

Ὑ
 

(2.7) 

Dividing both sides by ɀὲὊ gives: 

 
ЎὉ ЎὉ

ὙὝ

ὲὊ
ÌÎ
/

Ὑ
 

(2.8) 

This is known as the Nernst equation. This equation indicates that the electrical 

potential of the cell depends on the concentration of electroactive species. During a 

redox reaction the concentration of the reductant and oxidant changes, which results 

in a decrease in cell potential until the reaction is at equilibrium where ɝὋ π. In 

order to drive further reactions a potential must be applied. 

 

2.2.2 Electric double layer models 

When a metal electrode is brought into contact with electrolyte with different 

chemical potentials the charge of the surface is balanced by an excess charge in the 

electrolyte. The metal is an excellent conductor, which means its excess charge is 

restricted to a depth ~ 1 Å into the surface. Conversely, the conductivity of an 

electrolyte is several orders of magnitude less than that of a metal (it is dependent 

upon the concentration of ions), which results in an extended charge distribution over 

a larger region ~ 5 - 20 Å. The charge distribution at the interface is known as the 

electric double layer. In aqueous electrolyte the voltage drop across the interface is of 

the order of 1 V, this defines the electrochemical window. Outside the potential 

limits the solution decomposes, at positive potential oxygen evolution sets in and at 

negative potential hydrogen evolution sets in. The potential window is much wider in 

ionic liquid of the order of several volts. The following sections describe how the 

double layer region is modelled; a schematic is shown in Figure 2.3. 
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Figure 2.3 Schematic representation of electrical double layer models. 

 

The Helmholtz model 

In 1853, Helmholtz [34] proposed the first model of the electrode/electrolyte 

interface. This model assumes that there are no Faradaic processes occurring at the 

electrode surface, i.e there is no charge transfer occurring, and that the charge density 

at the electrode surface, q
m
, arising from excess or deficiency at the surface is 

equalised by the redistribution of ions in solution q
s
; maintaining charge neutrality on 

the electrode such that: 

 ή ή (2.9) 

 

In this model it is assumed that the solvation shell around the ions determines their 

closest approach, i.e. it prevents them from directly interacting with the surface.  

This is known as the Outer Helmholtz Plane (OHP). A resulting potential drop 
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occurs in the region between the electrode surface and the OHP, which was 

described by Helmholtz as the óelectrical double layerô. The double layer is 

analogous to an electrical capacitor: 

 ὅ
‐

τ“Ὠ
 (2.10) 

where Ů is the electric permittivity of the medium, and d distance of the Helmholtz-

plane from the electrode surface. 

 

Gouy-Chapman model 

Gouy [35] and Chapman [36] independently proposed that the charge was 

spread over a diffuse layer as opposed to being concentrated at the OHP later 

modified the Helmholtz model. This occurs due to Brownian motion opposing the 

electrostatic attraction and repulsions of ions from the electrode, thereby dispersing 

excess charge over a diffuse layer. The capacitance is given by: 

 ὅ
ςᾀὊ‐ὧᶻ

ὙὝ

ϳ

ὧέίὬ
ᾀὊ‰

ςὙὝ
 (2.11) 

where z is charge on the ion, and ‰ is the total potential drop across solution side of 

double layer 

 

Stern model 

In 1924 Stern [37] proposed a model, which combined the previous two. He 

assumed that there was a minimum distance of closest approach in the OHP where 

the majority of charge was concentrated, and that charge also extended into the 

diffuse layer. 

The capacitance of this model behaves like two capacitors (the Helmholtz 

and Gouy-Chapman capacitance) in series: 
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ρ

ὅ

ρ

ὅ
 
ρ

ὅ
 (2.12) 

Grahame model 

In 1947 Grahame [38] proposed that the ions could penetrate the OHP if they 

lost part or all of their solvation shell and come into direct contact with the electrode, 

these ions are said to be óspecifically adsorbedô on the surface. This closer plane of 

approach was termed the Inner Helmholtz Plane (IHP). 

 

2.2.3 Potential of zero charge 

The charge of an electrode can be controlled by an applied potential; it can be 

positively or negatively charged. Therefore, it must follow that there is some 

potential where there is zero charge. This is called the potential of zero charge, pzc. 

The pzc is a characteristic quantity which is different for all metals, and also differs 

for the different surface geometries of a metal. The pzc is related to the work 

function, ɮ: 

 ‰ ɮ ὅ (2.13) 

Where C is a constant which depends on the scale on which the electrode potential is 

measured (the reference electrode). It is a useful quantity for comparing different 

surfaces.  

 

2.2.4 Cyclic voltammetry 

Cyclic voltammetry (CV) is an important technique for measuring the current 

as a function of potential. This is a simple method of characterising an 

electrochemical system. Features in the voltammogram can be attributed to 

electrochemical processes such as adsorption and desorption at the interface, and 

surface reconstruction. As cyclic voltammetry is a measure of electron transfer, 
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peaks in the voltammetry can be integrated to give the charge transfer for a particular 

process. The simplest way of measuring the current is to use a two electrode set up. 

This consists of a working electrode, where the reaction of interest is taking place, 

and a stable reference electrode that the potential at the working can be measured 

against.  The potential difference between the working electrode and reference 

electrode is given by: 

 Ὁ ‰ ‰  ‰ ‰ ὭὙ (2.14) 

The first term in equation (2.14) ‰ ‰  represents a voltage drop at the 

electrode/electrolyte interface, the second ‰ ‰  is the voltage drop at the 

reference electrode interface and the final term ὭὙ represents the potential drop 

between the two electrodes (solution resistance).  For this to work, the iR term needs 

to be negligible so that the reference electrode is in equilibrium to have its standard 

value, a large current through the reference electrode can cause itôs chemical 

composition to break down. This set up works perfectly well for measurements 

where only a small current is passed, such as for microelectrodes, however, for larger 

electrodes, as used throughout this thesis (Area = 0.79 cm
2
), a larger current is 

passed. This is avoided by using a three-electrode set up shown in Figure 2.4. In 

addition to the working and reference electrode there is a third ócounterô electrode; 

this is chosen to be a material that does not produce any substances that may affect 

the behaviour of the working electrode. In this configuration the voltage is measured 

between the working electrode and the reference electrode, a high input impedance 

restricts current being drawn from the reference electrode. 
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Figure 2.4 Schematic of 3 electrode electrochemical cell. W.E. working electrode, 

C.E. counter electrode, R.E. reference electrode. The potential is controlled between 

the working and reference electrodes, and the current flows between the working and 

counter electrodes. 

In this configuration the voltage is measured between the working electrode and the 

reference electrode, a high input impedance restricts current being drawn from the 

reference electrode. 

The current is measured whilst the potential of the working electrode, with 

respect to the reference electrode, is swept linearly between the cathodic (negative) 

and anodic (positive) limits, E1 and E2 respectively, at a constant sweep rate seen in 

Figure 2.5. The shape of the forward and reverse scans should be similar; however it 

depends on the reversibility of the A/B redox couple. The cycle starts from E1 and 

scans linearly at to E2, oxidising species B to species A, which is then reduced on the 

reverse negative sweep. 
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Figure 2.5 Schematic of cyclic voltammetry measurements (a) the variation of 

potential with time (b) the current response of the system. 

In Figure 2.5 (b) an increase in current corresponds to an oxidation or redox reaction, 

where: 

Ὥ  ï peak current in oxidation process 

Ὁ  ï electrode potential corresponding to the oxidation process 

Ὥ  ï peak current for in reduction process 

Ὁ  ï electrode potential corresponding to the reduction process 

 

Initially no current is passed as the potential is not great enough in order to 

drive a reaction. Once the current is sufficiently positive enough the current begins to 

increase, corresponding with the oxidation of the reduced species. The current 

increases to a peak current Ὥ . The current gradually decreases until all of species A 

is converted to B. The shape of a CV can also be influenced by external factors such 

as scan rate, this is illustrated in Figure 2.6; features become much sharper at a 

slower scan rate, and with higher concentration of ions in electrolyte more current 

flows giving a larger CV shape. 
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Figure 2.6 Effect of increasing scan rate on CV. 

Although this is a quick method to perform in the lab, it is purely based on electron 

transfer it lacks structural information of the interface; for this we need to combine 

cyclic voltammetry with a structural technique in situ such as Scanning Tunneling 

Microscopy (STM), or SXRD. SXRD is discussed at length in section 2.4. 

 

2.2.5 Adsorption phenomena 

As discussed in the double layer models, adsorption processes can occur at the 

interface. The adsorption of ions falls into two categories: 

 

1) Chemisorption ï Occurs in the IHP and involves chemical interactions 

between the adsorbate and substrate. The bonding is either covalent 

(electrons are shared) or ionic (electrons are transferred). 
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2) Physisorption ï occurs in the OHP, involves weak electrostatic interactions 

mainly via van der Waals forces.  

2.2.6 Chronoamperometry 

This technique is used to measure the current response during a potential 

step. The voltage is stepped from an initial potential, E1, to a final potential E2, and 

the current is measured as a function of time, the perturbation and response is shown 

in Figure 2.7. The shape of the resulting current evolution response, transients, gives 

an indication of the process under study, for example, the mechanism of an 

adsorption/desorption process. By fitting an appropriate lineshape to the current 

transient, of exponential form, the time constant for the charge transfer processes can 

be extracted. 

  

Figure 2.7 Potential step measurements (a) the change in potential ï the potential is 

stepped between two limits, resulting in a square wave form, (b) the current 

evolution response. 



 

  

22 

 
 

 Basic theory of diffraction  2.3

The structure of a crystal can be determined by the way in which incident 

waves interact with the sample. Diffraction occurs due to the interference effects 

produced by the phase difference between elastically scattered waves from different 

atoms in a crystal. The incident wave must have a wavelength comparable to the 

atomic spacing of a crystal for diffraction to occur, X-rays, neutrons and electrons 

satisfy this.   

 

2.3.1 Crystallographic definitions 

A crystal is a defined as a repeating basic with long-range order. The periodic 

array can be descrived by a space lattice with a group of atoms attached to each 

lattice point. The space lattice is defined by three vectors a, b and c such that any 

integer multiple of the vectors from any point in the lattice will locate a similar point. 

The unit cell is the parallelepiped defined by the sides a, b and c with ‌ȟ‍ ὥὲὨ ‎ are 

the angles between them. Figure 2.8 shows the face centred cubic (fcc) crystal 

structure, which is the structure of the single crystals used in this thesis.  

 

Figure 2.8 The face centred cubic fcc crystal structure. The (111) plane is 

highlighted. 
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The unit cell can be translated through space in all directions by: 

 

 

╡ ὲ╪ Î╫ ὲ╬ 

 
 (2.15) 

where ni is an integer, which builds up the crystal structure.  

2.3.2 Crystal planes and Miller indices 

There are an infinite number of 2D parallel planes in a 3D crystal structure. 

These planes have a specific arrangement of atoms and can be defined by its Miller 

indices (hkl). The Miller indices are determined by calculating the fraction of 

intercepts of the plane with the a, b and c axes and then taking the reciprocal. 

Directions are denoted [hkl] and are perpendicular to the (hkl) plane. This thesis 

focuses on the three low index fcc(hkl) surface planes which are depicted in Figure 

2.9. Each set of parallel planes has an associated atomic arrangement, coordination 

number and interplanar spacing, dhkl. 

 

Figure 2.9 schematic representation of the fcc(hkl) low index planes. 

The spacing between parallel planes is given by: 

 

 

Ὠ
ὥ

ЍὌ ὑ ,
 

 
 (2.16) 
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where ὥ is the lattice constant. 

The scattering geometry from a set of parallel planes is shown in Figure 2.10, the 

planes are separated by a distance dhkl (the interplanar spacing). When two parallel 

waves scatter from parallel planes their path difference (the additional distance 

travelled by the second wave to the lower plane) is given by 2dsinɗ. Constructive 

interference occurs when the path difference is some integer number, n, of 

wavelength ɚ. This construction gives us, Braggôs law [39]: 

 Îʇ ςÄÓÉÎʃ (2.17) 

 

 

Figure 2.10 Geometric representation of Bragg's law considering scattering from 

two crystal planes. 

Although Braggôs law determines the conditions for constructive interference, it does 

not consider the scattering power from the atoms in the crystal which one needs to 

determine structural analysis.  

 

 X-ray Diffraction  2.4

The scattering cross-section of X-rays is small, so the effects of multiple 

scattering can be neglected and a kinematic approach can be taken. Scattering arises 

from the electrons in an atom, this section will build up the theory of X-ray 
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diffraction starting from scattering from a single electron, to scattering from the bulk 

and surface layers of a crystal. The addition of adlayers and electrolyte layering will 

also be considered. The derivations in this chapter follow references [39ï43], which 

can be referred to for a more rigorous explanation. 

2.4.1 Momentum transfer 

The important variable in X-ray diffraction is the momentum transfer q, 

which is defined in terms of the incident and diffracted X-ray wave vectors, k i and kf 

respectively: 

 ▲ ▓█ ▓░ 

 

(2.18) 

 

Where the magnitude of   Ὧ: 

 ȿ▓░ȿ ▓█ ȿ▓ȿ
ςʌ

ʇ
 (2.19) 

 

where ‗ is the X-ray wavelength. Using this Bragg's law can now be expressed in 

terms of the momentum transfer and wave vector(shown schematically in Figure 

2.11):  

 
ȿ▲ȿ ςȿ▓ȿίὭὲ—  ίὭὲ

ς—

ς
 

(2.1) 

 

 

Figure 2.11 Schematic showing construction of momentum transfer q, conserved in 

in elastic scattering. 
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2.4.2 Scattering from an electron 

When a photon is incident on an electron its electric field exerts a force on 

the electron causing it to oscillate and radiate a secondary wave with the same 

wavelength as the incident wave. The amplitude of the scattered wave can be 

described classically by the Thompson scattering formula which describes the 

amplitude of a scattered wave  ὃ from an electron at position ὶ as a function of the 

incident wave ὃ: 

 

 

 ὃὩ ▓█Ͻ►▄ ὃ
Ὡ

τ“‭άὧ

ρ

Ὑ
Ὡ ▓░Ͻ►▄  

 
 (2.20) 

The  term arises from the spherical wave nature, and the prefactor term is the 

Thompson scattering length ὶ . Equation (2.20) can be rewritten in the 

form: 

 

 

 ὃ ὃ
ὶ

Ὑ
Ὡ▲Ͻ►▄  

 
 (2.21) 

Which gives the amplitude of the scattered wave in terms of the momentum transfer 

▲ (where ▲ ▓█ ▓░). 

 

2.4.3 Scattering from a single atom 

The scattering from an atom can be built up by considering its electron 

density. Scattering from an atom arises from the constructive interference of 

spherical waves from each electron in the atom. The electron density is ”►ᴂ, where 
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rô is the position of the electron. The scattering from an atom is given by substituting 

the positon vector of the electron and summing over the all electrons in the atom.   

The scattering from an atom is given by: 

 
ὃ ὃ

ὶ

Ὑ
”►ᴂὩ ▲Ͻ╡▪ ►▒► ▀►ᴂ  (2.22) 

 ὃ ὃ
ὶ

Ὑ
”►ᴂὩ ▲╡▪ ►▒  (2.23) 

and  Ὢ▲ the atomic form factor, is given by: 

 
Ὢή ”►ᴂὩ ▲Ͻ►▀►ᴂ  (2.24) 

The atomic form factor gives a q dependence to the scattering power of each atom, 

when ▲ =0 all electrons scatter in phase so  Ὢ▲=Z, as ▲ increases electrons begin to 

scatter out of phase, the atomic form factors are tabulated for each element in the 

International Tables for Crystallography [45]. The form factor also needs to account 

for the resonant effect of photons at adsorption edges, the equation is modified by 

dispersion corrections Ὢᴂ and Ὢᴂᴂ which are energy dependent: 

 Ὢ▲ȟὉ Ὢ▲ ὪᴂὉ ὭὪᴂᴂὉ   (2.25) 

 

2.4.4 Scattering from a unit cell 

To evaluate the scattering from a unit cell the calculation must sum over all 

the atoms in the unit cell. As the atoms in the unit cell may not be the same element, 

the corresponding form factor Æ▲ must be included. ►▒ is the relative position of 

the jth atom in the unit cell: 
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ὃ ὃ
ὶ

Ὑ
ὪήὩ▲Ͻ╡▪ ►▒ 

 

(2.26) 

 

 

 

ὃό ὃὭ
ὶέ

Ὑπ
Ὂ▲ὩὭ▲Ͻ╡▪  

 

(2.27) 

where Ὂ▲ is the structure factor, given by: 

 

 

Ὂ▲ Ὢ▲Ὡ▲Ͻ►▒ 

     

(2.28)  

The structure factor is the Fourier transform of the electron density, and dependent 

on the position of the atoms in the unit cell. 

2.4.5 Scattering from a crystal 

To determine the electron density of a crystal the atomic distribution must be 

considered. The next step is to sum the scattering over all the unit cells in the crystal, 

where the crystal is defined by N1, N2 and N3 unit cells along the crystal axes. The 

position of each unit cell is given by: 

 

 

Ὑ ὲ╪ ὲ╫ Î╬ 

 
 (2.29) 

The scattered amplitude is thus: 

 

 

ὃ ὃ
ὶ

Ὑ
Ὂ▲ Ὡ ╪ ╫ ╬  (2.30) 
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2.4.6 The scattered intensity 

Experimentally it is the scattered intensity which is measured, the amplitude 

is related to the scattered intensity by Ὅ▲ᶿȿὃȿ. Consider one term which is the 

sum of a geometric progression written in the form: 

 

 

Ὓ ▲Ͻ╪ Ὡ▲Ͻ ╪
ρ Ὡ ▲Ͻ╪

ρ Ὡ▲Ͻ╪
  (2.31) 

 

Applying Eulerôs formula Ὡ ὧέί—ὭίὭὲ—, and multiplying the equation by its 

complex conjugate, it becomes: 

 

 

Ὓ ▲Ͻ╪
ίὭὲὔ▲Ͻ╪Ⱦς

ίὭὲ▲Ͻ╪Ⱦς
  (2.32) 

 

This is analogous to the N-slit interference function. The interference function 

reflects the periodic array of atoms in the crystal, which gives rise to diffraction 

spots, Bragg reflections, in reciprocal space. The equations gives maxima when 

▲Ͻ╪ ς“ὲ where n is an integer. 

The scattered intensity is defined as: 

 

 

I ▲ Ὅ ȿὊ▲ȿ
▲Ͻ╪

▲Ͻ╪

▲Ͻ╫

▲Ͻ╫

▲Ͻ╬

▲Ͻ╬
  (2.33) 

 

were Ὅ is the intensity of incident photon. When the following conditions are met, 

the above equation produces maxima. These are the Laue conditions for diffraction: 

▲Ͻ╪ ς“Ὄ 
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 ▲Ͻ╫ ς“ὑ  

 ▲Ͻ╬ ς“ὒ 
(2.34) 

which satisfy the vector ▲ Ὄ╪ᶻ ὑ╫ᶻ  ὒ╬ᶻ where the reciprocal space vectors are 

related to real-space vectors by: 

 

 

╪ᶻ ς“
╫ ╬

╪Ͻ╫ ╬
  (2.35) 

 ╫ᶻ ς“
╬ ╪

╫Ͻ╬ ╪
  (2.36) 

 ╬ᶻ ς“
╪ ╫

╬Ͻ╪ ╫
  (2.37) 

When h, k and l are integer values they form a 3D lattice satisfying the Laue 

conditions and can also be described by the Bragg condition. 

The intensity at a particular q value is given by: 

 

 

 

 

Ὅ Ὅ
ὶ

Ὑ
ȿὪ▲ȿὔὔὔ   (2.38) 

 

 Surface X-ray Diffraction  2.5

 

2.5.1 Scattering from a surface 

So far the calculations have assumed scattering from a crystal which is 

infinite in all directions. We are interested in the surface structure, and therefore we 

must modify the equations to consider scattering from the surface. When the crystal 

is terminated at the surface the Laue condition for the c direction is no longer valid, 

as the crystal is semi-infinite along the c axis. This reduces equation (2.38) to: 
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Ὅ Ὅ
ὶ

Ὑ
ȿὪ▲ȿὔὔ

ρ

ςίὭὲρς▲Ͻ╬
  (2.39) 

This equation produces sharp peaks in intensity for values where L is an integer, in 

equation 2.40, which corresponds to Bragg peaks due to scattering from the bulk. In 

between the Bragg peaks the intensity is modulated along the surface normal, L, 

direction Figure 2.13. These streaks of intensity have been termed as Crystal 

Truncation Rods (CTRs) by Robinson [40]. 

2.5.2 Modelling surface structure 

 The equation above assumes a perfectly terminated crystal. This is not 

usually the case. Factors such as surface roughness, „, surface relaxations, ‐, and 

occupation, —, modify the shape of the CTR profile.  

  

Figure 2.12 Schematic representation of the structural parameters used to model the 

surface. Side view of a crystal (a) Top metal layer undergoes an outward relaxation, 

where the layer relaxes away from the bulk (into vacuum, or electrolyte) ï increasing 

the d-spacing. (b) Top metal layer undergoes an inward relaxation; where the layer 

relaxes towards the bulk ï decreasing the d-spacing. (c) Change in coverage; given in 

a fractional form of the bulk-terminated surface. (d) rms roughness ï average 

displacement of atoms. 



 

  

32 

 
 

The physical representation of these parameters is shown in Figure 2.12. The effects 

of these parameters are illustrated in Figure 2.13. When surface undergoes a 

relaxation (inwards or outwards) this causes an asymmetry around the Bragg peaks 

(Bragg peaks where intensity is a maximum). Reduced surface occupation causes a 

decrease in intensity between the Bragg peaks, which is most noticeable at the anti-

Bragg position which is half way between two Bragg peaks, the position most 

sensitive to the termination of the surface . An increased surface roughness has a 

similar effect, however, the decrease in intensity at the anti-Bragg position which 

becomes greater with increasing L. By careful modelling of the CTR data it is 

possible to extract structural information such as the coverage, surface roughness, 

and relaxations of the crystal surface and of any adsorbed structures.  

 

Figure 2.13 Demonstration of how changing different structural parameter modify 

the CTR profile. The in-plane CTR for a Ag(111) surface was simulated by a python 

program. The solid black line indicates the perfectly terminated surface.  
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The specular CTR  

The q vector is entirely along the surface normal direction. It is unique in that 

there is no momentum transfer (component of q) in the surface plane.  

 

Non-specular CTRs 

Non-specular CTRs have an additional in-plane momentum transfer, which is 

sensitive to the in-plane structure of the surface layers.  

 

Fractional Order Rods FORs 

If the termination of the surface reconstructs, or there are ordered adsorbed 

structures on the surface with a different symmetry to the bulk crystal lattice, then 

the scattering becomes separate from the bulk. The structure gives rise to additional 

rods of scattering termed fractional order rods (FORs) or superstructure rods.  

In this thesis all three fcc(hkl) low index surfaces have been studied. In following 

sections, each surface will be treated in turn to determine the layering and structure 

of the surface. 

 

2.5.3 The (111) surface  

The (111) surface is the most close packed of the three low index fcc 

surfaces. The layer stacking is ABC with layer B in the fcc hollow sites and layer C 

in the hcp hollow sites. 
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Figure 2.14 Schematic of hcp (left) and fcc (right) stacking. Atoms are arranged in a 

hexagonal pattern in layer A, the second layer, B, is shifted so that the atoms fill the 

hollow sites of layer A. In for hcp stacking the next layer lies directly above A ï 

giving ABA stacking, or it is shifted with respect to both A and B, and lies in the 

hollow sites of layer B ï giving ABC stacking. 

The layer stacking defines the c lattice parameter as shown in Figure 2.15 (a). The 

layer stacking defines the separation of Bragg peaks in reciprocal space, in this case 

the unit cell is repeated every 3 layers, thus the Bragg peaks are separated by 3 in L, 

as seen in Figure 2.15 (c). 

 

Figure 2.15 Schematic of fcc(111) (a) side-view real space structure (b) top view 

real space structure (c) corresponding Bragg reflections in the reciprocal space 

lattice. 




























































































































































































































































































































































































