Detailed α-decay study of 180Tl

B. Andel,1,∗ A. N. Andreyev,2,3 S. Antalic,1 A. Barzakh,4 N. Bree,5 T. E. Cocolios,5,6 V. F. Comas,7 J. Diriken,5 J. Elseviers,5 D. V. Fedorov,4 V. N. Fedosseev,8 S. Franchoo,9 L. Ghys,5 J. A. Heredia,7 M. Huyse,5 O. Ivanov,5 U. Köster,10 V. Liberati,11 B. A. Marsh,9 K. Nishio,3 R. D. Page,12 N. Patronis,5,13 M. D. Seliverstov,5,6 I. Tsekhanovich,14,15 P. Van den Bergh,5 J. Van De Walle,6 P. Van Duppen,5 M. Venhart,16 S. Vermote,17 M. Veselský,16 and C. Wagemans17

1Department of Nuclear Physics and Biophysics, Comenius University in Bratislava, 84248 Bratislava, Slovakia
2Department of Physics, University of York, York YO10 5DD, United Kingdom
3Advanced Science Research Center, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195, Japan
4Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, 188300 Gatchina, Russia
5KU Leuven, Instituut voor Kern- en Stralingsfysica, University of Leuven, B-3001 Leuven, Belgium
6ISOLDE, CERN, CH-1211 Geneva 23, Switzerland
7GSI-Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
8EN Department, CERN, CH-1211 Geneva 23, Switzerland
9Institut de Physique Nucléaire, IN2P3-CNRS/Université Paris-Sud, F-91406 Orsay Cedex, France
10Institut Laue Langevin, 6 rue Jules Horowitz, F-38042 Grenoble Cedex 9, France
11School of Engineering and Science, University of the West of Scotland, Paisley, PA1 2BE, United Kingdom
12Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom
13Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece
14School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
15Centre d’Études Nucléaires de Bordeaux Gradignan, F-33700 Gradignan Cedex, France
16Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
17Department of Physics and Astronomy, University of Gent, Prootstuwstraat 86, B-9000 Gent, Belgium

A detailed α-decay spectroscopy study of 180Tl has been performed at ISOLDE (CERN). α-selective ionization by the Resonant Ionization Laser Ion Source (RILIS) coupled to mass separation provided a high-purity beam of 180Tl. Fine-structure α decays to excited levels in the daughter 176Au were identified and an α-decay scheme of 180Tl was constructed based on an analysis of α-γ and α-γ-γ coincidences. Multipoarities of several γ-ray transitions de-exciting levels in 176Au were determined. Based on the analysis of reduced α-decay widths, it was found that all α decays are hindered, which signifies a change of configuration between the parent and all daughter states.

I. INTRODUCTION

Odd-odd nuclei in the $Z = 82$ region are well known for a complex pattern of closely-spaced multiplet states at low excitation energy arising from coupling of the odd proton with the odd neutron (e.g. [1–3] and references therein). The relative position of the states within the multiplet may depend on the neutron number, see discussion in [4]. As an α decay is very sensitive to changes of spin, parity or configuration between initial and final states, α-decay spectroscopy is a valuable technique for investigating complicated level schemes [5]. The method is especially effective for identification of low-lying excited levels in daughter nuclei when α-γ coincidences are also measured. Evaluation of reduced α-decay widths (hindrance) for specific α-decay transitions and determination of γ-ray multipolarities can provide information on the configuration of the nuclear states involved.

This study of 180Tl continues our systematic work on the series of odd-odd Ti isotopes investigated at ISOLDE: 178Tl [6], 180Tl [7–9], 182,184Tl [5, 10, 11]. A common feature in all these studies was a persistent hindrance for all observed α decays between the parent and daughter nuclei, which signifies their different configurations, see the detailed discussion in the above-mentioned references.

Previous α-decay studies of 180Tl were performed at the Argonne Tandem Linac Accelerator System (ATLAS) facility at Argonne National Laboratory in two experiments [12, 13]. In both cases, fusion-evaporation reactions were employed and products separated by the Fragment Mass Analyzer (FMA) were implanted into a double-sided silicon strip detector. Statistics collected in each experiment was of the order of several hundred counts. Deduced α-decay energies are listed in Table I. In the second experiment, α-γ coincidences were also measured.

In our study, we registered $\approx 8 \times 10^5$ α decays of 180Tl, which, in combination with α-γ coincidence analysis, allowed us to identify many weak fine-structure decays to excited states in 176Au. The data were collected in the same experiment in which the β-delayed fission [7, 9] and β decay [8] of 180Tl were studied. The present paper concentrates on the detailed α-decay investigation of this isotope.

* boris.andel@fmph.uniba.sk
TABLE I. Alpha-decay properties of 180Tl deduced in this work, in comparison with the previous studies. Alpha-decay energies (E_α), coincident γ-ray transitions (E_γ), $Q_{\alpha,\text{tot}}$ values, relative intensities of α-decay transitions (I_α) and their reduced decay widths (δ_α^2) are listed. Relative intensities were determined from α-γ coincidencesa (except for the 6553-keV decay). Single-step γ-ray transitions directly de-exciting levels in 176Au and thus defining their energies are in bold. Coincidences shown in italics are tentative.

<table>
<thead>
<tr>
<th>Ref. [12] $T_{1/2}=1.5(2)$ s</th>
<th>Ref. [13] $T_{1/2}=1.1(2)$ s</th>
<th>This work $T_{1/2}=1.09(1)$ s b</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_α [keV]</td>
<td>I_α [%]</td>
<td>E_α [keV]</td>
</tr>
<tr>
<td>6560(10)</td>
<td>15(3)</td>
<td>6558(10)</td>
</tr>
<tr>
<td>6470(20)d</td>
<td>7(3)</td>
<td>6490(10)d</td>
</tr>
<tr>
<td>6362(10)</td>
<td>30(6)</td>
<td>6367(10)</td>
</tr>
<tr>
<td>6281(10)</td>
<td>30(6)</td>
<td>6291(10)</td>
</tr>
<tr>
<td>6208(10)</td>
<td>18(5)</td>
<td>6199(7)</td>
</tr>
<tr>
<td>6192(7)</td>
<td>204.8, 167.6</td>
<td>6705(7)</td>
</tr>
<tr>
<td>6167(8)</td>
<td>397.9(3)</td>
<td>6705(8)</td>
</tr>
<tr>
<td>6088(9)</td>
<td>473.4(4)</td>
<td>6700(9)</td>
</tr>
<tr>
<td>6049(9)</td>
<td>526.1(4)</td>
<td>6713(9)</td>
</tr>
<tr>
<td>6015(8)</td>
<td>553.2(3)</td>
<td>6705(8)</td>
</tr>
<tr>
<td>5995(8)</td>
<td>570.3(3), 317.1, 253(1), 209.9, 204.8</td>
<td></td>
</tr>
<tr>
<td>5977(8)</td>
<td>595.9(5), 391.2(3), 386.5(3), 317.1, 279.6(3), 209.9, 204.8</td>
<td></td>
</tr>
<tr>
<td>5887(8)</td>
<td>677.5(7), 570.3(3), 472.5(4), 467.9(4), 209.9, 204.8</td>
<td></td>
</tr>
<tr>
<td>5873(8)</td>
<td>695.1(5), 491.2(4), 486.1(3), 361.7, 333(1), 209.9, 204.8</td>
<td></td>
</tr>
</tbody>
</table>

a Determined multipolarities of γ-ray transitions are listed in Table II. To evaluate lower limits of the transition intensities in the cases of ambiguous or unknown multipolarities, internal conversion coefficients for specific multipolarities were chosen as described in Table II. Intensities for transitions with known multipolarities are therefore upper limits. However, we determined multipolarities for the most intense γ-ray transitions and possible shifts of α-decay intensities caused by the unknown character of remaining (mostly higher-energy) γ decays would be small. For simplicity we thus state resulting α-decay intensities as values instead of limits.

b the half-life value determined from the same data set in our previous β-decay study of 180Tl [8]

c the uncertainty of γ-ray transition energies is 0.2 keV, if not stated otherwise

d proposed in our work as being due to $\alpha + e^-$ summing (see Section III A)

II. EXPERIMENT

The measurement was performed at the ISOLDE facility (Isotope Separator On Line DEvice) at CERN [14, 15]. Nuclei of 180Tl were produced in proton-induced spallation reactions in a 50 g/cm2 thick UC$_x$ target. The beam of 1.4 GeV protons with an intensity up to 2.1 μA was supplied by the Proton-Synchrotron Booster (PSB). The nuclei produced diffused through the target heated to ≈ 2300 K and effused via the heated transfer line into a hot cavity, where Tl isotopes were selectively ionized to a charge state of 1$^+$ by the Resonant Ionization Laser Ion Source (RILIS) [16]. Subsequently, the ions were extracted and accelerated to 30 keV by extraction electrodes and mass separated by the High Resolution Separator (HRS). By Z-selective ionization and separation according to mass-to-charge ratio, a pure beam of 180Tl nuclei was obtained.

To detect decays of 180Tl, the Windmill detection system was employed [7, 19]. The beam was implanted into one of ten thin carbon foils (20 μg/cm2) mounted on a rotatable wheel. At the implantation position, two silicon detectors of 300 mm thickness were placed in close geometry around the foil to detect α particles, fission fragments and electrons. The annular detector mounted in front of the foil had a circular hole of 6 mm diameter to let the beam through to reach the foil. The active area of the annular detector was 450 mm2, while the active area of the circular detector placed behind the foil was 300 mm2. The total detection efficiency for α particles was $\approx 51\%$.

The PSB supplied protons in 2.4 μs long pulses with a 1.2 s period. Pulses were grouped into the so-called supercycle, which typically consisted of 21 pulses during
FIG. 1. (color online) (a): All α decays registered in both silicon detectors at the implantation position. The strongest α decay of the low-spin state in ^{176}Au at 6287(7) keV, marked with a plus sign, is taken from [17]. (b): α-γ coincidences for γ-ray energies in the range of 380-760 keV. (c): α-γ coincidences for γ-ray energies of 0-380 keV. For better presentation in (c), a smaller size of points was used and their density was decreased (5x). Dotted blue diagonal lines enclose α-γ groups yielding the same total $Q_{\alpha,tot} = 6702(7)$ keV as the 6553-keV α decay, see the main text. The dotted lines mark the region of $Q_{\alpha,tot} \pm 40$ keV. In (b) and (c), the labeled γ-ray transitions originate after α decays of ^{180}Tl if not specified otherwise. The α-γ coincidences from ^{180}Hg and ^{176}Au (except for the 475-keV transition) were assigned based on published data [17, 18]. The transition marked with an asterisk is unassigned.
this measurement. Our experiment received from 4 to 10 pulses per supercycle. At the end of each supercycle (25.2 s), the wheel with foils was rotated so that a “fresh” foil was moved to the implantation position and remaining longer-lived daughter products were removed.

For the energy calibration of silicon detectors, the highest-energy α-decay transitions in 180Hg, 180Tl and 176Pt were the most suitable. However, the literature values for 176Pt vary from $E_{\alpha} = 5741(8)$ keV to $E_{\alpha} = 5756(5)$ keV [18] and values for 180Tl have uncertainties of 10 keV [12, 13]. Therefore, we first performed a calibration of the detectors with the data from a run at mass number $A = 178$ with α-decays of 178Hg, $E_{\alpha} = 6429(4)$ keV [20] and 174Pt, $E_{\alpha} = 6039(3)$ keV [18]. Based on this calibration, we deduced energies for 176Pt, $E_{\alpha} = 5748(7)$ keV and the highest-energy α-decay of 180Tl, $E_{\alpha} = 6553(7)$ keV in the $A = 180$ run, which followed shortly after the run with $A = 178$. Consistency of the calibration for the $A = 180$ run was tested on 180Hg, whereby our deduced value $E_{\alpha} = 6119(7)$ keV was in agreement with the tabulated value of $E_{\alpha} = 6119(4)$ keV from [20]. The whole data set for $A = 180$ was then calibrated using our values for 176Pt and 180Tl along with the known value for 180Hg. The uncertainty of high-intensity α-decay peak is defined by the systematic uncertainty of our calibration, which was 7 keV.

To detect γ and x rays, a Miniball type germanium cluster detector consisting of three independent crystals was mounted outside the vacuum behind the implantation position. Energy and relative efficiency calibrations of the cluster detector were performed using 152Eu and 133Ba γ-ray sources. The relative efficiency curve was scaled by the absolute efficiency value determined from $\alpha(6354 \text{ keV})$-$\gamma(205 \text{ keV})$ coincidences from 180Tl decay. The systematic uncertainty of γ-ray energy calibration was 0.2 keV.

III. RESULTS

The energy spectrum of all α decays registered in our measurement in the two silicon detectors at the implantation position is shown in Fig. 1(a). A remarkable feature of the spectrum is its purity, with all observed activities belonging to 180Tl, its daughters (180Hg, 176Au)
and granddaughter (\(^{176}\text{Pt}\)). All \(\alpha\)-decay transitions previously attributed to \(^{180}\text{Tl}\) in studies \([12, 13]\) (listed in Table I) are present in our data. We note that there is a small (\(\approx 10\ \text{keV}\)) shift in the \(\alpha\)-decay energies between our experiment and the results from \([12, 13]\). Most probably, this shift stems from the difference in \(\alpha\)-decay energies used for calibration in our and previous studies. Our calibration procedure is described in detail in Section II, while no information on the calibration energies was provided in \([12, 13]\). A larger shift in the case of the 6245-keV transition is discussed in Section IIIB.

The detection system provided means for the investigation of \(\alpha-\gamma\) and \(\alpha-\gamma-\gamma\) coincidences, which allowed us to deduce several new fine-structure (f.s.) \(\alpha\) decays of \(^{180}\text{Tl}\). The time window used in the coincidence analysis was \(\Delta t(\alpha-\gamma) = 400\ \text{ns}\). Since there is a large difference in intensity between \(\alpha\)-decay transitions to lower-lying levels and those to higher-lying levels in \(^{176}\text{Au}\), for a better presentation the matrix of \(\alpha-\gamma\) coincidences was divided into two panels: Fig. 1(b) and (c). In Fig. 1(c), a smaller size of points was used and their density was decreased 5\(\times\) compared to Fig. 1(b). Several f.s. \(\alpha\) decays followed by a single-step \(\gamma\)-ray transition to the state fed by the highest energy (6553-keV) decay of \(^{180}\text{Tl}\) can be readily identified based on the same total \(Q_{\alpha,\text{tot}} = Q_{\alpha} + E_{\gamma}\) value. The respective \(\alpha-\gamma\) coincidence groups are enclosed by the dotted blue lines drawn at \(Q_{\alpha,\text{tot}} \pm 40\ \text{keV}\).

For a better identification of the single-step transitions, we produced a projection from the region between the dotted lines to the \(\gamma\)-ray axis, presented in Fig. 2. The spectrum at \(E_{\gamma} < 400\ \text{keV}\) has a number of high-intensity \(\gamma\)-ray peaks, e.g. at 205, 210, 317 and 362 keV. The part above 500 keV is very pure, which allows a number of low-intensity \(\gamma\)-ray peaks to be identified, although some of them have just a few counts. Their origin will be confirmed by the follow-up analysis. The region between 400–480 keV has a somewhat higher background due to random \(\gamma\)-ray coincidences with the most intense \(\alpha\) decay at 6119 keV from \(^{180}\text{Hg}\), see Fig. 1(a). The 434-keV \(\gamma\)-ray peak in the region of this background belongs to the most intense transition (\(2^+ \rightarrow 0^+\) in \(^{180}\text{Hg}\)) following \(e/\beta^+\) decay and the 511-keV \(\gamma\) rays come from \(\beta^+\) decay of \(^{180}\text{Tl}\) \([8]\). The full \(\gamma\)-ray spectrum from the same data set can be found in Fig. 3 of Ref. \([8]\), which was dedicated to the \(\beta\)-decay study of \(^{180}\text{Tl}\).

Based on Fig. 2 we established excited states at 205, 210, 317, 362, 398, 473, 526, 553, 570, 596, 678 and 695 keV in \(^{176}\text{Au}\), see the proposed decay scheme in Fig. 3. The decay scheme was further developed based on \(\gamma\)-ray energy and intensity balance, determination of multipolarities for a number of transitions and \(\alpha-\gamma-\gamma\) coincidence analysis (see following text). Deduced energies of the \(^{180}\text{Tl}\) f.s. \(\alpha\) transitions and populated levels in \(^{176}\text{Au}\) are listed in Table I alongside \(Q_{\alpha,\text{tot}}\) values. For \(\gamma\) decays in cascades in our decay scheme we investigated a possibility of energy summing in the same Ge detector, which would create artificial cross-over transitions. This effect was found to be negligible. Relative \(\gamma\)-ray and transition intensities deduced from \(\alpha-\gamma\) coincidence data and multipolarities for the most intense \(\gamma\) decays following the \(\alpha\) decay of \(^{180}\text{Tl}\) are given in Table II.

A. The 205- and 210-keV levels in \(^{176}\text{Au}\)

The 205-keV and 210-keV levels in \(^{176}\text{Au}\) were established based on the observation of \(\alpha(6354(7)\ \text{keV})-\gamma(205\ \text{keV})\) and \(\alpha(6348(7)\ \text{keV})-\gamma(210\ \text{keV})\) coincident \(\alpha-\gamma\) pairs. The 205-keV level is in agreement with the previous \(\alpha\)-decay study \([13]\) and both the 205- and 210-keV levels were suggested in an in-beam measurement \([23]\).

Internal conversion of the 205-keV transition (discussed below) results in emission of K-shell conversion electrons (CE) with \(E_{\text{CE}} = 124\ \text{keV}\) in coincidence with the feeding 6354-keV \(\alpha\) decay. If both the CE and \(\alpha\) particle are registered in the same silicon detector, an \(\alpha+\text{CE}\) summing peak at \(\approx 6478\ \text{keV}\) is created. Therefore, we propose that the peak with \(E = 6474(7)\ \text{keV}\) present in \(\alpha\)-decay spectrum (Fig. 1(a)) is the result of \(\alpha+\text{CE}\) summing. The conclusion is supported also by coincidences of the 6474-keV peak with Au K-x rays (see Fig. 1(c)). Most probably, this summing peak corresponds to the 6470(20)/6490(10)-keV transition reported in the previous studies \([12, 13]\). In those experiments, nuclei of \(^{180}\text{Tl}\) were directly implanted into a silicon detector, which significantly enhances the probability of \(\alpha+\text{CE}\) summing.

Based on the discussion above, we also rule out the existence of the 64 keV level, which was suggested to be fed by the 6490-keV decay in \([13]\).

Fig. 4 shows \(\gamma\) rays in coincidence with the 6354 and 6348-keV \(\alpha\) decays. The \(\alpha\)-energy gate of 6310 keV to 6530 keV was used to cover also the region of \(\alpha-\text{CE}\) summing events. Due to the prompt character of the 205- and 210-keV \(\gamma\) decays, we limit their possible multipoles to \(E_1, M_1\) or \(E_2\). We can determine limits of the K-conversion coefficient, \(\alpha_K(205\ \text{keV})\), from the number of Au K-x rays and 205-keV \(\gamma\) rays in Fig. 4 (after correcting both numbers for detection efficiency), by assuming different multipolarities for the remaining possible source of K-x rays, the 210-keV decay. To obtain an upper limit of \(\alpha_K(205\ \text{keV})\), we assume an \(E_1\) multipolarity for the 210-keV decay, which corresponds to the lowest \(\alpha_K(210\ \text{keV})\) value. To obtain a lower limit, we assume that the 210-keV transition has an \(M_1\) multipolarity, which corresponds to the highest \(\alpha_K(210\ \text{keV})\) value. Comparison of the limits with theoretical values in Table III shows that the 205-keV \(\gamma\) decay has to be of a pure \(E_2\) multipolarity. This means that the conversion of the 205-keV transition produces almost all observed Au K-x rays in Fig. 4, which further limits possible multipolarity of the 210-keV transition to \(E_1\) or \(E_2\). Based on the parity conservation argument, as further discussed in Section IIIIB, we assign an \(E_2\) multipolarity to the 210-keV decay.
Counts / 0.5 keV

The 6245(7)-keV α decay feeding the 317-keV level is in coincidence with the 107-, 112-, 205-, 210- and 317-keV γ rays (Fig. 5(a)). By using an α-γ-γ coincidence analysis (Fig. 5(b) and (c)), we established that as well as the direct 317-keV transition this state also de-excites via two parallel cascades of the 107-210-keV and 112-205-keV γ rays.

Employing the α-γ-γ coincidences, we also determined K-conversion coefficients of the 107- and 112-keV transitions. The number of Au K-x rays was compared with the number of 107-keV γ rays (both corrected for detection efficiency), while gating on α(6245 keV)-γ(210 keV) coincidence pair (Fig. 5(b)). Similarly, in the case of the 112-keV transition, we gated on α(6245 keV)-γ(205 keV) coincidence pair (Fig. 5(c)). The results listed in Table III, show the M1 multipolarity as dominant for both the 107-keV and the 112-keV transitions, with a possibility of a small E2 admixture. Since the cascade of 112-keV(M1)-205-keV(E2) decays does not change parity, the 317-keV transition bypassing the cascade has to be of an M1 and/or E2 multipolarity. For the same reasons and also arguments stated in Section III.A, the

| Table III. Comparison of experimental K-conversion coefficients αK (exp) and theoretical αK taken from [24] for possible multipolarities of listed γ decays. The αK (205 keV) was deduced from α-γ coincidences. The rest were determined using α-γ-γ coincidences. |
|-------------------|-------------------|-------------------|-------------------|-------------------|
| Eγ [keV] αK (exp) αK(E1) αK(M1) αK(E2) ≥105(7) ≥105(7) |
205	0.34(0)	0.55(8)	0.30(9)	0.78(11)	0.105(7)
107	4.1(9)	0.28(4)	4.91(7)	0.620(9)	
112	3.4(9)	0.25(4)	4.30(6)	0.584(9)	

FIG. 3. Proposed α-decay scheme of 180Tl. Tentative levels and transitions are denoted by dashed lines. Transitions with energies in brackets were not observed, but they were placed into decay scheme based on indirect evidence, see text for details. Labels M1/E2 denote the possibility of M1, E2 or mixed multipolarity. The configuration of the ground state in 180Tl is taken from [21]. The tentative configuration of the daughter state in 176Au is taken from [22] and is discussed in Section IV.

FIG. 4. Gamma rays in coincidence with the 6354- or 6348-keV α transitions. The α-particle energy range used for gating was 6310-6530 keV.

The 6245(7)-keV α decay feeding the 317-keV level is in coincidence with the 107-, 112-, 205-, 210- and 317-keV γ rays (Fig. 5(a)). By using an α-γ-γ coincidence analysis (Fig. 5(b) and (c)), we established that as well as the direct 317-keV transition this state also de-excites via two parallel cascades of the 107-210-keV and 112-205-keV γ rays.

Employing the α-γ-γ coincidences, we also determined K-conversion coefficients of the 107- and 112-keV transitions. The number of Au K-x rays was compared with the number of 107-keV γ rays (both corrected for detection efficiency), while gating on α(6245 keV)-γ(210 keV) coincidence pair (Fig. 5(b)). Similarly, in the case of the 112-keV transition, we gated on α(6245 keV)-γ(205 keV) coincidence pair (Fig. 5(c)). The results listed in Table III, show the M1 multipolarity as dominant for both the 107-keV and the 112-keV transitions, with a possibility of a small E2 admixture. Since the cascade of 112-keV(M1)-205-keV(E2) decays does not change parity, the 317-keV transition bypassing the cascade has to be of an M1 and/or E2 multipolarity. For the same reasons and also arguments stated in Section III.A, the
210-keV decay from the second cascade parallel to the 317-keV decay must be of an $E2$ multipolarity. The deduced multipoles for the 107- and 112-keV decays can be further verified by using an alternative method as described below. Neglecting the most probably very weak transition between the 210-keV and 205-keV levels, subsequent γ decays in the cascades of 107-210-keV and 112-205-keV γ rays must have the same intensity (after corrections for conversion and efficiency). This characteristic allowed us to evaluate total conversion coefficients (α_{tot}) of the 107- and 112-keV decays. Results listed in Table IV confirm dominant $M1$ multipolarity for both transitions. Although α_{tot}(112keV) is by 56 % higher than theoretical α_{tot}(M1), an $M2$ and higher multipoles are excluded due to prompt character of the transition. Additionally, their theoretical conversion coefficients are several times higher than our experimental value: α_{tot}(M2) = 41.0(6), α_{tot}(E3) = 67.7(10) [24]. We cannot completely rule out the possibility of a small E0 admixture to the 112-keV decay, although the K-conversion coefficient does not support such admixture (Table III). Relative γ-ray and transition intensities of γ decays de-exciting the 317-keV level are given in Table V.

Internal conversion of the 107- and 112-keV transitions leads to emission of K-shell electrons with energies of 26.3 keV and 31.3 keV [24], respectively. Due to α-CE summing with the feeding 6245-keV α decay, artificial summing peaks at the energies of \approx 6271 and \approx 6276 keV are expected. These values are close to α-decay energy of 6281(10) keV reported in [12] or 6291(10) keV from [13]. As discussed in connection with the 6474-keV summing peak in Section III A, the α-CE summing should be significantly stronger in the measurements at the FMA with activity directly implanted into a silicon detector. Furthermore, both the 107 and 112-keV transitions have over 4 × higher probability to decay via K-conversion than via γ-ray emission (see theoretical α_{K}(M1) in Table IV). Therefore we propose that the 6281(10)/6291(10)-keV activity observed in [12, 13] was an artificial peak created by full-energy summing of CE with the 6245-keV decay. On these grounds, we rule out the 275-keV level proposed to be fed by the 6291-keV transition in previous study [13]. In agreement with the non-existence of this level, we also did not observe the 70-keV γ rays proposed in [13] to de-excite the 275-keV level. We note that based on α-decay energies of 6281(10) and 6208(10) keV from [12] and observation of the 283- and 360-keV γ rays in the in-beam spectrum of 176Au, the levels at 283- and 360-keV were proposed in [23] to be fed by these α decays. However, we did not find evidence for either of these states populated by α decays of 180Tl and did not observe the 283- or 360-keV γ rays. Since there is no shift in γ-ray energy calibration (as can be seen for example for the 205- and 210-keV γ rays) between our measurement and the in-beam study [23], we rule out a possibility that the previously-proposed 360-keV level is the same state as the 362-keV level discussed in Section III C.

![Diagram](image_url)

FIG. 5. Gamma rays in coincidence with: (a) the 6245-keV α-decay transition, (b) the 6245-keV α and 210-keV γ decay and (c) the 6245-keV α and 205-keV γ decay. The energy range used as the α gate was 6220-6320 keV.

TABLE IV. Comparison of experimental total conversion coefficients α_{tot}(exp) and theoretical α_{tot} values taken from [24] for possible multipoles of the 107 and 112 keV γ decays.

<table>
<thead>
<tr>
<th>E_γ [keV]</th>
<th>α_{tot}(exp)</th>
<th>α_{tot}(E1)</th>
<th>α_{tot}(M1)</th>
<th>α_{tot}(E2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>5.9(6)</td>
<td>0.350(5)</td>
<td>5.98(9)</td>
<td>3.93(6)</td>
</tr>
<tr>
<td>112</td>
<td>8.2(7)</td>
<td>0.312(5)</td>
<td>5.25(8)</td>
<td>3.27(5)</td>
</tr>
</tbody>
</table>

TABLE V. Relative γ-ray and transition intensities of decays de-exciting the 317- and 362-keV levels. Internal conversion coefficients for $E2$ multipoles were used to evaluate transition intensities for decays with multipolarity “M1 and/or E2”.

<table>
<thead>
<tr>
<th>E_γ [keV]</th>
<th>I_γ [%]</th>
<th>Multipolarity</th>
<th>I_γ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>317</td>
<td>107</td>
<td>M1</td>
<td>46(5)</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>M1</td>
<td>48(5)</td>
</tr>
<tr>
<td></td>
<td>317</td>
<td>M1 and/or E2</td>
<td>5.8(8)</td>
</tr>
<tr>
<td>362</td>
<td>(45)*</td>
<td>M1 + E2 or E2</td>
<td>40(3)</td>
</tr>
<tr>
<td></td>
<td>152</td>
<td>M1 and/or E2</td>
<td>36(3)</td>
</tr>
<tr>
<td></td>
<td>362</td>
<td>M1 and/or E2</td>
<td>24(3)</td>
</tr>
</tbody>
</table>

* γ decay was not observed directly; γ-ray and transition intensities were evaluated based on the 317-, 112- and 107-keV γ rays in coincidence with the 6190-keV α decay.
The energy range used as the α gate was 6150–6210 keV.

C. The 362-keV level

In addition to a direct 362-keV γ-ray transition, 6199-keV α decay and 205-keV γ decay, the 362-keV level was also observed. The energy range used as the α gate was 6150–6210 keV.

D. The 372-keV level

While gating on the α-energy region around the 6199-keV transition, we observed 168-keV γ rays in coincidence with the 205-keV γ decay (Fig. 6(a)). The sum of these two γ-ray transitions gives the energy of 372.4(3) keV, therefore this cascade cannot originate from de-excitation of the 362-keV level. A 372-keV level was thus established. We did not observe any clear α-γ coincidences involving the 372-keV γ-ray transition, so to determine the energy (and also intensity in Table I) of α-decay feeding the 372-keV level, we gated on the 168-keV γ rays. The resulting α-transition energy was 6192(7) keV.

E. Higher-lying levels

The available statistics for α-γ coincidences, which established levels above the 372-keV state in Fig. 3, ranged from a few counts up to a dozen of counts (Fig. 1(b) and Fig. 2). We could not draw any conclusions on the multipolarity of the γ rays discussed in this section, except for the limitation to E1, M1, E2 or M2 due to their prompt character. We stress, that Au K-α, β x rays and the 205-, 210-keV γ rays are quite strongly present in coincidences with α decays in energy region of 5850–6100 keV (Fig. 1(c)). These coincidences mean that there have to be several f.s. α decays in this energy region feeding the higher-lying levels. These levels then de-excite via γ-ray cascades through lower-lying (e.g. 205-, 210-keV) states and/or via single-step transitions, which is further corroborated by our data, as shown below.

The α decay feeding the 596-keV level is, within statistical uncertainty, in coincidence with the 596-, 391-, 387-, 280-, 205- and 372-keV γ rays (Fig. 7). Based on energy balance, we propose that as well as the 596-keV γ decay, the level de-excites via parallel cascades of the 391-205-, 387-210- and 280-317-keV decays (Fig. 3). From coincidences with the 596-, 391-, 387- and 280-keV γ rays,
the energy of the α-decay transition feeding the 596-keV level was determined to be 5977(8) keV.

Using the same approach as in the previous case, we suggest additional decay paths for the 678- and 695-keV levels, which are shown in the decay scheme in Fig. 3. Parallel cascades of the 473-205-, 468-210- and (108)-570-keV γ decays were proposed for de-excitation of the 678-keV state, while cascades of the 491-205- and 486-210-keV γ rays were suggested for decay of the 695-keV level. The 108-keV γ-ray transition between the 678- and 570-keV states was not observed, but its presence was indicated by coincidences of the 570-keV γ rays with α decays of approximately the same energy as decays in coincidence with the 678-keV γ rays. The energy of the α decay feeding the 678-keV level was then determined to be 5887(8) keV from coincidences with the 678-, 570-, 473- and 468-keV γ-ray transitions, while the energy of the decay feeding the 695-keV state was deduced to be 5873(8) keV based on coincidences with the 695-, 491- and 486-keV γ rays (Fig. 1(b) and Fig. 8). Two additional connecting transitions to lower lying levels were tentatively assigned due to observation of the 253-keV γ rays in coincidence with α decays in the energy region around 5995 keV (Fig. 7) and the 333-keV γ rays in coincidence with α decays around 5873 keV (Fig. 8).

F. Alpha decay of 176Au and 172Ir

In our experiment, 176Au could be produced only by α decay of 180Tl. Previously, the α decay of 176Au was studied in [23, 25–27], with the most recent and detailed investigation performed at SHIP in GSI [17]. Since two α-decaying isomers are known in 176Au and it is not yet established which one is the ground state, we refer to them as “low-spin” (176Auls) and “high-spin” (176Auhs) isomers. In our study, α-decay transitions from 176Au are hidden by parent decays of 180Tl in the singles α-decay energy spectrum in Fig. 1(a), the expected position of the strongest transition of the 176Auls at 6287 keV is marked in the figure. However, we could clearly see the decay of 176Auls via α-γ coincidences in Fig. 1(b) and (c), namely α-γ groups reported previously [17]: $\alpha(5798(10)\text{ keV})-\gamma(500\text{ keV})$, $\alpha(6054(7)\text{ keV})-\gamma(237\text{ keV})$ and $\alpha(6138(7)\text{ keV})-\gamma(152\text{ keV})$. We did not observe any α-γ coincidences from the 176Auhs. Therefore we conclude, that the observed α decays of 180Tl populates only 176Auls and a range of higher-lying levels de-exciting to this state. This fact will be used in the discussion of the possible spin and configuration of 176Auls (see Section IV).

Additionally, due to higher statistics than in the previous study [17], we identified a coincidence group of $\alpha(5806(10)\text{ keV})-\gamma(475\text{ keV})$ in Fig. 1(b), which has an α-decay energy close to $\alpha(5798(10)\text{ keV})-\gamma(500\text{ keV})$ coincidences from 176Auls. Therefore, we tentatively suggest these two γ decays to be in coincidence with the same f.s. α decay. It would mean that there is either a 475-keV level, above the 172Irls, fed by an unobserved 25-keV transition from the 500-keV level, or a 25-keV level fed by the 475-keV transition from the 500-keV state. However, we lack additional evidence to clarify the situation.

The low-spin isomer in 172Ir is populated by the α decay of 176Auls [17]. It was reported to decay via 5510(10)-keV transition to an excited state in 168Re, which then de-excites by the 90-, 123- and 136-keV γ rays [28]. Ordering of these three γ decays was not established. In our experiment, the α decay of 172Irls overlapped with the fine α-decay transition from 176Pt with an energy of 5527(7) keV (tabulated value is 5530(3) keV [18]), which feeds a 228-keV level in 172Os [18]. However, we clearly observed coincidences of α decays around the energy of 5510 keV with the 90-, 123- and 136-keV γ rays, confirming presence of the 172Irls. Due to insufficient statistics for α-γ-γ coincidences, no further information on the placement of these γ decays could be obtained from our data.

G. Additional α-γ coincidences

We identified five more α-γ coincidence groups; $\alpha(5896(7)\text{ keV})-\gamma(316\text{ keV})$ is present in Fig. 1(c), while remaining groups are too weak to be visible in Fig. 1(c), but γ rays from them are shown in Fig. 7 and 8: $\alpha(6030(10)\text{ keV})-\gamma(316\text{ keV})$, $\alpha(6007(8)\text{ keV})-\gamma(362\text{ keV})$, $\alpha(5881(8)\text{ keV})-\gamma(362\text{ keV})$, $\alpha(6000(8)\text{ keV})-\gamma(342\text{ keV})$. The two groups with α-decay energy below 6000 keV yield $Q_{\alpha,tot}$ values above 6300 keV, which in combination with high purity of the ion beam, means that these coincidences should come from the decay of either 180Tl or 176Au. The remaining α-γ groups yield $Q_{\alpha,tot}$ values above 6470 keV and should originate from decay of 180Tl. Further, if we assume that the 316-keV γ rays come from the same level in both groups, and make the same assumption for the 362-keV γ rays, then all of these α-γ groups have to originate only from the decay of 180Tl.
the 678- and 553-keV levels, while the 342-keV γ rays may be in decay path of the 570-keV state. However, we lack connecting transitions to form de-excitation cascades. Since there are several f.s. α decays of the 180Tl in this energy region, we refrain from definitive placements into the decay scheme based on any of the five α-γ coincidences discussed in this section.

IV. DISCUSSION

Configurations of ground states (g.s.) and low-spin isomeric states in odd-odd neutron-deficient Tl isotopes were already discussed in our previous papers dedicated to $^{178−184}$Tl [5, 6, 8], therefore here we just briefly summarize the main features. In the heavier even-Z Tl isotopes, e.g. $^{186−194}$Tl, configurations $[\pi 3s_{1/2} \otimes \nu 1l_{13/2}]^2_2$ and $[\pi 3p_{1/2} \otimes \nu 3p_{3/2}]^2_2$ were suggested as dominant for the ground or low-lying isomeric states [2, 29–32]. Recently, $2^−$ and 7^+ states in 184Tl ($N=103$) and the low-spin state in 182Tl ($N=101$) were identified as well [5]. In lighter Tl isotopes with $N \leq 100$, a change of the neutron configuration to $\nu 1h_{9/2}$ is expected due to complete depletion of the orbitals $\nu 1l_{13/2}$ and $\nu 3p_{3/2}$ [6]. Configurations containing the $\nu 1h_{9/2}$ orbital were already considered in other $N=99$ isotones, e.g. for the g.s. in 181Pb [33] and the low-lying excited state in 179Hg [34, 35]. Indeed, the β-decay study of 180Tl constrained the spin and parity of the low-spin α- and β-decaying state to 4.5− and the configuration of $[\pi 3s_{1/2} \otimes \nu 1h_{9/2}]^4_5$ was suggested [8]. Finally, our recent laser-spectroscopy study supported the $[\pi 3s_{1/2} \otimes \nu 1h_{9/2}]$ configuration, $I^\pi = 4^−$ and nearly spherical shape for the g.s. of 180Tl [21].

Reduced α-decay widths ($\delta^2_\text{α}$), deduced in our study, for five highest-energy decays of 180Tl (calculated using the Rasmussen approach [36], assuming $\Delta L = 0$ transitions) are listed in Table VI. All transitions have $\delta^2_\text{α} \leq 5$ keV, which means they are hindered compared to unhindered decays of neighboring isotopes, e.g. 178,179Tl with $\delta^2_\text{α}$ values of 50(3) and 89(4) keV [37, 38] or 183Tl with $\delta^2_\text{α} = 41(6)$ keV [39]. When compared to the average of quoted values, the $\delta^2_\text{α}$ value for the highest-energy transition of 180Tl (6553 keV) yields a hindrance factor of ≈ 400. We already ruled out the population of high-spin isomer in 176Au (with suggested configuration of $[\pi 11^2−(h_{11/2}) \otimes \nu 7^2−(h_{9/2}f_{7/2})]_{8,9^+}$) based on absence of α-γ coincidences from its decay. Further, no isomeric α decay was observed in 180Tl, this 6553-keV α transition is assigned as connecting the 180Tl g.s. and 176Au low-spin state. Thus, we rule out previously-suggested configuration of $[\pi 11^2−(s_{1/2}) \otimes \nu 7^2−(h_{9/2}f_{7/2})]_{A−}$ [13, 17, 23] for 176Auls, as it would not be in agreement with the deduced hindrance factor of ≈ 400. This earlier-suggested dominant configuration of the 176Auls overlaps to a large extend with the g.s. configuration of 180Tl proposed by laser-spectroscopy studies [21]. Therefore, the α decay between these two configurations would be quasi unhindered. However, our recent laser-spectroscopy measurement and extracted magnetic moment suggest different configuration of $[\pi d_{3/2} \otimes \nu f_{7/2}]$, $I^\pi = (4, 5^−)$ and spherical shape for 176Auls [22]. This configuration means that both proton and neutron have to change orbitals ($\pi s_{1/2} \rightarrow \pi d_{3/2}$ and $\nu h_{9/2} \rightarrow \nu f_{7/2}$), which is likely the reason for the strongly hindered 6553-keV α decay between the states.

The 176Auls then decays to the 172Hfls by unhindered or only weakly hindered α decay with $\delta^2_\text{α} = 25(3)$ [17]. Therefore, these states are expected to have the same parity and configuration, and the same or similar value of spin.

Most of the f.s. α decays of 180Tl feeding the excited states of 176Auls (Table I) are strongly hindered with $\delta^2_\text{α}$ values below 1 keV, some of them are even below 0.1 keV. This fact indicates that also states populated by these decays have more similar structure to the g.s. of 180Tl than other levels above 176Auls identified in this work (e.g. there may be a change of only the proton or neutron configuration). We note that there is a similar pattern in 178Tl, where the full-energy decay (6862(10) keV) to the low-spin isomer in 174Au is strongly hindered, while the decays to the 173- and 273-keV states above 174Auls are hindered only moderately with $\delta^2_\text{α} \approx 10$ keV [6]. Although we determined multipolarities for some of the γ-ray transitions following f.s. α decays of 180Tl, we refrain from detailed discussion of I^π and configurations for states above the α-decaying

<table>
<thead>
<tr>
<th>178Tl [6]</th>
<th>180Tl [This work]</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_α [keV]</td>
<td>δ^2_α [keV]</td>
</tr>
<tr>
<td>6862(10)</td>
<td>0.30(15)</td>
</tr>
<tr>
<td>6693(10)</td>
<td>13.0(17)</td>
</tr>
<tr>
<td>6595(10)</td>
<td>10.2(24)</td>
</tr>
<tr>
<td>6245(7)</td>
<td>4.9(33)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>192Tl [5]</th>
<th>184Tl [5]</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_α [keV]</td>
<td>δ^2_α [keV]</td>
</tr>
<tr>
<td>6406</td>
<td>> 0.017</td>
</tr>
<tr>
<td>6360(6)</td>
<td>> 0.019</td>
</tr>
<tr>
<td>6165(6)</td>
<td>> 0.45</td>
</tr>
<tr>
<td>6046(5)</td>
<td>> 2.3</td>
</tr>
<tr>
<td>5962(5)</td>
<td>> 2.4</td>
</tr>
</tbody>
</table>

a a common value for both the 5988- and 5964-keV α decays was stated. The dominant contribution was from the 5988-keV decay.
\(^{176}\)Au\(^{\text{is}}\) since the exact spin of this state is not yet established and various competing configurations may arise from coupling of unpaired proton and neutron in this nucleus.

Systematics of \(\delta_{\alpha}^2\) values for \(\alpha\) decays of low-spin states in odd-odd thallium isotopes \(^{178,180,182,184}\)Tl\(\) are shown in Table VI. All decays are hindered, although two decays of \(^{176}\)Tl\(\) are hindered only moderately. Overall, transitions in these isotopes (see also Table I for all decays of \(^{180}\)Tl\(\)) can be divided into three groups according to their \(\delta_{\alpha}^2\)-values. Decays in the first group have \(\delta_{\alpha}^2\) of a few keV (with the exception of \(^{178}\)Tl\(\) with values around 10 keV), values in the second group are from the range of 0.1 keV\(<\delta_{\alpha}^2<1\) keV and in the third group \(\delta_{\alpha}^2\) are smaller than 0.1 keV. The highest-energy \(\alpha\) decay for each isotope is strongly hindered, with values of \(\delta_{\alpha}^2<0.6\) keV, which emphasizes that in all four cases the structures of the parent and daughter states are significantly different. However, only a detailed study of the ground-state properties of the even-\(A\) Au isotopes would allow the reasons behind this general trend to be revealed.

V. CONCLUSIONS

A detailed \(\alpha\)-decay study of \(^{180}\)Tl\(\) was performed employing \(\alpha\)-\(\gamma\) coincidence measurements. Several new fine-structure \(\alpha\) decays leading to excited states in the daughter-nuclide \(^{176}\)Au were identified. Multipolarities of a few \(\gamma\) transitions de-exciting levels in \(^{176}\)Au were determined, which allowed a more extended decay scheme of \(^{180}\)Tl\(\) to be established. Reduced widths of \(\alpha\) decays were evaluated and compared with values from neighboring even-\(A\) isotopes. A strong hindrance factor of \(\approx 400\) for the \(\alpha\)-decay transition connecting the ground state in \(^{180}\)Tl\(\) and the low-spin state in \(^{176}\)Au was observed. The hindrance was explained by significant change in configuration between the initial and final state. A similar trend of hindered \(\alpha\) decays was previously identified also in \(^{182,184}\)Tl\(\) [5]. Combined knowledge from hindered \(\alpha\)-decay studies of Tl isotopes and upcoming laser-spectroscopy studies (charge radii, magnetic moments, spins ...) of Au isotopes may give rise to a global description of Tl to Au \(\alpha\) decays.

ACKNOWLEDGMENTS

We thank the ISOLDE Collaboration for providing excellent beams and the GSI Target Group for manufacturing the carbon foils. This work has been supported by FWO-Vlaanderen (Belgium), by GOA/2010/010 (BOF KU Leuven), by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (BriX network P7/12), by the European Commission within the Seventh Framework Programme through I3-ENSAR (Contract No. RII3-CT-2010-262010), by a grant from the European Research Council (ERC-2011-AdG-291561-HELIOS), by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654002 (ENSAR2), by the U.K. Science and Technology Facilities Council, by the Slovak Research and Development Agency (Contracts No. APVV-0105-10, No. APVV-14-0524 and No. APVV-0177-11) and by Slovak grant agency VEGA (Contracts No. 1/0532/17 and No. 2/0129/17).

\[\begin{align*}
\text{[2]} & \quad P. Van Duppen et al., \textit{Nucl. Phys. A} 529, 268 (1991). \\
\text{[4]} & \quad J. Van Maldeghem and K. Heyde, \textit{Fizika} 22, 233 (1990). \\
\text{[5]} & \quad V. Liberati et al., \textit{Phys. Rev. C} 88, 044322 (2013). \\
\text{[7]} & \quad B. K. Elsieviers et al., \textit{Phys. Rev. C} 84, 034307 (2011). \\
\text{[8]} & \quad I. S. Elsieviers et al., \textit{Phys. Rev. C} 88, 044321 (2013). \\
\text{[10]} & \quad V. Liberati et al., \textit{Phys. Rev. C} 88, 044322 (2013). \\
\text{[13]} & \quad J. Elseviers et al., \textit{Phys. Rev. C} 88, 044321 (2013). \\
\text{[17]} & \quad F. G. Kondev et al., \textit{EPJ Web Conf.} 63, 01013 (2013). \\
\text{[19]} & \quad E. Kugler, \textit{Hyperfine Interact.} 129, 23 (2000). \\
\text{[20]} & \quad V. N. Fedoseyev et al., \textit{Hyperfine Interact.} 127, 400 (2000). \\
\text{[21]} & \quad A. N. Andreyev et al., \textit{Phys. Rev. C} 90, 044312 (2014). \\
\text{[23]} & \quad M. D. Seliverstov et al., \textit{Phys. Rev. C} 89, 044323 (2014). \\
\text{[25]} & \quad A. E. Barzakh et al., \textit{Phys. Rev. C} 95, 014324 (2017). \\
\text{[26]} & \quad A. E. Barzakh, Private communication. \\
\text{[28]} & \quad T. Kibédi et al., \textit{Nucl. Instrum. Methods A} 589, 202 (2008), \texttt{http://bricc.anu.edu.au/}. \\
\text{[31]} & \quad M. W. Rowe et al., \textit{Phys. Rev. C} 65, 054310 (2002). \\
\text{[32]} & \quad W. D. Schmidt-Ott et al., \textit{Nucl. Phys. A} 545, 646 (1992). \\
\text{[34]} & \quad R. Menges et al., \textit{Z. Phys. A} 341, 475 (1992). \\
\text{[35]} & \quad C. Ekström, G. Wannberg, and Y. S. Shishodia, \textit{Hyperfine Interact.} 1, 437 (1975). \\
\text{[37]} & \quad A. N. Andreyev et al., \textit{Phys. Rev. C} 80, 054322 (2009). \\
\text{[38]} & \quad F. G. Kondev et al., \textit{Phys. Lett. B} 528, 221 (2002). \\
\end{align*}\]