Experimental investigation of alternative transmission functions: quantitative evidence for the importance of non-linear transmission dynamics in host-parasite systems

Sarah A. Orlofske¹,³†, Samuel M. Flaxman¹, Maxwell B. Joseph¹, Andy Fenton², Brett A. Melbourne¹, Pieter T.J. Johnson¹

¹Department of Ecology and Evolutionary Biology, University of Colorado Boulder
²Institute of Integrative Biology, University of Liverpool
³Current address: Department of Biology, University of Wisconsin – Stevens Point, Trainer Natural Resources Building 446, Stevens Point, WI 54481

†Correspondence: E-mail: s.a.orlofske@gmail.com, phone (540) 808-7652,

Running head: Transmission dynamics of macroparasites

Key-words: behaviour, infectious disease, epidemiology, mathematical model, macroparasite, Ribeiroia ondatrae

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/1365-2656.12783

This article is protected by copyright. All rights reserved.
Summary

1. Understanding pathogen transmission is crucial for predicting and managing disease. Nonetheless, experimental comparisons of alternative functional forms of transmission remain rare, and those experiments that are conducted are often not designed to test the full range of possible forms.

2. To differentiate among ten candidate transmission functions, we used a novel experimental design in which we independently varied four factors—duration of exposure, numbers of parasites, numbers of hosts, and parasite density—in laboratory infection experiments.

3. We used interactions between amphibian hosts and trematode parasites as a model system and all candidate models incorporated parasite depletion. An additional manipulation involving anesthesia addressed the effects of host behaviour on transmission form.

4. Across all experiments, non-linear transmission forms involving either a power law or a negative binomial function were the best-fitting models and consistently outperformed the linear density-dependent and density-independent functions. By testing previously published data for two other host-macroparasite systems, we also found support for the same non-linear transmission forms.

5. Although manipulations of parasite density are common in transmission studies, the comprehensive set of variables tested in our experiments revealed that variation in density alone was least likely to differentiate among competing transmission functions. Across host-pathogen systems, non-linear functions may often more accurately represent transmission dynamics and thus provide more realistic predictions for infection.
Introduction

Understanding the functional form of transmission has important implications for modeling disease impacts, forecasting future disease spread, and understanding the evolution of virulence (McCallum et al. 2001; Fenton et al. 2002; Boots & Sasaki 2003; Holt et al. 2003; de Castro & Bolker 2005). For mathematical convenience, most models used in disease ecology characterize parasite transmission as being either density- or frequency-dependent (Begon et al. 2002; Ryder et al. 2005; Smith et al. 2009; Devenish-Nelson et al. 2014). Density-dependent transmission (typically the default option for most models of disease [McCallum et al. 2001]) assumes rates of host-to-host contact increase linearly with population density, whereas frequency-dependent (density-independent) transmission (typically used to model sexually transmitted- and vector-borne infections [McCallum et al. 2001]) assumes a constant per-capita rate of contact with other hosts regardless of population density (Begon et al. 2002). These models make strikingly different predictions for infection dynamics (Wonham et al. 2006; Hoch et al. 2008; Smith et al. 2009), in particular regarding whether there is a threshold host population size for pathogen persistence (Bolker & Grenfell 1995; Swinton et al. 1998); density-dependent transmission predicts such a threshold, whereas frequency-dependent transmission does not, with the consequence that parasites showing frequency-dependent transmission can in theory drive the host population extinct (de Castro & Bolker 2005). Given these differences, making accurate predictions about how diseases affect host population dynamics depends on identifying the appropriate transmission function, with important implications for disease management (McCallum et al. 2001; Smith et al. 2009; Jennelle et al. 2014).

Despite the ubiquity of density- or frequency-dependent transmission functions in disease ecology theory, it is clear that, though mathematically convenient, these functions do not
adequately capture the functional form of transmission seen in nature, and in some cases their underlying assumptions have been proven invalid (Wonham et al. 2006, Smith et al. 2009; Cross et al. 2013; Morters et al. 2003). Given this, a range of alternative transmission functions has been proposed (McCallum et al. 2001; Table 1). Many of these functions assume that at low-density contacts are likely to be directly proportional to host and parasite density (i.e. approximating density-dependent transmission), but saturate at very high host or parasite densities (approximating frequency-dependent transmission) (Antonovics et al. 1995; D’Amico et al. 1996; McCallum et al. 2001; Fenton et al. 2002). Such a pattern has previously been found from analysis of infection incidence data of cowpox virus in wild rodents (Smith et al. 2009), finding that transmission was best described by a hybrid function which moved between density-dependent transmission when host densities were low, and frequency-dependent (density-independent) transmission when host densities were high. A similar hybrid function has also been found to provide a better description of elk contact rates and the spread of brucellosis than either frequency- or density-dependence (Cross et al. 2013).

Rather than representing categorical alternatives, density- and frequency-dependence may capture two specific points on a wider spectrum of possible transmission shapes (McCallum et al. 2017). Reflecting this, more flexible, phenomenological functions have been proposed (e.g. power functions) that allow transmission to take a range of non-linear forms beyond the density-/frequency-dependent extremes (Liu et al. 1986; Hochberg 1989, 1991; Fenton et al. 2002; Table 1). Mechanisms that can give rise to such non-linear transmission functions include heterogeneities in the distribution of infectious particles, or density-dependent mortality of the pathogen (Briggs & Godfray 1995). However, beyond a general sense that transmission is likely to be more non-linear than assumed by standard formulations, a comprehensive understanding of
how this is driven by variation in host and parasite density or abundance is lacking (McCallum et al. 2017).

Empirically it is challenging to quantify the overall magnitude of transmission, let alone determine its functional form. Several studies have sought to do this using infection data from natural systems by embedding alternative transmission functions within larger population dynamic models and then fitting those models to observed incidence data (Begon et al. 1998, 1999; Rachowicz & Briggs 2007; Cross et al. 2013). However, those approaches may be subject to uncertainty arising from potential inaccuracies in the specification of the wider population dynamic model or quantifying host densities, including the relevant area over which to evaluate transmission and the occurrence or timing of infection. An alternative approach is to conduct transmission experiments in the laboratory, where many of these factors can be controlled or quantified (D’Amico et al. 1996; Knell et al. 1996; Ryder et al. 2007). Typically these experiments involve exposing different densities of uninfected (susceptible) and infected hosts (or parasite infective stages, depending on the mode of transmission), and quantifying the number of hosts that become infected over a period of time. However, the specific experimental design is crucial to differentiating among alternative transmission functions; many functions are indistinguishable in certain contexts, for example if increasing host abundance also increases host density (i.e. if arena size remains constant). Hence, distinguishing among competing transmission functions often requires independent manipulation of both host and parasite numbers and arena size (May & Anderson 1979; McCallum et al. 2001), which surprisingly few studies have explored.

Here we experimentally tested a suite of mathematical functions as competing hypotheses to represent the transmission dynamics of a model system involving interactions between

This article is protected by copyright. All rights reserved.
amphibian hosts and trematode parasites. Macroparasite transmission (i.e. arthropods and helminths) involves processes analogous to microparasite transmission (i.e. bacteria and viruses) with added mechanistic control often well suited for experiments. Because macroparasites often infect hosts through free-living stages, each of which represent independent and quantifiable infection events, this system allows us to decouple the host and parasite components of transmission to help understand transmission in systems with these characteristics. Specifically, we used a maximum likelihood approach to determine which mathematical transmission function was best supported by experiments that systematically varied duration of exposure, host density, parasite density, and the total number of parasites. Furthermore, we examined the role of host behaviour (via experimental manipulation using anesthesia). Finally, we tested the generality of our conclusions by analyzing two other datasets for trematode transmission (Karvonen et al. 2003; Paller et al. 2007), ultimately finding that non-linear forms of transmission were more appropriate functions than either the classic density-dependent functions, or density-independent and ratio-dependent functions analogous to frequency dependent transmission for macroparasites.

Materials and methods

STUDY SYSTEM

Ribeiroia ondatrae is a trematode in the family Echinostomatidae with a complex life cycle, sequentially infecting snails (*Helisoma trivolvis*), larval amphibians, and finally amphibian-eating birds (Johnson *et al.* 2004, Tkach et al. 2016). Transmission of *R. ondatrae* from snails to amphibians occurs through direct infection by free-living aquatic parasite stages – cercariae – which then form encysted metacercariae in the amphibian that induce developmental
malformations (Johnson et al. 1999). During the transmission process, cercariae exhibit a searching behaviour until they locate a suitable encystment site (Beaver 1939; Johnson et al. 2004; Sutherland 2005). Preferred encystment locations in amphibians include just below the epidermis and above the muscular tissues at the base of hind limbs, inguinal and tail resorption area, cloaca and lower mandible (Beaver 1939; Johnson et al. 2004; Johnson & Hartson 2009; Sutherland 2005). We used the Pacific chorus frog, *Pseudacris regilla*, in the family Hylidae as our focal amphibian host because it is among the species with the highest reported frequencies of malformations, approaching 90% of emerging metamorphs in some populations (Johnson et al. 2013). Mortality and pathology in the amphibian host is related to the intensity of infection – the total number of parasites in the host – highlighting the need for understanding transmission dynamics (Johnson et al. 2012).

MODEL DEVELOPMENT AND EVALUATION

We compared ten candidate models representing unique hypotheses for pathogen transmission with experimental data using an information theoretic approach following the methods of Greer et al. (2008) and Rachowicz & Briggs (2007). We defined transmission in terms of successful acquisition of parasite infective stages to the host over time. We developed our set of models (Table 1) through an extensive literature search of functions used to model the spread of microparasites, macroparasites, and parasitoids. We converted two variations of the canonical frequency-dependent transmission function to forms appropriate for macroparasites, which we refer to as density-independent and ratio-dependent throughout. We also included three power law functions and two negative-binomial functions as well as two functions representing constant risk (McCallum et al. 2001). Transmission in microparasites is typically modeled as a function of the densities of susceptible, S, and infective, I, individuals. We adapted
each transmission function to apply specifically to a macroparasite system, where individual
free-living infective stages (cercariae, \(C \)) replace infectives (\(I \)). To better understand the
processes underlying transmission in this system, we incorporated parasite loss from the
environment via infection as one mechanism of depletion (Civitello et al. 2013; Civitello & Rohr
2014). We note that successful infection removes infectives (decreasing \(C \)) and leads to encysted
stages (metacercariae, \(M \)). We did not account for parasites that penetrated the host but failed to
successfully infect ("irreversible contact", Civitello et al. 2013), but previous research found that
(1) the proportion of \(R. \) ondatrae cercariae successfully forming metacercariae was consistent
across exposure levels, and (2) the loss or clearance of established metacercariae within \(P. \)
regilla hosts is minimal over the time span of the current study (LaFonte & Johnson 2013). The
necropsy methods used here have high accuracy and precision in detecting infections, such that it
is further unlikely that encysted parasites were not counted (LaFonte et al. 2015).

Finally, our hosts (\(H \)) are analogous to susceptibles (\(S \)) in microparasite models, although
because hosts can be infected by multiple parasites there is no decrease in \(H \) as hosts become
infected. We modeled the successful conversion of the number of free-living infective stages (\(C \))
into the number of metacercariae (\(M \)) with the ordinary differential equation \(\frac{dM}{dt} = \phi(C,H) \),
where \(C \) and \(M \) are numbers and cercariae at time \(t \) respectively, and \(\phi \) is the transmission
function, which may take any functional form given in Table 1. For example, \(\phi = \beta H \) represents
the constant risk function for hosts, where \(H \) is the number of hosts and \(\beta \) is the transmission
parameter encompassing contact between \(C \) and \(H \) and the probability of infection. We ignored
other sources of cercariae mortality (Karvonen et al. 2003; Paller et al. 2007) but these were
likely negligible over the short time frame of our experiments (15–240 minutes). We represent
populations of hosts and parasites as numbers with density included explicitly, when applicable,
by incorporating the volume (v) of the experimental tanks into the functional forms (Begon et al. 2002).

For most of the transmission functions listed in Table 1, we found the analytical solutions to each differential equation. For a subset (Negative Binomial 1 and 2), there were no analytical solutions, so we solved them numerically using the deSolve package (Soetaert et al. 2010) in R (R Development Core Team 2015). There are two different formulations for the negative binomial model used in the literature, one with hosts and one without (Briggs & Godfray 1995; Rachowicz & Briggs 2007; Greer et al. 2008). For particular experimental manipulations (described below), different transmission functions reduce to equivalent forms highlighting the inability of different experimental designs to distinguish among models. For example, for three of our experimental manipulations, where the number of hosts was equal to one, the two negative binomial functions make identical predictions; however, for the host density experiment we evaluated both versions. To fit models, we assumed a binomial likelihood function for the successful conversion of a fixed number of free living parasites to metacercariae, where the probability of conversion was determined by the transmission model. We minimized the negative log likelihood for each model using Brent’s method for single parameter models, and the Nelder-Mead method for multi-parameter models via the optim() function in R (R Core Team 2015). We obtained parameter estimates for each model and each experiment (Bolker 2008). We used the corrected Akaike information criterion (AIC_c) values to evaluate support for the different transmission functions (Burnham & Anderson 2002; Greer et al. 2008).

LABORATORY TRANSMISSION EXPERIMENTS

We used a series of targeted, laboratory experiments that manipulated different variables independently with the aim of testing the alternative transmission functions (Table 1) across a
range of parameter space. While other studies have investigated transmission with respect to system specific mechanisms, such as age of hosts or feeding behaviour (Goulson et al. 1995; D’Amico et al. 1996), we sought to manipulate factors relevant across host-pathogen systems and modes of transmission. We also took care to avoid confounding variables such as densities and numbers of hosts, noting that some of the most common experimental designs – i.e. varying total parasite number while keeping host and total volume constant – often do not reveal any distinction between transmission functions (see also Antonovics & Alexander 1992; Rachowicz & Briggs 2007).

We used *P. regilla* tadpoles raised in the laboratory from eggs and *R. ondatrae* from naturally infected snails to conduct experiments that independently varied (1) parasite number (4, 13, 30, 63, & 144 parasites), (2) host density (0.48, 0.95, & 1.9 tadpoles/L), (3) duration of exposure (15, 30, 60, 120, & 240 minutes), and (4) parasite density (5, 15, 30, 45 & 60 parasites/L), with each treatment replicated ten times. For all experiments the baseline conditions were 30 parasites/L, 30 minutes of exposure time, and 1 tadpole/L. Total parasite number was manipulated independently of density by increasing volume while parasite density was held constant (30 parasites/L, range of volumes 0.12-4.8L). Finally, our experimental design minimized heterogeneity in hosts and parasites by using tadpoles that were size- and stage-matched and cercariae collected within a narrow age range (electronic supplementary material, appendix 2,3), thereby limiting the mechanisms that could drive non-linear transmission dynamics.

HOST BEHAVIOUR EXPERIMENT

To examine the role of host behaviour in influencing the form of transmission, we performed a fifth experiment in which we reduced host activity by anesthesia with neutral
buffered MS-222 (0.125% tricaine methanesulfonate for 3 minutes; electronic supplementary material, appendix 4). By anesthetizing tadpoles with a vertebrate neurotoxin, we eliminated anti-parasite behaviours such as evasive maneuvers, while avoiding a direct influence on trematode cercariae as supported our observations and by previous studies (Koprivnikar et al. 2006, Daly & Johnson 2011). Furthermore, previous research found no effect of MS-222 on tadpole resistance to trematode infection (Sears et al. 2013). We followed the same procedures used for varying parasite number while maintaining parasite density across container volumes (see above), with 4 to 7 replicates per container (12 tadpoles recovered early from anesthesia and were excluded from analysis). After each experimental exposure, we maintained tadpoles for 48 hours before quantifying parasite infection (electronic supplementary material, appendix 5). We also evaluated the effect of anesthesia on the probability of cercarial encystment using an overdispersed binomial generalized linear model (Crawley 2007; R Development Core Team 2015).

EVALUATION OF OTHER HOST-MACROPARASITE SYSTEMS

We tested the generality of our findings with \textit{R. ondratreae} and amphibian hosts by extending our analysis to previously published data from two additional macroparasite systems: rainbow trout (\textit{Oncorhynchus mykiss}) and the trematode \textit{Diplostomum spathaceum} (Karvonen et al. 2003) and minnow (\textit{Zacco temmincki}) and the trematode \textit{Centrocestus armatus} (Paller et al. 2007). These studies experimentally exposed individual hosts to different (i) cercariae densities and (ii) cercariae numbers independently of density (electronic supplementary material, appendix 6), but without any manipulation of host density or exposure duration. Although the original studies evaluated frequency- and density-dependent functions, our reanalysis fit all models described in Table 1.

This article is protected by copyright. All rights reserved.
Results

OVERVIEW OF LABORATORY TRANSMISSION EXPERIMENTS

The manipulations produced a wide range of *R. ondatrae* metacercariae per host that scaled with variation in parasite, host, or time treatments. Duration of exposure and host density had especially strong effects on transmission success (Fig. 1a,b). Increases in exposure duration had a strong positive effect leading to the maximum infection level overall with approximately 80% of cercariae successfully encysting after 240 minutes. Increasing host density led to an overall greater transmission success for cercariae, but individual hosts had lower average infection (metacercariae per host) when multiple tadpoles were present. With respect to differentiating among the candidate transmission functions, variation in the total number of parasites (independent of density [cercariae per L]), variation in host density, and variation in the duration of exposure offered the clearest differences, while variation in parasite density alone discriminated poorly (Fig. 1, Table 2). Across most experiments, we found strong support for two types of non-linear functions, namely the power law and negative binomial functions, and poor support for classical density-dependent, density-independent, and ratio-dependent models (Table 2).

Varying parasite number (constant parasite density, variable volume)

Increasing the number of parasites while keeping parasite density constant led to a non-linear saturation of infection (Fig. 1a). For instance, average infection per tadpole increased from 2.8 ± 1.1 (SD) metacercariae when exposed to 4 cercariae to 15.7 ± 9.2 (SD) when exposed to 144 cercariae. This relationship was best represented by the negative binomial function, and both negative binomial models were equally supported because they reduced to the same model with
fixed H (Fig. 2a, Table 2a). Overall, there was a sharp decline in the proportion of successful cercariae from 0.7 to 0.1 over the range of volumes tested (0.12 – 4.8 L).

Varying host density (constant volume, variable host number)

Increases in host density led to a slightly non-linear increase in total cercariae transmission success (Fig. 1b), which increased from 37% (23.1 ± 7.3 recovered parasites of an initial 63) with a single host to 51% (32.1 ± 7.7) with four tadpoles. This was the largest increase in cercariae transmission success among all experimental manipulations; however, at the individual host level, average infection intensity declined with increases in the number of hosts as parasites became more distributed among hosts (from 23.1 ± 7.3 per host in the 1 tadpole condition to 8.0 ± 4.1 per host in the 4 tadpole condition). Both power law models (power C and power H) were well supported, with $\Delta AIC_c = 0$ and 0.982, respectively (Fig. 1b). Models without a host component received little support (Table 2b).

Varying duration of exposure

Increasing the duration of exposure caused a rapid increase in the proportion of successful cercariae from 0.3 to over 0.7 followed by saturation of infection at ~ 0.8 over exposure periods longer than 60 min (Fig. 1c). This corresponded with an average infection of 8.3 ± 2.7 (SD) metacercariae per tadpole after fifteen minutes rising to 21.8 ± 3.6 (SD) at 60 min. Based on this non-linear saturation, the power law C model showed the greatest support, with the power law CH model next best with $\Delta AIC_c = 2.3$ (Table 2c). All remaining functions underestimated the rapid transmission dynamics initially and overestimated the total infection at saturation ($\Delta AIC_c > 183$).
Varying parasite density (constant volume, variable parasite number)

Finally, we observed a linear increase in average infection with increasing parasite density from 1.4 ± 1.2 (SD) (28% of total parasites) at an exposure of five cercariae to 13.8 ± 11.0 (SD) with exposure to sixty cercariae (23% of total parasites) (Fig. 1d). This experiment was least able to differentiate among the competing transmission functions, providing almost equal support across all the tested functions (Table 2d). The proportion of successful cercariae remained relatively constant over the range of parasite densities from ~0.17 to 0.28.

HOST BEHAVIOUR EXPERIMENT

Anesthesia reduced tadpole activity, including anti-parasite behaviours, leading to a 46% higher average infection success compared to treatments with unanesthetized hosts (GLM, anesthesia treatment $Z = 2.2$, $p = 0.031$). Regardless of whether hosts were anesthetized, we observed a non-linear, saturating relationship between total parasite number and infection success, such that average per host infection increased rapidly from ~4 to 19 before leveling off at 25 metacercariae across the range of parasite exposures. Just as with the parallel manipulation involving unmanipulated (active) hosts, this result was best represented by the negative binomial functions, though both were equally supported, again because under these conditions they reduce to the same model (Fig. 2, Table 2e). Thus, host anti-parasite behaviours reduce net transmission, but are unlikely to be responsible for the observed non-linear dynamics.

EVALUATION OF OTHER HOST-MACROPARASITE SYSTEMS

Our analysis of data from previous studies of macroparasite transmission showed congruence with our empirical results, suggesting that non-linear transmission functions may be general across a variety of parasite and host taxa and different scales of experimental procedures (Table S1). Importantly, the results for both systems contrast the original conclusions that
transmission was frequency-dependent (density independent) (Fig. 3) (Karvonen et al. 2003; Paller et al. 2007). However, Karvonen et al. (2003) log-transformed the data prior to analysis, which may have led to the support for a linear function for otherwise non-linear dynamics. Similar to our empirical data, experiments manipulating parasite density were less able to distinguish between functional forms compared to when parasite numbers were varied independently of density.

For rainbow trout (Oncorhynchus mykiss) and Diplostomum spathaceum cercariae (Karvonen et al. 2003), there was a rapid increase in transmission followed by saturation at the highest exposure levels when the number of parasites increased independently of parasite density. This relationship supported the power C model, unlike in our experiment where the results conformed more closely with the negative binomial model (Fig. 3a, Table S1). For the experiment where parasite density was varied, the negative binomial and power law C models were almost equally supported (ΔAICc 0.3–3); however, the trends appeared nearly linear similar to our experimental results from varying parasite density (Fig. 3b). For minnows (Zacco temmincki) and Centrocestus armatus cercariae (Paller et al. 2007), the negative binomial model was most strongly supported when parasite numbers were varied independent of parasite density, and when parasite density varied (Fig. 3c-d). This function captured the apparent curvilinear relationship when parasite numbers increased and aligned closely with results of the current study involving Ribeiroia ondatrae and amphibian hosts.

Discussion

By using an array of experimental manipulations that independently varied host density, parasite density, total parasite exposure, and exposure duration, we tested the efficacy of ten
different functional forms of host-parasite transmission that broadly encompass previous research from both epidemiological and ecological literatures (Table 1). We found that non-linear transmission forms involving either a power law or negative binomial function were the best-fitting models, consistently outperforming both density-dependent and density-independent functions. Thus, transmission of the trematode *R. ondatrae* to amphibian hosts within controlled exposure trials scaled in a positive but non-linear fashion with the number of infectious parasites, the number of hosts, and the duration of exposure. With the exception of the parasite density experiment where all models were nearly indistinguishable, all formulations of density-dependent and density-independent transmission were very poor fits to the experimental data (Table 2). By testing previously published data for two other host-macroparasite systems, we found support for the same or similar non-linear transmission forms, suggesting such non-linear functions may often more accurately capture host-parasite dynamics and potentially provide more realistic forecasting.

Comparing the performance of a wide variety of functional forms across five experiments with a uniquely comprehensive set of treatments offered a unique opportunity to evaluate alternative hypotheses about transmission. In particular, while parasite density is among the most commonly manipulated variables in previous studies of transmission, our results – including an analysis of previously published data – show that this is the least useful experiment for distinguishing among transmission forms. In addition, experimental manipulations, particularly of parasite density, resulted in functional forms reducing to equivalent forms with exactly the same estimated parameter values and AIC. Our experimental design achieved a wide range of infection, but some assumptions were made to establish our baseline condition, including parasite doses that would not cause direct host mortality. Nonetheless, these results highlight that
combining multiple, alternative experimental designs provide greater power to distinguish among competing functions (varying parasite numbers while controlling for parasite density, varying host density, and varying duration of exposure) in understanding parasite transmission dynamics.

Non-linear transmission forms related to host and parasite densities received strong support in our analysis. Past applications of non-linear transmission include modeling of insect pathogens (Briggs & Godfray 1995), chytrid infection in natural populations of Daphnia (Johnson et al. 2009), and Schistosoma sp. cercariae (Gao et al. 2011). Mechanisms proposed to help explain non-linear transmission dynamics include spatial aggregation in the distribution of hosts or parasites, heterogeneity in host susceptibility (immunity and physiology), and variation in the behaviour of hosts or parasitoids (Hochberg 1991; Briggs & Godfray 1995). Because we examined multiple predictor variables, non-linearity can be considered in relation to any of these or could be multivariate. By considering the biology of R. ondatrae and amphibian hosts, several non-mutually exclusive mechanisms may contribute to non-linear transmission. First, because R. ondatrae cercariae may use chemical cues to both locate a host and encystment site once contact occurs, non-linearity could result from differences in the probability of chemical detection with distance (Beaver 1939; Haas 1994). Moreover, potential interference by large numbers of simultaneously infecting cercariae may contribute to the non-linear patterns observed in treatments that manipulated time of exposure and parasite number. Similarly, cercariae of the other trematodes considered in this study, D. spathaceum and C. armatus, both have intermittent or weak swimming behaviour to position themselves in areas that likely lead to host contact (Haas et al. 2002; Paller & Uga 2008). This could lead to non-linearity if the parasites that have localized in that habitat saturate and fish localize in those areas physically interacting with a
subset of parasites. Second, host behavioural traits and responses to infection may contribute. Because parasites such as *R. ondatrae* cause considerable damage to the host tissue during encystment, often leading individuals with heavy infections to exhibit reduced activity 12-48 hr following exposure, shifts in host behavioural responses (including reduced avoidance behaviour) could enhance transmission in a non-linear manner – particularly if it generated among-host variation (Johnson & Hoverman 2014; Preston *et al.* 2014). Other studies have reported that variation in host size or developmental stage can also influence parasite aggregation (Holland *et al.* 2007), although we endeavored to keep these traits as constant as possible within our manipulations.

Identifying the specific mechanisms responsible for such non-linearities remains a priority for disease research (e.g. Civitello *et al.* 2013; Civitello & Rohr 2014). Future research should also investigate whether the form of transmission remains constant with variation in spatial scale, which would indicate that parasite behaviour remains an important driver, or if other host traits, environmental factors, or host species alter the functional form of transmission under more realistic conditions. Based on our results, we suggest that transmission should be considered from both the host’s perspective (e.g. how does the per-host encounter rate with parasites vary with parasite density or number?) and the parasite’s perspective (e.g. how does the per-parasite encounter rate with hosts vary with host density?). These two perspectives are not the same, and together they combine to determine the shape of the overall transmission function, further emphasizing the need to independently vary both host and parasite density and number to capture the full interaction between them.

Despite the importance of accurately modeling transmission for forecasting disease, there are relatively few empirical studies of transmission for macroparasites, limiting opportunities to
develop a generalized framework. Parasites with free-living infective stages are often assumed to have the same transmission mode as directly transmitted pathogens, or they are not explicitly modeled because of the short time scale of the dynamics (May & Anderson 1979; Rachowicz & Briggs 2007). Omitting particular experimental conditions or only including classical forms often leads to support for frequency-dependent transmission even when re-analysis indicated that non-linear functions were a better fit (Karvonen et al. 2003; Paller et al. 2007). For instance, in a recent re-analysis of data involving interactions between the human blood fluke Schistosoma mansoni and its snail intermediate hosts, Civitello & Rohr (2014) found that mechanistic models of transmission produced non-linear dynamics, and power–law models were superior to traditional density-dependent transmission, which did not account for parasite depletion.

Non-linear functions lead to complex dynamics in terms of stability and the thresholds for pathogen invasion in host populations (Liu et al. 1986; Hochberg 1991), and suggest there may also be a threshold density of infected hosts or infective stages required for disease persistence (Knell et al. 1996). Unsuitable transmission functions can therefore lead to inaccurate conclusions about the risk of pathogen-induced extinction, the effectiveness of control strategies, and the periodicity of host-pathogen cycles (Hochberg 1989; de Castro & Bolker 2005; Greer et al. 2008; Smith et al. 2009; Morters et al. 2013). Because of their flexibility, non-linear forms of transmission may be more useful across a variety of host-pathogen systems in forecasting disease occurrence and number of hosts infected as opposed to strictly frequency- or density-dependent transmission or when the true functional form for transmission is unknown (Fenton et al. 2002). Extending the current models to larger spatial scales and longer temporal scales will facilitate exploration of questions related to host populations and communities, including the role of
changes in biodiversity, as well as the efficacy of proposed management strategies (Dobson 2004; Rudolf & Antonovics 2005; Johnson et al. 2013).

By considering other ecological interactions represented by non-linear functions, transmission dynamics can be integrated with concepts from consumer resource dynamics and natural enemy ecology (Lafferty et al. 2015). In our models, the transmission coefficient is analogous to the searching efficiency of parasitoids (Knell et al. 1996). Transmission functions are also analogous to the functional response of predators (McCallum et al. 2001). This suggests that cercariae searching behaviour might be similar to parasitoids or predators (Combes et al. 2002; Fenton & Rands 2004). One intriguing possibility is the potential interference between cercariae for preferential encystment locations. At the short time scales at which transmission occurs, this mechanism may limit infection at the highest exposure levels. Further evidence for this competitive interaction between cercariae could be the increased variance in infection we observed in both the high parasite density and parasite number experiments, which have more potential for parasite interactions with variable outcomes. Our models addressed average infection, but additional experiments with larger sample sizes could help identify mechanisms for the variance and potential for parasite aggregation among hosts (Johnson & Hoverman 2014).

Acknowledgments

We thank RC Jadin for assistance with experiments and comments on earlier drafts of the manuscript and AV Johnson for assistance with the experiments. We are also grateful to DM Bortz for help formulating the mathematical models. We appreciate discussions with P Hudson that aided our research ideas. We thank DJ Civitello and an anonymous reviewer for comments helpful in improving the manuscript. This project was funded by the Society of Wetland
Scientists, the University of Colorado Boulder Department of Ecology and Evolutionary Biology, a Beverly Sears Graduate Student Grant and NSF Graduate Research Fellowships to SAO and MBJ, and an NSF grant (DEB-0841758, DEB-1149308) and a David and Lucile Packard Foundation Fellowship to PTJJ. AF was supported by a grant from the Natural Environmental Research Council UK (NE/N009800/1). Procedures involving vertebrate animals were approved by the University of Colorado Institutional Animal Care and Use Committee (1004.04).

Authors’ contributions

SAO and PTJJ devised the project and designed the research; SAO conducted the literature review; SAO, SMF, MBJ, AF and BAM derived the mathematical models, SAO performed the research; SAO, SMF, BAM, and MBJ analyzed the data; SAO, SMF, MBJ, AF, and PTJJ wrote the manuscript; and all authors edited the manuscript.

Data accessibility

R code and all experimental are available from the Dryad Digital Repository https://doi.org/10.5061/dryad.1pk42 (Orlofske et al., 2017).

References

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

Tables & Figures

Table 1. The suite of transmission functions used to model transmission of the free-living infective stages (cercariae, C) to encysted stages (metacercariae, M) of *Ribeiroia ondatrae* in Pacific chorus frog (*Pseudacris regilla*) tadpoles. Transmission is defined successful acquisition of parasite infective stages to the host over time in units of numbers of metacercariae (M). The form of each function used to model microparasite transmission from the literature is provided with the form used for macroparasites in this study for comparison. In the microparasite functions, S is the number of susceptible individuals (analogous to hosts, H) and I is the number of infectious individuals (analogous to cercariae, C). In all functions β is the transmission parameter, assumed here to be constant in time. Additionally, v is the volume of the enclosure, p and q are the susceptible (host) and infectious (cercariae) responses that represent how densities of each independently affect transmission efficiency. Finally, k is the time dependent index of aggregation parameter for the negative binomial model. References refer to microparasite functions.

<table>
<thead>
<tr>
<th>Transmission Form</th>
<th>Microparasite Function</th>
<th>Macroparasite Function</th>
<th>Biological Interpretation of Macroparasite Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant Risk $^1,^2$ 1</td>
<td>βS</td>
<td>$\beta C(t)$</td>
<td>Rate of acquisition of parasites independent of number of hosts</td>
</tr>
<tr>
<td>Constant Risk $^1,^2$ 2</td>
<td>βS</td>
<td>βH</td>
<td>Rate of acquisition of parasites independent of number of parasites</td>
</tr>
<tr>
<td>Density-dependent $^1,^3$</td>
<td>βSI</td>
<td>$\beta \frac{C(t)}{v} - H$</td>
<td>Rate of acquisition of parasites depends on density of either parasites or hosts only (functions are mathematically equivalent)</td>
</tr>
<tr>
<td>Density-independent $^1,^3$</td>
<td>$\frac{SI}{N}$</td>
<td>$\beta C(t)H$</td>
<td>Rate of acquisition of parasites depends on numbers of parasites and hosts independent of density</td>
</tr>
<tr>
<td>Ratio-dependent $^1,^3$</td>
<td>$\beta \frac{SI}{N}$</td>
<td>$\beta \frac{C(t)H}{(C(t) + H)v}$</td>
<td>Rate of acquisition of parasites depends on a ratio of contacts based on total</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
<table>
<thead>
<tr>
<th>Power (in C only)²</th>
<th>βSI^q</th>
<th>$\beta C(t)^qH$</th>
<th>Rate of acquisition of parasites saturates with increasing numbers of parasites.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (in H only)²</td>
<td>βSP^I</td>
<td>$\beta C(t)H^P$</td>
<td>Rate of acquisition of parasites saturates with increasing numbers of hosts.</td>
</tr>
<tr>
<td>Power (in both C and H)¹,²,⁴,⁵</td>
<td>βSP^I^q</td>
<td>$\beta C(t)^qH^P$</td>
<td>Rate of acquisition of parasites saturates with increasing numbers of both parasites and hosts.</td>
</tr>
<tr>
<td>Negative Binomial¹,³</td>
<td>$k\ln\left(1 + \frac{\beta I}{k}\right)$</td>
<td>$k\ln\left(1 + \frac{\beta C(t)}{k}\right)$</td>
<td>Rate of acquisition of parasites is equivalent to the negative binomial distribution of new infections among hosts encompassing heterogeneity among parasites.</td>
</tr>
<tr>
<td>Negative Binomial¹,³</td>
<td>$k\ln\left(1 + \frac{\beta I}{k}\right)$</td>
<td>$kH\ln\left(1 + \frac{\beta C(t)}{k}\right)$</td>
<td>Rate of acquisition of parasites is equivalent to the negative binomial distribution of new infections among hosts encompassing heterogeneity among parasites and hosts.</td>
</tr>
</tbody>
</table>

Table 2: Model selection statistics for macroparasite transmission functional forms (table 1) according to different experimental conditions (a-e) of *Pseudacris regilla* tadpole hosts and cercariae of *Ribeiroia ondatrae*. Functional forms with identical AICc values are mathematically equivalent under the experimental condition tested.

<table>
<thead>
<tr>
<th>Transmission Function</th>
<th>β (units)</th>
<th>Additional Parameters (units)</th>
<th>AICc value</th>
<th>Δ AICc</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Varying parasite number (constant parasite density, variable volume)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Negative Binomial 1 | 0.0644 (min⁻¹)
 k = 0.1343 (min⁻¹) | 408.7435 | 0.000 |
| Negative Binomial 2 | 0.0644 (min⁻¹)
 k = 0.1343 (min⁻¹) | 408.7435 | 0.000 |
| Power C | 0.0810 (H^4 min⁻¹)
 q = 0.4129 (dimension-less) | 418.6477 | 9.904 |
| Power CH | 0.0811 (H^{1-p-q} min⁻¹)
 q = 0.4127, p = 3.433 (dimension-less) | 420.9141 | 12.171 |
| Density Dependent | 0.0145 (H^{-1} min⁻¹) | 466.1725 | 57.429 |
| Constant 1 | 0.0074 (min⁻¹) | 637.8375 | 229.094 |
| Density Independent | 0.0074 (min⁻¹) | 637.8375 | 229.094 |
| Power H | 0.0074 (H^{p} min⁻¹)
 p = 1.1254 (dimension-less) | 640.0095 | 231.266 |
| Constant 2 | 0.1292 (min⁻¹) | 967.7085 | 558.965 | |
| Ratio Dependent | 0.1181 (min⁻¹) | 2164.3919 | 1755.648 |
| b. Varying host density (constant volume, variable host number) | | | | |
| Power C | 1.0E⁻⁵ (H^{q} min⁻¹)
 q = 2.0873 (dimension-less) | 241.7517 | 0.000 |
| Power H | 0.0081 (H^{p} min⁻¹)
 p = 0.7967 (dimension-less) | 242.7335 | 0.982 |
| Density Dependent | 0.0145 (H^{-1} min⁻¹) | 248.2491 | 6.497 |
| Density Independent | 0.0067 (min⁻¹) | 248.2491 | 6.497 |
| Power CH | 6.37E⁻⁸ (H^{1-p-q} min⁻¹)
 q = 4.0274, p = 0.7766 (dimension-less) | 272.1948 | 30.443 |
| Constant 2 | 0.3057 (min⁻¹) | 283.3670 | 41.918 |
| Constant 1 | 0.0149 (min⁻¹) | 370.4927 | 128.741 |
| Negative Binomial 1 | 0.6214 (min⁻¹)
 k = 0.1390 (min⁻¹) | 372.7943 | 131.043 |
| Ratio Dependent | 0.2000 (min⁻¹) | 1194.1242 | 952.372 |

This article is protected by copyright. All rights reserved.
<table>
<thead>
<tr>
<th>Negative Binomial 2</th>
<th>0.5464 (min(^{-1}))</th>
<th>k = 0.4679 (min(^{-1}))</th>
<th>24677.5267</th>
<th>24435.775</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. Varying duration of exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power C</td>
<td>3.0E(^{-4}) (H(^{-q}) min(^{-1}))</td>
<td>q = 2.3934 (dimension-less)</td>
<td>301.5747</td>
<td>0.000</td>
</tr>
<tr>
<td>Power CH</td>
<td>3.0E(^{-4}) (H(^{1-p-q}) min(^{-1}))</td>
<td>q = 2.3956, p = 2.4752 (dimension-less)</td>
<td>303.8412</td>
<td>2.266</td>
</tr>
<tr>
<td>Constant 1</td>
<td>0.0133 (min(^{-1}))</td>
<td>485.1008</td>
<td>183.526</td>
<td></td>
</tr>
<tr>
<td>Density Dependent</td>
<td>0.0133 (H(^{-1}) min(^{-1}))</td>
<td>485.1008</td>
<td>183.526</td>
<td></td>
</tr>
<tr>
<td>Density Independent</td>
<td>0.0133 (min(^{-1}))</td>
<td>485.1008</td>
<td>183.526</td>
<td></td>
</tr>
<tr>
<td>Power H</td>
<td>0.0133 (H(^{p}) min(^{-1}))</td>
<td>p = 1.1294 (dimension-less)</td>
<td>487.2728</td>
<td>185.698</td>
</tr>
<tr>
<td>Negative Binomial 1</td>
<td>0.0133 (min(^{-1}))</td>
<td>k = 107964.601 (min(^{-1}))</td>
<td>487.2731</td>
<td>185.698</td>
</tr>
<tr>
<td>Negative Binomial 2</td>
<td>0.0133 (min(^{-1}))</td>
<td>k = 107964.601 (min(^{-1}))</td>
<td>487.2731</td>
<td>185.698</td>
</tr>
<tr>
<td>Ratio Dependent</td>
<td>0.1295 (min(^{-1}))</td>
<td>1158.6684</td>
<td>857.094</td>
<td></td>
</tr>
<tr>
<td>Constant 2</td>
<td>0.1158 (min(^{-1}))</td>
<td>1220.7846</td>
<td>919.210</td>
<td></td>
</tr>
<tr>
<td>d. Varying parasite density (constant volume, variable parasite number)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant 1</td>
<td>0.0080 (min(^{-1}))</td>
<td>372.3348</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Density Independent</td>
<td>0.0080 (min(^{-1}))</td>
<td>372.3348</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Density Dependent</td>
<td>0.0080 (H(^{-1}) min(^{-1}))</td>
<td>372.3348</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Power H</td>
<td>0.0114 (H(^{p}) min(^{-1}))</td>
<td>q = 0.9001 (dimension-less)</td>
<td>373.4308</td>
<td>1.096</td>
</tr>
<tr>
<td>Negative Binomial 1</td>
<td>0.0088 (min(^{-1}))</td>
<td>k = 1.7293 (min(^{-1}))</td>
<td>374.2046</td>
<td>1.870</td>
</tr>
<tr>
<td>Negative Binomial 2</td>
<td>0.0088 (min(^{-1}))</td>
<td>k = 1.7293 (min(^{-1}))</td>
<td>374.2046</td>
<td>1.870</td>
</tr>
<tr>
<td>Power H</td>
<td>0.0080 (H(^{p}) min(^{-1}))</td>
<td>p = 1.1438 (dimension-less)</td>
<td>374.5068</td>
<td>2.172</td>
</tr>
<tr>
<td>Power CH</td>
<td>0.0113 (H(^{1-p-q}) min(^{-1}))</td>
<td>q = 0.9033, p = 3.2066 (dimension-less)</td>
<td>375.6973</td>
<td>3.363</td>
</tr>
<tr>
<td>Ratio Dependent</td>
<td>0.1931 (min(^{-1}))</td>
<td>548.9603</td>
<td>176.626</td>
<td></td>
</tr>
<tr>
<td>Constant 2</td>
<td>0.1387 (min(^{-1}))</td>
<td>639.2576</td>
<td>266.923</td>
<td></td>
</tr>
<tr>
<td>e. Host behaviour experiment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>0.0795 (min(^{-1}))</td>
<td>k = 0.2449 (min(^{-1}))</td>
<td>205.8628</td>
<td>0.000</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
Table 1

<table>
<thead>
<tr>
<th>Function Type</th>
<th>Parameter(s) Description</th>
<th>Parameter(s) Values</th>
<th>AIC Value</th>
<th>ΔAIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Binomial 2</td>
<td>k = 0.2449 (min⁻¹)</td>
<td>q = 0.4499 (dimension-less)</td>
<td>205.8628</td>
<td>0.000</td>
</tr>
<tr>
<td>Power C</td>
<td>H⁻¹ min⁻¹</td>
<td>q = 0.4499</td>
<td>217.6833</td>
<td>11.821</td>
</tr>
<tr>
<td>Power CH</td>
<td>H⁻¹p⁻q</td>
<td>q = 0.4500, p = 3.4092 (dimension-less)</td>
<td>220.2804</td>
<td>14.418</td>
</tr>
<tr>
<td>Density Dependent</td>
<td></td>
<td></td>
<td>229.9331</td>
<td>24.070</td>
</tr>
<tr>
<td>Constant 1</td>
<td>(min⁻¹)</td>
<td></td>
<td>373.9949</td>
<td>168.132</td>
</tr>
<tr>
<td>Density Independent</td>
<td></td>
<td></td>
<td>373.9949</td>
<td>168.132</td>
</tr>
<tr>
<td>Power H</td>
<td>H⁻¹p⁻q</td>
<td>p = 1.1506 (dimension-less)</td>
<td>376.3664</td>
<td>170.504</td>
</tr>
<tr>
<td>Constant 2</td>
<td>(min⁻¹)</td>
<td></td>
<td>840.0994</td>
<td>634.237</td>
</tr>
<tr>
<td>Ratio Dependent</td>
<td></td>
<td></td>
<td>1183.9051</td>
<td>978.042</td>
</tr>
</tbody>
</table>

Figures

Fig. 1. The number of *Ribeiroia ondatrae* metacercariae infecting *Pseudacris regilla* tadpoles in laboratory experiments manipulating (a) parasite number (C), (b) host number (H), (c) duration of exposure, (d) parasite density (per liter) (C/v). Points in a, c, d represent the infection levels of individual tadpoles, while b represents the total infection level of all tadpoles in a given density treatment. Lines represent the average infection expected from the well-supported transmission functions (within 2 AIC units of the best model). For some functions and experimental conditions, models reduced to the same functional form (a,d) resulting in exactly the same AIC (table 2a-d.). Note different scales of the x and y-axes. Points were jittered along the x-axis to avoid overlap.

This article is protected by copyright. All rights reserved.
Fig. 2. The number of *Ribeiroia ondatrae* metacercariae infecting *Pseudacris regilla* tadpoles in laboratory experiments manipulating host behaviour under conditions varying parasite number (C), (see text). Points represent the infection levels of individual tadpoles. Lines represent the average infection expected from the best fitting models (table 2e). The two negative binomial functions under these experimental conditions reduced to the same functional form resulting in exactly the same AIC. Points were jittered along the x-axis to avoid overlap.

Fig. 3. The number of *Diplostomum spathaceum* metacercariae infecting rainbow trout (*Oncorhynchus mykiss*) across a range of (a) parasite numbers (C), and (b) parasite density (per ml) (C/v), (data from 30). The number of *Centrocestus armatus* metacercariae attached to minnow (*Zacco temmincki*) across a range of (c) parasite numbers (C), and (d) parasite density (per ml) (C/v), (data from 31). Points represent the infection levels of individual fish. Lines represent expected values for the best fitting models (Table S1). For some functions and experimental conditions, models reduced to the same functional form (a,d) resulting in exactly the same AIC. Note different scales of the x and y-axes. Points were jittered along the x-axis to avoid overlap.
This article is protected by copyright. All rights reserved.
This article is protected by copyright. All rights reserved.