Whole Exome Sequencing in Children with Rare Endocrine Disorders

A thesis submitted by

Dr Dinesh Chand Giri Harirambapu

For the degree of Doctorate in Medicine from the University of Liverpool

Institute in the Park
Alder Hey Children’s NHS Foundation Trust
Department of Women's and Children's Health
University of Liverpool

September 2017
ACKNOWLEDGEMENTS

Firstly, I would express my sincere thanks to Dr Senthil Senniappan for his excellent supervision and continuous support throughout my MD. His optimism, patience, enthusiasm and motivation have been my inspiration throughout. I extend my thanks to my co-supervisors, Professor Paul McNamara and Professor Matthew Peak for their constant encouragement, guidance and support.

I am grateful to Dr Carles Gaston-Massuet, Queen Mary University of London, for his collaboration and kindly hosting me to do the functional work and laboratory studies. I also thank his excellent team- Maria Liilina Vignola, Angelica Gualtieri and Valeria Scaglotti for teaching me various molecular biology techniques. I am also grateful for the help offered by Dr John Scott from the University of Melbourne, Australia on some of the functional studies related to my project. I thank Dr Roger Mountford, Molecular Genetics laboratory, Liverpool Women’s Hospital for his support and Dr Pia Koldkjaer, Dr Christiane Hertz-Fowler, Dr Sam Heldenby, Dr Xuan Liu from the centre of genomic research, University of Liverpool for their help with sequencing and bioinformatics.

I owe my kind regards to Dr Mo Didi, Dr Jo Blair, Dr Poonam Dharmaraj, Dr Urmi Das & Dr Renuka Ramakrishnan from the department of Paediatric Endocrinology, Alder Hey Children’s NHS Foundation Trust for their help and encouragement. I thank Dr Julie Park for her friendship and cheerful encouragement during my time in the department.

I thank Sandoz(UK) limited for gracefully funding my MD.

I extend my thanks to Dr Bala Palanisami and his family for their warmth and support especially over the last couple of years. My sincere thanks to my parents for their love and blessings. My heartfelt thanks to my wife, Jaishri for her perseverance, immense support, encouragement and of course, my 5-year-old daughter, Vibusha for her patience, understanding and sparing me the time over the last 2 years to accomplish this endeavour.
DECLARATION OF WORK

I, Dr Dinesh Chand Giri Harirambapu, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.
ABSTRACT

Background
Congenital Hyperinsulinism (CHI) is characterized by unregulated secretion of insulin in the presence of hypoglycaemia. Mutations in eleven different genes ABCC8, KCNJ11, GLUD1, GCK, HADH, UCP2, HNF4A, HNF1A, MCT1, HK1 and PGM1 have been associated with genetic forms of CHI. However, the genetic cause for many CHI patients (nearly 50%) remains elusive. Mutations in transcription factors such as HESX1, PROP1, POU1F1, LHX3, LHX4, PITX1, PITX2, OTX2, SOX2 and SOX3 have been associated with congenital hypopituitarism(CH) in mouse and humans. However, these mutations account only for a small proportion with the majority of patients having an unknown genetic cause for their symptoms. The use of next generation sequencing in children with undiagnosed or unidentified syndromic disorders is becoming more popular in recent years, increasing the diagnostic ability and discovery of novel genes and mutations contributing to novel clinical phenotypes.

Aims
1. To identify novel genetic mechanisms in patients with rare endocrine disorders.
2. To functionally characterize a transcription factor associated with pituitary and pancreatic development and to characterize a novel gene associated with CHI.

Patients
Six patients with varied phenotypes such as CHI and CH(n=1), CHI(n=1), primary IGF1 deficiency with dysmorphic features (n=1), severe short stature with dysmorphic features(n=1), severe short stature(n=1), hypercalcemia and glomerular disease(n=1) were recruited into this study.

Methods
Whole exome sequencing(WES) was performed on the genomic DNA in trios (patient and the biological parents) for 5 patients. In one of the patients where the DNA sample was not possible to obtain from the biological father, WES was performed on the genomic DNA from the patient and the biological mother. mRNA expression during murine embryogenesis was studied using in situ hybridization and the protein expression in human embryos was demonstrated by immunohistochemistry. The pathogenic effect of the variant on protein function was further demonstrated by transcriptional activation assays using luciferase and quantification of protein expression using western blot.

Results
1. WES identified a de novo heterozygous mutation in FOXA2 (c.505T>C, p.S169P) in a highly conserved residue within the DNA binding domain in a patient with CHI and CH. A strong expression of Foxa2 mRNA was found in the developing hypothalamus, pituitary, pancreas, lungs and oesophagus of mouse embryos using in situ hybridization. Expression profiling on human embryos by immunohistochemistry showed strong expression of hFOXA2 in the neural tube, third ventricle, diencephalon and in the pancreas. Transient transfection of HEK293T cells with Wt (Wild type) hFOXA2 or mutant hFOXA2 showed an impairment in transcriptional reporter activity by the mutant hFOXA2. Further analyses using western blot assays showed that the FOXA2 p.(S169P) variant is pathogenic resulting in lower expression levels when compared with Wt hFOXA2.

3. A de novo heterozygous frameshift mutation (p.G539fs*4) was found in CaMKK2 isoform-7 in a patient with persistent CHI, negative for mutations in known genes. On expressing the pG539fs*4 mutant in COS7 cells a significantly higher basal and Ca\(^{2+}\)-CaM dependent kinase activity was noted when compared with WT (Wild Type) isoform-7. Both isoform-7 and the pG539fs*4 mutant have elevated basal kinase activity compared with isoform-1, the major CaMKK2 isoform expressed in most tissues.

4. A heterozygous splicing mutation in B3GAT3 was found in a patient with short stature, congenital heart defects, facial dysmorphism and skeletal abnormalities.

5. A homozygous mutation in the promoter region of GH1 was identified in a patient with severe short stature and low IGF1. In one patient, no relevant genetic variant segregating with the phenotype was identified.

Conclusions

FOXA2 mutation can cause a complex congenital syndrome with hypopituitarism, and hyperinsulinism. Frameshift mutation in CaMKK2 is a potential novel cause of persistent CHI. WES has helped to identify the underlying genetic etiology in 5 out of 6 families recruited in the study.
TABLE OF CONTENTS

Acknowledgements ii
Declaration of Work iii
Abstract iv
Table of Contents vi
List of Figures xiii
List of Tables xvi
Abbreviations xvii

CHAPTER 1
PROMISE OF WHOLE EXOME SEQUENCING IN PAEDIATRIC ENDOCRINOLOGY

1.1 Summary of Chapter 1 2
1.2 Whole Exome Sequencing (WES) 3
 1.2.1 Introduction 3
 1.2.2 Exome Sequencing 3
 1.2.3 WES in Medicine 4
 1.2.4 WES in Paediatric Endocrinology 7
 1.2.4.1 WES in Growth and Pubertal Disorders 7
 1.2.4.2 WES in Disorders of Adrenal gland and Endocrine Neoplasia 9
 1.2.4.3 WES in Familial Glucocorticoid Deficiency 9
 1.2.4.4 WES in Thyroid Disorders 10
 1.2.4.5 WES in Juvenile Osteoporosis 11
 1.2.4.6 WES in 46XY Disorders of Sexual Differentiation 11
 1.2.4.7 WES in Clinical Endocrinology 11
 1.2.5 Disadvantages in WES 14
 1.2.6 WES, GWAS and Whole Genome Sequencing (WGS) 15

CHAPTER 2
PITUITARY GLAND-EMBRYOLOGY, DEVELOPMENTAL TRANSCRIPTION FACTORS, CONGENITAL HYPOPITUITARISM, DIAGNOSIS AND MANAGEMENT

2.1 Summary of Chapter 2 17
2.2 Pituitary Gland 18
 2.2.1 Embryology and Development of Pituitary Gland 19
 2.2.1.1 Early Developmental Genes and Signals 21
 2.3 Syndromic Forms of Hypopituitarism 23
 2.3.1 Septo-optic Dysplasia (SOD) 23
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2 HESX1 mutations and SOD</td>
<td>24</td>
</tr>
<tr>
<td>2.3.3 SOX2 and SOX3 Mutations</td>
<td>25</td>
</tr>
<tr>
<td>2.3.4 Holoprosencephaly</td>
<td>25</td>
</tr>
<tr>
<td>2.3.5 LHX3 mutations</td>
<td>26</td>
</tr>
<tr>
<td>2.3.6 LHX4 mutations</td>
<td>26</td>
</tr>
<tr>
<td>2.3.7 OTX2 mutations</td>
<td>27</td>
</tr>
<tr>
<td>2.3.8 Axenfield-Rieger syndrome (PITX2 mutations)</td>
<td>27</td>
</tr>
<tr>
<td>2.4 Non-syndromic forms of Hypopituitarism</td>
<td>28</td>
</tr>
<tr>
<td>2.4.1 PROP1 mutations</td>
<td>28</td>
</tr>
<tr>
<td>2.4.2 POU1F1(PIT1) mutations</td>
<td>29</td>
</tr>
<tr>
<td>2.4.3 TBX19 mutations</td>
<td>29</td>
</tr>
<tr>
<td>2.5 Isolated Hormone Deficiencies due to Mutations in Specific Cell Type:</td>
<td></td>
</tr>
<tr>
<td>GH1 mutations</td>
<td>30</td>
</tr>
<tr>
<td>2.6 Clinical Manifestations of Hypopituitarism</td>
<td>31</td>
</tr>
<tr>
<td>2.7 Investigations in Hypopituitarism</td>
<td>32</td>
</tr>
<tr>
<td>2.7.1 ACTH Deficiency</td>
<td>32</td>
</tr>
<tr>
<td>2.7.2 TSH Deficiency</td>
<td>33</td>
</tr>
<tr>
<td>2.7.3 GH Deficiency</td>
<td>33</td>
</tr>
<tr>
<td>2.7.4 Gonadotropin Deficiency</td>
<td>33</td>
</tr>
<tr>
<td>2.7.5 ADH Deficiency (Diabetes Insipidus)</td>
<td>34</td>
</tr>
<tr>
<td>2.7.6 The Role of Neuroradiology</td>
<td>34</td>
</tr>
<tr>
<td>2.8 Management of Hypopituitarism</td>
<td>35</td>
</tr>
</tbody>
</table>

CHAPTER 3

CONGENITAL HYPERINSULINISM-MOLECULAR MECHANISMS, DIAGNOSIS AND MANAGEMENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Summary of Chapter 3</td>
<td>37</td>
</tr>
<tr>
<td>3.2 Congenital Hyperinsulinism(CHI)</td>
<td>38</td>
</tr>
<tr>
<td>3.3. Insulin Secretion and Pancreatic β-cell Physiology</td>
<td>38</td>
</tr>
<tr>
<td>3.3.1 Structure of K_{ATP} Channel</td>
<td>39</td>
</tr>
<tr>
<td>3.3.2 K_{ATP} Channel Independent Insulin Secretion</td>
<td>42</td>
</tr>
<tr>
<td>3.4 Etiology of CHI</td>
<td>42</td>
</tr>
<tr>
<td>3.4.1 CHI due to Defects in Pancreatic β-cell K_{ATP} Channels</td>
<td>43</td>
</tr>
<tr>
<td>3.4.1.2 Molecular Basis of ABCC8 and KCNJ11 Recessive Mutations</td>
<td>44</td>
</tr>
<tr>
<td>3.4.2 Defects in Biogenesis and Turnover</td>
<td>44</td>
</tr>
<tr>
<td>3.4.3 Trafficking Defects</td>
<td>45</td>
</tr>
<tr>
<td>3.4.4 Defects in Channel Regulation</td>
<td>45</td>
</tr>
</tbody>
</table>
3.4.5 Dominant Activating KATP Channel Mutations 45
3.4.6 CHI due to Gain of Function Mutations in GLUD1 46
3.4.7 CHI due to Mutations in HADH 47
3.4.8 CHI due to Gain of Function Mutations in GCK 48
3.4.9 CHI due to Mutations in Transcription Factors-HNF4A and HNF1A 49
3.4.10 Exercise-induced Hyperinsulinism 50
3.4.11 CHI due to Mutations in UCP2 51
3.4.12 CHI due to Mutations in HK1 51
3.4.13 CHI due to PGM1 Mutations 52

3.5 CHI-Histological Subtypes 54
3.5.1 Differentiation between Diffuse and Focal Hyperinsulinism 55

3.6 Clinical Presentation of CHI 56
3.7 Diagnosis of CHI 57

3.8 Medical Management of CHI 58
3.8.1 Glucagon 58
3.8.2 Diazoxide 59
3.8.3 Octreotide 60
3.8.4 Newer Medical Therapies for CHI 60

3.9 Surgical Management of CHI 61

3.10 Aims of the Project 62
3.11 Patient Recruitment 63
3.12 Ethics 64

CHAPTER 4
GENERAL METHODS

4.1 Summary of Chapter 4 67
4.2 Genomic DNA Extraction from Blood 68
4.2.1 Quantification of DNA 69
4.2.2 DNA Quality Control: Bioanalyzer or Fragment Analyzer Principle of Fragment Analyzer 70
4.3 Whole Exome Sequencing 73
4.3.1 Workflow of Exome Sequencing 73
4.3.1.1 Sample Preparation 73
4.3.1.2 Hybridization 75
4.3.1.3 Indexing and Sample Processing of Multiplexed Sequencing 75
4.3.1.4 Sequencing 76
4.4 Bioinformatics 77
4.4.1 Processing and Quality Assessment of the Sequencing Data 77
4.4.2 Alignment of Reads to the Reference Genome 79
4.4.3 Variant Detection 81
4.4.4 Identifying Causal Alleles 81
4.5 Approaches Towards Identifying Causal Alleles 82
 4.5.1 Discrete Filtering 82
 4.5.2 Stratifying the Candidate Genes After Discrete Filtering 83
 4.5.3 In Silico Tools: SIFT and PolyPhen 83
 4.5.4 Pedigree Information 84
 4.5.5 Technical and Analytical Limitations of Exome Sequencing 85

CHAPTER 5
CLINICAL PHENOTYPE AND WHOLE EXOME SEQUENCING RESULTS (FAMILY A)

5.1 Summary of Chapter 5 87
5.2 Clinical Information (Proband A) 88
5.3 Whole Exome Sequencing Results (Family A) 94

CHAPTER 6
FOXA2 (FORKHEAD BOX A2): DESCRIPTION OF GENE FUNCTION, FOXA2 MUTATION (c.505T>C, p. S169P) & FUNCTIONAL ANALYSIS

6.1 Summary of Chapter 6 99
6.2 Role of FOXA2 in the Development of Central Nervous System 100
 6.2.1 FOXA2 and its interaction with Shh signalling pathway 101
6.3 Role of Foxa2 in mouse pancreas 104
6.4 Description of FOXA2 mutation(c.505T>C, p.S169P) 105
 6.4.1 Factors Supporting Pathogenicity of the Variant 107
6.5 Functional Analysis of FOXA2(c.505T>C, p.S169P) 109
 6.5.1 Mice 111
 6.5.2 Fixation, Embedding and Sectioning of Mouse Embryos 111
 6.5.2.1 Fixation 111
 6.5.2.2 Dehydration 112
 6.5.2.3 Embedding 112
 6.5.2.4 Sectioning of Paraffin Embedded Tissue 113
 6.5.3 Bacterial Transformation and Purification of Mouse Foxa2 Plasmid 114
 6.5.3.1 Bacterial Transformation 114
 6.5.3.2 Started Cultures and Midiprep 115
 6.5.4 Preparation of Foxa2 mRNA Probe and Labelling 117
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.4.1 Linearization of Plasmid</td>
<td>117</td>
</tr>
<tr>
<td>6.5.4.2 Digoxigenein(DIG) Labelled RNA Antisense Probe Transcription</td>
<td>118</td>
</tr>
<tr>
<td>6.5.4.3 Probe Purification</td>
<td>119</td>
</tr>
<tr>
<td>6.5.5 In Situ Hybridization</td>
<td>120</td>
</tr>
<tr>
<td>6.5.5.1 Pre- Hybridization Treatment</td>
<td>120</td>
</tr>
<tr>
<td>6.5.5.2 Hybridization</td>
<td>121</td>
</tr>
<tr>
<td>6.5.5.3 Post Hybridization Washing</td>
<td>121</td>
</tr>
<tr>
<td>6.5.5.4 Antibody Detection</td>
<td>122</td>
</tr>
<tr>
<td>6.5.6 Immunohistochemistry</td>
<td>123</td>
</tr>
<tr>
<td>6.5.6.1 Deparrafinisation and Rehydration</td>
<td>123</td>
</tr>
<tr>
<td>6.5.6.2 Heat Induced Antigen Retrieval</td>
<td>124</td>
</tr>
<tr>
<td>6.5.6.3 Addition of Primary Antibody</td>
<td>124</td>
</tr>
<tr>
<td>6.5.6.4 Addition of Secondary Antibody</td>
<td>125</td>
</tr>
<tr>
<td>6.5.7 Human FOXA2 Plasmid</td>
<td>126</td>
</tr>
<tr>
<td>6.5.7.1 Verification of Plasmid by Sequencing</td>
<td>128</td>
</tr>
<tr>
<td>6.5.8 Mutagenic Primer Designing</td>
<td>129</td>
</tr>
<tr>
<td>6.5.9 Site-Directed Mutagenesis(SDM)</td>
<td>130</td>
</tr>
<tr>
<td>6.5.9.1 SDM reaction</td>
<td>130</td>
</tr>
<tr>
<td>6.5.9.2 Digestion</td>
<td>132</td>
</tr>
<tr>
<td>6.5.9.3 Transformation</td>
<td>132</td>
</tr>
<tr>
<td>6.5.9.4 Inoculating Agar Plates</td>
<td>132</td>
</tr>
<tr>
<td>6.5.9.5 Started Cultures, Midiprep and Double Digestion</td>
<td>133</td>
</tr>
<tr>
<td>6.5.10 Dual Luciferase Reporter(DLR) Assay-Principle</td>
<td>134</td>
</tr>
<tr>
<td>6.5.10.1 Cell Culture and Transfection</td>
<td>137</td>
</tr>
<tr>
<td>6.5.10.1.1 Cell Culture</td>
<td>138</td>
</tr>
<tr>
<td>6.5.10.1.2 Transfection</td>
<td>139</td>
</tr>
<tr>
<td>6.5.10.1.3 Preparation of Cell Lysates</td>
<td>139</td>
</tr>
<tr>
<td>6.5.10.1.4 Preparation of Luciferase Assay Reagent II(LAR II)</td>
<td>139</td>
</tr>
<tr>
<td>6.5..10.1.5 Preparation of Stop and Glo Reagent</td>
<td>140</td>
</tr>
<tr>
<td>6.6 Brief description of specific methods</td>
<td>142</td>
</tr>
<tr>
<td>6.6.1 In situ Hybridization</td>
<td>142</td>
</tr>
<tr>
<td>6.6.2 Immunohistochemistry</td>
<td>143</td>
</tr>
<tr>
<td>6.6.3 Plasmids and Site Directed Mutagenesis</td>
<td>143</td>
</tr>
<tr>
<td>6.6.4 Cell Culture and Luciferase Assays</td>
<td>144</td>
</tr>
<tr>
<td>6.6.5 Western Blotting</td>
<td>144</td>
</tr>
<tr>
<td>6.6.6 Immunocytofluorescence</td>
<td>145</td>
</tr>
</tbody>
</table>
6.7 Results from in vitro studies
 6.7.1 Foxa2 mRNA Expression during Murine Embryonic Development
 6.7.2 FOXA2 expression during Human Embryonic Development
 6.7.3 Immunocytotofluorescence
 6.7.4 Dual Luciferase Transcriptional Assay
 6.7.5 Western Blot Assay
6.8 Discussion

CHAPTER 7
CLINICAL PHENOTYPE AND WHOLE EXOME SEQUENCING RESULTS (FAMILY B)

7.1 Summary of Chapter 7
7.2 Clinical Information (Proband B)
7.3 Whole Exome Sequencing Results (Family B)
7.4 Bainbridge-Ropers Syndrome (BRPS)
7.5 ASXL3: Gene Description
7.6 Exome Sequencing
7.7 Bioinformatics
7.8 ASXL3 mutations in proband B
 7.8.1 Description of ASXL3 Compound Heterozygous Mutations
 7.8.2 Bioinformatic Analysis of ASXL3 mutations
7.9 Association with Primary IGF1 Deficiency
7.10 Conclusion

CHAPTER 8
CLINICAL ASPECTS AND WHOLE EXOME SEQUENCING RESULTS (FAMILY C)

8.1 Summary of Chapter 8
8.2 Clinical Information (Proband C)
8.3 Whole Exome Sequencing Results (Family C)
8.4 Ca^{2+}/calmodulin-dependent protein kinase 2 (CaMKK2) and Effect of Mutation
 8.4.1 CaMKK2
 8.4.2 Role of CaMKK2 in Insulin Secretion
8.5 Methods
 8.5.1 Plasmid
 8.5.2 Expression of human CaMKK2 isoforms and pGly539fs*mutant
 8.5.3 CaMKK2 Assay
CHAPTER 9
CLINICAL PHENOTYPES AND WHOLE EXOME SEQUENCING RESULTS
(FAMILIES D, E, F)

9.1 Summary of Chapter 9
9.2 Clinical Information (Proband D)
9.3 Whole Exome Sequencing Results (Family D)
9.4 B3GAT3
 9.4.1 B3GAT3 mutation
 9.4.2 Biological Function of B3GAT3
9.5 Discussion
9.6 Clinical Information (Proband E)
9.7 Whole Exome Sequencing Results (Family E)
9.8 GH1 gene
 9.8.1 GH1 Promoter Variant(c.-93delG)
9.9 Clinical Information (Proband F)
9.10 Whole Exome Sequencing Results (Family F)

CHAPTER 10
GENERAL DISCUSSION, CONCLUSIONS & FUTURE DIRECTIONS

10.1 General Discussion
10.2 Conclusions
10.3 Future Directions

CHAPTER 11
References

CHAPTER 12
APPENDIX

Ethics approval
R & D approval
Patient/Guardian Information Sheets
Consent Forms
List of Publications
Abstracts and PDF of accepted manuscripts
LIST OF FIGURES

CHAPTER 1
Figure 1.1: WES and its impact in medicine 6

CHAPTER 2
Figure 2.1: Stages in mouse pituitary development 20
Figure 2.2: Pituitary signalling cascade and differentiation of cell types 22

CHAPTER 3
Figure 3.1: Mechanism of insulin release from pancreatic β-cell 41
Figure 3.2: Role of various genes in insulin secretion 53
Figure 3.3 (A & B): Focal and Diffuse forms of CHI 55
Figure 3.4: Flowchart of Patient Recruitment 64

CHAPTER 4
Figure 4.1: Gel image of the DNA samples 71
Figure 4.2: Electropherogram traces of the DNA samples 72
Figure 4.3: Sample preparation for exome sequencing 74
Figure 4.4: SureSelect target enrichment 76
Figure 4.5: Read length distributions of samples after trimming 78
Figure 4.6: Parent-Child trio 84

CHAPTER 5
Figure 5.1: Sagittal view of MRI scan of brain of proband A 90
Figure 5.2: Linear growth curve of proband A and response to GH 92
Figure 5.4: Pedigree chart of Family A 93
Figure 5.4: De Novo variant analysis of proband A 94

CHAPTER 6
Figure 6.1: Schematic representation of FOXA2 gene with its domains 102
Figure 6.2: Interaction between Shh signalling pathway and FOXA2 103
Figure 6.3: Electropherogram showing the point mutation in FOXA2 (c.505 T>C) 107
Figure 6.4: Evolutionary conservation of serine amino acid residue 108
Figure 6.5: Agarose gel image showing DNA yield from purified plasmid 116
Figure 6.6: Agarose gel image showing Mouse Foxa2 linearized plasmid 117
Figure 6.7: Agarose gel image showing the probe after transcription 119
Figure 6.8: Physical map of plasmid pCMV3 with FOXA2 insert 127
Figure 6.9: Agarose gel image depicting PCR product 131
Figure 6.10: Bioluminescent reaction-Firefly luciferase
Figure 6.11: Bioluminescent reaction-Renilla luciferase
Figure 6.12: Comparison of luminescent signals generated by firefly and Renilla luciferase
Figure 6.13: Sequential steps inside the luminometer

Figure 6.14: mRNA expression of Foxa2 during mouse embryonic development
Figure 6.15: FOXA2 expression during human embryonic development
Figure 6.16: Double immunofluorescence using anti-FOXA2 antibody
Figure 6.17: Dual luciferase transcriptional assay
Figure 6.18: Western blot assay
Figure 6.19: Schematic representation of regulation of genes involved in insulin secretion by FOXA2

CHAPTER 7
Figure 7.1: Growth chart depicting height and weight of proband B
Figure 7.2: Pedigree chart of Family B
Figure 7.3: De Novo variant analysis of proband B
Figure 7.4: Recessive variant analysis of proband B
Figure 7.5: ASXL3 gene with its domains
Figure 7.6: Electropherogram showing compound heterozygous mutations(c.2695 C>G) and c.3078G>C
Figure 7.7: ASXL3 gene with previous reported mutations

CHAPTER 8
Figure 8.1 Pedigree chart of Family C
Figure 8.2: De Novo variant analysis of proband c
Figure 8.3: Mechanism of insulin release from ß-cell via the Ca^{2+}-CaM kinase cascade
Figure 8.4A: Schematic representation of CaMKK2 isoforms 1, isoform 7 and mutant isoform 7 p.G539fs*4
Figure 8.4B: Immunoblotting with rabbit anti-Flag antibody showing the expression of pG539fs*4 mutant in COS7 cells at a similar level as wild-type
Figure 8.4C Graph showing Ca\(^{2+}\)-Calmodulin dependent kinase activities with CaMKK2 isoform 1, isoform 7 and isoform 7 pG539fs*4

Figure 8.5: Schematic representation of excess insulin release from \(\beta\)-cell via increased activation of the kinase cascade by CaMKK2 isoform 7 pG539fs*4

CHAPTER 9

Figure 9.1: Pedigree chart of Family D 215
Figure 9.2: Growth chart of Proband D 215
Figure 9.3: De Novo variant analysis of Family D 216
Figure 9.4: Pedigree chart of Family E 224
Figure 9.5: Growth chart of Proband E 225
Figure 9.6: De Novo variant analysis of Family E 226
Figure 9.7: Recessive variant analysis of Family E 229
Figure 9.8: Pedigree chart of Family F 235
Figure 9.9: De Novo variant analysis of Family F 236
Figure 9.10: Recessive variant analysis of Family F 240
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Summary of genes found by WES in some endocrine disorders</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Summary of the phenotypes of recruited patients</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of raw and trimmed sequence data</td>
<td>78</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of sequence alignments</td>
<td>80</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of clinical features of proband A</td>
<td>93</td>
</tr>
<tr>
<td>5.3</td>
<td>List of de novo variants in proband A</td>
<td>95</td>
</tr>
<tr>
<td>6.1</td>
<td>Human FOXA2 insert in pCMV3</td>
<td>126</td>
</tr>
<tr>
<td>6.2</td>
<td>Mutagenic primers used to insert mutations in FOXA2</td>
<td>130</td>
</tr>
<tr>
<td>6.3</td>
<td>SDM reaction preparation</td>
<td>130</td>
</tr>
<tr>
<td>6.4</td>
<td>PCR settings for SDM reaction</td>
<td>131</td>
</tr>
<tr>
<td>6.5</td>
<td>Quantity of reagents added to each well in 24-well plates</td>
<td>138</td>
</tr>
<tr>
<td>7.1</td>
<td>List of de novo variants in proband B</td>
<td>169</td>
</tr>
<tr>
<td>7.2</td>
<td>List of compound heterozygous/homozygous variants in proband B</td>
<td>172</td>
</tr>
<tr>
<td>7.3</td>
<td>Comparison of phenotypic features of proband B with patients with BRPS reported in literature</td>
<td>182</td>
</tr>
<tr>
<td>7.4</td>
<td>List of variants in proband D</td>
<td>190</td>
</tr>
<tr>
<td>7.5</td>
<td>Ca(^{2+})-CaM stimulated activities of CaMKK2.1 (isoform 1), CaMKK2.7 (isoform 7) and pG539*fs4 mutant measured over a range of CaM concentrations</td>
<td>201</td>
</tr>
<tr>
<td>7.6</td>
<td>Summary of investigations in proband D following 19-hour fast</td>
<td>214</td>
</tr>
<tr>
<td>7.7</td>
<td>List of variants in proband D</td>
<td>217</td>
</tr>
<tr>
<td>7.8</td>
<td>Comparison of clinical features between proband D and patients with B3GAT3 mutations reported in literature</td>
<td>220</td>
</tr>
<tr>
<td>7.9</td>
<td>List of de novo variants in proband E</td>
<td>227</td>
</tr>
<tr>
<td>7.10</td>
<td>List of recessive variants in proband E</td>
<td>230</td>
</tr>
<tr>
<td>7.11</td>
<td>Summary of investigations in proband F</td>
<td>235</td>
</tr>
<tr>
<td>7.12</td>
<td>List of de novo variants in proband F</td>
<td>237</td>
</tr>
<tr>
<td>7.13</td>
<td>List of recessive variants in proband F</td>
<td>241</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

ACTH Adrenocorticotropic Hormone
ALS Acid-labile subunit
AMPK AMP- activated protein kinase
ASXL3 Additional Sex Combs Like 3, Transcriptional Regulator
AVP Arginine Vasopressin
B3GAT3 β-1,3-glucuronyltransferase 3
BMP4 Bone Morphogenetic Protein 4
BQSR Base quality score recalibration
BRPS Bainbridge-Ropers syndrome
Buffer AL Lysis buffer
Buffer AW1 Wash buffer 1
Buffer AE elution buffer
Ca²⁺ Calcium
CaMKK2 Ca²⁺/calmodulin-dependent protein kinase 2
cDNA Complementary deoxyribonucleic acid
CGH Comparative genomic hybridisation
CHI Congenital Hyperinsulinism
CNPAS congenital nasal pyriform aperture stenosis
CPHD Combined Pituitary Hormone Deficiency
CRISPR/CAS9 Clustered Regularly Interspaced Short Palindromic Repeats/
 CRISPR associated system
CS Carnegie stage
ddH2O double distilled water
DEPC diethyl pyrocarbonate
DIG Digoxigenin
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLR</td>
<td>Dual-Luciferase Reporter</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco modified Eagle medium</td>
</tr>
<tr>
<td>E(number)</td>
<td>Embryonic day</td>
</tr>
<tr>
<td>ELM</td>
<td>Eukaryotic Linear Motifs</td>
</tr>
<tr>
<td>ExAc</td>
<td>Exome Aggregation Consortium</td>
</tr>
<tr>
<td>^18F-DOPA PET</td>
<td>18F-fluro-L-dihydroxyphenylalanine Positron Emission Tomography</td>
</tr>
<tr>
<td>Fgf</td>
<td>Fibroblast growth factor signalling</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluorescent In situ Hybridization</td>
</tr>
<tr>
<td>FOXA2</td>
<td>Forkhead Box A2</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicular Stimulating Hormone</td>
</tr>
<tr>
<td>GABA</td>
<td>Glutamate decarboxylase</td>
</tr>
<tr>
<td>GATK</td>
<td>Genome Analysis Tool Kit</td>
</tr>
<tr>
<td>GAG</td>
<td>Glycosaminoglycan</td>
</tr>
<tr>
<td>GCK</td>
<td>Glucokinase</td>
</tr>
<tr>
<td>GDH</td>
<td>Glutamate Dehydrogenase</td>
</tr>
<tr>
<td>GH</td>
<td>Growth Hormone</td>
</tr>
<tr>
<td>GLP-1</td>
<td>glucagon like peptide-1</td>
</tr>
<tr>
<td>GLUT-2</td>
<td>Glucose transporter 2</td>
</tr>
<tr>
<td>GlcAT-I</td>
<td>β-1,3-glucuronyltransferase 3</td>
</tr>
<tr>
<td>GnRH</td>
<td>Gonadotropin Releasing Hormone</td>
</tr>
<tr>
<td>GWAS</td>
<td>Genome Wide Association Studies</td>
</tr>
<tr>
<td>HADH</td>
<td>Hydroxyacyl-Coenzyme A dehydrogenase</td>
</tr>
<tr>
<td>hCG</td>
<td>Human chorionic gonadotropin</td>
</tr>
<tr>
<td>HEK</td>
<td>Human Embryonic Kidney</td>
</tr>
<tr>
<td>HPA</td>
<td>Hypothalamo-pituitary axis</td>
</tr>
<tr>
<td>HPE</td>
<td>Holoprocencephaly</td>
</tr>
</tbody>
</table>
IGF-1 Insulin Growth Factor-1
IGHD Isolated Growth Hormone Deficiency
IGFBP-1 Insulin-like growth factor-binding protein 1
KATP ATP-sensitive potassium channels
Kir6.2 Inward rectifying potassium channel pore forming
LARII Luciferase Assay Reagent
LH Luteinizing Hormone
MAF minor allele frequency
MCT1 Monocarboxylate transporter
MSH Melanin Stimulating Hormone
mTOR mammalian target of rapamycin inhibitor
NBF Nucleotide Binding Fold
NBT Nitro blue tetrazolium
PTCH1 Patched-1
PBS Phosphate buffered saline
phGT2 plasmid with human GLUT2 reporter
POMC Pro-opiomelanocortin
PPARα peroxisomal proliferator-activated receptor alpha
PR-DUB Polycomb repressive deubiquitination
PRL Prolactin
PVA Polyvinyl alcohol
qPCR quantitative polymerase chain reaction
rGH recombinant growth hormone
RFU relative fluorescence unit
rIGF1 recombinant IGF1
RP Rathke’s Pouch
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shh</td>
<td>Sonic Hedgehog</td>
</tr>
<tr>
<td>SIFT</td>
<td>Sorting intolerant from tolerant</td>
</tr>
<tr>
<td>SOD</td>
<td>Septo-optic dysplasia</td>
</tr>
<tr>
<td>SSC</td>
<td>saline sodium citrate</td>
</tr>
<tr>
<td>SMO</td>
<td>smoothened</td>
</tr>
<tr>
<td>SNV</td>
<td>single nucleotide variant</td>
</tr>
<tr>
<td>SUR1</td>
<td>sulfonylurea receptor 1</td>
</tr>
<tr>
<td>Ttf1</td>
<td>Thyroid Transcription Factor 1</td>
</tr>
<tr>
<td>TMD</td>
<td>Transmembrane Domain</td>
</tr>
<tr>
<td>Ub1</td>
<td>mono-ubiquitin</td>
</tr>
<tr>
<td>UCSC</td>
<td>University of California Santa Cruz</td>
</tr>
<tr>
<td>VQSR</td>
<td>Variant Quality Recalibration Score</td>
</tr>
<tr>
<td>WES</td>
<td>Whole Exome Sequencing</td>
</tr>
</tbody>
</table>
CHAPTER 1

PROMISE OF WHOLE EXOME SEQUENCING IN PAEDIATRIC ENDOCRINOLOGY
1.1 SUMMARY OF CHAPTER 1

Chapter 1 provides an introduction to Whole Exome Sequencing (WES). This chapter begins with a brief description of WES in medicine followed by the usefulness of WES in diagnosing various conditions in paediatric endocrinology.
1.2 WHOLE EXOME SEQUENCING

1.2.1 Introduction

The sequencing technologies have been constantly evolving over the last decade since the completion of Human Genome Project (1). They include individual gene based approach (Sanger sequencing), large scale genome wide analysis to determine genetic determinants of disease, whole exome and whole genome sequencing (2). Whole exome sequencing is one such major advancement in the field of genomic medicine (3) and is a highly effective form of genetic analysis as this allows the sequencing of the majority (>90%) of the protein coding portion of an individual’s DNA (4).

1.2.2 Exome Sequencing

The human genome is vast and comprises of 3 billion base pairs that contains both the coding and the non-coding regions (5). Approximately 1% of the entire human genome constitute the protein coding region or exomes that harbours about 85% of the disease causing mutations (5). Therefore, sequencing of exomes has the potential to discover the underlying genetic causes of not only rare diseases but also in determining predisposing variants in cancers and common diseases (4). The cost to sequence the whole exome is about six fold less when compared to the cost involved to sequence the whole genome and therefore WES is a cost-effective method to identify the disease causing mutations (6), especially in rare diseases. WES is performed after the exomes or the coding part are captured from the genomes using specific probes and by high-throughput technologies (2). The sequence is then compared with human reference sequence, where by the use of computer tools, the differences in alignment are identified to determine the potential genetic variants (4).
Some of the limitations of WES include its inability to assess the non-coding alleles, the limitations in coverage of the regulatory regions of the genome and limitations in capturing the entire exome (2). WES has been promising in identifying novel genes and underlying genetic pathways of diseases despite the above limitations.

1.2.3 WES in Medicine

WES as a research tool has facilitated the understanding of the molecular basis of genetic diseases. The earliest report of the utility of WES was published in 2009 (7) when MYH3 was identified as a disease causing gene in individuals with Freeman-Sheldon syndrome (FSS; OMIM193700). Another example is the exome sequencing studies in individuals with Kabuki syndrome where the sequencing identified KMT2D (formally known as MLL2) in >50% of patients in this syndrome, characterized by wide phenotypic variability and multiple congenital malformations (8). These kind of studies uncover the genetic basis of the rare disorders and help in the management of the patients.

In addition to identifying genetic causes for rare diseases, WES can serve as a potentially useful tool in screening, prenatal diagnosis and disease treatment (5). The applicability of WES in prenatal diagnosis was demonstrated using fetal DNA in maternal serum in finding aneuploidies (9). These methods are non-invasive when compared with other methods such as amniocentesis or chorionic villi biopsy (10, 11).

The underlying molecular basis is known only in two-thirds of the described monogenic disorders (5). The discovery of the causative gene contributes massively to the understanding of the pathogenesis of the disease process. The identification of a novel genetic cause for a rare disease depends on a number of factors such as identification of similar variant in the gene in other patients with similar clinical phenotype and
absence or rarity of the variant present in control population. In rare diseases, where the finding of similar affected phenotypes can be difficult, functional experiments on the identified variant to determine the pathological impact of the variant on protein function is crucial to understand the biological pathways associated with the disease and to validate the variant as pathogenic. WES can therefore be a powerful tool in finding the genetic etiology for Mendelian disorders (12).

Besides monogenic disorders, WES can identify common genetic variants associated with complex and common diseases with multigenic traits (13). With the emerging rare variants-common disease hypothesis, WES will have a bigger role in common diseases along with the main driving force, genome-wide association studies (GWAS) (14). WES has made promising advances in common diseases such as cardiovascular disease, hypertension, obesity, diabetes and also has massively aided in detailed understanding of molecular mechanisms and pathways in cancer (5).

For genetically heterogeneous disorders, the use of targeted exome sequencing, which involves sequencing of many known disease associated genes rather than the whole exome can be sufficient (15). This also confers other advantages such as reduced cost, better depth of sequencing and reduced diagnostic time. For example there are a number of genes associated with heterogeneous conditions such as learning difficulties and congenital hearing loss in which targeted sequencing of the implied genes has better diagnostic abilities with reduced cost (5).
Figure 1.1: WES and its impact on health improvement. In both research and clinical settings, WES is used in common diseases, cancer and rare diseases. This potentially leads to the establishment of gene networks, new Single nucleotide polymorphisms(SNPs), new mutation detection and discovery of new genes (5).
1.2.4 WES in Paediatric Endocrinology

Paediatric endocrinology consists of many rare diseases. Although the clinical phenotype and management has been established in many of these conditions, the underlying genetic etiology remains unidentified. WES has enabled to uncover the molecular diagnosis and shed valuable insights in understanding the novel genetic pathways in many disorders involving growth, puberty, adrenal gland, type 2 diabetes mellitus and a variety of genetic syndromes with predominant endocrine involvement (2). Besides, WES based studies have opened up new insights in understanding the pathogenesis of neuroendocrine tumours (2). Clinical endocrinologists often treat children with multitude of endocrine related problems that have a suspected underlying genetic etiology. The large number of potentially relevant genes in many of these conditions makes candidate gene sequencing difficult. WES in such patients is helpful in identifying the underlying genetic cause. The unbiased approach of sequencing the coding regions of approximately 20,000 genes simultaneously confers the major benefit to WES (3).

1.2.4.1 WES in Disorders Involving Growth and Puberty

Although common genetic variants associated with height have been found in more than 400 genomic loci in GWAS population studies, many of these variants do not directly account for short stature (16, 17). However, they highlight the fact that there are multiple potentially novel pathways that govern growth. WES in individuals from the same family with idiopathic short stature can be a helpful tool in identifying the potential genetic cause. For example, a WES based study, identified novel heterozygous mutations in ACAN, in individuals with idiopathic short stature from three affected families. ACAN encodes aggrecan which is a proteoglycan in the extracellular matrix of the growth plate with a role in the linear growth (18).
Puberty is a complex process which is initiated by the release of gonadotropins from the pituitary gland which is under the control of the hypothalamic gonadotrophin releasing hormone that functions as a pulse generator. The biological and genetic mechanisms that govern this process and the timing of puberty have not been clearly understood (19). WES based studies in individuals with familial central precocious puberty have identified a loss-of-function mutation in $MKRN3$, an imprinted gene that encodes for probable E3 ubiquitin-protein-ligase makorin-3 (20). Expression studies on murine embryos demonstrated the reduced $MKRN3$ mRNA expression in the hypothalamus before the pubertal onset (20). Thus by WES, the novel genetic pathway underlying $MKRN3$, a repressor of pubertal onset was identified and the finding of similar mutations in further studies have not only confirmed the important findings but also brings a question if differential expression of $MKRN3$ can explain the variability in pubertal onset in children (21). WES has also been useful in understanding some of the genetic mechanisms underlying Kallmann syndrome, characterised by hypogonadotropic hypogonadism with or without anosmia, where homozygous loss of function mutations in $FEZF1$, a gene involved in the migration of the olfactory receptor neurons in mice was found in four individuals with Kallmann syndrome from two independent families (22, 23). Novel mutations in genes involved in ubiquitination pathway such as $RNF216$, $OTUD4$ and $STUB1$ have been identified to cause Gordon Holmes syndrome, a neurodegenerative disorder characterised by ataxia and hypogonadism (24, 25). Moreover, WES based studies have identified novel genes such as $STAG3$, $PSMC3IP$, $EIF4ENIF1$ and $SYCE1$, associated with familial premature ovarian failure and gonadal dysgenesis (26-29).
1.2.4.2 WES in Disorders of Adrenal gland and Endocrine Neoplasia

Various WES based studies in patients with adrenal hypercortisolism due to adrenal tumour have significantly advanced the understanding of the adrenocortical disease. Somatic mutation (p.Leu206Arg) in \textit{PRKACA}, the cAMP dependent protein kinase A catalytic subunit causes an increase in cAMP signalling and has been identified in adrenal tumours by WES based studies on adrenal tumour-blood pairs in patients with adrenal Cushing syndrome (30-33). Similarly, mutations in \textit{DOT1L} and \textit{CLASP2} have been found to be involved in macronodular hyperplasia and adrenocortical oncocytopas (31). Inactivating mutations in \textit{ARMC5}, have been reported in majority of patients (both familial and isolated) with bilateral macro nodular hyperplasia (34). \textit{ARMC5} has a potential role in steroidogenesis, gene transcription, cell growth and survival as demonstrated by in-vitro studies (35).

The role of WES in endocrine neoplasia has enabled the identification of novel germline mutations, such as \textit{DICER1}, which predisposes an individual to an increased risk of endocrine tumour in later life and also somatic mutations (36). In many cases, WES is performed in pairs where the sequencing of tumour cells and normal biopsy tissue (or unaffected lymphocytes) is done simultaneously to identify the tumour initiating mutation (2). When such paired sequencing is performed in cohort of patients with similar type of tumour, the common genetic etiology governing the pathophysiology of the tumour is likely to be identified (2).

1.2.4.3 WES in Familial Glucocorticoid Deficiency

Familial Glucocorticoid Deficiency (FGD) is an autosomal recessive disease characterised by glucocorticoid deficiency due to the hereditary unresponsiveness to adrenocorticotropic hormone (ACTH) (37). The underlying genetic mechanisms of FGD is not completely understood as mutations in ACTH receptor, \textit{MC2R} constitute
only 25% of cases and mutations in its accessory protein MRAP, accounts for a further 15-20% of cases with FGD (37). With the advent of WES, novel pathways involved in the mitochondrial detoxification of reactive oxygen species have been identified to cause FGD (38). Homozygous mutations in TXNRD2, encoding thioredoxin reductase 2 have been found to cause FGD in seven individuals from a consanguineous family (39). An increase in susceptibility to oxidative stress due to a significant increase in reactive oxygen species production was demonstrated in the TXNRD2 knock-down adrenocortical cell line when compared with the controls (39). Mutations in nicotinamide nucleotide transhydrogenase (NNT) gene have been found to reduce the amount of NADPH production, required for p450 related oxidative-reductive reactions in the adrenal cortex, thereby leading to FGD (40). Mutations in MCM4, encoding minichromosome maintenance deficient 4, that has a role in DNA replication and cell cycle regulation have been associated with adrenal insufficiency, natural killer cell deficiency and short stature (41). Homozygosity mapping in recessive conditions can help in the localisation of the candidate region of the genome in genetically isolated populations that harbour the causal mutations. This was used by the investigators in genetically isolated populations with FGD and enabled identification of the target candidate regions, sequencing of which identified NNT and MCM4 mutations (40, 41).

1.2.4.4 WES in Thyroid Disorders

Mutations in IGSF1, encoding the immunoglobulin superfamily member 1 protein, were identified by WES studies to cause a novel X-linked disease causing central hypothyroidism, macro-orchidism and short stature (42). The IGSF1 plasma membrane glycoprotein is expressed in the anterior pituitary gland and plays a vital role in trafficking of the protein to the cell surface (43). WES also identified a homozygous missense mutation in SLC26A4 (also associated with thyroid
dyshormonogenesis), in a consanguineous family with thyroid dysgenesis, thereby expanding the clinical spectrum (44).

1.2.4.5 WES in Juvenile Osteoporosis

Mutations in *PLS3*, encoding plastin-3, a protein involved in the formation of filamentous actin bundles were identified by WES in a study involving five families with X-linked osteoporosis and fractures (45). Although the underlying biological mechanism for osteoporosis and increased fracture risk is unknown, it has been proposed that *PLS3* mutation can cause altered mechanosensing by the osteocytes leading to the effects on bone remodelling (45).

1.2.4.6 WES in 46 XY Disorders of Sex Development

The formation of bipotential gonad is followed by a series of complex and coordinated genetic programmes and signals that determine the formation of either the testis or the ovary (46). Once the sex determination occurs, the circulating sex hormones along with genetic mechanisms act together in the differentiation of internal and external genitalia. Disorders of sex development (DSD) occurs as a result of disruption in the process of sex determination or differentiation which can cause a discrepancy between the phenotypic sex and chromosomal sex (47). However, many patients with DSD do not receive a genetic diagnosis. In particular, in some individuals with 46XY DSD, loss of function in *SRY* or *NR5A1* results in disruption of the process of testis determination and can result in gonadal dysgenesis (48, 49). However, mutations in *SRY* or *NR5A1* account for only 10-15% cases of 46XY DSD (46). Likewise, 46XY DSD due to disruption in the process of testis differentiation is not always explained by mutations in the gene encoding the androgen receptor (50). Hence in majority of patients with 46XY DSD, the diagnosis is not reached at the genetic level. WES in this
group of patients has the potential to uncover the underlying genetic etiology. In a study, the investigators adopted WES based approach in 46XY DSD individuals without genetic diagnosis and found that a genetic diagnosis was found in 35% of cases (14 of 40 cases) and six patients had variants of unknown significance who may be reclassified in the future as the literature evolves (46).

Table 1.1: Summary of genes found by WES in some endocrine disorders

<table>
<thead>
<tr>
<th>Endocrine disorder</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central precocious puberty</td>
<td>MKRN3</td>
</tr>
<tr>
<td>Hypogonadotropic hypogonadism (Kallmann syndrome)</td>
<td>FEZF1</td>
</tr>
<tr>
<td>Hypogonadotropic hypogonadism & ataxia</td>
<td>RNF216/OTUD4</td>
</tr>
<tr>
<td>Premature ovarian failure</td>
<td>STAG3, PSMC3IP, EIF4ENIF1 and SYCE1</td>
</tr>
<tr>
<td>Familial glucocorticoid deficiency</td>
<td>TXNRD2, NNT</td>
</tr>
<tr>
<td>Central hypothyroidism, testicular enlargement</td>
<td>IGSF1</td>
</tr>
<tr>
<td>Juvenile osteoporosis</td>
<td>PLS3</td>
</tr>
<tr>
<td>46XY disorder of sexual development</td>
<td>FOG2</td>
</tr>
</tbody>
</table>
1.2.4.7 WES in Clinical Endocrinology

Overall, WES has the potential to change and enhance the diagnostic approach in patients with rare endocrine diseases with a suspected genetic etiology. The use of WES has been very promising in the field of endocrinology but has a widespread use in the field of neurology, particularly for children with neurodevelopmental issues and congenital anomalies (51). It has been reported that almost quarter of the patient population within the field of neurology with neurodevelopmental issues can be diagnosed by using WES (52).

Among the large number of variants identified in WES, a majority of them are common in the general population and unlikely to have a causative role in the disease. The frequency of occurrence of any variant can be found in the publicly available data bases such as the 1000 Genomes Project, the National Heart, Lung, and Blood Institute Exome Variant Server and the Exome Aggregation Consortium browser (ExAC).

Trio sequencing, which involves sequencing of the patient sample along with the biological parents optimises interpretation (4). Trio sequencing helps in the identification of de novo, heterozygous, homozygous and compound heterozygous variants and also in the identification of variant with autosomal recessive and dominant modes of inheritance (2).
1.2.5 Disadvantages in WES

The use of WES in the diagnosis of rare diseases is based on the assumption that these patients have highly penetrant genetic variants and follow a classic Mendelian pattern of inheritance (53). Although this approach has several advantages and is currently the most tractable approach for the analysis of exome sequencing data, there are some limitations in this approach. The possibility of genetic mutations in multiple genes contributing to short stature is overlooked by this approach. Only the rare variants with population minor allele frequency of <1% are analysed by this approach. Although it is unlikely that common variants (minor allele frequency >1% in reference databases) will have a large effect on the linear growth, their analysis does not form a part in this approach. The synonymous variants are ignored in this approach and only the non-synonymous variants are analysed. It is possible that synonymous changes also perturb the gene function or expression. WES has disadvantages of not being able to analyse the noncoding regions of the genome (introns), somatic or non-germline changes, epigenetic changes and copy number variations. WES, in addition to identifying the disease causing variants, can also identify incidental findings, such as BRCA1 or BRCA2 have the predisposition to cancer. The American College of Medical Genetics has published guidelines and includes a list of 57 genes that is recommended by the clinical laboratories to report on incidental findings (54). However, this recommendation is a subject of controversy as the true clinical impact of finding novel or rare variants is not known and identifying these variants may not necessarily have a positive effect on the health (2).

Despite these limitations, in the current setting, WES has been successfully used in establishing genetic diagnosis in children with undiagnosed rare diseases. With time,
WES will be used more by the clinicians which will help in the identification of increasing number of pathogenic variants with a wealth of molecular database (2).

1.2.6 WES, GWAS and Whole Genome Sequencing (WGS)

GWAS searches for SNPs that are more prevalent in population with particular disease than those without it. GWAS study looks at many loci at the same time. GWAS is used to pinpoint genes that may contribute to the development of a common disease. WES is however used to identify the underlying genetic etiology in rare diseases. WES, although a cost-effective way to identify disease-related variants, it has its limitations as described above. With the decreasing sequencing cost and accumulating knowledge of the human genome, whole genome sequencing has the potential to identify important variants in regulatory regions typically inaccessible for exome sequencing.
CHAPTER 2

PITUITARY GLAND-EMBRYOLOGY, DEVELOPMENTAL TRANSCRIPTION FACTORS, CONGENITAL HYPOPITUITARISM, DIAGNOSIS AND MANAGEMENT
2.1 SUMMARY OF CHAPTER 2

Chapter 2 provides an introduction to the embryological development of pituitary gland, role of transcription factors and mutations in congenital hypopituitarism. This chapter opens with a brief description on the embryology and genes involved in the pituitary gland development. This then leads into detailed description of the clinical condition “congenital hypopituitarism”, its genetic causes, clinical presentation, diagnosis, and management.
2.2 PITUITARY GLAND

The pituitary gland, located within the sella turcica at the base of the brain is the master regulator of growth, puberty, metabolism, response to stress, reproduction and lactation (55). The pituitary gland consists of three lobes: the anterior, the intermediate and the posterior lobes. The anterior and the intermediate lobe (involutes in the adult) comprise the adenohypophysis and the posterior lobe comprises the neurohypophysis (56). The adenohypophysis or the anterior part of the pituitary gland secrete six different hormones produced from five different cell types: growth hormone (GH) from somatotrophs, thyroid stimulating hormone (TSH) or thyrotrophin from the thyrotrophs, adrenocorticotropic hormone (ACTH) from corticotrophs, prolactin (PRL) from lactotrophs, follicular stimulating hormone (FSH) and luteinizing hormone (LH) from gonadotrophs (57). The intermediate lobe consists of melanotrophs that secrete pro-opiomelanocortin (POMC), which is a precursor to melanocyte-stimulating hormone (MSH) and endorphins (57). Within the posterior lobe, arginine vasopressin (AVP) and oxytocin are secreted which are synthesised magnocellular neurones of the paraventricular and supra-optic nuclei within the hypothalamus (57). Secretory and inhibitory peptides that regulate the secretion of hormones from the anterior pituitary gland are produced from the hypothalamus. The infundibulum or the pituitary stalk not only carries the neural tracts from the hypothalamus to the posterior pituitary gland but also carries the portal blood delivering the hypothalamic regulating hormones to the anterior pituitary gland (57).
2.2.1 Embryology and Development of Pituitary Gland

The oral ectoderm gives rise to the formation of the anterior and intermediate lobes of the pituitary while the posterior pituitary is derived from the neural ectoderm (57). The development of the pituitary gland has been extensively studied in mouse which occurs in a sequential, well defined and coordinated manner that involves the formation of the pituitary placode, rudimentary Rathke’s pouch, definitive Rathke’s pouch and the mature pituitary gland (58). The developmental cascade of murine pituitary gland reflects that of humans (58). At embryonic stage, E7.5 in the mouse, the roof of the oral ectoderm thickens and gives rise to the pituitary placode, which by E9.0, invaginates to form the rudimentary Rathke’s pouch that then forms into the definitive Rathke’s pouch by E10.5 (59). The Rathke’s pouch then gives rise to the anterior and the intermediate lobes of the pituitary gland (55). The neural ectoderm evaginates at the base of the ventral diencephalon to give rise to the infundibulum and the posterior pituitary (55). At E12.5, there is separation of Rathke’s pouch from the oral ectoderm (55). The various stages of pituitary gland development in the rodent are depicted in figure 2.1 (55). The hormone-secreting progenitor cells proliferate between E12.5 and E15.5 followed by spatial and temporal differentiation of the various cell types (55), starting from the thyrotrophs and corticotrophs, followed by the somatotrophs, gonadotrophs and lactotrophs that each secrete their respective hormones (60, 61).
Figure 2.1: Stages in mouse pituitary gland development. (a) Oral ectoderm. (b) Rudimentary pouch. (c) Definitive pouch. (d) Adult pituitary gland. I-Infundibulum; NP-neural plate; N-notochord; PP-pituitary placode; OM-oral membrane; H-heart; F-Forebrain; MB-midbrain; HB-hindbrain; RP-Rathke’s pouch; AN-anterior neural pore; O-oral cavity; PL-posterior lobe; OC-optic chiasm; P-pontine flexure; PO-pons; IL-intermediate lobe; AL-anterior lobe; DI-diencephalon; SC-sphenoid cartilage (56).
2.2.1.1 Early Developmental Genes and Signals in Pituitary Development

The development of the pituitary gland is orchestrated by a series of well-co-ordinated cascade of morphogenetic signalling molecules and transcription factors that play a vital role in the process of organ commitment, cell proliferation, patterning and differentiation (56). The formation of the rudimentary Rathke’s pouch (RP), is initiated by the signalling molecules such as Bone Morphogenetic Protein 4 (Bmp4) and thyroid transcription factor (Ttf1) from the ventral diencephalon combined with the Sonic Hedgehog (Shh) from the oral ectoderm (62). The invagination of the RP and further pituitary progenitor cell proliferation is directed by the co-ordination of Fibroblast growth factor signalling (Fgf8 and Fgf10) and Wnt5a along with early transcription factors such as Gli1, Gli2, Lhx3, Ptx1 and Ptx2 (62). The expression of Hesx1 and Prop1 (prophet of Pit-1) in RP leads to differentiation of specific pituitary cell types. Prop1 in-turn induces the expression of Pou1f1, leading to the terminal differentiation of somatotrophs, lactotrophs and thyrotrophs (63). The gonadotrophs differentiation is induced by the expression of Gata2 and steroidogenic factor 1 (sf1) (63). The differentiation of corticotrophs is regulated by the expression of Tbx19 from the POMC-producing cells (63).

The development of pituitary is a carefully co-ordinated complex process which requires the expression of the signalling molecules during critical periods of development. The genes that are expressed early are not only involved in the organ commitment but also play an important role in the activation and expression of downstream signalling molecules that have a specific role in the differentiation of progenitor cells (56). The differentiation of various pituitary cell types from the various transcription factors is shown in figure 2.2 (55).
Figure 2.2: Schematic representation of pituitary developmental cascade with sequential expression of pituitary transcription factors and genes (56). A cascade of signalling molecules and transcription factors such as Bmp4, Sf1, Lhx4, Prop1, Pitx1, Pit1 play a crucial role in organ commitment, cell proliferation, patterning, and terminal differentiation of the cells that secrete hypothalamic regulatory peptides (GHRH, TRH, GnRH) and the pituitary hormones (ACTH, PRL, GH, TSH, LH and FSH).
The understanding of human pituitary disease has been significantly enhanced by studying the effects of induced mutations and gene knock outs in the murine models. This has led to the identification of mutations in a number of genes that give rise to the phenotype of hypopituitarism in humans. Mutations in transcription factors such as Hesx1, Lhx3, Lhx4, Prop1, Pou1f1, Pitx2 and Tbx19 have been implicated to cause hypopituitarism in both the mice and the humans (57). Hypopituitarism is the deficiency of one or more hormones secreted by the pituitary gland. Congenital hypopituitarism comprises of a spectrum of disorders with variable phenotypes that can range in severity, from isolated hormone deficiency [IGHD being the most common] to combined pituitary hormone deficiency (CPHD) when two or more pituitary hormones are deficient (57). Congenital hypopituitarism may present as part of a syndrome with abnormalities in structures that share a common embryological origin with the pituitary gland (57).

The mutations in the known transcription factors implicated in the etiology of syndromic and non-syndromic hypopituitarism are described below:

2.3 SYNDROMIC FORMS OF HYPOPITUITARISM

2.3.1 Septo-Optic Dysplasia

De Morsier syndrome or septo-optic dysplasia (SOD) is a rare condition with a reported incidence of 1 in 10,000 newborns and is equally prevalent in both sexes (64). SOD is heterogeneous congenital anomaly and is characterised by the presence of at least two of the three features: hypopituitarism (one or more pituitary hormone deficiency), hypoplasia of the optic nerve and defects of the midline structures of the forebrain such as absent septum pellucidum or agenesis of corpus callosum (64). While the presence of all the three features occurs only in about 30% of the patients,
hypopituitarism and midline brain abnormalities can be a feature in 62% and 60% of the patients respectively (55). SOD has multifactorial etiologies such as genetic, viral infections, alcohol, drugs, vascular and environmental teratogens. Mutations in \textit{HESX1}, \textit{SOX2} and \textit{SOX3} have been implicated in SOD (65, 66). However, the proportion of patients with SOD having mutations in these genes is very small, implying that there may be other unidentified genetic factors that may account for SOD (65, 66).

Any disruption occurring during the development of forebrain and the pituitary between 3-6 weeks of gestation can account for SOD (55). Disturbances in visual axis, squint or nystagmus secondary to unilateral or bilateral (majority) optic nerve hypoplasia can be the presenting feature of SOD (66). The pituitary hormone deficiencies may not be always present in patients with SOD but may evolve later in life, thus requiring life-long follow-up. The commonest pituitary hormone deficiency is GH followed by TSH, ACTH and gonadotropins (66). Posterior pituitary involvement and diabetes insipidus are rare. There also may be associated neurological manifestations such as cerebellar hypoplasia, schizencephaly, seizures and global developmental delay (67).

\textbf{2.3.2 \textit{HESX1} mutations and SOD}

\textit{HESX1} is critical transcription factor that has a central role in the early differentiation and determination of the forebrain and the pituitary gland (55). Expression studies during mouse embryogenesis show that \textit{Hesx1} is one of the earliest markers of the pituitary primordium, first expressed in the anterior midline visceral endoderm and its continued expression in this area plays a vital role in the development of the forebrain, ventral diencephalon, anterior pituitary and the presumptive hypothalamus (55). Evidence from murine studies show that targeted disruption of \textit{Hesx1} causes forebrain abnormalities, microphthalmia and absent optic vesicles, the features which are in line
with SOD in humans (68). The first homozygous missense mutation (Arg160Cys) was found in the homeobox of HESX1 in two siblings with SOD with optic nerve hypoplasia, absent corpus callosum and septum pellucidum, an ectopic/undescended posterior pituitary and anterior pituitary hypoplasia with hypopituitarism (68). Subsequently homozygous and heterozygous mutations have been reported to cause variable phenotype ranging from IGHD to SOD. Only minority of patients with SOD (<1%) have HESX1 mutations, implying that there are potential unidentified genes contributing to this complex disorder (69, 70).

2.3.3 SOX2 and SOX3 Mutations

The expression of SOX2 and SOX3 are important for the differentiation of progenitor stem cells and pituitary development (71, 72). SOX2 mutations have been described in association with anterior pituitary hypoplasia, hypogonadotropic hypogonadism, hippocampal and corpus callosum abnormalities (73, 74). SOX3 causes X linked hypopituitarism in males and may consist of abnormalities of corpus callosum, hypoplasia of the infundibulum, isolated or combined hormonal deficiencies (75, 76). The phenotype may be associated with learning difficulties (77).

2.3.4 Holoprosencephaly (HPE)

HPE is a heterogeneous condition with multifactorial etiology resulting from the abnormal cleavage of the forebrain and may be associated with pituitary, corpus callosum, nasal and ocular abnormalities (78). The most common endocrine manifestation in HPE is cranial diabetes insipidus (55). The transcription factor GLI2 mediates the signal from the Sonic Hedgehog (SHH) signalling pathway, the mutation of which has been implicated in the development of HPE sequence (79). GLI2
mutations have been associated with hypopituitarism, partial agenesis of corpus callosum, single central maxillary incisor, post axial polydactyly and single nares (55).

2.3.5 LHX3 mutations: Hypopituitarism with Spine Abnormalities

Lhx3 or the LIM homeobox is an important early development gene detected in the Rathke’s pouch and the developing nervous system, the continuous expression of which helps in the proliferation of gonadotrophs, thyrotrophs, somatotrophs and lactotrophs (80). Homozygous targeted disruption of this gene from mouse causes pituitary aplasia and results in their death, shortly after birth (81). Patients with homozygous LHX3 mutations have deficiencies of GH, PRL, TSH, LH,FSH and also sometimes ACTH deficiencies with small to an enlarged anterior pituitary with a lesion suggestive of microadenoma (82, 83). There also can be an association of short rigid cervical spine with limitation of neck movement and sensorineural hearing loss (83-85).

2.3.6 LHX4 mutations

The expression of Lhx4 is closely related to that of Lhx3 (86). The expression pattern of Lhx4 is found throughout the invaginating Rathke’s pouch at very early mouse embryonic stage but by E15.5 its expression is predominantly found in the anterior lobe of the pituitary (55). Targeted Lhx4 deletion in mice results in hypoplastic pituitary due to reduction in cell numbers (58). Experiments involving Lhx3 and Lhx4 gene dosage in murine models demonstrate that a single allele of Lhx3 or Lhx4 is sufficient for the formation of definitive Rathke’s Pouch (58). With targeted deletion of Lhx3 and Lhx4 in mouse, the progression from rudimentary to definitive Rathke’s pouch does not occur (58). Variable degrees of hypopituitarism involving GH, ACTH, TSH and gonadotropin deficiencies with ectopic posterior pituitary, hypoplastic sella, cerebellar
abnormalities and Chiari malformation have been reported in patients with heterozygous LHX4 mutations (83, 87, 88). LHX4 is required for the activation and expression of GH1, therefore LHX4 mutations result in short stature due to GH deficiency (89).

2.3.7 OTX2 mutations

OTX2 is another important transcription factor required for the formation of forebrain and its maintenance (90, 91). In humans, mutations in OTX2 have been described in patients with hypopituitarism and bilateral anophthalmia with a normal or small anterior pituitary and an ectopic posterior pituitary. OTX2 mutations can also cause hypopituitarism without associated ocular abnormalities (92). Among the anophthalmia/microphthalmia syndromes, 2-3% of the underlying genetic aetiology is due to a mutation in OTX2 (93, 94).

2.3.8 Axenfield-Rieger syndrome (PITX2 mutations)

In the mouse, Pitx2 is initially expressed in the oral ectoderm and then in the Rathke’s pouch. It is also expressed in the mesenchyme near the optic eminence, forelimbs and the domains of the abdominal cavity (57). It is required at multiple stages of the pituitary development after the commitment of the definitive Rathke’s pouch. Targeted Pitx2 mutations in mice causes hypopituitarism with hypoplastic anterior pituitary (95). Heterozygous mutations in PITX2 (OMIM 601542 also known as RIEG1) are implicated in Axenfield-Rieger syndrome, an autosomal dominant condition that comprises of malformation of the anterior segment of eye, dental hypoplasia, protuberant umbilicus and brain abnormalities (96, 97). Pituitary abnormalities due to PITX2 mutation in humans are yet to be described.
2.4 NON-SYNDROMIC FORMS OF HYPOPITUITARISM

2.4.1 PROP1 Mutations

In the mouse embryo, the transcription factor Prop1 is expressed within the Rathke’s pouch from E10, in a region overlapping the Hesx1 expression domain (55). The expression of Prop1 starts to decrease after E12 and disappears at E15.5 (98). This decline in Prop1 expression is important as overexpression can result in delay in the differentiation of gonadotrophs leading to transient gonadotrophin deficiency and delayed puberty (55). Prop1 regulates the expression of Hesx1 and Pou1f1 by acting as transcriptional repressor of the former and transcriptional activator for the latter (99). Therefore the appropriate and timely suppression of Prop1 is important for Pou1f1 determination and in the establishment of other cell lineages (100). Naturally occurring Prop1 mutations in Ames dwarf mice cause GH,PRL,TSH and gonadotrophin deficiencies due to failure in determination of Pou1f1 lineage which determines the differentiation of somatotrophs, lactotrophs and thyrotrophs (55). In humans, PROP1 is located at chromosome 5q and consists of three exons and a protein product of 226 amino acids (56). The most common mutations in PROP1 are recessive mutations associated with GH, TSH, PRL and gonadotropin deficiencies (101). ACTH deficiency is uncommon but has been reported in patients with PROP1 mutations (102). The degree of TSH and gonadotropin deficiencies is variable. The gonadotropin deficiency may range from micropenis, undescended testes, delayed puberty and infertility (101).
2.4.2 *POU1F1*(PIT1) Mutations

POUIFI (previously PIT-1), is a transcription factor that is expressed at E14.5 during the mouse pituitary development and persists throughout the postnatal period and in the adult pituitary (55). The differentiation of somatotrophs, lactotrophs and thyrotrrophs depends on the *Pou1f1* expression (55). *POU1F1* mutations in humans are mostly autosomal recessive but dominant mutations have been described (103). The phenotype consists of GH and PRL deficiencies in early life and TSH deficiency occurring in late childhood with normal sized or small anterior pituitary and a normal posterior pituitary with no midline abnormalities (104).

2.4.3 *TBX19* mutations (OMIM 604614. Previously known as *TPIT*)

TBX19 belongs to T-box family of transcription factors and is expressed from E11.5 within the developing anterior pituitary and the ventral diencephalon in mouse embryos (105). In the adult mouse pituitary, *TBX19* expression is detected in corticotrophs in anterior lobe that express POMC and in the melanotrophs forming the intermediate lobe (106). *TBX19* mutations are thus associated with isolated ACTH deficiency (107). Homozygous and compound heterozygous mutations in *TBX19* have been described implying a recessive mode of inheritance (107). ACTH deficiency can present in the neonatal period with severe hypoglycaemia, jaundice or seizures (108).
2.5 ISOLATED HORMONE DEFICIENCY DUE TO MUTATION IN SPECIFIC CELL TYPE: GH1 MUTATIONS

In addition to mutations in the developmental genes, causing combined pituitary hormonal deficiencies, there are genetic mutations that contribute to isolated hormone deficiencies. An example is mutations in GH1.

Growth hormone is encoded by GH1 gene, the mutations of which are estimated in up to 12.5% of patients with isolated GH deficiency although the true incidence is difficult to ascertain owing to geographical and ethnic differences (109). Isolated GH deficiency (IGHD) due to GH1 mutations consists of three types: Type 1a is the severest form due to the deletion of GH1 gene in which patients will not have any detectable serum GH and respond well to recombinant GH, although some patients develop anti-GH neutralizing antibodies (110). Type 1b IGHD is due to homozygous splice site mutation in GH1 and is characterized by low but detectable GH after provocative stimulation (110). Type 2 IGHD is the common form and is due to splice site and missense mutations in GH1 and is an autosomal dominant condition. Type 3 IGHD, an X-linked recessive disorder is associated with X-linked agammaglobulinemia (110).

A mutation leading to the absence of a disulphide bridge in GH1 results in the decreased binding of GH to its receptor and subsequent downstream signalling, causing a high serum GH levels with low serum IGF-1 concentration leading to short stature (111). Patients with IGHD can also develop additional pituitary hormonal deficiencies later in life and therefore require life-long monitoring. In addition to GH1 mutations, several other mutations in genes encoding GHRHR, TSH, LH and FSH have been known to cause specific hormonal deficiencies (112-114).
2.6 CLINICAL MANIFESTATIONS OF HYPOPITUITARISM

Establishing the diagnosis of congenital hypopituitarism is important as untreated hypopituitarism can result in serious morbidities such as global developmental delay due to prolonged undetected hypoglycaemia and untreated hypothyroidism, significant reduction in final height and morbidities related to water and electrolyte imbalance.

The clinical spectrum of hypopituitarism is dependent on the combination of hormonal deficits. The clinical manifestations may be non-specific in the neonatal period such as poor feeding, temperature instability, jitteriness, poor weight gain and prolonged jaundice (115). Early diagnosis in this age group can be challenging due to factors such as prematurity, associated neonatal comorbidities, lack of data appropriate for gestation and immaturity of hypothalamic-pituitary axis (55). Neonates can also present with associated developmental defects such as ocular, midline, genital abnormalities or syndromes associated with hypopituitarism. Presence of fixed squint, nystagmus in a neonate can be due to underlying optic nerve hypoplasia which can be isolated or a part of the spectrum of septo optic dysplasia. Such patients will need life-long follow up and assessment of endocrine function, even if their initial endocrine investigations are normal (116). Congenital hypopituitarism can be life threatening in neonates due to an underlying ACTH deficiency and may present as sepsis, seizures or conjugated hyperbilirubinaemia (117).

Growth failure can occur in infancy in severe GHD (118). Male neonates may present with micropenis or undescended testes as the penile growth is dependent on normal LH secretion during the second and third trimester (56). Diabetes insipidus can present as polyuria, polydipsia but may be masked in patients with ACTH deficiency as cortisol is essential to excrete the water load. Hydrocortisone replacement may unmask
diabetes insipidus and hence vigilance is essential in patients with suspected hypopituitarism with or without midline defects when being treated with hydrocortisone therapy for cortisol deficiency.

2.7 INVESTIGATIONS IN HYPOPITUITARISM

The investigations of hypopituitarism comprise of stimulation or provocative tests to check the adequacy of the hypothalamic-pituitary axis (HPA) and neuroradiology.

2.7.1 ACTH Deficiency

In neonates, ACTH deficiency can be life threatening. It is however challenging to assess the intactness of the hypothalamic-pituitary-adrenal axis as the circadian rhythm of cortisol is not well established during the first six months of life (119). The usefulness of baseline serum cortisol samples in the morning or evening are limited in this age group. Multiple cortisol measurements during the various points during the day and night can be challenging and may not reveal definitive information on the integrity of the axis. Hypoglycaemia induced cortisol stimulation is contraindicated in the age group but standard synacthen test is safe and easy to perform in this age group. However the standard synacthen test is limited by sensitivity of 80% and therefore false negative results are a possibility despite ACTH deficiency (117). In older children, after the establishment of circadian rhythm, 08:00 am cortisol of 175nmol/L or more combined with a 30 minute stimulated level of more than 540nmol/L on a standard synacthen test has a sensitivity of 69% and specificity of 100% in excluding ACTH deficiency (117).
2.7.2 TSH Deficiency

TSH deficiency is normally characterised by a low or inappropriately normal TSH combined with a low serum free thyroxine. Isolated TSH deficiency is rare but can occur in combination of other pituitary hormone deficiencies (120). Provocative test such as thyrotropin releasing hormone (TRH) test is generally not required to establish the diagnosis of central hypothyroidism (121).

2.7.3 GH Deficiency

Severe GH deficiency can present in the neonatal period as hypoglycaemia. The provocative tests to assess the hypothalamic-pituitary-growth axis are contraindicated in children less than one year of age. The diagnosis of GH deficiency in this age group is normally suggested by low plasma GH concentration in response to spontaneous hypoglycaemia, low plasma IGF-1 and/or the presence of additional hormonal deficiencies (122). In older age groups the diagnosis is based on the faltering growth velocity, low IGF1, suboptimal GH response to GH provocation test and/or the presence of a structural anomaly in the pituitary gland detected on MRI.

2.7.4 Gonadotropin Deficiency

Males with gonadotropin deficiency can present with micropenis with or without undescended testes. The physiological postnatal surge in LH, FSH and testosterone is detected up to 6 months in males and about 2 years in females (123). A combination of GnRH (gonadotropin releasing hormone) and hCG (human chorionic gonadotropin) stimulation tests are useful in the earlier detection of hypogonadotropic hypogonadism (HH) in infants where a low baseline gonadotropin concentrations (LH & FSH) and blunted response to stimulation with GnRH are found (124).
2.7.5 ADH Deficiency (Diabetes Insipidus(DI))

Early morning paired serum and urine osmolality, hypernatraemia along with symptoms such as polyuria, weight loss may be helpful in the diagnosis as water deprivation test can be dangerous in this age group. The symptoms of DI can be masked in patients with ACTH deficiency as cortisol is important for water excretion from the kidneys.

2.7.6 The Role of Neuroradiology

In infants with suspected or diagnosed hypopituitarism, MRI of the pituitary and brain can help to assess the size of anterior pituitary, the location of posterior pituitary, the morphologies of infundibulum, corpus callosum, septum pellucidum, optic nerves, optic chiasma and associated brain abnormalities (125). The neuroradiological abnormalities are usually related to the severity or the evolution of hypopituitarism (126). In patients with ectopic posterior pituitary, the risk of hypopituitarism is much greater than patients with normally positioned pituitary. Neonates with optic nerve hypoplasia and small anterior pituitary will require a lifelong follow-up despite their initial normal endocrine function as hypopituitarism may evolve over a period of time (126).
2.8 MANAGEMENT OF CONGENITAL HYPOPITUITARISM

The management of congenital hypopituitarism is multidisciplinary and requires a lifelong follow-up. The management should not only focus on optimizing the hormone replacement but also to monitor carefully for the evolvement of potential hormonal deficiencies in the future. In syndromic forms of hypopituitarism, it is also vital to address the wider issues such as visual and neuro-developmental issues and offer appropriate genetic counselling (55).

While replacing hormones in suspected combined pituitary hormone deficiency, it is important to assess the adequacy of cortisol secretion and replacing with hydrocortisone when the cortisol secretion is suboptimal before commencing on thyroxine (55). As mentioned above, patients on cortisol replacement should be carefully monitored for symptoms of DI.

Overall, the mainstay of treatment of congenital hypopituitarism is to identify the existing and evolving hormonal deficits optimizing their replacement.
CHAPTER 3

CONGENITAL HYPERINSULINSIM-
MOLECULAR MECHANISMS, DIAGNOSIS
AND MANAGEMENT
3.1 SUMMARY OF CHAPTER 3

Chapter 3 provides an introduction to glucose physiology, regulation of insulin secretion, ATP-sensitive potassium channels (K_{ATP}), and congenital hyperinsulinism (CHI). This chapter opens with a brief description on insulin secretion and pancreatic β-cell physiology, followed by introduction to K_{ATP} channels. This then leads into detailed description of the clinical condition “congenital hyperinsulinism”, its causes, clinical presentation, diagnosis, histological subtypes and management.
3.2 CONGENITAL HYPERINSULINISM (CHI)
Congenital hyperinsulinism (CHI) is a condition in which there is an unregulated insulin secretion from the β-cells of the pancreas (127). This unregulated insulin secretion suppresses the production of glucose by inhibiting gluconeogenesis and glycogenolysis leading to severe and persistent hypoglycaemia (128). In the absence of glucose, the brain normally utilises the ketone bodies as an alternative source of energy. However, in CHI, the metabolic actions of the excess insulin inhibit ketogenesis and lipolysis depriving the brain of both glucose and ketones as energy source leading to hypoglycaemic brain injury. During the neonatal, infancy and childhood periods, CHI is an important cause of hyperinsulinaemic hypoglycaemia and requires early recognition, diagnosis and immediate and appropriate management to prevent or reduce the neurological injury (129).

3.3 INSULIN SECRETION AND PANCREATIC β-CELL PHYSIOLOGY
Insulin is the key regulator of blood glucose concentration and its secretion is tightly linked to the metabolism of glucose, intricately translated into signals in pancreatic β-cells (130). Glucose enters the pancreatic β-cells mainly via glucose transporter 2 (GLUT 2) situated in the cell membrane. The transport of glucose across the pancreatic β-cell membrane in proportion to the blood glucose concentration is facilitated by the high affinity\((K_m)\) for glucose with GLUT2 (131). Once transported, the glucose is converted to glucose-6-phosphate by an islet specific enzyme, glucokinase. Glucokinase acts like a sensor to the β-cell, increasing its activity during high blood glucose concentration and reducing its activity when the blood glucose concentration falls low (132). These activities in-turn guide the signals regulating the insulin production in the pancreatic β-cells.
The β-cell membrane has ATP-sensitive K\(^+\) channel (K\(_{\text{ATP}}\) channel) that plays a fundamental role in maintaining the glucose homeostasis (133). These channels couple the glucose metabolism to β-cell’s electrical excitability and insulin secretion (133).

3.3.1 Structure of K\(_{\text{ATP}}\) Channel

The K\(_{\text{ATP}}\) channel is a hetero-octameric complex arranged in a 4:4 stoichiometry. This model was first suggested by Inagaki and colleagues on the basis of optimum activity of K\(_{\text{ATP}}\) channels when SUR1 and Kir6.2 subunits were co expressed with a molar ratio of 1:1 (134). The channel comprises of two types of subunits consisting of four inward rectifying potassium channel pore forming (Kir6.2) subunits and four high affinity sulfonylurea receptor 1 (SUR 1) subunits (an ATP binding cassette transporter) (134). The Kir6.x subunits belong to the superfamily of weak inwardly rectifying, voltage independent potassium (K\(^+\)) channels that allow a large influx of K\(^+\) flux at negative potentials (135). The channel is arranged in such a way that the Kir6.2 subunit forms the inner core and the SUR1 is a regulatory subunit and forms the outer part (134). This assembly is unique and the correct assembly is vital for the transport and subsequent expression of the channel on the surface of the cell membrane.

The Kir6.2 forms the core of the channel whilst the SUR1 (an ATP binding cassette transporter) acts as a regulatory subunit. K\(_{\text{ATP}}\) channels can only function if they are assembled and correctly transported to the cell membrane surface (trafficking) (136). The assembly and trafficking of K\(_{\text{ATP}}\) channels are intricately linked processes (136). Each Kir6.2 subunit consists of two transmembrane domains (TM1 and TM2) linked by an extracellular pore-forming region H5 that serves as a potassium selectivity filter.
The TM2 domains from all the four Kir6.2 subunits form the pore of the channel. Both the aminoacid and carboxyl terminals are found in the cytoplasm and are responsible for ATP binding and channel gating (137).

Each SUR1 subunit consists of 17 transmembrane regions organized into three domains (137). The TMD1 and TMD2 comprise of the transmembrane regions from TM6-11 and TM12-17 respectively. The TMD0 that comprises of the regions from TM1-5 plays an important role in trafficking the Kir subunit to the surface of the cell membrane (137). The subunit also comprises of two nucleotide binding folds (NBFs) on the cytoplasmic side (138). The NBF-1 is found between TMD1 and TMD2 and NBF-2 is present after TMD2 (139).

Both the subunits (Kir6.2 and SUR1) have to be co-expressed on the surface of the cell membrane in order to function. The trafficking of either subunit in the absence of other is prevented by the presence of an endoplasmic reticulum (ER) retention signal in the C terminal region of Kir6.2 and between TM11 and NBF-1 in SUR1 (136). Mutations causing the truncation of the Kir6.2 C-terminus results in deletion of the retention signal and causes its expression in the absence of SUR1 (140).

When blood glucose level is low, the K_{ATP} channels in pancreatic β-cell remain open to allow the diffusion of potassium that maintains the resting membrane potential at a hyperpolarized state and keeps the voltage gated calcium channels closed. With an increase in the blood glucose concentration, the production of ATP increases and raises the intracytosolic ATP/ADP ratio which inhibits the SUR1. This results in the closure of the KATP channels leading to membrane depolarization. This in-turn causes Ca^{2+} influx into the pancreatic β-cell via the voltage gated Ca^{2+} channels.
The increase in the intracellular calcium concentration triggers the exocytosis and the release of insulin\(^{(141)}\). The mechanism of insulin release is depicted in the figure 3.1.

Figure 3.1: Mechanism of release of insulin from the pancreatic \(\beta\)-cell: The glucose enters via GLUT2 (Glucose Transporter 2) is phosphorylated. This increases the ATP/ADP ratio which causes the closure of the \(K_{\text{ATP}}\) channel resulting in the membrane depolarisation, resulting in the opening of the voltage gated calcium channels. The entry of calcium results in exocytosis and subsequent insulin release.
3.3.2 K_{ATP} Channel Independent Insulin Secretion

The key mechanism of insulin release from the pancreatic β-cell is the glucose stimulated insulin secretion by triggering the K_{ATP} channel dependent signals. However, there are evidences to suggest that the insulin release from the pancreatic β-cell can occur independent of the K_{ATP} channels (142-144). Gembal et al. demonstrated that the depolarisation of the β-cell membrane on the mouse islets, by increasing the extracellular potassium concentration triggered calcium influx and the resultant insulin release despite diazoxide (143). They also demonstrated that the insulin secretion proportionately increased by increasing glucose concentration. This is suggestive of potential K_{ATP} channel independent mechanism that operates in glucose mediated insulin secretion. Straub et al. demonstrated glucose stimulated insulin secretion without an increase in the intracellular free calcium on islets on a patient with mutation in the K_{ATP} channel (144). The insulinotropic action of glucose in Ca^{2+} depleted rat pancreatic islets occurred in the presence of a phorbol ester (phorbol 12-myristate 13-acetate; PMA) and forskolin (adenylate cyclase activator) (145).

3.4 ETIOLOGY OF CHI

Hyperinsulinaemic hypoglycaemia can have an underlying monogenic etiology or can be transient secondary to intra-uterine growth retardation (IUGR) and maternal diabetes mellitus (gestational or insulin dependent), birth asphyxia and can be associated with several developmental syndromes (such as Beckwith-Wiedemann, Kabuki and Turner syndromes) and rare metabolic conditions such as congenital disorders of glycosylation (CDG) syndromes (146).
Mutations in 11 genes are associated with genetic forms of CHI (ABCC8, KCNJ11, GLUD1, GCK, HADH1, UCP2, MCT1, HNF4A, HNF1A, HK1, PGM1) (147). ABCC8 or KCNJ11 mutations constitute the majority of causes of monogenic CHI (147).

3.4.1 CHI due to Defects in Pancreatic β-cell K_{ATP} Channels

The Kir6.2 and SUR1 subunits are encoded by the genes KCNJ11 and ABCC8 respectively. The first link between CHI and K_{ATP} channels was suggested with the help of linkage analysis in 15 families (12 Ashkenazi Jewish, 2 consanguineous Arab and 1 non-Jewish Caucasian) where the region responsible to cause CHI was mapped to 11p14-15.1 (148). By fluorescence in situ hybridization (FISH), Thomas et al. mapped the gene encoding SUR to this region and identified splice site mutations in individuals from nine different families (149). Subsequently, a homozygous missense mutation (L147P) in Kir6.2 was reported in a child with CHI (150).

The most common causes of CHI are recessive mutations involving ABCC8 or KCNJ11, that diminish or completely abolish the activity of KATP channel which results in constant membrane depolarization and an unregulated release of insulin despite the presence of hypoglycaemia (151). In about half of the patients with CHI, germline mutations are found in ABCC8 or KCNJ11 (152). The majority of the reported mutations are in ABCC8 (about 150 homozygous, compound heterozygous and inactivating heterozygous) and in KCNJ11, about 24 mutations have been reported (152).
3.4.1.1 Molecular Basis of ABCC8 and KCNJ11 Recessive Mutations

The mutations involving the genes encoding K_{ATP} channels can cause defects in the biogenesis and turnover of the channel, defects in the trafficking of the channel from the endoplasmic reticulum and Golgi apparatus to the plasma membrane or defects causing altered response to nucleotide activation and open state (153-155). The loss of function mutations contributing to these defects are of two types: class I mutations are those that cause defects in trafficking and class II mutations result in reduced K_{ATP} channel response to nucleotide activation or reduced intrinsic channel open probability (130).

The recessive homozygous mutations abolish the activity of K_{ATP} channel completely resulting in severe CHI, unresponsive to diazoxide treatment. Recessive compound heterozygous mutations can cause a milder phenotype that can respond to treatment with diazoxide (156).

3.4.2 Defect in Biogenesis and Turnover

The biogenesis and turnover of SUR1 and Kir6.2 were studied with pulse-labelling methods by Crane et al. and it was found that SUR1, when expressed alone had a half-life of approximately 25.5 hours. On the other hand, Kir6.2 had biphasic turnover with a half-life of 36 minutes for the first 60% and 26 hours for the remaining (157). The co-expression of SUR1 and Kir6.2 prevented the fast degradation of Kir6.2 and the combined estimated half-life was about 7.3 hours. Mutations involving the channels such as Kir6.2 W91R and SUR1∆F1388 result in rapid degradation and affect the biogenesis and turnover (157).
3.4.3 Trafficking Defects

The masking of the endoplasmic retention signal is an important requirement to allow correct trafficking and co-expression of the K_{ATP} channels on the surface of the β-cell membrane. The endoplasmic retention signal comprises of a three peptide sequence (RKR; Arg-Lys-Arg), present in both the SUR1 and Kir6.2 (136, 140). Mutations affecting the trafficking can cause CHI. The phenyl alanine at the position 1388 in SUR1 is critical for normal trafficking, and SUR1∆F1388 causes CHI (153). The other mutations that have been demonstrated to affect trafficking include SUR1 L1544P and SUR1 R1394H (154, 158).

3.4.4 Defects in Channel Regulation

The nucleotide binding folds (NBF-1 and NBF-2) of SUR1 regulate the conductance of Kir6.2 and several mutations (R1420C, T1139M and R1215Q) can alter the sensitivity to changes in ATP/ADP ratio and can result in loss of ADP dependent KATP channel function and constitutive release of insulin (139, 155).

3.4.5 Dominant Activating K_{ATP} Channel Mutations

Dominant K_{ATP} channel mutations can cause CHI which may either be diazoxide responsive or unresponsive depending on the response of Kir 6.2 and SUR1 to the ADP or diazoxide. Dominant K_{ATP} mutations do not affect the trafficking of the channels. Huopio et al. identified diazoxide responsive heterozygous mutations in seven patients and their mothers (159). Pinney et al. described dominantly inherited KATP mutations in 14 patients (11 ABCC8 and 3 KCNJ11 mutations) (160). The functional studies indicated that the mutations had significantly decreased channel opening probability and also reduced response to MgADP and diazoxide (160). The presence of WT ABCC8 or KCNJ11 allele in heterozygous conditions resulted in
partial response to alterations in ATP/ADP ratio suggesting that the dominant mutations result in milder phenotype compared to the recessive ones (160). Flanagan et al. reported diazoxide unresponsive dominant mutations in \(ABCC8 \) either as \textit{de novo} or inherited from one of the parents (161). MacMullen et al. reported 13 missense \(ABCC8 \) heterozygous mutations associated with diazoxide-unresponsive disease (162). Expression of these mutations in COSm6 cells revealed normal trafficking of channels but severely impaired responses to MgADP or diazoxide (162).

\subsection*{3.4.6 CHI due to Gain of Function Mutations in \textit{GLUD1}}

Gain of function mutations in \textit{GLUD1} causes hyperinsulinism-hyperammonemia (HI/HA) syndrome, which is the second most common cause of monogenic CHI after KATP channel mutations (127). \textit{GLUD1} is mapped to chromosome 10q23.3 and encodes a mitochondrial matrix enzyme, glutamate dehydrogenase (GDH). This enzyme catalyses the oxidative deamination of glutamate to alpha-ketoglutarate and ammonia, resulting in ATP production. GDH is allosterically inhibited by GTP and activated by leucine (163). Mutations in \textit{GLUD1} reduce the allosteric inhibition of GDH by ATP and GTP, resulting in the increase in the enzyme activity. The increased enzyme activity in the pancreatic \(\beta \)-cells, causes an increase in the ATP/ADP ratio which consequently activates K\(\text{ATP} \) channels, resulting in cell depolarization and insulin release (164). In addition to pancreatic \(\beta \)-cells, GDH is also expressed in other organs such as pancreas, liver, brain, kidney, heart and lungs (165).

The first reports of patients with HI/HA syndrome were identified by Zammarchi et al. and Weinzimer et al. in a group of patients who were noted to have an increased GDH activity in their lymphoblasts derived from peripheral blood lymphocytes (166, 167).
The phenotype of patients with \textit{GLUD1} mutations is milder compared to other forms of CHI and is characterised by fasting hypoglycaemia and hypoglycaemia following protein rich meals (165). The patients also have asymptomatic hyperammonemia. The hyperammonemia is mild to moderate and is resistant to treatment with detoxification agents and protein restriction diet (168). A small percentage of patients with \textit{GLUD1} mutations have been reported to have normal serum ammonia level but still demonstrate leucine hypersensitivity (165). Using animal models, the source of high ammonia production in majority of \textit{GLUD1} mutations have been shown to be from kidneys due to the increased renal GDH activity (169).

The patients with HI/HA syndrome have greater incidence of epilepsy when compared with the other forms of CHI (165). \textit{GLUD 1} mutations occurring in the GTP binding site have been found to have increased frequency of epilepsy (165). The reason for the increased frequency of neurological complications in these patients in unclear but various potential mechanisms such as recurrent hypoglycaemia, chronic elevated high ammonia causing brain injury have been suggested (164). The elevated GDH activity in the brain reduces the availability of glutamate for the glutamate decarboxylase and GABA synthesis, resulting in decreased GABA concentration (170). Although this is an interesting potential mechanism, the measurement of GABA and other neurotransmitters in the CSF of these patients have been normal (170).

3.4.7 CHI due to mutations in \textit{HADH}

Mutations in HADH are responsible for recessive form of CHI (171). \textit{HADH} is a mitochondrial gene encoding the enzyme 3-hydroxyacyl-coenzyme A dehydrogenase that catalyses the penultimate reaction in the beta oxidation of fatty acids and converts L3-hydroxyacyl CoAs of variable chain length to their corresponding 3- ketoacyl CoAs.
Although *HADH* is expressed in many tissues, the highest level of expression is found in the islets of Langerhans (172). The patients with *HADH* mutation are protein sensitive. Protein sensitivity had been demonstrated in *HADH* knock out mice (173). These findings suggest that an amino acid triggered pathway of insulin release might be a potential underlying cause (174). It is also hypothesised that *HADH* mutations may cause a loss of inhibitory regulation of GDH by HADH and leading to increased GDH activity and CHI (173, 175). Most of the reported patients to date are from consanguineous families. The biochemistry profile of these patients may show an increased level of plasma hydroxyl-butyryl-carnitine and urinary 3-hydroxyglutarate levels (174). The patients with *HADH* mutations are diazoxide responsive and hence it is recommended to test for this gene mutation in those diazoxide responsive patients from consanguineous families with negative KATP gene mutations (176).

3.4.8 CHI due to Gain of Function Mutations in *GCK*

GCK encodes the glycolytic enzyme, glucokinase which acts like a pancreatic β-cell sensor and has a key role as a rate limiting enzyme in the metabolism of glucose (177). It converts the transported glucose into glucose-6-phosphate. Glucokinase has low affinity for glucose, a key property that helps in maintaining the plasma glucose at physiological concentrations by governing the glucose stimulated insulin secretion (178).

Activating or gain of function *GCK* mutations increase the affinity of glucokinase for glucose which lowers the threshold for glucose stimulated insulin secretion. The increased affinity results in an increased ATP/ADP ration within the pancreatic β-cell, causing the closure of KATP channel, depolarization and consequent insulin release (178). The phenotype of *GCK* activating mutations are variable ranging from
asymptomatic hypoglycaemia, medically unresponsive CHI and CHI with some variable responses to diazoxide (178-180).

3.4.9 CHI due to Mutations in Transcription Factors-\textit{HNF4A} and \textit{HNF 1A}

\textit{HNF4A} belongs to the nuclear hormone receptor superfamily and codes for hepatocyte nuclear factor 4\(\alpha\). It is a transcription factor that plays an important role in regulating the expression of genes involved in glucose stimulated insulin secretion (181). While the heterozygous inactivating mutations in \textit{HNF4A} and \textit{HNF1A} is associated with maturity-onset diabetes of the young (MODY 1 & MODY 3 respectively), heterozygous mutations in these transcription factor have also been implicated in CHI (182). The mechanism of causation of CHI by \textit{HNF4A} mutation is not precisely known. One of the proposed mechanisms is: \textit{HNF4A} reduces the levels of PPAR\(\alpha\) (peroxisomal proliferator-activated receptor alpha) (181, 183). The transcription factor PPAR\(\alpha\) is known to control the expression of genes involved in the beta oxidation of fatty acids and PPAR\(\alpha\) null mice develop fasting hypoglycaemia. \textit{HNF4A}, by reducing the levels of PPAR\(\alpha\), reduces the beta-oxidation of fatty acids (183). This reduction in beta-oxidation of fatty acids results in lipid accumulation in the cytoplasm. Malonyl-CoA is one such lipid, the accumulation of which potentially inhibits the enzyme carnitine-palmitoyltransferase I which then causes an increase in the long-chain-acyl-CoA in the cytoplasm which in turn signals the release of insulin (181, 184).

The other possible mechanism by which \textit{HNF4A} mutation causes CHI is that it may potentially cause a reduction in the expression of Kir 6.2 subunits. \textit{HNF4A} knockout mouse had 60% reduction in the expression of Kir6.2 subunit (181). Patients with \textit{HNF4A} mutations developing CHI are characterised by large birth weight (185, 186).
The severity of hyperinsulinism may vary from transient form to persistent form requiring diazoxide treatment (187). The mutations in these transcription factors (HNF4A and HNF1A) can also affect the function and development of other organs and may result in extra pancreatic manifestations (147). Renal fanconi syndrome and hepatic glycogen storage disorders have been associated with HNF4A mutation in addition to CHI (188). The affected children are at increased risk of developing monogenic diabetes, responsive to oral sulfonylureas later in life. The underlying mechanisms responsible for the early unregulated excess insulin secretion which later switches to a state of insulin deficiency is unclear.

3.4.10 Exercise-induced Hyperinsulinism (EIHI)

Exercise-induced hyperinsulinism (EIHI) is inherited in an autosomal dominant fashion and is characterised by inappropriate insulin secretion following or during anaerobic exercise leading to hypoglycaemia. Heterozygous activating mutations in SLC16A1 (solute carrier family 16, member 1) encoding monocarboxylate transporter (MCT1) have been implicated in EIHI (189-191). Strenuous exercise causes a build-up of lactate and pyruvate which under normal physiological conditions, are not transported across the pancreatic β-cells since the pyruvate transporter (MCT1) is not expressed in β-cells (190). However, a gain of mutation in the promoter region of SLC16A1, causes an increased expression of MCT1 in the β-cells, rendering the plasma membrane permeable to pyruvate and lactate (190). The increased uptake of lactate and pyruvate by the β-cells in these patients during exercise, stimulates the release of insulin despite low blood glucose levels. The affected patients do not experience fasting hypoglycaemia. Avoidance of strenuous exercise in these patients usually prevents the hypoglycaemic episodes.
3.4.11 CHI due to Uncoupling Protein 2 (UCP2) Mutations

UCP2 is implicated to downregulate the insulin secretion from the pancreatic β-cells and is expressed in many tissues. UCP2 knock out mice has been shown to develop hyperinsulinism (192). UCP2 also has a role in the metabolism of fatty acids and protection against oxidative stress. Vozza et al. demonstrated that UCP2 suppresses the glucose oxidation and stimulates glutamine oxidation in the mitochondrial matrix (193). Dominant loss of function mutation in UCP2 have been reported to cause diazoxide responsive CHI, presumably by enhancing the glucose oxidation, facilitating pyruvate entry and triggering the insulin release (193).

3.4.12 CHI due to Mutations in Hexokinase 1 (HK1)

HK1 encodes for the enzyme hexokinase 1 which has high affinity for glucose (low-\(K_m\)) and in normal individuals there is a very little or no expression in the pancreatic β-cells. HK1 is mapped to a region in the chromosome 10q (194). Henquin et al. demonstrated the presence of low-\(K_m\) hexokinase-I in β-cells of hyper functional islets in 5 patients with CHI who were negative for \(K_{ATP}\) channel mutations (195). The authors proposed that the inappropriate insulin secretion to hypoglycaemia can be due to HK-1 substituting glucokinase for the phosphorylation of glucose (194). Although the precise mechanism that allows the expression of HK1 in the β-cells is not known, it is hypothesised that a somatic genetic event during the pancreas development could have affected the factor or the mechanism responsible for the normal repression of HK1 in the β-cells. Mice lacking PKC-λ in their β-cells demonstrated increased expression of HK-I and excessive insulin secretion at low glucose levels, which was reversed by re-expression of the simultaneously decreased Foxa2, implying that the transcription factor Foxa2 has a role in regulating HK1 expression (196).
3.4.13 CHI due to Phosphoglucomutase 1 (PGM1) Mutations

Phosphoglucomutase 1 (PGM1) is essential for glycogen degradation as it converts glucose-6-phosphate to glucose-1-phosphate. Inactivating mutations in PGM1 have been reported in children with abnormal glycosylation and hypoglycaemia (197). The phenotype consisted of fasting ketotic hypoglycaemia, postprandial hyperinsulinaemic hypoglycaemia, short stature, cleft lip and palate (197).

The various genetic mechanisms controlling the release of insulin from the pancreatic β-cell is shown in figure 3.2.
Figure 3.2: Role of different genes in enhancing the insulin secretion from pancreatic β-cell: Kir6.2 & SUR-1 (encoded by KCNJ11 & ABCC8) regulate the K_{ATP} channel. Mutations in these channels can diminish their opening or cause complete closure resulting in constant depolarisation of the cell membrane and constant insulin release despite hypoglycaemia. Mutations in genes such as GCK, MCT1, HADH (encoding SCHAD), UCP2 cause an increase in the ATP/ADP ratio by different mechanisms which causes closure of the K_{ATP} channel resulting in membrane depolarisation.
3.5 CHI-HISTOLOGICAL SUBTYPES

The two main types of CHI in relation to the histopathology are diffuse and focal. Diffuse form of CHI is characterised by the presence of hyperfunctioning islets that secrete excess insulin in the whole of the pancreas (198). The most common genetic etiologies for diffuse CHI are mutations in \textit{ABCC8} and \textit{KCNJ11}. Diffuse CHI due to the inactivating mutations in \textit{ABCC8} or \textit{KCNJ11} do not respond to diazoxide (Figure 3.3).

Focal form of CHI is characterised by nodular hyperplasia involving small localized regions of the pancreas measuring 2-10 mm in diameter. The areas of nodular hyperplasia in the islets consist of ductoinsular complexes and giant β-cell nuclei surrounded by normal pancreatic tissue (197). The focal disease is sporadic in origin. Two independent genetic events contribute to the etiology. The first event involves a mutation in paternally inherited \textit{ABCC8} or \textit{KCNJ11} genes. The second event involves a loss of heterozygosity, where there is a somatic loss of the maternal 11p allele involving the \textit{ABCC8} and \textit{KCNJ11} region (11p15.1 to 11p15.5) within the focal lesion(199). The resultant uniparental isodisomy causes the paternally inherited \textit{ABCC8} or \textit{KCNJ11} mutation to be fully expressed contributing to increased insulin secretion. There is also altered expression of the adjacent Beckwith-Wiedemann syndrome(BWS) locus containing imprinted genes-\textit{IGF2}, \textit{H19} and \textit{CDKN1C} that lead to increased proliferation of β-cells evolving into focal adenomatous hyperplasia(200). The focal forms of CHI usually do not respond to diazoxide.
3.5.1 Differentiation between Diffuse and Focal forms of Hyperinsulinism

Focal form of CHI is curable by surgery by excising the lesion of adenomatous hyperplasia. However, medically unresponsive diffuse form of CHI will require a near total pancreatectomy. A non-invasive technique to differentiate between the diffuse and the focal lesion was first described by Otonkoski et al in 2006, where the use of 18F-fluro-L-dihydroxyphenylalanine Positron Emission Tomography (18F-DOPA PET) has proved to be beneficial in locating the small focal lesions of adenomatous hyperplasia (201). This technique is based on the principle of measuring the DOPA decarboxylase activity, which is expressed in islet cells. When the pancreatic islets take up L-DOPA, it is converted into dopamine by DOPA decarboxylase (201). The diffuse and focal lesions have high DOPA decarboxylase activity. The focal and diffuse uptake of DOPA on PET CT scan is depicted in figure 3.3.

Figure 3.3: Focal and Diffuse forms of CHI. A-Focal CHI; B-diffuse CHI [adapted from Arya, VB; (2015) Understanding the novel genetic mechanisms of congenital hyperinsulinaemic hypoglycaemia. Doctoral thesis, UCL (University College London)]
3.6 CLINICAL PRESENTATION OF CHI

Hyperinsulinaemic hypoglycaemia (HH) usually presents during the neonatal period and can be severe. The symptoms may be non-specific such as poor feeding, jitteriness, lethargy and in severe cases may involve seizures. HH during the neonatal period can be transient in infants who had intra uterine growth restriction (IUGR) or those who sustained perinatal asphyxia. Transient HH is also observed in babies born to diabetic mothers (insulin dependent or gestational). These infants typically have a large birth weight. The transient form of HH can take many weeks and months to resolve and may require treatment with diazoxide.

HH is an associated feature in some of the syndromes such as Kabuki syndrome, Soto’s syndrome, Turner syndrome, Beckwith-Wiedemann syndrome (BWS) and also in metabolic conditions such as congenital disorder of glycosylation (127). BWS is an overgrowth syndrome characterised by prenatal and/or postnatal overgrowth, organomegaly, macroglossia, anterior abdominal wall defects, hemihypertrophy, ear lobe creases and helical pits (202). BWS is the commonest developmental syndrome associated with HH. HH in BWS is usually transient but may require treatment.

CHI can be a late presenting feature, especially in patients with GLUD1 mutations (HI/HA syndrome) as the hypoglycaemia in these patients is not as severe as seen in patient with KATP channel mutations. These patients have asymptomatic mild to moderate hyperammonaemia and develop symptoms of hypoglycaemia following a protein-rich meal (167). In patients with a history of intestinal surgery or bowel resection, hyperinsulinaemic hypoglycaemia develops as a part of the dumping syndrome. Patients with SLC1A1 mutations develop exercise induced hypoglycaemia after 30 minutes of anaerobic exercise (189).
3.7 DIAGNOSIS OF CHI

The early diagnosis of CHI is important in order to reduce or prevent hypoglycaemia induced brain injury. Since the symptoms of hypoglycaemia can often be subtle and non-specific in the neonatal period, it is important to have a low threshold in order to investigate these patients. Persistence of hypoglycaemia despite intravenous glucose administration and an intravenous glucose load of >8mg/kg/min (normal range: 4-6mg/kg/min) is highly suggestive of CHI (128). The characteristic plasma biochemistry profile in CHI is that of hypoketonaemic, hypofattyacidaemic hypoglycaemia with a detectable insulin concentration. The severity of hypoglycaemia has no correlation with the level of serum insulin concentration (127). A high c-peptide concentration may also help to establish the diagnosis. Other investigations that can support the diagnosis of CHI include an elevation of blood glucose concentration >1.5mmol/L following an intramuscular/intravenous dose of glucagon (127). A positive glycaemic response to subcutaneous dose of octreotide with decreased plasma concentration of insulin-like growth factor-binding protein 1 (IGFBP-1) may also aid diagnosis in some cases as the high concentration of circulating insulin suppresses the transcription of IGFBP-1 gene (203-205).

Elevated plasma ammonia concentration in a patient with hyperinsulinism may suggest the possibility of HI/HA syndrome. However, some patients with HI/HA syndrome can have normal plasma ammonia concentration (164). Provocative testing using a protein/leucine load may be helpful to establish a diagnosis in patients with suspected HI/HA syndrome (164).
Elevated plasma hydroxybutyrylcarnitine and urinary 3-hydroxyglutarate in a patient with CHI may be suggestive of HADH deficiency (173). Patients with exercise induced hyperinsulinism will require a formal exercise or a pyruvate loading test to demonstrate hypoglycaemia.

3.8 MEDICAL MANAGEMENT OF CHI

The aim of treatment is to achieve and sustain normoglycaemia (blood glucose level of 3.5-6mmol/L). In neonates with CHI, a central venous access is often required to deliver a high concentration of intravenous glucose infusion. It is important to maintain orality with some oral feeds (alone or in combination with glucose polymer-Maxijul or Polycal) to avoid a disturbed feeding pattern that may develop as feed aversion in these babies (128).

3.8.1 Glucagon

Infants with CHI can have extremely difficult venous access. In such situations, administration of intramuscular glucagon (0.5-1mg) can be a temporary measure to improve the blood glucose levels. This is followed by intravenous glucose infusion to prevent rebound hypoglycaemia. During the acute management of CHI, glucagon can be given either intravenously or by subcutaneous infusion to improve the blood glucose levels. Glucagon acts by promoting glycogenolysis and gluconeogenesis. It also has effect on ketogenesis and lipolysis.
3.8.2 Diazoxide

Diazoxide is the mainstay of medical treatment in hyperinsulinism and is usually effective in all forms of CHI except those caused by inactivating mutations in *ABCC8* and *KCNJ11* (129). Patients with activating mutations in *GCK* demonstrate a variable response to diazoxide (180). Patients with focal forms of hyperinsulinism do not generally respond to diazoxide treatment. Diazoxide is a KATP channel agonist that binds and opens the intact K_{ATP} channels and reduces the insulin secretion. It is administered orally (5-15mg/kg/day) and the responsiveness is noted by normoglycaemia, age appropriate fasting tolerance with undetectable insulin at the end of the fast and feeding with normal volume and frequency (129). The main side effects are that of hypertrichosis and fluid retention, especially in the newborns. The use of diazoxide in conjunction with thiazide diuretic chlorothiazide (5-10mg/kg/day) reduces the side effect of fluid retention. The other side effects include leukopenia, hyperuricaemia, tachycardia and feeding problems.

Genetic analysis on patients who do not respond to the maximum dose of diazoxide, helps in the identification of those who may need 18F-DOPA-PET CT scan to search for a focal lesion. Patients with paternally inherited mutation in *ABCC8* and *KCNJ11* (or those with no mutations in these genes) potentially have focal disease (206). Patients with homozygous or compound heterozygous mutations in *ABCC8* and *KCNJ11* will have a diffuse disease and will need alternative treatment options (206).
3.8.3 Octreotide

Octreotide is a somatostatin that is used as a second line medical therapy in the management of CHI. It acts by activating the somatostatin receptor-2 and -5 and also by restricting the movement of calcium in the pancreatic β-cells. It is administered as a subcutaneous injection every 6-8 hours (5-30µg/kg/day). The use of octreotide is associated with tachyphylaxis requiring higher doses (desensitisation occurring after 2-3 doses) (207). Octreotide is used cautiously in neonates as life threatening necrotising enterocolitis can occur as an adverse side effect (208).

3.8.4 Newer Medical Therapies for CHI

The long acting somatostatin preparation, lanreotide has been reported to be successful in patients with CHI (209). Lanreotide is given subcutaneously as once monthly injection (210).

Exendin-(9-39) is a GLP-1 receptor (glucagon like peptide-1) antagonist and has been shown to treat hypoglycaemia and improve the fasting glucose in mouse model of KATP HI (SUR-1−) when administered by chronic subcutaneous infusion (211). In a randomized, open-labelled pilot study involving human subjects, it was demonstrated that administration of exendin-(9-39) resulted in significantly higher blood glucose nadir levels when compared to placebo (212).

Recently, the use of immunosuppressive mammalian target of rapamycin inhibitor (mTOR), sirolimus, in four consecutive infants with diazoxide unresponsive HI resulted in improved glycaemia (213). However, long-term safety of sirolimus, in young infants with CHI, is not fully established.
3.9 SURGICAL MANAGEMENT OF CHI

The indications for surgery in patients with CHI include severe form of diffuse CHI unresponsive to medical therapy and those with focal disease. The patients with diffuse disease require near total pancreatectomy (214). This is associated with post-operative complications such as persisting hypoglycaemia requiring additional feeding, diazoxide or octreotide, high incidence of diabetes mellitus and exocrine pancreatic insufficiency. For the focal disease, localisation of the focal lesion by 18F-DOPA-PET/CT helps in excision of the focal adenomatous lesion (214, 215). The newer approach of laparoscopic pancreatectomy is associated with lesser complications and a faster recovery than open laparotomy (216).
3.10 AIMS OF THE PROJECT

Mutations in transcription factors such as HESX1, PROP1, POU1F1, LHX3, LHX4, PITX1, PITX2, OTX2, SOX2 and SOX3 have been associated with congenital hypopituitarism in mouse and humans. However, these mutations account only for a small proportion with the majority of patients having an unknown genetic cause for their condition.

Mutations in genes ABCC8, KCNJ11, GLUD1, GCK, HADH, UCP2, HNF4A, HNF1A, MCT1, HK1 and PGM1 have been associated with genetic forms of CHI. However, the genetic cause for many CHI patients (nearly 50%) remains elusive (217).

The aims of this project were:

1. To recruit patients with complex phenotypes such as congenital hypopituitarism, congenital hyperinsulinism and severe short stature with or without dysmorphism with no identified genetic etiology for detailed clinical and biochemical phenotyping.

2. To study these patients with whole-exome sequencing to identify potential novel genetic etiology and/or novel genetic pathways underlying their condition based on the available biological information.

3. To functionally characterize the identified mutation by appropriate laboratory techniques.
3.11 PATIENT RECRUITMENT

A cohort of 6 patients from 6 families were recruited into this project over a period of two years. All these patients were managed at Alder Hey Children’s NHS Foundation Trust, Liverpool. Personal data (name, date of birth, gender and ethnic background) and detailed phenotypic and laboratory data were collected on these patients. The patients were identified by experienced Consultant Endocrinologists as likely to have a high chance of an underlying monogenic etiology for their endocrine problems. The recruitment of the patients and their families into the study and obtainment of informed and written consents were done by me. All the six recruited patients had microarray to look for copy number changes. Trio sequencing was performed on the affected patient along with both the biological parents where possible. In one of the patients (proband D), where it was not possible to obtain DNA sample from the biological father, sequencing was performed on the patient and the biological mother. Two of the six patients had CHI (proband A and proband C) and had molecular genetic testing done for genetic mutations in known CHI genes: \textit{KCNJ11, ABCC8, GLUD1, GCK, HADH, HNF4A, INSR, SLC16A1, TRMT10A} and \textit{HNF1A} at University of Exeter Medical School, Exeter and were negative for mutations in these genes associated with the clinical phenotype. The flowchart for patient recruitment is shown below in the figure 5.1. The summary of the clinical phenotypes of the recruited patients is shown in the table 5.1.
3.12 ETHICS

The study was given favourable ethical opinion by the North West - Liverpool Central Research Ethics Committee (REC Reference: 15/NW/0758) and site study approval was granted by the Clinical Research Business Unit at Alder Hey Children’s NHS Foundation Trust, Liverpool, UK.

Figure 3.4: Flowchart of Patient Recruitment

1. Patient with high likelihood of monogenic cause of an endocrine disorder
 - Yes
 - Does the patient have a distinct recognizable phenotype?
 - Yes
 - Targeted genetic test (sequencing, microarray, karyotype)
 Eg: Noonan’s, William’s
 - No
 - Is targeted gene panel testing available for the phenotype in question
 - Yes
 - Targeted Gene Panel
 Eg: CHI
 - No
 - Whole exome sequencing of the patient and both biological parents (trio)
 - No

Negative
Table 3.1: Summary of the Recruited Patient Phenotypes

<table>
<thead>
<tr>
<th>PROBANDS</th>
<th>PHENOTYPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Persistent mutation negative congenital hyperinsulinism, hypopituitarism with GH,ACTH, TSH deficiency, coloboma, pulmonary stenosis and developmental delay</td>
</tr>
<tr>
<td>B</td>
<td>Primary IGF1 deficiency, craniosynostosis severe short stature, dysmorphic features, complex learning problems</td>
</tr>
<tr>
<td>C</td>
<td>Persistent mutation negative congenital hyperinsulinism</td>
</tr>
<tr>
<td>D</td>
<td>Severe short stature, recurrent hypoglycaemia, congenital Deafness, posterior Cloaca, growth Hormone deficiency, cardiac defects, facial dysmorphism, hypermobile joints</td>
</tr>
<tr>
<td>E</td>
<td>Severe short stature, low IGF1</td>
</tr>
<tr>
<td>F</td>
<td>Persistent Hypercalcemia, high PTH (mutations negative for FHH and primary hyperparathyroidism), glomerulonephritis</td>
</tr>
</tbody>
</table>
CHAPTER 4

GENERAL METHODS
4.1 SUMMARY OF CHAPTER 4

In chapter 4, various techniques used in the general methodology for this project such as DNA extraction and quantification, whole-exome sequencing, bioinformatics pipeline, and variant filtering are discussed. The DNA extraction was performed by me at the institute of child health laboratory in Liverpool. Whole exome sequencing and bioinformatics were performed at the Centre for Genomic Research, University of Liverpool. Analysis of the VCF (variant calling files) data, variant filtering and segregation of the likely pathogenic variants were performed by me by using the ingenuity variant analysis software (QIAGEN Bioinformatics).
4.2 GENOMIC DNA EXTRACTION FROM BLOOD

DNA was obtained from blood samples of the child and both the biological parents (trio) using the QIAmp DNA blood Midi Kit (Qiagen, Hilden, Germany) as per the manufacturer's instructions.

The steps are described briefly:

1. One ml of whole blood was added to 100µl of QIAGEN protease (proteinase K) and 1.2ml of Buffer AL (Lysis buffer).

2. The mixture was mixed thoroughly to yield a homogenous solution and incubated at 70 degrees Celsius for 10 minutes.

3. After 10 minutes of incubation, 1ml of 96-100% ethanol was added to the sample and mixed thoroughly to yield a homogeneous solution.

4. This solution was transferred to QIAmp Midi column and centrifuged at 3000 rpm for 3 minutes.

5. The filtrate was discarded and 2 ml of Buffer AW1(wash buffer 1) was added to the QIAmp Midi column and centrifuged at 5000 rpm for 1 minute followed by the addition of 2 ml Buffer AW2(wash buffer 2) and centrifuging the mixture at 5000 rpm for 15 minutes.

6. After discarding the filtrate, the purified genomic DNA was eluted from the QIAmp midi spin column and 200 µl of Buffer AE (elution buffer) was added and centrifuged for 2 minutes at 8000 rpm. The extracted DNA was stored in Buffer AE at -30 degrees Celsius for long term use.
4.2.1 Quantification of DNA

The quantity of the DNA was estimated by using NanoDrop Nucleic Acid Quantification method (Thermo Fisher Scientific). The NanoDrop instruments utilize a patented sample retention system that allows the quantification of nucleic acids from 1–2μL samples.

Using the ‘NanoDrop’ 2000c Spectrophotometer, the DNA concentration was measured as follows:

1. The NanoDrop sensor was blanked by using blanking solution-distilled water, 1.5 μL and a routine wavelength verification check was completed with the help of the inbuilt computer software.

2. Following this, 1.5 μL of the DNA sample was added onto the NanoDrop sensor and the concentration was analysed using the software.

3. The 260/280 calculation ratio gives a measurement of output of wavelength vs absorbance. A ratio of >1.8 was generally accepted as pure for DNA. The DNA concentration was measured as ng/μL.
4.2.2 DNA Quality Control: Bioanalyzer or Fragment analyzer

Principle of Fragment Analyzer

Further quality control of the extracted DNA was performed using the Fragment Analyzer™ system. The instrument consists of a multiplex of capillary electrophoresis and is used to perform high throughput, automated separation and quantification of nucleic acids. The separation of DNA is through the application of an electric field through an array of fused silica capillaries filled with conductive gel. With the application of high voltage, the DNA molecules migrate through the gel in relation to their length or size, with the smaller fragments migrating faster than the larger fragments (Figure 4.1). When the nucleic acid molecules migrate and reach the end of the capillary, detection is facilitated by fluorescence of a sensitive dye present in the gel matrix. The fluorescence can be monitored using the relative fluorescence unit (RFU) intensity as a function of time during the capillary electrophoresis separation. This information can be used to produce digital electropherogram traces representative of the DNA content of the entire samples (Figure 4.2).
Figure 4.1: Gel image of the DNA samples representing the relative sizes of the DNA molecules against the standard ladder
Figure 4.2: Electropherogram Traces showing the relative fluorescence unit of various genomic DNA samples (peaks) indicating the integrity of the samples.
4.3 WHOLE EXOME SEQUENCING

4.3.1 Workflow for Exome Sequencing

The basic steps for exome sequencing include the following:

1. Sample preparation

2. Hybridization and capture

3. Indexing and processing for multiplexed sequencing

4. Sequencing

4.3.1.1 Sample Preparation

Samples were sheared with the Picoruptor to a size of approximately 150-200 bp and the samples were cleaned with 1.8x AMPure beads (Agencourt). The target size of the DNA fragments (150-200 bp) was confirmed using the 2100 Bioanalyzer. The ends of the sheared DNA were repaired with T4 DNA Polymerase and Klenow enzyme and further purified by using AMPure XP beads (Figure 4.3). This was followed by addition of ‘A’ bases to the 3’ ends of the DNA fragments and purified again by AMPure XP beads. The DNA fragments with 3’ overhanging ‘A’ bases were ligated by using T4DNA ligase buffer and SureSelect Adaptor Oligo Mix. The sample was further purified using AMPure XP beads. The adaptor-ligated library was amplified by 5 rounds of PCR using Herculase II fusion DNA polymerase and again purified with AMPure XP beads. The libraries were checked on an Agilent HS 2100 Bioanalyzer chip for fragment size peak of approximately 225 to 275 bp and quantified by Qubit assay. 750 ng of pre-capture library in a volume of 3.4µL (initial concentration of 221 ng/µL) was used for the hybridization reaction.
Figure 4.3: Sample preparation for Exome sequencing showing genomic DNA shearing, end repair of DNA fragments, addition of 3’ A overhangs, adapter ligation and PCR amplification [adapted from Arya, VB; (2015) Understanding the novel genetic mechanisms of congenital hyperinsulinaemic hypoglycaemia. Doctoral thesis, UCL (University College London)].
4.3.1.2 Hybridization

The pre-capture libraries (genomic DNA) obtained in the previous step were then mixed with SureSelect hybridisation mix (Biotinylated RNA Library Baits) along with hybridization buffers and incubated for 24 hours at 65°C. RNA Baits will hybridize with the complementary DNA fragments present in the genomic DNA sample.

Following this, the samples (hybridized DNA) were mixed with washed streptavidin beads (Dynabeads MyOne Streptavidin T10). Streptavidin has an extraordinarily high affinity for biotin. The captured products were washed according to the protocol attached to the beads and the RNA is digested. (Figure 4.4)

4.3.1.3 Indexing and Sample Processing for Multiplexed Sequencing

The SureSelect-enriched captured DNA libraries from the previous step are PCR amplified in 10 cycles of PCR reactions with 8 bp indexing primers (forward and reverse) using Herculase II fusion DNA polymerase with Herculase II reaction buffer. The amplified post-capture libraries were purified using AMPure XP beads. The quantity and quality of the post-capture indexed libraries were assessed by Agilent 2100 Bioanalyzer for the peak DNA fragment size positioned between 250 and 350 bp. Following this, the quantity of each index-tagged library was assessed by qPCR using the Agilent QPCR NGS library quantification kit from Kapa on a Roche Light Cycler LC480II according to manufacturer's instructions. The template DNA was denatured according to the protocol described in the Illumina cBot User guide and loaded at 300 pM concentrations.
4.3.1.4 Sequencing

The sequencing was carried out on one lane of an Illumina HiSeq4000 at 2x150 bp paired-end sequencing with v1 chemistry. The read files (Fastq) were generated from the sequencing platform via the manufacturer’s proprietary software.

Figure 4.4: Target enrichment using SureSelect [adapted from Agilent SureSelectXT Target enrichment for Illumina user guide]
4.4 BIOINFORMATICS

The bioinformatics pipeline briefly consists of the following steps:

1. Processing and quality assessment of the sequence data
2. Alignment of reads to the reference sequence
3. Variant detection

4.4.1 Processing and Quality Assessment of Sequence Data

Initial processing and quality assessment of the sequence data was performed using an in-house pipeline (developed by Dr Richard Gregory). Briefly, basecalling and de-multiplexing of indexed reads was performed by CASAVA version 1.8.2 (Illumina) to produce samples in FASTQ format. The raw FASTQ files were trimmed to remove Illumina adapter sequences using Cutadapt version 1.2.1. The reads were further trimmed to remove low quality bases, with a minimum window quality score of 20. The raw trimmed sequence data are shown in table 4.1. The reads shorter than 10 bp were removed. The forward reads are indicated as R1, the reverse reads as R2 and the unpaired reads as R0. Table 4.2 summarises the read counts before and after adapter and quality trimming. Figure 4.5 shows the read length distributions after adapter and quality trimming. Note that R0 (unpaired) reads are trimmed more than paired reads as they more often represent poor quality sequence. Later analysis uses only R1 and R2 reads, which show a very little adapter/quality trimming.
All trimmed read data, as well as detailed statistics on the read trimming are available from the following URLs:

http://cgr.liv.ac.uk/illum/LIMS9132_80e653e1bc84f8a9

http://www.cgr.liv.ac.uk/illum/LIMS10697Results_8399f2b3f8c45af5/

Table 4.1: Summary of raw and trimmed sequence data of DNA samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Family ID</th>
<th>Untrimmed reads</th>
<th>Trimmed reads</th>
<th>R1/R2 pairs</th>
<th>R0 reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1-L1512928</td>
<td>I</td>
<td>107,468,390</td>
<td>106,511,341</td>
<td>52,778,930</td>
<td>593,481 (0.90)</td>
</tr>
<tr>
<td>Sample 2-L1512929</td>
<td>I</td>
<td>70,545,702</td>
<td>69,913,097</td>
<td>34,641,451</td>
<td>630,195 (0.90)</td>
</tr>
<tr>
<td>Sample 3-L1512930</td>
<td>I</td>
<td>98,535,662</td>
<td>97,904,579</td>
<td>48,640,949</td>
<td>625,599 (0.64)</td>
</tr>
<tr>
<td>Sample 4-L151364</td>
<td>G</td>
<td>84,073,414</td>
<td>83,435,066</td>
<td>41,399,781</td>
<td>635,534 (0.76)</td>
</tr>
<tr>
<td>Sample 5-L1513646</td>
<td>G</td>
<td>90,750,270</td>
<td>89,878,881</td>
<td>44,505,794</td>
<td>867,293 (0.96)</td>
</tr>
<tr>
<td>Sample 6-L1514366</td>
<td>D</td>
<td>83,142,054</td>
<td>82,565,645</td>
<td>40,595,695</td>
<td>574,255 (0.70)</td>
</tr>
<tr>
<td>Sample 7-L1514368</td>
<td>D</td>
<td>95,567,088</td>
<td>94,772,605</td>
<td>46,990,660</td>
<td>731,285 (0.83)</td>
</tr>
<tr>
<td>Sample 8-L1514530</td>
<td>D</td>
<td>86,488,340</td>
<td>85,854,636</td>
<td>42,611,693</td>
<td>631,250 (0.74)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Family ID</th>
<th>Untrimmed reads</th>
<th>Trimmed Reads Number</th>
<th>Trimmed Pair Number</th>
<th>Trimmed Singleton Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(of raw)</td>
<td>(of trimmed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-L1605487</td>
<td>1</td>
<td>83,516,670</td>
<td>82,843,473 (99.19)</td>
<td>41,086,569</td>
<td>670,353 (0.81)</td>
</tr>
<tr>
<td>2-L1607210</td>
<td>1</td>
<td>67,344,204</td>
<td>66,912,873 (99.36)</td>
<td>33,241,725</td>
<td>429,423 (0.64)</td>
</tr>
<tr>
<td>3-L1607170</td>
<td>1</td>
<td>88,844,076</td>
<td>88,421,351 (99.54)</td>
<td>44,010,365</td>
<td>410,621 (0.46)</td>
</tr>
<tr>
<td>4-L1601222</td>
<td>3</td>
<td>67,042,598</td>
<td>66,455,447 (99.12)</td>
<td>32,535,078</td>
<td>565,291 (0.88)</td>
</tr>
<tr>
<td>5-L1601227</td>
<td>3</td>
<td>82,715,640</td>
<td>82,166,985 (99.36)</td>
<td>40,830,398</td>
<td>526,189 (0.64)</td>
</tr>
<tr>
<td>6-L1601228</td>
<td>3</td>
<td>82,077,336</td>
<td>81,560,684 (99.37)</td>
<td>40,573,192</td>
<td>514,300 (0.68)</td>
</tr>
<tr>
<td>7-L1601229</td>
<td>2</td>
<td>76,468,598</td>
<td>75,952,316 (99.35)</td>
<td>37,728,954</td>
<td>494,408 (0.65)</td>
</tr>
<tr>
<td>8-L1601236</td>
<td>2</td>
<td>68,371,366</td>
<td>68,014,879 (99.48)</td>
<td>33,829,986</td>
<td>354,907 (0.52)</td>
</tr>
<tr>
<td>9-L1601235</td>
<td>2</td>
<td>89,328,150</td>
<td>88,655,857 (99.25)</td>
<td>43,999,188</td>
<td>669,481 (0.76)</td>
</tr>
</tbody>
</table>

Figure 4.5: Read length distributions of samples after adapter and quality trimming
4.4.2 Alignment of Reads to the Reference Genome

R1/R2 read pairs were aligned to the human genome reference with decoy sequences (ftp.broadinstitute.org/bundle/2.8/b37/human_g1k_v37_decoy.fasta). This comprises the GRCh37 primary assembly (chromosomal plus unlocalised and unplaced contigs), the rCRS mitochondrial sequence (AC:NC_012920), Human herpesvirus 4 type 1 (AC:NC_007605) and the concatenated decoy sequences. Reads were mapped to the reference sequences using BWA mem version 0.7.5a (218) with default parameters. To retain only confidently aligned reads, alignments were filtered to remove reads with a mapping quality lower than 10, which equates to a 10% chance that the read was derived from another genomic location. Misalignment caused by small insertions / deletions (indels) can lead to false SNP calls. To avoid this, the mapped reads were locally re-aligned to improve the alignments around small insertions/deletions (indels) using the Genome Analysis Tool Kit (GATK) version 2.1.13 (219, 220). Duplicate reads arising from PCR amplification can bias variant calling. To avoid this, read duplicates were identified and filtered to retain only a single representative, using the Picard “MarkDuplicates” tool, version 1.85 (http://picard.sourceforge.net/)

The quality scores assigned to the individual base calls in each sequence read influence the variant calling algorithms. The scores represent the per-base estimates of error emitted by the sequencing machines which are subject to various sources of systematic technical error, leading to over- or under-estimated base quality scores in the data (https://gatkforums.broadinstitute.org/gatk/categories/methods). Hence, base quality score recalibration (BQSR) was applied for all the alignment files. BQSR is a module of GATK that applies machine learning to model these errors empirically and adjust the quality scores accordingly. BQSR firstly builds a model of covariation based
on the data and a set of known variants (i.e. dbSNP), then it adjusts the base quality scores in the data based on the model. This will create more accurate base qualities, which in turn improves the accuracy of our variant calls.

Table 4.2: Summary of sequence alignments (before and after filtering to remove reads with low mapping quality and redundant duplicate reads) for various DNA samples with mean depth of coverage

<table>
<thead>
<tr>
<th>Sample</th>
<th>Reads to align</th>
<th>Aligned reads after filtering (%)</th>
<th>Number of bases in the capture regions with coverage more than 0 (%)</th>
<th>Mean Depth of Coverage for the bases with coverage more than 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample_1-L1512928</td>
<td>105,557,860</td>
<td>91,553,749(86.73%)</td>
<td>49,901,837(99.03%)</td>
<td>112.24x</td>
</tr>
<tr>
<td>Sample_2-L1512929</td>
<td>69,282,902</td>
<td>61,166,825(88.29%)</td>
<td>49,901,223(99.03%)</td>
<td>157.05x</td>
</tr>
<tr>
<td>Sample_3-L1512930</td>
<td>97,281,898</td>
<td>83,494,081(85.83%)</td>
<td>50,090,890(99.41%)</td>
<td>133.18x</td>
</tr>
<tr>
<td>Sample_4-L1513634</td>
<td>82,799,552</td>
<td>73,120,955(88.31%)</td>
<td>49,905,274(99.04%)</td>
<td>142.12x</td>
</tr>
<tr>
<td>Sample_5-L1513636</td>
<td>89,011,588</td>
<td>78,287,620(87.99%)</td>
<td>49,917,767(99.06%)</td>
<td>132.34x</td>
</tr>
<tr>
<td>Sample_6-L1514368</td>
<td>81,951,390</td>
<td>71,161,089(86.79%)</td>
<td>50,101,073(99.43%)</td>
<td>149.89x</td>
</tr>
<tr>
<td>Sample_7-L1514386</td>
<td>93,361,320</td>
<td>81,144,324(86.34%)</td>
<td>49,912,857(99.05%)</td>
<td>141.52x</td>
</tr>
<tr>
<td>Sample_8-L1514530</td>
<td>85,223,386</td>
<td>75,583,985(88.69%)</td>
<td>50,095,529(99.41%)</td>
<td>112.24x</td>
</tr>
</tbody>
</table>

1Sum of all R1 and R2 reads used in the alignment
2Reads that align to the reference genome, before removing low mapping quality reads and redundant duplicate reads (% of all reads used in alignment)
3The size of the total capture regions is 50,390,601bp
4.4.3 Variant detection

Variant detection was performed using the GATK package. Single nucleotide polymorphisms (SNPs) and small insertions/deletions (INDELs) were identified in the same analysis step. In order to carry out the variants recalibration, which assigns a well-calibrated probability to each variant call in a call set, the VQSR (Variant Quality Recalibration Score) module in GATK was calibrated by combining the variants found in a random selection of 22 samples from the 1000 genome UK cohort along with the variants from the 8 samples in this project. Variants were outputted, and annotated using SnpEff version 3.2a (221). Finally, the phaseByTransmission module in GATK package was used for the trio analyses for the samples from the same family.

4.4.4 Identifying Causal Alleles

Whole exome sequencing on an average identifies ~24,000 single nucleotide variants (SNVs) in African American samples and ~20,000 in European American samples, among which 95% are known polymorphisms in human population (3). One of the main challenges in whole exome sequencing is the narrowing down and filtering of disease-related alleles from a huge background of polymorphisms that are non-pathogenic and errors related to sequencing.

The strategies for filtering the exome sequencing data and narrowing down to identify the alleles segregating with the phenotype depend on a number of factors such as the mode of inheritance of a trait; the pedigree or population structure; whether a phenotype arises owing to de novo or inherited variants; and the extent of locus heterogeneity for a trait (3).
4.5 APPROACHES TOWARDS IDENTIFYING CAUSAL ALLELES

4.5.1 Discrete Filtering:

The variants are filtered against polymorphisms available in publicly available databases such as dbSNP, 1000 Genomes Project, Exome Aggregation Consortium (ExAC) and those found in unaffected individuals such as unaffected biological parents or siblings. By this approach the non-causative polymorphisms are eliminated and the novel candidate genes are filtered. This is especially important because the number of candidate genes are drastically reduced because only a small fraction (~ 2% on average) of the single nucleotide variants (SNVs) identified in an individual by exome sequencing are novel (3). The assumption in this approach that the filter set may not contain alleles from individuals with the phenotype can be problematic for two reasons. First, dbSNP is ‘contaminated’ with a small but appreciable number of pathogenic alleles (3). Second, as the number of sequenced exomes and genomes increases, the filtering of observed alleles in dbSNP should take into account the minor allele frequency (MAF) as otherwise truly pathogenic alleles that are segregating in the general population at low but appreciable frequencies will be eliminated (3). This risk is especially relevant for recessive disorders, in which carrier status (heterozygous) will not result in a phenotype but will be present in the control population at a low frequency. Analysis of recessive disorders in which the maximum MAF is set at 1% is still well powered (3).

A lower MAF cut-off of 0.1% is helpful for dominant disorders, as the estimated prevalence of the disorder (generally well below 0.1%) provides an upper bound on the MAF (3). Additionally, the greater the number of novel variants with lower MAFs
that are present in a sample population, the more difficult it will be to home in on the causal gene (or genes) (6).

4.5.2 Stratifying the Candidate Genes After Discrete Filtering

1. After filtering for polymorphisms against the public databases mentioned above, further stratification was done based on the predicted impact on the protein function. Frameshift mutations, nonsense mutations and splice-site mutations which disrupt the canonical splice sites are more likely to be causal as compared to missense variants.

2. The stratification was further performed based on the available biological or functional information about a gene. This involves alleles with an existing or predicted role in a biological pathway or interacting with genes known to cause the phenotype.

3. Assessing evolutionary conservation among different species was also used to stratify the candidate genes. The mutations occurring in the sequences or amino acid residues that show high conservation among different species are likely to be pathogenic.

4. *In silico* tools such as SIFT, PolyPhen and Mutation Taster were used to further stratify the pathogenicity of the non-synonymous alleles.

4.5.3 In Silico Tools: SIFT and PolyPhen

Sorting intolerant from tolerant (SIFT) and polymorphism phenotyping (PolyPhen) are freely available as Web-based servers(222-224). SIFT and PolyPhen predict if the missense mutation is likely to be deleterious to the protein function by the use of sequence homology of related proteins and the degree of conservation of the affected base throughout evolution. PolyPhen uses annotated UniProt entries to predict
whether the amino acid substitution occurs within an important structural or functional site of the protein, for example, active or binding sites, and residues involved in disulphide bond formation(223). The predictive value of PolyPhen will therefore be reliant on the protein of interest having (i) a known, annotated crystal structure or (ii) the presence of a modelled protein of sufficient similarity in the UniProt database(225).

4.5.4 Pedigree Information
For Mendelian phenotypes, the pedigree information can be used to substantially narrow the genomic search space for candidate causal alleles. For identifying de novo coding mutations, an approach that involves sequencing of parent-child trios(Figure 4.6) is extremely efficient as it is highly unlikely that the proband will have multiple de novo events occurring within a specific gene (or within a gene family or pathway) (226, 227).

Figure 4.6: Parent-child trios for identifying de novo mutations
4.5.5 Technical and Analytical Limitations of Exome Sequencing:

Discrete filtering of the variants obtained from exome sequencing has been very successful in the identification of a novel disease gene (228-231). However, there are associated technical and analytical limitations that might hamper the process. This might either be due to inadequate capture of the exome which may contain part or all of the causative gene or inadequate depth of sequencing of the region that contains a causal variant (for example, because of poor capture or poor sequencing) (6).

It is also possible that due to the presence of small and complex indels, the causal variant may have been covered but not called (3). Genetic heterogeneity limits the power of discrete filtering. For example, if the disease is caused by mutations in a number of different genes (genetic heterogeneity), more than one gene in the sample population will have disease causing alleles (3).
CHAPTER 5

CLINICAL PHENOTYPE AND WHOLE EXOME SEQUENCING RESULTS

(FAMILY A)
5.1 SUMMARY OF CHAPTER 5

Chapter 5 begins with the introduction of family A with a detailed description of the clinical phenotype and the whole exome sequencing results of proband A.
5.2 CLINICAL INFORMATION (PROBAND A)

A 5-year-old girl (Proband A), was born to non-consanguineous Caucasian British parents at 42 weeks’ gestation with a birth weight of 4.185 Kg (+1.72 SDS). The pregnancy was normal and the 20-week antenatal scan showed polyhydramnios. The delivery was complicated by shoulder dystocia, needing resuscitation.

She was found to be persistently hypoglycaemic (glucose<2.6mmol/L) requiring a total glucose load of 25 mg/kg/min (normal: 4-6 mg/kg/min) to maintain normoglycaemia (plasma glucose>3.5mmol/L). She had low free thyroxine (FT4) (5.3 pmol/L) and suppressed thyroid-stimulating hormone (TSH) (<0.03 mu/L) that persisted even after the phase of acute severe illness. She also had an undetectable adrenocorticotropic hormone (ACTH) (<1.1 pmol/L) with no cortisol response to synacthen stimulation (peak cortisol to synacthen <50 nmol/L). Hydrocortisone replacement was commenced followed by levothyroxine therapy.

The MRI scan of the brain showed a hypoplastic anterior pituitary, absent posterior pituitary, interrupted pituitary stalk and a thin corpus callosum (Figure 5.2). The hypoglycaemia screen showed an inappropriately high plasma insulin (200 pmol/L) and c-peptide (1500 pmol/L) with suppressed plasma free fatty acid (<100 µmol/L) and beta hydroxyl butyrate (<100 µmol/L) during hypoglycaemia (plasma blood glucose: 1.2mmol/L) confirming the diagnosis of CHI.

A trial of diazoxide (5 mg/kg/day) with chlorothiazide resulted in a significant fluid retention. Commencement of octreotide (10 mcg/kg/day) caused a derangement of liver enzymes and therefore had to be discontinued after which the liver enzymes returned to normal plasma levels. She developed a significant feed intolerance due to severe gastroesophageal reflux which persisted despite maximum medical treatment.
A gastro-jejunostomy tube was inserted to support feeding. Normoglycaemia was maintained by continuous feed via the gastro-jejunostomy tube. Genetic analysis performed at the University of Exeter Medical School, Exeter was negative for ABCC8, KCNJ11, HNF4A and GCK mutations. The 18F-DOPA PET-CT scan of the pancreas suggested a diffuse pancreatic lesion.
Figure 5.1: Sagittal view of the MRI scan of the brain: The normal pituitary gland cannot be identified, the sella turcica is shallow and poorly defined with possibly a very hypoplastic anterior pituitary gland (arrowhead) Also, there is no evidence of the normal high signal of the posterior pituitary. There is a very short and thin pituitary stalk in its superior third (arrow) which is suggestive of an interrupted pituitary stalk. The corpus callosum is also noted to be thin (arrowhead)
The facial dysmorphic features comprise of a single median maxillary central (SMMC) incisor, congenital nasal pyriform aperture stenosis (CNPAS), which was conservatively managed, and a left choroidal coloboma. She does not have any vision abnormalities. The cardiac echocardiogram revealed pulmonary stenosis which required balloon dilatation. She had a persistent oxygen requirement of unknown etiology (negative for respiratory infections, normal chest imaging and bronchoscopy) from birth, which gradually resolved at 5 months of age.

At 1.5 years of age she was diagnosed with growth hormone (GH) deficiency (height<3 SDS, IGF1<3.3 nmol/L and a peak GH of 1.1 µg/L (normal>7 µg/L) to arginine stimulation) and was commenced on rGH (recombinant GH) therapy. She demonstrated a good response to treatment with rGH (25 mcg/kg/day) with an improvement in the height velocity (Figure 5.3). She developed persistently elevated liver transaminases when she was 3 years old, with a negative autoimmune hepatitis and infection screen. The liver biopsy showed dense chronic inflammation with portal-portal bridging fibrosis. The clinical features are summarised in the table 5.2.

She is currently 5 years old, with persistent CHI, motor, speech and developmental delay and continues to be on rGH, levothyroxine and hydrocortisone replacements. She has shown response to the reintroduction of diazoxide (5 mg/kg/day) without any features of fluid retention, which has enabled her to come off her continuous feeds for 6 hours.
Figure 5.2: The patient's linear growth curve compared with British contemporary references. Recombinant growth hormone (25 mcg/kg/day) was started at 1.5 years of age when the linear height was -3SDS. A good response to the GH treatment was seen subsequently with an improvement in the height SDS.
Table 5.1: Summary of clinical features (proband A):

<table>
<thead>
<tr>
<th>Area</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face</td>
<td>Single median maxillary central incisor, congenital nasal pyriform aperture stenosis</td>
</tr>
<tr>
<td>Eye</td>
<td>Left choroidal coloboma</td>
</tr>
<tr>
<td>Heart</td>
<td>Supra-valvular pulmonary stenosis</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Feed intolerance, severe gastro-esophageal reflux disease requiring gastro-jejunostomy feeding</td>
</tr>
<tr>
<td>Liver</td>
<td>Mild portal-portal bridging fibrosis, elevated transaminases</td>
</tr>
<tr>
<td>Lung</td>
<td>Persistent oxygen requirement of unknown aetiology</td>
</tr>
<tr>
<td>Pancreas</td>
<td>Persistent form of hyperinsulinism</td>
</tr>
<tr>
<td>Pituitary</td>
<td>Hypopituitarism</td>
</tr>
<tr>
<td>Neuro-developmental</td>
<td>Speech and motor developmental delay</td>
</tr>
</tbody>
</table>

Figure 5.3: Pedigree of Family A
5.3 WHOLE EXOME SEQUENCING RESULTS (FAMILY A)

In this family, whole-exome sequencing was performed on both the parents (unaffected) and the affected child. Assuming a de novo inheritance pattern, filters were applied to whole-exome data as shown in the figure 5.5. The potential candidate variants are listed in the table 5.3.

Figure 5.4

De Novo Variant Analysis of Proband A (* Novel variants include variants present in at least 5% minor allele frequency in 1000 Genomes Project, ExAC and NHLBI ESP exomes excluded; ** Predicted deleterious variants included nonsynonymous coding, splice site, frameshift, stop gain variants; *** Variants present in heterozygous state in the child and not present in both the parents; **** Variants with biological role related to the clinical phenotype of hyperinsulinaemic hypoglycaemia and hypopituitarism)

- Total variants in 3 family members
- Novel variants*
- Predicted deleterious**
- Genetic analysis***
- Biological context****
Table 5.2: List of *de novo* candidate gene variants and their locations in family A

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Gene region</th>
<th>Protein variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ALK</td>
<td>Exonic</td>
<td>p.G924G</td>
</tr>
<tr>
<td>2</td>
<td>PEL1</td>
<td>Exonic</td>
<td>p.A68fs*10</td>
</tr>
<tr>
<td>7</td>
<td>HIP1</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CHST15</td>
<td>Exonic</td>
<td>p.R456fs*50</td>
</tr>
<tr>
<td>12</td>
<td>DUSP16</td>
<td>Exonic</td>
<td>p.C136*</td>
</tr>
<tr>
<td>12</td>
<td>CCNT1</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>KAT8</td>
<td>Exonic</td>
<td>p.R448fs*9</td>
</tr>
<tr>
<td>17</td>
<td>FMNL1</td>
<td>Exonic</td>
<td>p.P549L</td>
</tr>
<tr>
<td>20</td>
<td>FOXA2</td>
<td>Exonic</td>
<td>p.S169P</td>
</tr>
</tbody>
</table>

A brief description on the biological function of the above genes is given below. The biological information on the genes were obtained from databases such as Uniprot and genecards.
ALK (ALK Receptor Tyrosine Kinase)

ALK is involved in the development of specific neurons in the nervous system and ALK gene mutations are associated with anaplastic large cell lymphomas, neuroblastoma, and non-small cell lung cancer (232).

PEL1 (Phosphatidylglycerophosphate Synthase 1)

This gene catalyzes the synthesis of Phosphatidylglycerophosphate from CDP-diacylglycerol and glycerol 3-phosphate and functions as the committed and rate-limiting step in the biosynthesis of cardiolipin (233).

CHST15 (Carbohydrate Sulfotransferase 15)

The protein coded by this gene forms an important structural component of the extracellular matrix and which links to proteins to form proteoglycans (234).

DUSP16 (Dual Specificity Phosphatase 16)

This gene encodes a mitogen-activated protein kinase phosphatase. By using Northern blot analysis of mouse tissues, an abundant expression of this protein was found in brain, kidney, intestine, and testis, and lower expression in thymus, spleen, and bone marrow (235).

CCNT1 (Cyclin T1)

The protein encoded by this gene associates with cyclin-dependent kinase 9, and acts as a cofactor of human immunodeficiency virus type 1 (HIV-1) Tat protein, necessary for full activation of viral transcription (236).
KAT8 (Lysine Acetyltransferase 8)

This gene encodes a member of the MYST histone acetylase protein family which may be involved in transcriptional activation (237).

FMNL1 (Formin Like 1)

Formin-related proteins have been implicated in morphogenesis, cytokinesis, and cell polarity (238).

FOXA2 (Forkhead Box A2)

FOXA2 is a transcription factor with a critical role in early embryogenesis of various organs including central nervous system (238). Tissue specific deletion of *Foxa2* from the mice pancreatic β-cells leads to the development of CHI (249).

As *FOXA2* segregates with the clinical phenotype of proband A, this gene and the mutation (p.S169P) have been explored in detail in chapter 6.
CHAPTER 6

FOXA2 (FORKHEAD BOX A2): DESCRIPTION OF THE GENE FUNCTION, DESCRIPTION OF THE MUTATION (c.505T>C, p. S169P) AND FUNCTIONAL ANALYSIS
6.1 SUMMARY OF CHAPTER 6

Chapter 6 begins with the introduction of FOXA2, discussion of the FOXA2 mutation (c.505T>C, p.S169P) and detailed description of the results from various functional studies to demonstrate the pathogenicity of the mutation followed by a detailed discussion.

The manuscript of this chapter is accepted for publication. The pdf of the accepted version is attached in the appendix.
6.2 ROLE OF FOXA2 IN THE DEVELOPMENT OF CENTRAL NERVOUS SYSTEM

FOXA2 (formerly hepatocyte nuclear factor-3\(\beta\), HNF-3\(\beta\)) belongs to the family of the Forkhead class of transcription factors and is localised to the cytogenic location 20p11.21(Figure 6.1). FOXA2 regulates the critical developmental process and has been implicated in the development of liver bud, central nervous system, pancreas and endodermal tissues. An important role of FOXA2 is its involvement in the development of axial mesoderm and formation of the notochord, node and floorplate which are important for the vertebrate body axis development (239, 240). Jin et.al. demonstrated that Foxa2 is important in the development of anterior forebrain structures, which have the same embryonic origin as the pituitary gland (241). Murine studies have shown a genetic interaction between Foxa2 and Sonic Hedgehog (Shh) signalling pathway with overlapping expression pattern of Foxa2 and Shh in the notochord and floor plate at E8.5. The development of central nervous system is dependent on several morphogenetic signals, one of which is the secretion of Shh by the notochord and floor plate (242).
6.2.1 Foxa2 and Its Interaction with Shh Signalling Pathway

The initiation of the Shh signalling pathway (Figure 6.2) starts with the binding of Shh protein to its receptor on target cell, PTCH1(Patched-1). This binding releases SMO(smoothened) which is normally under inhibitory control from PTCH-1. SMO is then active and enters the cytoplasm and activates Gli1, which is then phosphorylated, enters the nucleus and transcriptionally regulates the promoter regions of target genes such as Foxa2 and NKx2.2 (243-245). Mavromatakis et. al demonstrated that Foxa2 plays an important role in modulation of Shh signalling, contributing to the specification of ventral motor neuron progenitor identity (246). Deletion of Foxa2 is lethal as the Foxa2 null embryos die during early gestation, at embryonic day 9.5, as a result of failure of formation of axial mesoderm (239).
Figure 6.1: *FOXA2* is localised at 20p11.21 and consists of 3 domains (Forkhead_N, FH and HNF_C). The variant (p. S169P) is located at the FH (DNA binding) domain.
Figure 6.2 Interaction between Shh signalling pathway and FOXA2. Shh: Sonic hedgehog; PTCH1: patched 1; SMO: smoothened. SMO is under the inhibitory control of the Shh cell surface receptor PTCH1. Binding of Shh to PTCH1 releases the inhibition and activates the downstream signalling pathway.
6.3 ROLE OF FOXA2 IN MOUSE PANCREAS AND ENDODERM-DERIVED ORGANS

Foxa2 co-operates with Foxa1 and are required for the formation of endoderm-derived organs such as the liver (247), lung (248), pancreas (249) and gastrointestinal tract (250).

Sund et al. demonstrated that tissue-specific deletion of Foxa2 from the pancreatic β-cells (Foxa2loxp/loxp; Ins:Cre) leads to the development of CHI in mouse (251). Foxa2 has been implicated to control multiple pathways involved in insulin secretion form the pancreatic β-cells (252). In the islet cells of mature pancreas, Foxa2 has been shown to activate components of insulin secretion, such as sulfonylurea receptor1 [SUR1], encoding \textit{ABCC8} (252) and the inward rectifier potassium channel member 6.2 [Kir 6.2], encoding \textit{KCNJ11}(252). In humans, mutations in SUR1 (\textit{ABCC8}) and Kir 6.2 (\textit{KCNJ11}) (150, 253-256) are the most common causes of genetic forms of CHI.

Thus a mutation in this gene can potentially cause problems in the development of pituitary and pancreas, therefore segregates with the phenotype of proband A.
6.4 DESCRIPTION OF FOXA2 MUTATION (c.505T>C, p.S169P)
A novel heterozygous FOXA2 mutation (c.505T>C, p.S169P) was identified in the
affected child but not in the parents. The mutation was confirmed by Sanger
sequencing (Figure 6.3).

Homo sapiens Forkhead box A2 (FOXA2), transcript variant 1, NM_021784.4,
CDS with the position of point mutation highlighted in red
FOXA2(c.505 T>C)

ATGCACTCGGCTTCCAGTATGCTGGGAGCGGTGAAGATGGAAGGGCACGAGCCGTCCGACTGGAGCAGCT
ACTATGCAGAGCCCGAGGGCTACTCCTCCGTGAGCAACATGAACGCCGGCCTGGGGATGAACGGCATGAA
CACGTACATGAGCATGTCGGCGGCCGCCATGGGCAGCGGCTCGGGCAACATGAGCGCGGGCTCCATGAAC
ATGTCGTCGTACGTGGGCGCTGGCATGAGCCCGTCCCTGGCGGGGATGTCCCCCGGCGCGGGCGCCATGG
CGGGCATGGGCGGCTCGGCCGGGGCGGCCGGCGTGGCGGGCATGGGGCCGCACTTGAGTCCCAGCCTGAG
CCCGCTCGGGGGGCAGGCGGCCGGGGCCATGGGCGGCCTGGCCCCCTACGCCAACATGAACTCCATGAGC
CCCATGTACGGGCAGGCGGGCCTGAGCCGCGCCCGCGACCCCAAGACCTACAGGCGCAGCTACACGCACG
CAAAGCCGCCCTACTCGTACATCTCGCTCATCACCATGGCCATCCAGCAGAGCCCCAACAAGATGCTGAC
GCTGAGCGAGATCTACCAGTGGATCATGGACCTCTTCCCCTTCTACCGGCAGAACCAGCAGCGCTGGCAG
AACTCCATCCGCCACTCGCTCTCCTTCAACGACTGTTTCCTGAAGGTGCCCCGCTCGCCCGACAAGCCCG
GCAAGGGCTCCTTCTGGACCCTGCACCCTGACTCGGGCAACATGTTCGAGAACGGCTGCTACCTGCGCCG
CCAGAAGCGCTTCAAGTGCGAGAAGCAGCTGGCGCTGAAGGAGGCCGCAGGCGCCGCCGGCAGCGGCAAG
AAGGCGGCCGCCGGAGCCCAGGCCTCACAGGCTCAACTCGGGGAGGCCGCCGGGCCGGCCTCCGAGACTC
CGGCGGGCACCGAGTCGCCTCACTCGAGCGCCTCCCCGTGCCAGGAGCACAAGCGAGGGGGCCTGGGAGA
GCTGAAGGGGACGCCGGCTGCGGCGCTGAGCCCCCCAGAGCCGGCGCCCTCTCCCGGGCAGCAGCAGCAG
GCCGCGGCCCACCTGCTGGGCCCGCCCCACCACCCGGGCCTGCCGCCTGAGGCCCACCTGAAGCCGGAAC
ACCACTACGCCTTCAACCACCCGTTCTCCATCAACAACCTCATGTCCTCGGAGCAGCAGCACCACCACAG
CCACCACCACCACCAACCCCACAAAATGGACCTCAAGGCCTACGAACAGGTGATGCACTACCCCGGCTAC
GGTTCCCCCATGCCTGGCAGCTTGGCCATGGGCCCGGTCACGAACAAAACGGGCCTGGACGCCTCGCCCC
TGGCCGCAGATACCTCCTACTACCAGGGGGTGTACTCCCGGCCCATTATGAACTCCTCTTAA

105


Aminoacid sequence of FOXA2 with the point mutation at position 169 (serine) highlighted in red

FOXA2^{p.(S169P)}
Figure 6.3: Sanger Sequencing showing the point mutation in *FOXA2* (c.505 T>C)

Foxa2 WT

![Sanger Sequencing](image)

Foxa2 c.505 T>C

6.4.1 Factors Supporting Pathogenicity of the Variant

The variant is not present in control databases (ExAc, dbSNP, 1000 genome). Multiple sequence alignment shows that the serine residue at position 169 is highly conserved across different species, from drosophila, human, mouse, chicken to frog (Figure 6.4), suggesting that this residue is functionally important and has been maintained throughout evolution in different species.

Furthermore, the *FOXA2* mutation (c.505T>C, p.S169P) lies at the DNA binding domain of the transcription factor. In silico analysis using SIFT, PolyPhen, Mutation Taster predict this aminoacid substitution to have deleterious impact on the protein function.
Figure 6.4: The evolutionary conservation of the amino acid residue serine at position 169 is shown across different species such as drosophila, human, mouse, chicken and frog. DROME: drosophila; XENTR: Frog.

```plaintext
FOXO_DROME  N--EGTGKSSWMLNPEAKPGSKVRRRAASMTSRYKRRGRAKK--RVEALRQAGVWGL
FOXA2_HUMAN  RSPDKPGKGSFWTLHPDSGNM------FENGCYLRRQKRFKCEKQLAKLKEAAAGAAGS
FOXA2_MOUSE  RSPDKPGKGSFWTLHPDSGNM------FENGCYLRRQKRFKCEKQLKLKEAAAGAASS
Q98TD2_CHICK  RSPDKPGKGSFWTLHPDSGNM------FENGCYLRRQKRFKCEKQLATKDGGGGK--
FOXA2_XENTR  RSPDKPGKGSFWTLHPDSGNM------FENGCYLRRQKRFKCEKKPSLREGGGKK--
```
6.5 FUNCTIONAL ANALYSIS OF FOXA2 (c.505T>C, p. S169P):

IN VITRO EXPERIMENTS
This section describes a detailed description of various *in vitro* functional studies such as *in situ* hybridisation, immunohistochemistry, site-directed mutagenesis, dual luciferase assay, Immunocytofluorescence, western blot etc. *In vitro* studies were performed in the laboratory at the centre for endocrinology, William Harvey Research institute, London under the supervision of Dr Carles Gaston-Massuet and his team. The experiments (bacterial transformation, *in situ* hybridisation, immunohistochemistry, site-directed mutagenesis, luciferase assay and western blot) were performed by me under the guidance of research fellows-Lillina Vignola, Angelica Gualtieri and Valeria Scagliotti.
6.5 FUNCTIONAL ANALYSIS OF FOXA2(c.505 T>C, p.S169P)

6.5.1 Mice

All mice were housed with a 12-hour light/12-hour dark cycle in a temperature and humidity-controlled room (21°C, 55% humidity) with constant access to food and water. Timed pregnancies were achieved by mating females and males overnight and, the presence of vaginal plug the following morning, was considered as embryonic day (e) 0.5.

All experiments were conducted under the regulations, licenses and local ethical review of the UK Animals (Scientific Procedures) Act 1986.

6.5.2 Fixation, Embedding and Sectioning of Mouse Embryos

6.5.2.1 Fixation

The embryos at stages E11.5, E12.5, E.13.5 and E15.5 were dissected and fixed in 4% paraformaldehyde (prepared by adding 4 gram of paraformaldehyde to 100 ml of 1X PBS (phosphate buffered saline) and heating at 65°C with stirring to get a homogeneous mixture which is then cooled and filtered on 0.45um disposable filter).

Reagents used:

<table>
<thead>
<tr>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85% saline (4.25g NaCl in 500ml ddH2O)</td>
</tr>
<tr>
<td>50% ethanol</td>
</tr>
<tr>
<td>70% ethanol</td>
</tr>
<tr>
<td>4% formaldehyde in 1X PBS</td>
</tr>
</tbody>
</table>
The steps for fixation are as follows:

1. The dissected embryos were rinsed well in PBS
2. The embryos were placed in labelled 20 ml snap-cap glass vials containing 4 \% paraformaldehyde
3. The fixation was allowed to proceed at 4°C and incubated overnight.
4. The embryos were then washed twice with PBS at room temperature and decanted to remove as much solution as possible.
5. Following the previous step, the embryos were washed with 0.85\% saline (4.25g NaCl in 500ml ddH2O) which helps remove phosphate from PBS to avoid it precipitating during ethanol dehydration.
6. The embryos were incubated for 15 minutes in 50\% ethanol, at room temperature and then in 70\% ethanol for 15 minutes and stored in 70\% ethanol at 4°C.

6.5.2.2 Dehydration
The 70\% ethanol was decanted carefully without disturbing or damaging the embryos. Dehydration was carried out by adding 95\% ethanol and incubating for 20 minutes at room temperature. This step was repeated twice. Following this, the 95\% ethanol was decanted and 100\% ethanol was added and incubated for 20 minutes twice. The 100\% ethanol was replaced with xylenes and incubated for 10 minutes.

6.5.2.3 Embedding
The Xylene from the previous step was poured off and 5ml fresh Xylene was added to each vial followed by addition of 5 ml of molten wax. The samples were mixed and left overnight at room temperature to harden the mixture and enable the paraffin to be
dissolved in xylene to start impregnation of the samples. The wax/xylene mixture was melted by transferring the samples to 60°C oven. The wax/xylene mixture was then poured off from the vials and fresh molten wax was immediately added to the vials with a hot glass pipette and transferred to 60°C heating block. The vials were incubated for 1 hour at 60°C in an oven. The samples were transferred to wax-filled embedding moulds and left at room temperature to harden.

6.5.2.4 Sectioning of Paraffin Embedded Tissue
The paraffin-embedded tissue blocks were placed faced down on an ice block for 10 minutes. The microtome (Leica, Model RM2155) was set at a clearance angle of 5° to cut the blocks. The paraffin block was inserted and oriented appropriately and trimmed at an initial thickness of 10-30 µm initially to expose the tissue to the surface level. Once the tissue was exposed, the trimming was done at a thickness of about 4-5 µm. The cut sections were carefully placed on the surface of a pre-prepared water bath containing DEPC (diethyl pyrocarbonate) water at 40-45°C. The sections floating on the water-bath were picked up on to the surface of clean glass microscopic slides. The slides were then placed on warming block in a 65°C oven for 20 minutes to allow bonding of the tissue to the glass. Following this, the slides were stored upright in a slide rack and allowed to dry overnight at 37°C.
6.5.3 BACTERIAL TRANSFORMATION AND PURIFICATION OF MOUSE FOXA2 PLASMID

6.5.3.1 Bacterial Transformation

The mouse Foxa2 gene fragment (1567bp) plasmid was kindly provided by www.hdbr.org. The plasmid was transformed into DH5α competent cells using heat shock protocol.

The steps of transformation protocol are described below:

1. 50µl of DH5α competent cells were added to an Eppendorf placed on ice.
2. The Foxa2 plasmid DNA(2µl) was added, gently swirled and incubated on ice for 20 minutes.
3. The tubes were submerged in the 42°C water bath for 45 seconds. The duration of this step is critical as optimal transformation efficiency is observed when cells are heat-pulsed for 45-50 seconds.
4. Following the heat-pulse, the tubes were immediately incubated on ice for 2 minutes.
5. 500µl of LB (Lysogeny broth) medium was added to the eppendorf containing the competent cells and the plasmid DNA.
6. The tubes were then incubated at 37°C for 1 hour with shaking at 225-250 rpm.
7. The transformation mixture(100µL) was plated on LB-ampicillin agar plates.
8. The plates were incubated overnight at 37°C.
6.5.3.2 Starter Cultures and Midiprep

Four colonies were picked up from the transformation mixture plated on agar plate with sterile pipette tips. Each colony was transferred to a flask containing 100 mL of LB-broth and 100 µL of ampicillin with a concentration of 10mg/mL. These starter cultures were incubated at 37ºC overnight with shaking at 225-250 rpm. The next morning, using QIAGEN Hispeed Plasmid Midiprep kit, the plasmid DNA was purified by following the manufacturer’s instructions. This procedure is based on alkaline lysis of bacterial cells followed by adsorption of DNA onto silica in the presence of high salt. Bacteria are lysed under alkaline conditions, and the lysate is subsequently neutralized and adjusted to high-salt binding conditions, ready for purification on the QIAprep silica-gel membrane. The optimized buffers in the lysis procedure combined with the unique silica-gel membrane ensure that only DNA will be adsorbed, while RNA, cellular proteins, and metabolites are not retained on the membrane but are found in the flow-through. Salts are efficiently removed by a brief wash step with Buffer PE. High-quality plasmid DNA is then eluted from the QIAprep column.

The purified plasmids are quantified using NanoDrop. The plasmid concentrations obtained from each colony were as follows (Figure 4.7):

Colony 1 104.7 ng/µL
Colony 2 89 ng/ µL
Colony 3 120.2 ng/ µL
Colony 4 108.9 ng/ µL
Figure 6.5: Agarose gel electrophoresis depicting the four bacterial colonies (double linear band representing a colony)
6.5.4 PREPARATION OF FOXA2 mRNA PROBE AND LABELLING

6.5.4.1 Linearization of Plasmid (Digestion with BamHI enzymes)

Following isolation of Foxa2 plasmid DNA, a diagnostic restriction digest was performed with endonuclease BamHI (from Bacillus amyloliquefaciens to confirm the cloning of Foxa2 into the plasmid. The gel image of the diagnostic restriction digest is shown in figure 4.8. The concentration of the linearized plasmid was quantified using NanoDrop and the final concentration obtained was 174ng/µL.

Figure 6.6: mouse Foxa2 linearized plasmid (the single band represents mFoxa2 shown along with standard DNA ladder)
6.5.4.2 Digoxigenein (DIG) Labelled RNA Antisense Probe Transcription

DIG labeled RNA antisense probes are widely used for *in situ* hybridization due to their high sensitivity and specificity. These probes are highly stable and used for long-term studies.

The following reagents were used during the labelling:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearized Foxa2 plasmid</td>
<td>5.75µL</td>
</tr>
<tr>
<td>DNA labeling mix (Digoxigenein)</td>
<td>2µL</td>
</tr>
<tr>
<td>Transcription buffer</td>
<td>2µL</td>
</tr>
<tr>
<td>RNAase inhibitor</td>
<td>0.5µL</td>
</tr>
<tr>
<td>T3 RNA polymerase</td>
<td>1µL</td>
</tr>
<tr>
<td>RNase and DNase free water</td>
<td>8.25µL(added to make up the total volume to 20 µL)</td>
</tr>
</tbody>
</table>

The above reagents were added to an Eppendorf and incubated for 2-4 hours at 37°C. The efficiency of transcription was assessed by running 0.5 µL on 1% agarose gel with 1 Kb ladder (Figure 4.9)
Figure 6.7: Agarose gel showing the probe after transcription (from left to right: the first band represents the standard DNA ladder, the second single band is the linearized plasmid and the right most band is the probe).

4.6.4.3 Probe Purification

To the 20µL of the transcription reaction (probe), 40µL DEPC water was added to increase the total volume to 60µL. The probe was cleaned by passing through a spin column (CHROMA SPIN-1000 DEPC-H20 columns, BD Biosciences) and inverting the column up and down. The column is then placed in a 15 ml falcon tube and centrifuged at 700g for 5 minutes at 4°C to dry the columns.
6.5.5 IN SITU HYBRIDIZATION

6.5.5.1 Pre-Hybridization Treatment

Reagents used:

<table>
<thead>
<tr>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>4% paraformaldehyde (PFA) - made by adding 16g of PFA, 40 ml 10*PBS, 200µL NaOH, made up to 300ml with DEPC water</td>
</tr>
<tr>
<td>Histoclear</td>
</tr>
<tr>
<td>Ethanol at various concentrations: 100%, 90%, 70%, 50%, 25%</td>
</tr>
<tr>
<td>Proteinase K (20 µg/ml)</td>
</tr>
<tr>
<td>Triethanolamine (0.1M)</td>
</tr>
<tr>
<td>Acetic anhydride</td>
</tr>
</tbody>
</table>

The paraffin slides with mouse embryos (E11.5, E12.5, E13.5 and E15.5) were subjected to deparaffinisation and hydration by washing with the following reagents as follows:

- Histoclear twice for 10 minutes
- 100% ethanol twice for 2 minutes
- 90% ethanol twice for 1 minute
- 50% ethanol twice for 1 minute
- 25% ethanol twice for 1 minute
- 1% PBS for 2 minutes

Sections were deparaffinised, rehydrated through decreasing ethanol dilutions, fixed with 4% PFA, incubated with proteinase K, fixed again with 4% PFA and finally incubated with 0.1 M triethanolamine, 0.1% acetic anhydride.
6.5.5.2 Hybridization

Reagents used:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybmix (50% formamide, 0.3M sodium chloride, 0.02M Tris HCl, 0.005M EDTA, 10% Dextran sulphate, 1*Denhardt’s solution):</td>
<td>500µL (100 µL/slide)</td>
</tr>
<tr>
<td>RNAase inhibitor:</td>
<td>0.5 µL (1 µL/ml)</td>
</tr>
<tr>
<td>tRNA:</td>
<td>25 µL (0.5mg/ml)</td>
</tr>
<tr>
<td>SSC(saline sodium citrate) solution(175.3 g sodium chloride, 88.2 sodium citrate)</td>
<td></td>
</tr>
</tbody>
</table>

RNAase inhibitor, tRNA and anti-sense probe at 2:100 dilutions were added to the slides and mixed briefly. Hybmix was added to the slides followed by addition of formamide and SSC. The slides were incubated overnight at 55-65 °C.

6.5.5.3 Post Hybridization Washing

The slides were further washed with SSC, formamide at hybridization temperature in a glass staining trough in a water bath. The slide rack was first washed in 2XSSC for 10 minutes. After removing the cover slips from each slide, they were washed with formamide twice for 10 minutes each. The slides were washed again in SSC at hybridization temperature and then were allowed to cool to room temperature.
6.5.5.4 Antibody Detection

The following steps were followed for antibody detection:

1. The slides were washed with buffer consisting of 0.1M Tris-HCl Ph 7.5 and 0.15M sodium chloride.
2. Following this, 10% fetal calf serum, 1ml per slide was added and then left to stand for 1 hour (blocking antibody).
3. The slides were then drained and 0.5 ml of anti-Dig antibody (Sigma-Aldrich) was added to each slide and incubated in humid chamber at 4 °C overnight.
4. The next day, the slides were washed with 0.1 M Tris-HCl Buffer (pH = 7.5, 0.15 M Sodium chloride) followed by 0.1 M Tris-HCl Buffer (pH = 9.5, 0.1 M Sodium chloride and 0.05M magnesium chloride)
5. PVA (Polyvinyl alcohol)-0.5ml/slide was added to 0.1 M Tris-HCl Buffer (pH = 9.5, 0.1 M Sodium chloride and 0.05M magnesium chloride) to form buffer-PVA mix. PVA helps to concentrate and enhance the development process.
6. 4-Nitro blue tetrazolium chloride solution (NBT, Sigma-Aldrich), 4.5μl/ml and 5-Bromo-4-chloro-3-indolyl phosphate disodium salt (BCIP, Sigma-Aldrich), 3.5 μl/ml were added to the buffer-PVA mix.
7. 0.5ml of the above solution was added to each slide and incubated at room temperature.
8. Once the slides were developed sufficiently, they were washed in running tap water and placed at 50 °C for 15 minutes to remove residual PVA.
9. The slides are then dehydrated by separate alcohol series as below:

- Ethanol 25% for 1 minute
- Ethanol 50% for 1 minute
- Ethanol 75% for 30 seconds
- Ethanol 100% for 30 seconds
- Histoclear for 10 minutes

10. Following alcohol dehydration, the slides were mounted in vector mount and images were acquired using a Leica microscope.

6.5.6 IMMUNOHISTOCHEMISTRY

Paraffin-embedded human tissue samples at 6, 8 and 13 weeks of gestation were obtained from the Human Developmental Biology Resource (Institute of Genetic Medicine, Newcastle, and Institute of Child Health, London; www.hdbr.org).

The main steps involved in immunohistochemistry are:

- Deparaffinisation and rehydration
- Heat induced antigen retrieval
- Addition of primary antibody
- Addition of secondary antibody

6.5.6.1 Deparaffinisation and Rehydration

The slides were washed consecutively with the following reagents:

- Histoclear for 5 minutes
- 100% ethanol for 2 minutes
- 75% ethanol for 2 minutes
- 50% ethanol for 2 minutes
- 25% ethanol for 2 minutes
- Water for 5 minutes
6.5.6.2 Heat Induced Antigen Retrieval

1. The slides were incubated with citric buffer (Citric acid 10Mm, Ph 6.0-prepared by adding 1.2 g of citric acid in 500 ml of water. NaOH 10M was added until the Ph was 6.0).
2. The slides are then placed in a microwave, heated under the following settings and cooling down in each step to avoid over-boiling:
 - Power 70 for 3 minutes
 - Power 90 for 3 minutes
 - Power 90 for 3 minutes
 - Power HI for 3 minutes
3. Following this, the slides were removed from the microwave and allowed to stand in the citric acid buffer at room temperature for 1 hour.

6.5.6.3 Addition of Primary Antibody

1. The slides were rinsed with PBT (1XPBS, 1ml of 0.1% Triton X-100) for 5 minutes.
2. To each slide, 200µl of blocking buffer (5% normal goat serum) was added.
3. The slide was covered with a parafilm and allowed to stand for an hour at room temperature.
4. To each slide, 200µL of primary antibody (primary rabbit monoclonal antibody against hFOXA2 (Thermo Fisher Scientific; 701698; 1:250) was added, covered with a parafilm and incubated overnight at 4°C.
6.5.6.4 Addition of Secondary Antibody

1. The slides were rinsed with PBT by gentle agitation.

2. To each slide, 200µL of secondary biotinylated goat anti-rabbit antibody (Vector Laboratories; BA-1000; 1:300) was added

3. The slides were incubated for 1 hour at room temperature

4. Following this, the slides were washed with PBT and mounted

5. Images were acquired using a Leica microscope
6.5.7 HUMAN FOXA2 PLASMID

Full length cDNA of human FOXA2 (GENE Bank RefSeq NM 021784.4) was cloned in ORF mammalian expression vector pCMV3 (pCMV3-hFOXA2, Sino Biological Inc). The physical map of the plasmid is shown in figure 4.10. The plasmid information is shown in table 4.3.

Table 6.1: Human FOXA2 insert in pCMV3

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forkhead box A2, FOXA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>cDNA size</td>
<td>1392bp</td>
</tr>
<tr>
<td>RefSeq</td>
<td>NM 021784.4</td>
</tr>
<tr>
<td>Vector name</td>
<td>pCMV3-untagged</td>
</tr>
<tr>
<td>Vector size</td>
<td>6223 bp</td>
</tr>
<tr>
<td>Promoter</td>
<td>CMV</td>
</tr>
<tr>
<td>Antibiotic resistance</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>Restriction site</td>
<td>KpnI + XbaI (6.1kb + 1.39kb)</td>
</tr>
</tbody>
</table>
Figure 6.8: Physical map of plasmid(pCMV3) with FOXA2 insert cloned into the open reading frame(ORF).
6.5.7.1 Verification of Plasmid by Sequencing

As PCR based cloning carries the risk of insertion of mutations depending on the fidelity of DNA polymerase used, the entire FOXA2 insert in the vector pCMV3 was sequenced to confirm no mutations have been inserted by error.

The primer sequences of the oligonucleotides used to sequence FOXA2 insert in pCMV3 vector the insert are shown below:

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>T7 Promoter</td>
<td>TAATACGACTCACTATAGGG</td>
</tr>
<tr>
<td>FOXA2_F</td>
<td>CCCTACGCCAACATGAACTCC</td>
</tr>
<tr>
<td>FOXA2_R</td>
<td>GTCGTTGAAGGAGAGCGAGTG</td>
</tr>
<tr>
<td>BGH Reverse</td>
<td>TAGAAGGCACAGTCGAGG</td>
</tr>
</tbody>
</table>
6.5.8 MUTAGENIC PRIMER DESIGNING

The mutagenic primers were designed according to the following guidelines from the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies).

1. Both of the mutagenic primers must contain the desired mutation and anneal to the same sequence on opposite strands of the plasmid.

2. Primers should be between 25 and 45 bases in length.

3. Melting temperature (Tm) of the primers as estimated by the following formula should be ≥78°C.

\[
Tm = 81.5 + 0.41(\% GC) - \frac{675}{N} \quad \% \text{mismatch}
\]

N is the primer length in bases

\% GC and \% mismatch must be whole numbers

4. For primers designed to introduce insertions or deletions, the following formula should be used

\[
Tm = 81.5 + 0.41(\%GC) - \frac{675}{N}
\]

N does not include the bases, which are being inserted or deleted.

5. The desired mutation should be in the middle of the primer with ~10-15 bases of correct sequence on both sides.

6. Optimally, the primers should have a minimum GC content of 40% and should terminate in one or more C or G bases.
Table 6.2: Mutagenic Primers used to insert mutations in the FOXA2 gene carried in the vector

<table>
<thead>
<tr>
<th>Forward primer</th>
<th>CAAAGCCGCCCTACCCTACGTACATCTCGCTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Primer</td>
<td>GAGCGAGATGTACGGTAGGGCCGCTTTTG</td>
</tr>
</tbody>
</table>

6.5.9 SITE-DIRECTED MUTAGENESIS (SDM)

The SDM reaction was prepared on ice in thin-walled PCR tubes utilizing the designed mutagenic primers and the double-stranded DNA vector containing the wild-type gene as shown in the table.

6.5.9.1 SDM reaction

Table 6.3: SDM reaction preparation

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 X Reaction Buffer</td>
<td>5 μL</td>
</tr>
<tr>
<td>dNTP mix</td>
<td>1 μL</td>
</tr>
<tr>
<td>Forward mutagenic primer</td>
<td>125 ng</td>
</tr>
<tr>
<td>Reverse mutagenic primer</td>
<td>125 ng</td>
</tr>
<tr>
<td>Quickchange solution</td>
<td>1 μL</td>
</tr>
<tr>
<td>Vector</td>
<td>94 ng</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>To a final volume of 50 μL</td>
</tr>
<tr>
<td>PfuTurbo DNA Polymerase (2.5 U/ μL)</td>
<td>1 μL</td>
</tr>
</tbody>
</table>
The SDM reaction was put on to the PCR machine on the program “MARK SDM” for 12 cycles according to the settings shown below.

Table 6.4: PCR settings for the SDM reaction

<table>
<thead>
<tr>
<th>Stage</th>
<th>Cycles</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>95 °C</td>
<td>1 minute</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>95 °C</td>
<td>50 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60 °C</td>
<td>50 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68 °C</td>
<td>1 minute/kb of plasmid length</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>68 °C</td>
<td>7 minutes</td>
</tr>
</tbody>
</table>

After the PCR cycles, the PCR product was cooled on ice and assessed by running 10µL on 1% agarose gel with HyperLadder(BIOLINE). The image is shown as below (figure 4.11).

Figure 6.9: PCR product verified on 1% agarose gel (from left to right: standard DNA HyperLadder and the single linear band on the right side of the image represents hFOXA2 plasmid).
6.5.9.2 Digestion
After the PCR cycles, the product from the SDM reaction was cooled by placing on ice for 2 minute and Dpn I restriction enzyme (1 μL; 10 u/μL) was added to the reaction mixture. It was mixed thoroughly first by pipetting and then spinning the mixture in a microcentrifuge for 1 minute. The reactions were then incubated at 37°C for 1 hour. Dpn I is a restriction enzyme that recognises and cuts the methylated plasmid DNA and digests them leaving behind the mutation-containing synthesized DNA.

6.5.9.3 Transformation
‘Pure Gold’ ultra-competent cells at -80 °C were taken out and thawed gently on ice. 45 μL of the ultra-competent cells were added to new tubes and labelled. Following this, 2 μL of β-mecaptoethanol was added to each tube, put on ice for 10 minutes. To this, 2 μL of PCR product from the SDM reaction were added to the tubes and stirred using pipette. The mixture was left to stand on ice for 30 minutes. After 30 minutes, the transformation reactions were heat-pulsed for 30 seconds in 42°C water bath. The reactions were then placed on ice for 2 minutes and 500 μL of pre-warmed LB medium (42°C) was added. Following this, the reaction mixtures were put on a shaker at 37°C for 1 hour.

6.5.9.4 Inoculating Agar Plates
250 μL of the transformed cells were added to the middle of agar plates at 37°C. The transformed cells were spread uniformly across the plate using a sterile spreader. The plates were incubated overnight at 37°C.
6.5.9.5 Starter Cultures, Midiprep and Double Digestion

One individual colony picked up from the transformation mixture plated on agar plate with sterile pipette tips. Each colony was transferred to a flask containing 100 mL of LB-broth and 100 µL of ampicillin with a concentration of 10mg/mL. These starter cultures were incubated at 37ºC overnight with shaking at 225-250 rpm. The next morning, using QIAGEN Hispeed Plasmid Midiprep kit, the plasmid DNA was purified by following the manufacturer’s instructions. This procedure is based on alkaline lysis of bacterial cells followed by adsorption of DNA onto silica in the presence of high salt. Bacteria are lysed under alkaline conditions, and the lysate is subsequently neutralized and adjusted to high-salt binding conditions, ready for purification on the QIAprep silica-gel membrane. The optimized buffers in the lysis procedure combined with the unique silica-gel membrane ensure that only DNA will be adsorbed, while RNA, cellular proteins, and metabolites are not retained on the membrane but are found in the flow-through. Salts are efficiently removed by a brief wash step with Buffer PE. High-quality plasmid DNA is then eluted from the QIAprep column.

The purified plasmids are quantified using NanoDrop. The concentration of the mutant plasmid hFOXA2 was 314 ng/ µL. The restriction enzymes KpnI and XbaI, 1 µL each, were added to 1 µg or 3.2 µL of the plasmid along with 3 µL of buffer and ddH₂O to make up the total volume of the mixture to 30 µL. The restriction enzymes cleave the plasmid at the respective sites resulting in its linearization. The point mutation in the mutant plasmid was confirmed by sanger sequencing.
6.5.10 DUAL LUCIFERASE REPORTER(DLR) ASSAY

Principle

Luciferases are a class of oxidative enzymes found in several species that enable the organisms to produce bioluminescence or emit light. Under experimental conditions, by transfecting mammalian cells with a genetic construct containing the luciferase gene under the control of a promoter gene of interest, the transcriptional activity of the gene of interest can be measured and quantified by the luciferase reporter activity(257).

Dual reporter assay is a genetic reporter system that is used to study the effect of gene expression and transcriptional activity in eukaryotes. The dual reporter refers to the simultaneous expression and measurement of two individual reporter enzymes (experimental reported and control reporter) within a single system. While the experimental reporter correlates with the effect of the specific experiment, the control reporter serves as a baseline and provides as an internal control.

The Dual-Luciferase Reporter (DLR™) Assay allows the measurement of activities of two enzymes-firefly (Photinus pyralis) luciferase and Renilla (Renilla reniformis) luciferase from a single sample.
Firefly luciferase is a 61kDA monomeric protein that functions as a genetic reporter immediately upon translation. The bioluminescent reaction from firefly luciferase is shown below (Figure 4.12):

Figure 6.10: Bioluminescent Reaction-Firefly luciferase (Photinus pyralis) [Adapted from Dual-Luciferase® Reporter Assay System Technical Manual TM040]

\[
\text{Luciferin} + \text{O}_2 + \text{ATP} \rightarrow \text{Oxyluciferin} + \text{CO}_2 + \text{AMP} + \text{PPi} + \text{LIGHT} \quad \text{Luciferase}
\]

Renilla luciferase is a 36kDA monomeric protein that catalyses the conversion of coelenterazine to coelenteramide with the help of oxygen. The bioluminescent reaction is shown below (Figure 4.13):

Figure 6.11: Bioluminescent reaction-Renilla luciferase (Renilla reniformis) [Adapted from Dual-Luciferase® Reporter Assay System Technical Manual TM040]
In the DLR™ Assay, Luciferase Assay Reagent (LAR II) is added first to measure and quantify the firefly luciferase reporter luminescence. The reaction is quenched and is followed by addition of Stop & Glo reagent to the same tube that simultaneously initiates the Renilla luciferase luminescent reaction which then decays over the course of the measurement. This integrated assay format provides a rapid quantification of both the reporters in transfected cells.

The luminescent signals generated in the Dual-Luciferase Reporter (DLR™) Assay by firefly and Renilla luciferases are shown below (figure 4.14):

Figure 6.12: Comparison of luminescent signals generated by firefly and Renilla luciferases

[Adapted from Dual-Luciferase® Reporter Assay System Technical Manual TM040]
The transcriptional assay experiment using DLR assay consists of the following steps

1. Culture of HEK293T cells and seeding in 24-well plates
2. Addition of reagents containing the wild type and mutant protein with promoter to the cells in the well plate
3. Transfection the cells with Opti-Mem and Lipofectamine
4. Obtaining the cell lysate and measurement of luciferase activity in luminometer

6.5.10.1 Cell culture and Transfection

Reagents used:

<table>
<thead>
<tr>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>phGT2-294-promoter-luc reporter</td>
</tr>
<tr>
<td>Renilla SV-40(pRL-SV40 (Promega))</td>
</tr>
<tr>
<td>hFOXA2(Wt)</td>
</tr>
<tr>
<td>hFOXA2(mutant)</td>
</tr>
<tr>
<td>pBluescript</td>
</tr>
<tr>
<td>Opti-MEM</td>
</tr>
<tr>
<td>Lipofectamine 2000 Reagent</td>
</tr>
</tbody>
</table>
6.5.10.1.1 Cell culture

HEK293T cells were grown in Dulbecco modified Eagle medium (DMEM) supplemented with 10% FBS. 2.5 x 10^5 cells/well were seeded in 24-well plates.

Table 6.5: Quantity of reagents added to each well plate is shown

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renilla SV-40</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
</tr>
<tr>
<td>pGL2(empty)</td>
<td>200 ng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hFOXA2(Wt)</td>
<td>25 ng</td>
<td>50 ng</td>
<td>75 ng</td>
<td>150ng</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hFOXA2(mutant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25 ng</td>
<td>50 ng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pBluescript</td>
<td>200ng</td>
<td>200ng</td>
<td>175ng</td>
<td>150ng</td>
<td>125ng</td>
<td>50ng</td>
<td>175ng</td>
<td>150ng</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Renilla SV-40</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
</tr>
<tr>
<td>phGT2-294</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
</tr>
<tr>
<td>hFOXA2(Wt)</td>
<td></td>
<td>25 ng</td>
<td>50 ng</td>
<td>75 ng</td>
<td>150ng</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hFOXA2(mutant)</td>
<td>75ng</td>
<td>150ng</td>
<td></td>
<td></td>
<td></td>
<td>25ng</td>
<td>50ng</td>
<td></td>
</tr>
<tr>
<td>pBluescript</td>
<td>125ng</td>
<td>50ng</td>
<td>300ng</td>
<td>275ng</td>
<td>250ng</td>
<td>225ng</td>
<td>150ng</td>
<td>250ng</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Renilla SV-40</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td>100ng</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phGT2-294</td>
<td></td>
<td>100ng</td>
<td>100ng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hFOXA2(Wt)</td>
<td>25 ng</td>
<td>50 ng</td>
<td>75 ng</td>
<td>150ng</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hFOXA2(mutant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25ng</td>
<td>50ng</td>
<td>150ng</td>
<td></td>
</tr>
<tr>
<td>pBluescript</td>
<td>275ng</td>
<td>250ng</td>
<td>225ng</td>
<td>150ng</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.5.10.1.2 Transfection

1. Opti-Mem medium 150 μL was added to each well.
2. Lipofectamine (2.5 μL) was diluted with 50 μL of Opti-MEM medium and mixed for 5 minutes and added to each well to allow transfection.
3. The transfected HEK293T cells and the cells are incubated at 37°C for 24 hours.

6.5.10.1.3 Preparation of Cell Lysates

1. Passive Lysis Buffer 1X working solution was prepared by adding 1 volume of 5X Passive Lysis Buffer to 4 volumes of distilled water and mixing well.
2. The growth medium was removed from the cultured cells and sufficient amount of phosphate buffered saline(PBS) was added to wash the surface of the culture vessel.
3. 100 μL of 1X Passive Lysis Buffer was added to each well and the culture plates were placed on a rocking platform at room temperature for 15 minutes.

6.5.10.1.4 Preparation of Luciferase Assay Reagent II (LAR II)

LAR II was prepared as per the manufacturer’s instructions by re-suspending the lyophilized Luciferase Assay Substrate in 10 ml of Luciferase Assay Buffer II.
6.5.10.1.5 Preparation of Stop & Glo Reagent

Stop & Glo is supplied at 50X concentration. 1 volume of 50X stop & Glo substrate was added to 50 volumes of Stop & Glo buffer.

The steps followed to record the luciferase activities from the luminometer are described below and represented in figure 4.15:

1. The luminometer was set to dispense 100μL of luciferase and the injector was primed initially with 100 μL LAR II.
2. 20 μL of the cell lysate was added to the wells of the multiwell plate.
3. The samples were then placed in the luminometer which will cause the LAR II solution to be injected into the reaction vessel.
4. The measurement of the luciferase activity was recorded by the attached computer.
5. Following this, the luminometer was formatted to dispense 100 μL of Stop & Glo reagent.
6. As before, 20 μL of the cell lysate was added to the wells of the multiwell plate and the Renilla luciferase activity was recorded.
Figure 6.13: Sequential steps inside the luminometer

[Adapted from Dual-Luciferase® Reporter Assay System Technical Manual TM040]
6.6 BRIEF DESCRIPTION OF SPECIFIC METHODS

6.6.1 *In situ* hybridization

Wild type mouse embryos at different embryonic stages of development (e11.5, e12.5, e13.5, e15.5 and e18.5) were collected, fixed with 4% paraformaldehyde (PFA) and washed in PBS before proceeding with paraffin embedding. Following this, the paraffin-embedded embryos were sectioned at 7 μm thickness for histochemical evaluation. Using decreasing ethanol dilutions, the sections were deparaffinised, rehydrated and fixed with 4% PFA and incubated with triethanolamine and acetic anhydride. The digoxigenin-labeled anti-sense probe for mFoa2 was generated by *in vitro* transcription using T3 RNA polymerase and hybridization was carried out overnight at 65°C. The sections were washed in 0.1 M Tris-HCl Buffer followed by 1 hour blocking at room temperature and overnight incubation at 4°C with anti-Dig antibody. Detection of mFoa2 was achieved by colorimetric reaction using 4-Nitro blue tetrazolium chloride solution and 5-Bromo-4-chloro-3-indolyl phosphate disodium salt Images were acquired using a Leica microscope.
6.6.2 Immunohistochemistry

Paraffin-embedded human embryonic tissue samples at 6, 8 and 13 weeks of gestation were obtained from the Human Developmental Biology Resource (Institute of Genetic Medicine, Newcastle, and Institute of Child Health, London; www.hdbr.org). The sections were deparaffinised and rehydrated through decreasing ethanol dilutions. This was followed by heat-induced antigen retrieval with a microwave in 10 mM sodium citrate buffer (pH 6). The sections were incubated for 1 hr in blocking buffer [1XPBS, 0.1% Triton X-100, 5% Normal Goat Serum (Vector Laboratories)]. Endogenous hFOXA2 was detected with a primary rabbit monoclonal antibody against hFOXA2 (Thermo Fisher Scientific; 701698; 1:250) followed by a secondary biotinylated goat anti-rabbit antibody (Vector Laboratories; BA-1000; 1:300). Staining was achieved using DAB Peroxidase Substrate Kit (Vector Laboratories; SK-4100). The colorimetric reaction was stopped with washes in water and the sections were counterstained using Haematoxylin (Sigma-Aldrich). Images were acquired using a Leica microscope.

6.6.3 Plasmids and Site-Directed Mutagenesis

Full length cDNA of human FOXA2 (GENE Bank RefSeq NM 021784.4) was cloned in ORF mammalian expression vector pCMV3 (pCMV3-hFOXA2, Sino Biological Inc). E.coli DH5α competent cells were transformed with hFOXA2 (cDNA size: 1392 bp). The detected mutation was introduced by site-directed mutagenesis using QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies) according to the manufacturer’s instructions (primers used, Forward strand: 5’-CAAAGGCCGCTACCCGTACATCTCGCTC-3’. Reverse strand: 5’-GAGCGAGATGTACGGGTAGGGCGGCTTTT-3’). Sanger sequencing confirmed the point mutation.
6.6.4 Cell Culture and Luciferase Assays

HEK293T cells were grown in Dulbecco modified Eagle medium (DMEM) supplemented with 10% FBS. 2.5 \times 10^5 cells/well were seeded in 24-well plates. phGT2-294-promoter-luc reporter (kindly provided by Professor Yong-Ho Ahn), 200ng and Renilla SV-40, 100ng were transiently co-transfected with either i) equal amounts (50 ng and 75 ng) of Wt or mutant p.S169P hFOXA2 expression plasmids or ii) both Wt and mutant p.S169P hFOXA2 expression plasmid (25 ng or 37.5 ng of each plasmid) using Lipofectamine 2000 (Life Technologies) according to the manufacturer's instructions. 500 ng of pBluescript plasmid was added to keep the total amount of transfected DNA constant. The cells were harvested 24h after transfection and the luciferase activity was measured using the Dual-Luciferase Reporter Assay System (Promega) in a BMG LABTECH Microplate reader (Omega, Germany) according to manufacturer's instructions. Firefly luciferase activity was normalised to the Renilla luciferase expression from pRL-SV40 (Promega). The experiments were independently repeated four times in triplicates and statistical analysis was performed using one-way ANOVA.

6.6.5 Western Blotting

Equal amounts (200 ng) of Wt or mutant p.S169P hFOXA2 expression plasmids were transiently transfected in HEK293T cells in 24-well plates using Lipofectamine 2000 and harvested 24 hours after the transfection in a lysis buffer. 300 ng of pBluescript plasmid were added to each transfection mix to maintain the total amount of DNA constant at 500 ng. The samples were than loaded on 12% polyacrylamide gel and transferred on a nitrocellulose membrane. Using 5% dried skimmed milk in PBS-T, the nonspecific binding sites were blocked for 1h. This was followed by the incubation of membrane overnight at 4°C with the primary antibody, rabbit anti-FOXA2 followed by
one-hour incubation with IRDye 800CW Donkey anti-rabbit antibody. Anti-GAPDH (Santa Cruz; 1:5000, rabbit polyclonal) levels were used to normalise the total level of protein. Blots were analysed using Odyssey 2.1 Imaging System (LI-COR Biosciences). The experiments were independently repeated six times and the statistical analysis was performed using one-way ANOVA.

6.6.6 Immunocytofluorescence

1 x 10^5 cells/well were seeded in 4-well cell culture slide (Millipore, Fisher Scientific) and transiently transfected with 200 ng of Wt or mutant p.S169P hFOXA2 expression plasmids and 300 ng of pBluescript plasmid using Lipofectamine 2000 according to the manufacturer’s instructions. 24h after transfection, the cells were fixed in 2% PFA in 1X PBS for 10 min and washed with 1X PBS three times. Samples were permeabilised with 0.1% Triton X-100 in 1X PBS for 30 min and blocked with blocking buffer (5% Normal Goat Serum in 1X PBS) for 30 min. The staining was performed by incubating the samples with α-FOXA2 antibody (Thermo Fisher Scientific; 701698, 2ug/ml) in blocking buffer for 1h, followed by a 30 min incubation with goat α-rabbit Alexa fluor 594 (ThermoFisher Scientific; 1:250) and α-PHALLOIDIN Alexa fluor 488 (Molecular Probes; 1:1000) antibodies. The cell nuclei were stained with DAPI (4′,6-diamidino-2-phenylindole).
6.7 RESULTS FROM THE *IN VITRO* EXPERIMENTS
6.7.1 *Foxa2* mRNA expression during Murine Embryonic Development

The mRNA expression panels are shown in figure 6.5.

At embryonic day e11.5 (A) *Foxa2* mRNA transcripts were expressed within the midbrain (MB) and ventral hindbrain (HB). The mRNA was also localised to a few cells localised in the forebrain (FB) (A, asterisk). At this stage of development, no transcripts were detected in the primordium of the anterior pituitary gland, the Rathke’s pouch (RP) (dotted line in A and A’), or in the infundibulum (Inf).

At e12.5 (B and B’) *Foxa2* mRNA transcripts were detected in the epithelial structures lining the main bronchus (MBr) (B, arrowhead) and in the epithelium lining the lung and oesophagus (B’, arrowheads). By e13.5, expression of *Foxa2* appears localised in the ventral side of the anterior lobe (AL) of the developing pituitary gland (C, arrow) with transcripts localised in the ventral marginal zone (C’, arrowhead). *Foxa2* mRNA expression was stronger at e15.5 (D) with robust expression in the ventral diencephalon (VD) (asterisk), posterior lobe (PL) and anterior lobe (AL) (arrowheads in D’) of the pituitary gland. At embryonic day e18.5 (E), expression was found widespread in the central nervous system, with strong expression in the lumen surrounding the lateral ventricles (LV) (E, arrowheads) and the third ventricle (TV) (E, asterisks). The mRNA expression was also localised in in the hypothalamic area (Hyp) (E’, arrowheads) at e18.5 with distinct pattern in the luminal area where the hypothalamic precursors tanycytes reside (arrowheads in E’). mRNA transcripts were also localised in both the posterior and anterior lobes of the pituitary gland (arrows in E’).
Figure 6.14: mRNA expression of Foxa2 during mouse embryonic development

A-D represent sagittal sections, with anterior to the left side, and E is a coronal section. A’, C’, D’, E’ show higher-magnification views of the boxed areas in A, C, D, E, respectively. Abbreviations: midbrain, MB; hindbrain, HB; forebrain, FB; Rathke’s pouch, RP; infundibulum, Inf; main bronchus, MBr; lung, Lu; oesophagus, OE; ventral diencephalon, VD; pituitary gland posterior lobe, PL; pituitary gland anterior lobe, AL; lateral ventricles, LV; third ventricle, TV; hypothalamus, Hyp. Scale bars represent: 50 μm (A’, B, C’, D’); 100 μm (B’), 250 μm (A, C, D, E’); 500 μm (E).
6.7.2 FOXA2 Expression during Human Embryonic Development

The hFOXA2 expression panels are shown in figure 6.6.

The immunohistochemical analysis in human embryos at various developmental stages showed FOXA2 expression at 6 weeks of gestation (Carnegie stage 16) (A, figure 6.6) and in the developing neural tube (NT) (A’) and diencephalon (Dc) (arrowheads in A’’). The expression is localised in the epithelium surrounding the third ventricle (TV) (B’) and in the cells lining the diencephalon (Dc) from 8 weeks of gestation (arrowheads in B’’). (Carnegie stage 23) No expression of Foxa2 was detected in the primordium of the pituitary gland (Rathke’s pouch, RP) at CS16 (A’’’) nor in the developing pituitary gland at CS23 (B’’’). In the pancreas at 13 weeks of gestation (C) Foxa2 was specifically localised in the cytoplasm of cells scattered in the pancreatic parenchyma (cells pointed by arrowheads in C’ and C’’).
Figure 6.15: FOXA2 expression during human embryonic development

A-C represent coronal sections of human embryos at 6 weeks (Carnegie stage 16), 8 weeks (Carnegie stage 23) and 13 weeks of gestation, respectively. A’-C’’ show higher-magnification views of the boxed areas in A, B, C, respectively. Abbreviations: neural tube, NT; diencephalon, Dc; Rathke’s pouch, RP; pituitary gland, P; third ventricle, TV. Scale bars represent: 50 μm (A’, A’’, A’’’, B’, C’’); 100 μm (B’’, B’’’), 250 μm (C’).
6.7.3 Immunocytofluorescence

Using double immunofluorescence on transiently transfected HEK293T cells, it was demonstrated that both the Wt hFOXA2 and mutant hFOXA2 are expressed in the nucleus and the mutation did not result in changes to cellular localization.

Figure 6.16: Double-immunofluorescence using anti-FOXA2 antibody (red A,B) and anti-PHALLOIDIN (green A’,B’) performed in HEK293 cells transiently transfected with either 200 ng of Wt hFOXA2 (A-A’’) or mutant hFOXA2 p.S169P (B-B’’) shows nuclear expression of both Wt and mutant FOXA2 (A,B) which overlaps with the nuclear DNA marker DAPI staining (A’’, B’’) but not with the cytoskeletal marker phalloidin. Abbreviation: DAPI, 4’,6-diamidino-2-phenylindole. Scale bars in A and B represent 10 µm.
6.7.4 Dual Luciferase Transcriptional Assay

Transcriptional activation assay was performed using the GLUT2 promoter coupled to luciferase (phGT2-294-promoter-luc) and using HEK293T cells. HEK293T cells were transiently co-transfected with equal quantities of Wt hFOXA2 or mutant hFOXA2 p.S169P and it was demonstrated that the hFOXA2 p.S169P significantly impaired the transcriptional activation of the GLUT2 luciferase reporter (Figure 6.8).
The serine to proline change in position 169 of hFOXA2 results in decreased protein expression levels leading to impairment of transcriptional activation of the human GT2 promoter. Dual luciferase assay in HEK293T cells transiently transfected with 50 ng or 75 ng of Wt hFOXA2 or mutant hFOXA2 p.S169P indicates that Wt hFOXA2 is able to transactivate the human GT2 reporter, whilst the hFOXA2 p.S169P transcriptional activation is impaired.
6.7.5 Western Blot Assay

The quantification of protein expression using western blot showed that mutant hFOXA2 p.S169P resulted in significantly reduced protein expression levels compared to the Wt hFOXA2 (figure 6.9). Three independent western blots showed that the levels of the variant hFOXA2 p.S169P protein were reduced compared to the Wt hFOXA2, indicating that the mutation is functional and affects protein levels.
Graph of the quantification of the western blots as percentage of Wt hFOXA2 and hFOXA2 p.S169P normalised to GAPDH indicates that hFOXA2 p.S169P variant results in half of the protein expression levels compared to Wt hFOXA2 (results from 6 independent experiments; **** $p<0.0001$, one-way ANOVA). Abbreviation: NT, non-transfected; Wt, wild-type.
6.8 DISCUSSION

Deletions within the cytogenetic location 20p11.2 which contains FOXA2 as one of the genes have been noted to be associated with clinical phenotype that include hypopituitarism, central nervous system (CNS) defects, hypoglycaemia, facial dysmorphic features and congenital abnormalities of the heart, liver and gastrointestinal tract (258-262). The minimal critical region in this region of 20p11.2 has been mapped to contain 20 genes including FOXA2 (261) (258). All the patients reported to have the 20p11.2 chromosomal deletion have hypopituitarism, CNS abnormalities and facial dysmorphic features as shared features, strongly indicating that a gene or multiple genes within this chromosome region have a key role in CNS, pituitary and facial development.

Proband A with the rare clinical phenotype of hypopituitarism, CHI, dysmorphic features, liver, pancreas, heart and gastrointestinal abnormalities was found to have a de novo heterozygous mutation in the developmental transcription factor FOXA2 thus identifying the gene responsible for the clinical phenotype of hypopituitarism and hypoglycaemia at the 20p11.2 region. The c.505T>C, p.S169P genetic variant occurring at the conserved forkhead DNA binding domain may provide tissue-specific gene regulation important for the development of multiple organs. The biochemical data demonstrate that the mutation impairs the transcriptional activation of FOXA2 resulting in lower activation of the glucose transporter type 2 gene (GLUT2).
Furthermore, the clinical phenotype of proband A: hypopituitarism, CHI and facial dysmorphic features overlaps with the clinical data published in patients with 20p11.2 deletions (258-262). The impaired transcriptional activation of the phGT2-294-promoter-luc reporter and significant reduction in the protein expression by hFOXA2 p.S169P compared to wild type hFOXA2 demonstrates the pathogenicity of the mutation.

The key signalling pathways important in ventral midline, pituitary and CNS development such as Shh signalling have been shown to be regulated by FOXA2. Data from in vivo studies using Wnt1:Cre;Foxa2^flox/flox embryos showed that Foxa2 has an early role in the initiation of Shh expression (244). Hence it is potentially possible that hFOXA2 mediates the development of pituitary by regulating the expression of Shh. Furthermore, the expression of intracellular transducers and downstream targets of Shh signalling such as Ptch1,Gli1 and Gli2, which regulate the patterning of the ventral midbrain (246) have been shown to be downregulated by Foxa2 in combination with Foxa1.

The midline defects encountered in proband A such as single median maxillary central incisor (SMMC), congenital nasal pyriform aperture stenosis (CNPAS) are often associated with pituitary abnormalities, as described in an extensive literature review by Lo et al. (263). The authors described that hypopituitarism or growth hormone deficiency were present in 43-48% of patients with CNPAS or SMMC. This is consistent with the clinical presentation of proband A, who has hypopituitarism along with hypoplastic pituitary, thin corpus callosum and thin pituitary stalk on the MRI.
The potential role of FOXA2 in the pituitary development is suggested by the detection of Foxa2 mRNA transcripts from the early stages of mouse pituitary and brain embryonic development. Furthermore, the detection of hFOXA2 by immunohistochemistry in human embryos at various developmental stages, along with the biochemical experiments demonstrating that the variant p.S169P mutation in FOXA2 impairs transcriptional activation and protein expression levels, strongly indicate that FOXA2 has a pivotal role in hypothalamic-pituitary axis formation in humans.

Hypoglycaemia in CHI is caused by unregulated insulin secretion while in hypopituitarism it is due to the lack of counter-regulatory hormonal response due to the deficiency of ACTH and GH. Diagnosis can often be challenging, as the hallmark of CHI is detectable insulin in the presence of hypoketotic hypoglycaemia while hypopituitarism causes ketotic hypoglycaemia. The coexistence of hypopituitarism along with a persistent form of hyperinsulinism, as encountered in proband A, is extremely uncommon. Almost half of the patients with persistent CHI do not have mutations in the already recognized genes known to cause CHI. Genetic diagnosis is important as it will inform the prognosis, recurrence risk and guide the medical management besides providing valuable insight into β-cell physiology. The negative mutations in the known CHI genes in proband A together with strong biochemical evidence of CHI makes it highly likely that the CHI is due to a novel genetic aetiology (FOXA2). The immunohistochemistry data from this study supports this as there is a good expression of hFOXA2 in the developing human pancreas and a functional role of the hFOXA2 p.S169P mutation.
The closure of ATP dependent potassium channels situated on the β-cell membrane with the resultant depolarization of the membrane results in glucose-stimulated insulin secretion by the exocytosis of the insulin granules (264, 265). The most common form of genetic CHI is due to the mutations in genes encoding the KATP channels (ABCC8 and KCNJ11) (264, 265). Lantz et al. demonstrated that when SUR1 or Kir6.2 promoter/luciferase reporter was transfected with Foxa2 expression plasmids, Foxa2-Sur1 promoter constructs showed 6-fold activation and 4-fold activation was demonstrated on Foxa2-kir6.2 constructs implying a vital role of Foxa2 in the transcriptional activation of the KATP subunits (252). Mutations in HADH cause CHI in humans. HADH encodes L-3-Hydroxyacyl-CoA-dehydrogenase (HADH), an enzyme involved in the penultimate step of the beta-oxidation pathway (266). Foxa2 has also been shown to directly target HADH causing its transcriptional activation (252, 267) in mice experiments. Pancreatic β-cell specific knock out of Foxa2 in mice has been shown to have a 3-fold downregulation of Hadh mRNA resulting in severe hyperinsulinaemic hypoglycaemia (251, 268). Wang et al. demonstrated that mRNA levels of glucokinase(GCK) is decreased upon induction with Foxa2 in rat insulinoma cell line (INS-1) while loss of Foxa2 function causes GCK upregulation (196).

The regulation of genes involved in insulin secretion by FOXA2 is represented in the figure 6.10.
Figure 6.19: Regulation of genes involved in insulin secretion by FOXA2. FOXA2 upregulates KCNJ11, ABCC8, HADH and downregulates GCK.
The main role of GLUT2, located in the plasma membrane of the pancreatic \(\beta \)-cells, liver, kidney, intestine and its main role is to facilitate the transport of glucose across the membrane and the secretion of insulin (197). The mRNA level of GLUT2 is influenced by the plasma concentrations of glucose and insulin (269). Cha et al demonstrated GLUT2 has binding sites for FOXA2 and showed that the promoter activity of GLUT2 is synergistically activated by HNF1 and HNF3\(\beta \) (268). The reduction in the transcriptional activation of the GLUT2 reporter (phGT2-294-promoter-luc) by the mutant hFOXA2 (p.S169P) shown in the transcriptional luciferase assay experiment, could imply that the GLUT2 tissue expression is reduced in the pancreatic \(\beta \)-cells contributing to CHI in proband A.

Furthermore, data from Lantz et al., demonstrate that FOXA2 potentially affects the activation of other genes involved in the insulin secretion, and thus a potential candidate gen for CHI. It is also plausible that Foxa2 could play a role in the development of the pancreas as well as \(\beta \)-cells. Foxa2 has not only been shown to regulate Pdx1, a homeobox gene essential for pancreatic development (267) but has also been linked to regulating the mRNA levels of pancreatic transcription factors such as Hnf4\(a \) and Hnf1\(a \), mutations of which can cause monogenic forms of diabetes. However, some studies contradict that Foxa2 is an upstream regulator of Pdx1,Hnf4\(a \) and Hnf1\(a \) (269). While it has been shown that \(\beta \)-cell-specific deletion of Foxa2 in mice causes a phenotype of hypoglycaemia (251), it also has been demonstrated it can cause downregulation of Pdx1 mRNA causing the reduction of PDX-1 protein levels in the pancreatic islets (270) and a targeted \(\beta \)-cell-specific deletion of Pdx1 results in diabetes in transgenic mice (271). Thus, FOXA2 is a crucial transcription factor that controls the expression of multiple genes involved both in glucose sensing
and glucose homeostasis and therefore has a potential role in diseases involving insulin secretion and glucose homeostasis.

Diazoxide is used as an effective treatment in majority of patients with CHI except in those situations where the CHI is due to mutations abolishing the KATP channel activity (\textit{ABCC8} or \textit{KCNJ11}) or activating mutations in \textit{GCK}. Proband A’s response to the treatment with diazoxide could potentially imply that the KATP channel activity has not completely abolished by the variant p.S169P.

\textit{FOXA2} (p.S169P) is the first disease-causing mutation in proband A with an extremely rare complex phenotype of CHI, cranio-facial dysmorphic features, CH, cardiac, liver and gastrointestinal abnormalities. Identification of the genetic cause contributing to such a unique clinical phenotype will help medical management and provide valuable insights into molecular mechanisms underlying pituitary development and \(\beta\)-cell physiology.
CHAPTER 7

CLINICAL PHENOTYPE AND WHOLE EXOME SEQUENCING RESULTS
(FAMILY B)
7.1 SUMMARY OF CHAPTER 7

Chapter 7 begins with the detailed description of the phenotype of proband B from Family B, results from whole exome sequencing followed by a detailed discussion of compound heterozygous ASXL3 mutations (c.2965C>G, p.R989G and c.3078G>C, p.K1026N).

The manuscript of this chapter is now published. The pdf of the published version is attached in the appendix.
7.2 CLINICAL INFORMATION (PROBAND B)

Proband B is a 16-year-old Caucasian British boy born at full term following an induction of labour by ventouse delivery to non-consanguineous Caucasian British parents. The antenatal scans were normal and the birth weight was 4.1 kg (1.84 SDS). He was admitted to the neonatal unit as he was noted to be grunting soon after birth. Whilst in the special care, he had feeding difficulties and required tube feeding. At 4 months of age he required surgical fixation for scaphocephaly. He had bilateral undescended testes and required orchidopexy. From 5 weeks of age he had persistent severe constipation and required daily bowel washouts from 18 months of age followed by colostomy at 3 years. He also has global developmental delay and complex learning difficulties requiring additional support at school. He also has been diagnosed with autism. He was referred to endocrinology assessment of his severe short stature at 7 years of age (-4.11 SDS, Mid Parental Height: -1.1 SDS). He was found to have a normal growth hormone (GH) response (peak GH 11.7µg/l) (Normal: >6.7 µg/l) to an arginine stimulation test. He had a bone age delay of 3 years and the IGF1 was persistently low at 4.9nmol/l (-3.2 SDS). The other baseline pituitary hormones including thyroid function, ACTH, prolactin and cortisol concentrations were all within the normal range. A trial of hGH (50µg/kg/day) was ineffective in improving height velocity (Figure 7.1). An IGF1 generation test after 33 µg/kg of hGH did not produce any response. Subsequently, recombinant IGF1 therapy (mecasermin) was commenced which resulted in improvement of height velocity to -3SDS (Figure 7.1). He has dysmorphic features such as strabismus, prominent forehead and nasal bridge, thin lips, small lower jaw, low set cupped ears, short fifth fingers on both hands, short stature, thickened toenails on his little toes of his feet. He has a normal muscle tone and normal deep tendon reflexes. His cranial MRI scan of brain and spine were
normal. The hearing has been normal. The echocardiogram and renal ultrasound did not identify any abnormalities. The plasma amino acids, urine organic acids, pyruvic acid analysis were within the normal limits. CGH microarray did not reveal any copy number changes. Targeted sequencing of *IGF1*, *IGF1R* and *GHR* did not reveal any mutations. Currently, the patient continues to require rIGF1 therapy to improve his height. The weight gain continues to be suboptimal (Figure 7.1).
Figure 7.1: Growth chart showing height and weight. Improvement in height velocity was noted after commencement of rIGF1

Figure 7.2: Pedigree of Family B
7.3 WHOLE EXOME SEQUENCING RESULTS FROM FAMILY B

In this family, whole-exome sequencing was performed on both the parents (unaffected) and the affected child. Assuming a *de novo* inheritance pattern, filters were applied to whole-exome data as shown in the figure 7.3. The potential candidate variants are listed in the table 7.1.

Figure 7.3: De Novo variant analysis of proband B

De Novo Variant Analysis of Proband B (* Novel variants include variants present in at least 5% minor allele frequency in 1000 Genomes Project, ExAC and NHLBI ESP exomes excluded; ** Predicted deleterious variants included nonsynonymous coding, splice site, frameshift, stop gain variants; *** Variants present in heterozygous state in the child and not present in both the parents)

- Total variants in 3 family members
- Novel variants*
- Predicted deleterious**
- Genetic analysis ***
The list of de novo variants in proband B are shown below in the table 7.1:

Table 7.1: List of de novo variants in Proband B

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Gene region</th>
<th>Protein variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>PEL1</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ZBTB11</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CORIN</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>EHMT1</td>
<td>Exonic</td>
<td>p.A275V</td>
</tr>
<tr>
<td>11</td>
<td>DPF2</td>
<td>Exonic</td>
<td>p.W369R</td>
</tr>
<tr>
<td>17</td>
<td>KSR1</td>
<td>Exonic</td>
<td>p.T137P</td>
</tr>
<tr>
<td>19</td>
<td>POP4</td>
<td>Exonic</td>
<td>p.I177F</td>
</tr>
</tbody>
</table>

A brief description of these genes is presented next. From the available biological information about these genes, the phenotype of proband B could not be explained with variations in these genes.
Description of de novo variants from proband B

PEL1

From the current literature, the biological information on this gene function is limited.

ZBTB11 (Zinc Finger and BTB Domain Containing 11)

From the current literature, the biological information on this gene function is limited.

CORIN (corin, Serine Peptidase)

This belongs to the member of the type II transmembrane serine protease class of the trypsin superfamily that converts pro-atrial natriuretic peptide to biologically active atrial natriuretic peptide (272). Missense mutations of this gene have been associated with pre-eclampsia (273).

EHMT1 (Euchromatic Histone Lysine Methyltransferase 1)

The protein encoded by this gene is a histone methyltransferase that is part of the E2F6 complex, which represses transcription. Mutations in this gene are associated with 9q subtelomeric deletion syndrome, Kleefstra syndrome (274).

DPF2 (Double PHD Fingers 2, also called as Requiem)

This protein functions as a transcription factor which is necessary for the apoptotic response (275).

KSR1 (Kinase Suppressor of Ras 1)

This gene promotes phosphorylation of Raf family members and activation of MAPK1 and/or MAPK3 (276).
POP4 (Processing of Precursor 4)

This gene encodes one of the protein subunits of the small nucleolar ribonucleoprotein complexes: and is involved in processing of precursor RNAs (277).

Assuming a recessive inheritance, the filtering strategy applied to whole-exome sequencing data.

Figure 7.4: Recessive Inheritance Analysis

Recessive Variant Analysis of Proband B (* Novel variants include variants present in at least 3% minor allele frequency in 1000 Genomes Project, ExAC and NHLBI ESP exomes excluded; ** Predicted deleterious variants included nonsynonymous coding, splice site, frameshift, stop gain variants; *** Variants present in homozygous/compound heterozygous state in the child)

<table>
<thead>
<tr>
<th></th>
<th>Total variants in 3 family members</th>
<th>Novel variants*</th>
<th>Predicted deleterious**</th>
<th>Genetic analysis***</th>
</tr>
</thead>
<tbody>
<tr>
<td>62168</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3598</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>681</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The list of compound heterozygous/homozygous variants from proband B are shown below in table 7.2

Table 7.2: List of compound heterozygous/homozygous variants in Proband B

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Gene region</th>
<th>Protein variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST1L</td>
<td>Exonic</td>
<td>p.H81D/p.G300fs*89</td>
</tr>
<tr>
<td>12</td>
<td>KLRF2</td>
<td>Exonic</td>
<td>p.T98R</td>
</tr>
<tr>
<td>13</td>
<td>PABPC3</td>
<td>Exonic</td>
<td>p.R272del/p.Q292*</td>
</tr>
<tr>
<td>14</td>
<td>WDR89</td>
<td>Exonic</td>
<td>p.D98E/p.C89Y</td>
</tr>
<tr>
<td>18</td>
<td>ASXL3</td>
<td>Exonic</td>
<td>p.R989G/p.K1026N</td>
</tr>
</tbody>
</table>
Description of Homozygous and Compound Heterozygous variants from proband B

MST1L (Macrophage Stimulating 1 Like)
This is a protein coding gene with limited information on its biological function from the current literature.

KLRF2 (Killer Cell Lectin Like Receptor F2)
This gene comprises of an activating homodimeric C-type lectin-like receptor (CTLR), expressed on natural killer cells and stimulates their cytotoxicity and cytokine release (278).

PABPC3 (Poly(A) Binding Protein Cytoplasmic 3)
PABPC3 is an important component of the 3-prime poly(A) tail of eukaryotic mRNA and required for the shortening of poly(A) and initiation of translation (279).

WDR89 (WD Repeat-Containing Protein 89)
There is no biological information on the function of this gene from the current literature.

ASXL3 (Additional Sex Combs Like 3, Transcriptional Regulator)
This gene encodes a protein containing a plant homeodomain (PHD) zinc finger domain that plays a role in the regulation of gene transcription. Nonsense and frameshift mutations in this gene have been associated with Bainbridge Roper’s syndrome (BRPS). *ASXL3* and BRPS have been described in detail in the next section.
7.4 BAINBRIDGE-ROPERS SYNDROME (BRPS)

Bainbridge-Roper's syndrome (BRPS: OMIM: 615485) was described for the first time by Bainbridge and his colleagues in the year 2013 (280). *De novo* truncating mutations in the additional sex combs-like 3 (ASXL3) gene are implicated in BRPS characterised by severe intellectual deficit, feeding difficulties, failure to thrive and cranio-facial features (280-283). BRPS has been reported only in a few patients in the literature (280-283). Majority of the patients had either frameshift or truncating mutations in ASXL3. Splicing mutation in ASXL3 resulting in BRPS has been reported in one patient (282). BRPS has overlapping clinical phenotype with Bohring-Opitz syndrome (BOS: OMIM: 605039), a developmental syndrome characterised by a severe intellectual deficit, distinct posture and cranio-facial abnormalities, feeding problems and failure to thrive [Bohring et al., 2006]. *De novo* truncating mutations in ASXL1, belonging to the same family as ASXL3 have been implicated to cause BOS (284).
7.5 ASXL3: GENE DESCRIPTION

ASXL3 belongs to the ASXL gene family, the mammalian homologues of Drosophila Asx. ASXL1, ASXL2 and ASXL3 are the three orthologues of ASXL. They encode the Putative Polycomb group (PcG) protein that has a role in regulating the homeotic genes (Hox)(285). PcG proteins have a role in regulating the Hox genes by either as transcriptional repressors or activators (285). ASXL group of genes share a common domain architecture consisting of ASXN, ASXM1, ASXM2(HARE-HTH associated) domains, ASXH and a PHD finger (Figure 7.5), and have a tendency to form complexes with other proteins via methylation of histones (283, 285, 286).

The deubiquitination of histone H2A lysine 119(H2AK119Ub1), a component of the Polycomb repressive deubiquitination (PR-DUB) complex is dependent on ASXL3 (283). The formation of PR-DUB complex is critical for normal function. The mono-ubiquitin (Ub1) from the H2AK119Ub1 is removed by the interaction of ASXL3 with BAP1 a ubiquitin terminal hydroxylase (287). Srivastava et al. demonstrated a significant increase in the H2AK119Ub1 due to impaired deubiquitination in the fibroblasts of patients with BRPS (283).

The expression of ASXL3 in human tissues have been studied and it was found that in the human brain, ASXL3 expression was found in the white matter, insula, cingulate gyrus and amygdala (288). The expression of ASXL3 and ASXL1 follow a similar pattern, however the ASXL3 expression is relatively less compared to ASXL1, which may explain the overlap of some phenotypic features seen in BRPS and BOS (289). The spinal cord, kidney, bone marrow and liver also express ASXL3, but at a lower level when compared to ASXL1 (289).
Figure 7.5: ASXL3 gene with domains
In this study, by WES, a novel compound heterozygous mutation in ASXL3 was identified in proband B with severe short stature secondary to IGF1 (Insulin Growth Factor 1) deficiency, developmental delay, intellectual deficit, cranio-facial abnormalities. This gene has been explored in detail as the phenotype of proband B segregates with that of BRPS. However, this is the first time, a compound heterozygous mutation in ASXL3 contributing to BRPS with primary IGF1 deficiency has been described.

7.6 EXOME SEQUENCING

A detailed description of the exome sequencing workflow is described in chapter 4.

DNA extracted from blood samples of the child and both the biological parents (trio) using the QIAmp DNA blood Midi Kit (Qiagen, Hilden, Germany) as per the manufacturer’s instructions. The samples (3 µg/sample) were sheared with the Picoruptor to a size approximately 150-200 bp. The samples were cleaned with 1.8x AMPure beads (Agencourt) and end repaired at 20°C for 30 minutes. The products were A tailed by incubation at 37°C for 30 minutes, cleaned with AMPure beads again and ligated to index adapters at 30°C for 10 minutes to make a pre-capture library using the Agilent Sureselect XT target enrichment system for Illumina. Exons were captured using SureSelect XT Human All Exon V5 capture library and DNA sequencing was carried out using the Illumina HiSeq4000 at 2x150 bp paired-end sequencer.
7.7 BIOINFORMATICS

The sequence data were aligned to the reference genome (GRCh37/hg19). Reads were mapped to the reference sequences using BWA mem version 0.7.5a with default parameters (290). The mapped reads were locally re-aligned to improve the alignments around small insertions/deletions (indels) using the Genome Analysis Tool Kit (GATK) version 2.1.13 (291). The read duplicates were identified and filtered to retain only a single representative, using the Picard “MarkDuplicates” tool, version 1.85. Base quality scores were recalibrated using GATK BaseQualityScoreRecalibrator(BQSR). BQSR is a module of GATK to create more accurate base qualities, which in turn improves the accuracy of our variant calls. Functional consequences of the variants identified were annotated using SnpEff. The variants present in at least 5 % minor allele frequency in 1000 Genomes Project, dbSNP142, and NHLBI ESP exomes were excluded. The predicted deleterious variants included non-synonymous coding, splice site, frameshift, stop gain variants.

The conservation of the positions of the two mutations in proband B, R989G and K1026N, was assessed using the UCSC Genome Browser (292). General, sequence-based assessment of the potentially deleterious nature of the mutations was carried out with PolyPhen-2 (293) and SIFT (293). Bespoke interpretation considered predictions of intrinsic disorder made with IUPred (294). Matches to known protein linear motifs were sought in the ELM database (295) and the general likelihood of regions to harbour such motifs – known or novel – was assessed with SLiMPre (296) and ANCHOR (297).
7.8 ASXL3 MUTATIONS IN PROBAND B

Two novel heterozygous mutations in ASXL3 [NM_030632.1]: c.2965C>G, p. R989G inherited from the mother and c.3078G>C, p. K1026N, inherited from the father were found in the proband B. The mutations were subsequently confirmed by Sanger sequencing (Figure 7.6).

Figure 7.6: Compound heterozygous mutations, confirmed by sanger sequencing

C.2695 C>G

C.3078 G>C
7.8.1 Description of ASXL3 Compound Heterozygous Mutations

The mutations occur in exon 11 and proximal part of exon 12 (Figure 7.6). Both the mutated positions are strongly conserved at the protein level as visualised using the UCSC Genome browser. The conservation is across vertebrates as diverse as lemur, bat, fish and frog, implying that mutation could potentially affect the protein structure or function. Besides, *in silico* analyses using PolyPhen-2 and SIFT predict the amino acid substitutions to be potentially deleterious to the protein function.

Exon 11 and proximal part of exon 12 harbour most of the pathogenic mutations in ASXL3. The reported mutations in ASXL3 retain the ASXN and ASXH domains. In proband B, both the compound heterozygous mutations lie on exon 11 and proximal exon 12, and retain the ASXN and ASXH domains similar to previously described mutations (Figure 7.7). Both these mutations occur on the conserved ASXM1 domain in ASXL3 (Figure 7.7) and hence could potentially contribute to the loss of function of the protein contributing to the BRPS like phenotype.
Figure 7.7: ASXL3 gene with domains. 1-12 represent the exon numbers. Some of the previously reported frameshift, truncating and splice site mutations have been shown. Compound heterozygous mutations in proband B are highlighted in bold.
Proband B has features that overlap with those described in previous reported cases of BRPS (Table 7.3)

Table 7.3: Comparison of phenotypic features of proband B with patients with BRPS reported in the literature

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Proband B</th>
<th>Bainbridge et al. (4 patients)</th>
<th>Dinwiddie et al. (1 patient)</th>
<th>Srivastava et al. (3 patients)</th>
<th>Hori et al. (1 patient)</th>
<th>Balasubramanian et al. (12 patients)</th>
<th>Kuechler et al. (6 patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeding problems</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>9/12</td>
<td>6/6</td>
</tr>
<tr>
<td>Failure to thrive</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short stature</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>2/12</td>
<td>2/6</td>
<td></td>
</tr>
<tr>
<td>IUGR</td>
<td>-</td>
<td>3/4</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craniofacial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigonocephaly</td>
<td>-</td>
<td>1/4</td>
<td>+</td>
<td>1/3</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcephaly</td>
<td>-</td>
<td>2/4</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Scaphocephaly</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Palate</td>
<td>High arched</td>
<td>1/4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>High arched(9/12)</td>
<td>High arched(5/6)</td>
</tr>
<tr>
<td>Prominent forehead</td>
<td>+</td>
<td>2/4</td>
<td>ND</td>
<td>1/3</td>
<td>ND</td>
<td></td>
<td>5/6</td>
</tr>
<tr>
<td>Prominent eyes</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Palpebral fissures</td>
<td>downslanting</td>
<td></td>
<td>upslanting</td>
<td>downslanting(2/3)</td>
<td>-</td>
<td>Downslanting-10/12</td>
<td>downslanting</td>
</tr>
<tr>
<td>Nasal bridge</td>
<td>long</td>
<td>-</td>
<td>depressed</td>
<td>Broad(1/3)</td>
<td>depressed</td>
<td>Long, prominent</td>
<td>6/6(prominent columella)</td>
</tr>
<tr>
<td>Low set ears</td>
<td>+</td>
<td>1/4</td>
<td>ND</td>
<td>1/3</td>
<td>-</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Posteriorly rotated ears</td>
<td>Cupped ears</td>
<td>2/4</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>Anteverted nares</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>1/3</td>
<td>-</td>
<td>ND</td>
<td>5/6</td>
</tr>
<tr>
<td>Small chin</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>2/3</td>
<td>+</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Ophthalmic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strabismus</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>1/3</td>
<td>+</td>
<td>7/12</td>
<td>5/6</td>
</tr>
<tr>
<td>Astigmatism</td>
<td>myopia</td>
<td>ND</td>
<td>Myopia(1/3)</td>
<td>Hyperopia(1/3)</td>
<td>myopia</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Neurological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developmental delay</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>6/6</td>
</tr>
<tr>
<td>Intellectual deficit</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2/3</td>
<td>+</td>
<td>12/12</td>
<td>5/6</td>
</tr>
<tr>
<td>Seizures</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>1/3</td>
<td>-</td>
<td>3/12</td>
<td>2/6</td>
</tr>
<tr>
<td>Autism</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>9/12</td>
<td>Not formally diagnosed</td>
</tr>
<tr>
<td>Other Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>large fontanelle</td>
<td>+</td>
<td>1/4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Undescended testes</td>
<td>+</td>
<td>1/4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Chronic constipation</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>1/3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

+: present -:not present; ND: not described

A possible molecular mechanism by which the first of the mutations R989G might lead to a functional defect is suggested by a detailed bioinformatics analysis. An analysis of ELM (Eukaryotic Linear Motif) database shows a stretch of amino-acid residues from the position 989 to 997 within the wild-type ASXL3 that matches with an interaction motif (LIG_14-3-3_CanoR_1; Accession ELME000417) that describes canonical phosphopeptide binding motif of 14-3-3 group of proteins.

14-3-3 proteins are important cell regulators (298), and are best known for their role in cell cycle control. The main determinant of interaction with 14-3-3 proteins is the mutated arginine at position 989 together with a phosphorylated serine residue, 3-5 residues downstream. Besides, the 14-3-3 proteins also have been implicated as histone modification readers (299). This links suggestively to the recently determined role of ASXL3 in histone deubiquitination (283). According to this hypothesis, mutation of R989 to glycine would prevent the interaction of ASXL3 with an as-yet unidentified 14-3-3 protein, thereby damaging function through the impairment of its ability to scaffold epigenetic protein complexes (300). Although appealing, it should be pointed at that there is currently no evidence of phosphorylation of any of the relevant Serine residues in the PhosphoSite database (301). However, the content of this database is obviously restricted to cell types and experimental conditions already sampled so the absence does not disprove the hypothesis.
The presence of the R989G mutation in the mother implies that the additional presence of the K1026N is required for pathogenesis. The molecular mechanism for this remains unclear at this point but at least three possibilities can be proposed - 1) the second mutation perturbs the functionality of an additional phosphorylation-dependent 14-3-3 binding motif covering nearby residues 1036-1043; 2) although not lying at one of currently defined key positions, the K1026N mutation affects phosphorylation of ASXL3 through its location within recognition motifs for kinases (PIKK group, motif from 1024-1030 or GSK3, motif from 1024-1031); or 3) the mutation destroys or creates an interaction motif not currently in the ELM database: the list of such motifs continues to grow (295). The molecular defects caused by the two mutations would specify the disorder additively or synergistically by simultaneously impacting on two points of the molecular interaction network of ASXL3.
7.9 ASSOCIATION WITH PRIMARY IGF1 DEFICIENCY

The association of primary IGF1 deficiency in BRPS has not been described before. In normal individuals, IGF-1 circulates as part of a ternary complex with a molecular weight of 150 kDa. IGF-1, acid-labile subunit (ALS), and a protein that binds IGF-1 (IGFBP-3) combine and constitute the ternary complex. IGF-1 is a 70-amino acid peptide hormone and growth factor that is structurally homologous to proinsulin (302). A low basal IGF-1 ≤ -3 SDS with a height of ≤ -3 SDS with normal or elevated levels of GH is indicative of primary IGF-1 deficiency (302). The insulin-like growth factor 1 receptor (IGF1R), is the specific receptor for IGF-1, the binding of which mediates the action. The binding of IGF1 to IGF1R initiates intracellular signalling and IGF-1 is one of the most potent natural activators of the Akt signalling pathway, which stimulates cellular growth and proliferation (303).

In patients with BRPS, the transcriptome analysis of ASXL3 fibroblasts examining the differentially expressed genes (DEGs) showed that the genes regulating the cellular proliferation are downregulated (283). Since IGF1 plays a vital role in activating the Akt signalling pathway, a potent stimulator for cell proliferation and growth (304) it is possible that ASXL3 potentially has a role in transcriptional activation of IGF1 involved in this pathway potentially via epigenetic mechanisms which could be contributing to short stature encountered in these patients (305).

7.10 CONCLUSION

The compound heterozygous mutations thus potentially contribute to the loss of function in ASXL3, causing a phenotype similar to BRPS. Although with our current knowledge, the molecular interaction between ASXL3 and IGF1 is unclear, it may be important to look for IGF1 deficiency in patients with ASXL3 mutation.
CHAPTER 8

CLINICAL PHENOTYPE AND WHOLE EXOME SEQUENCING RESULTS

(FAMILY C)
Chapter 8 begins with the detailed description of the phenotype of proband C from family C and describes the results from whole exome sequencing followed by a detailed discussion of \textit{de novo} frameshift mutation, p.Gly539fs*4 (c.1611_1614dupAAAA) in \textit{CaMKK2}
8.2 CLINICAL INFORMATION (PROBAND C)

Proband C is a male infant born to non-consanguineous healthy British parents at 33 weeks gestation by normal vaginal delivery with a birth weight of 1.85 kg. He presented at 7 months of age with a hypoglycaemic seizure (true blood glucose: 1.9 mmol/L). There had been a history of irritability settling with feeds, 6 weeks prior to the presentation. The investigations showed an elevated plasma insulin of 37 pmol/L at the time of hypoglycaemia (1.2 mmol/L) with inappropriately suppressed free fatty acids (<100 umol/L) and beta hydroxyl butyrate (<100 umol/L), suggestive of a diagnosis of CHI.

The 18F-DOPA PET CT scan was suggestive of a diffuse disease. The hypoglycaemia responded to diazoxide therapy (10 mg/kg/day). He has developmental and speech delay. Genetic testing performed at the University of Exeter Medical School, Exeter was negative for mutations in KCNJ11, ABCC8, GLUD1, GCK, HADH, HNF4A, INSR, SLC16A1, TRMT10A and HNF1A.

Figure 8.1 Pedigree of Family C
8.3 WHOLE EXOME SEQUENCING RESULTS OF FAMILY C

In this family, whole-exome sequencing was performed on both the parents (unaffected) and the affected child. Assuming a de novo inheritance pattern, filters were applied to whole-exome data as shown in the figure 8.2. The potential candidate variants are listed in the table 8.1.

Figure 8.2: De Novo variant analysis of Family C

De Novo Variant Analysis of Family C (* Novel variants include variants present in at least 5% minor allele frequency in 1000 Genomes Project, ExAC and NHLBI ESP exomes excluded; ** Predicted deleterious variants included nonsynonymous coding, splice site, frameshift, stop gain variants; *** Variants present in heterozygous state in the child and not present in both the parents)

- Total variants in 3 family members
- Novel variants*
- Predicted deleterious**
- Genetic analysis***
Table 8.1: List of *de novo* variants from Proband C

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Gene region</th>
<th>Protein variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IGFN1</td>
<td>Exonic</td>
<td>p.S1583G</td>
</tr>
<tr>
<td>4</td>
<td>CNOT6L</td>
<td>Exonic</td>
<td>p.Q510fs*4</td>
</tr>
<tr>
<td>4</td>
<td>ABCE1</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>STOX2</td>
<td>Exonic</td>
<td>p.V108F</td>
</tr>
<tr>
<td>6</td>
<td>NUP153</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PEX7</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>KMT2C</td>
<td>Exonic</td>
<td>p.N279D</td>
</tr>
<tr>
<td>8</td>
<td>VPS13B</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>SPATC1</td>
<td>Exonic</td>
<td>p.V332del</td>
</tr>
<tr>
<td>9</td>
<td>ORM2</td>
<td>Exonic</td>
<td>p.Y96S</td>
</tr>
<tr>
<td>12</td>
<td>KMT2D</td>
<td>Exonic</td>
<td>p.S4919fs*13</td>
</tr>
<tr>
<td>12</td>
<td>CAMKK2</td>
<td>Exonic</td>
<td>p.G539fs*4</td>
</tr>
<tr>
<td>17</td>
<td>EFNB3</td>
<td>Exonic</td>
<td>p.G280fs*7</td>
</tr>
</tbody>
</table>
Brief Description of de novo Variants

IGFN1 (Immunoglobulin-Like and Fibronectin Type III Domain Containing 1)
Mansilla et al. showed that *IGFN1* is expressed in skeletal muscle and plays a role in ribosomal protein synthesis (306).

CNOT6L (CCR4-NOT Transcription Complex Subunit 6 Like)
CNOT6 was characterized by Chen et al. following expression in a yeast strain lacking the endogenous yeast *Ccr4* gene and was found to show poly(A) exonuclease activity against a substrate containing five 3-prime adenines (307).

ABCE1 (ATP Binding Cassette Subfamily E Member 1)
The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes.

STOX2 (Storkhead Box 2)
Nagase et al. by RT-PCR ELISA detected highest expression of *STOX2* in whole adult brain and heart, followed by fetal brain and adult spleen and ovary (308).

NUP153 (Nucleoporin 153)
Nuclear pore complexes regulate the transport of macromolecules between the nucleus and cytoplasm. Walther et al. localized Xenopus NUP153 to the nuclear ring of the nuclear pore complex (309).
PEX7 (Peroxisomal Biogenesis Factor 7)

Disease associated with *PEX1* mutation include Rhizomelic chondrodysplasia punctata, type 1(310).

KMT2C (Lysine Methyltransferase 2C)

This gene is a member of the myeloid/lymphoid or mixed-lineage leukaemia (MLL) family and ubiquitously expressed in testis and ovary, followed by brain and liver (311).

VPS13B (Vacuolar Protein Sorting 13 Homolog B)

This gene encodes a potential transmembrane protein that may function in vesicle-mediated transport and sorting of proteins within the cell. This protein may play a role in the development and the function of the eye, hematological system, and central nervous system.

SPATC1 (Spermatogenesis And Centriole Associated 1)

Using immunohistochemical analysis Spatc1 expression was found in exclusively in mouse testis, in the cytoplasm of spermatocytes, spermatocytes undergoing meiotic division, round spermatids, and condensed spermatids (312).

ORM2 (Orosomucoid 2)

ORM2 is key acute phase plasma protein and is increased in acute inflammation, and thus classified as an acute-phase reactant.
KMT2D (Lysine Methyltransferase 2D)

The protein encoded by this gene is a histone methyltransferase that methylates the Lys-4 position of histone H3 and mutations associated with this gene is associated with Kabuki syndrome (8). Although Kabuki syndrome can be associated with hyperinsulinaemic hypoglycaemia, this gene was excluded as proband C did not have any dysmorphic features that may suggest Kabuki syndrome.

EFNB3 (Ephrin B3)

EFNB3 is expressed in the midterm fetus, the highest *EFNB3* mRNA level in brain, followed by heart, kidney, and lung; in adults the expression is restricted to brain and is particularly high in forebrain subregions, suggesting that *EFNB3* is important in both brain development and maintenance (313).

CaMKK2 (Ca$^{2+}$/calmodulin-dependent protein kinase 2)

Ca$^{2+}$/calmodulin-dependent protein kinase 2 (*CaMKK2*) belongs to the Serine/Threonine protein kinase family and alternative splicing results in multiple transcripts encoding distinct isoforms.

In mice, lacking *CaMKK2* in their islets (*CaMKK2*−/−), the insulin levels were significantly high when compared to their wild-type littermates (*CaMKK2*+/+), suggesting that *CaMKK2* and calcium signalling play an important role in the regulation of insulin production from the pancreatic β cells (314).
As CaMK2 segregates with the clinical phenotype of proband C, this gene has been explored in detail and the CaMK2 mutation (p.Gly539fs*) is characterized by functional studies, explained in the next section 8.4.

8.4 CAMKK2 (Ca²⁺/CALMODULIN-DEPENDENT PROTEIN KINASE 2) AND EFFECT OF MUTATION CAMKK2 (p. Gly539fs*4)

This section begins with a brief introduction on CaMK2, its role in insulin secretion. This is followed by a detailed description of the de novo heterozygous CaMK2 mutation (p. Gly539fs*4) from proband C and functional studies to demonstrate the pathogenicity of the mutations.

8.4.1 Calcium/Calmodulin dependent protein kinase 2 (CaMKK2)

Human CaMKK2 maps to chromosome 12q24.2 and spans over 40kb pairs. The major full length isoform of CaMKK2 is isoform 1, however alternative splicing of exons 14 and/or 16 gives rise to multiple transcripts (isoforms 2, 3, 4, 5, 6 and 7) (315).

8.4.2 Role of CaMKK2 in Insulin Secretion

The secretion of insulin from the β-cells of the pancreas is a tightly co-ordinated process and is closely linked to glucose metabolism by pancreatic β-cell ATP-sensitive potassium channels. Increased blood glucose concentration drives glucose uptake into pancreatic β-cells via the glucose transporter 2, encoded by GLUT2, which increases ATP production and raises the cytosolic ATP/ADP ratio resulting in closure of ATP-sensitive potassium channels (K_{ATP}) (130). Glucose-dependent closure of K_{ATP} channels facilitates cell membrane depolarization, which stimulates Ca²⁺ influx into the pancreatic β-cell via opening of voltage-gated Ca²⁺ channels. The increase in the intracellular Ca²⁺ triggers exocytosis and release of insulin (141); however, the
molecular mechanisms that control Ca2+-triggered insulin release in response to glucose stimulation in β-cells is poorly understood (130).

The intracellular effects of calcium(Ca2+) in the pancreatic β-cells are largely transduced via CaM (Calmodulin), and Ca2+-CaM complex through the activation of tightly regulated set of protein kinases such as the Ca2+-CaM-dependent protein kinases 1 and 4 (CaMK1 and CaMK4), and the AMP activated protein kinase (AMPK) (314). These kinases are activated by increasing intracellular Ca2+ and belong to a diverse group of enzymes with a role in many cellular responses (314). An important component of this kinase cascade is the Ca2+-CaM-dependent protein kinase kinase-2 (CaMKK2), which is activated by increased intracellular Ca2+ and directs the downstream actions of CaMK1 and CaMK4, the AMP activated protein kinase (AMPK)(316, 317), and the histone deacetylase Sirtuin-1 (Sirt1) (318, 319). Thus CaMKK2 is important and acts as a Ca2+-sensor with a potential key role in glucose-stimulated insulin secretion and therefore a potential candidate gene in disorders relating to glucose homeostasis.

The mechanism of insulin secretion from the pancreatic β-cell via the Ca2+-CaM dependent pathway is shown in the figure 8.3.
Figure 8.3: Mechanism of insulin release from ß-cell via the kinase cascade regulated by Ca2+-CaM-dependent protein kinase kinase-2 (CaMKK2), activated by increased intracellular Ca2+ and directs the downstream actions of CaMK1 and CaMK4.
8.5 METHODS

DNA extraction, exome sequencing and bioinformatics have been described in detail in chapter 4.

A brief description of the specific methodologies used for functional analysis of the CaMKK2 isoform 7 pG539fs*4 variant is described below. All the functional work was done in close collaboration with Dr John Scott, University of Melbourne, Australia.

8.5.1 Plasmid

Plasmid constructs for full length N-terminal Flag-tagged human CaMKK2 isoform-1, isoform-7 and isoform-7 pG539fs*4 mutant were generated by custom gene synthesis (General Biosystems), and cloned into the pcDNA3(-) mammalian expression vector using Xhol/HindIII restrictions sites. All constructs were verified by sequencing the entire open reading frame. Plasmid DNA for COS7 cell transfection was prepared using Wizard Plus SV Miniprep DNA Purification Kits (Promega).

8.5.2 Expression of human CaMKK2 isoforms and pGly539fs*4 mutant

COS7 cells were grown in DMEM (Sigma) media with 10% fetal calf serum at 37 °C with 5% CO₂. Cells were transfected at 60% confluence with 2 µg of pcDNA3 containing N-terminal Flag-tagged human CaMKK2 isoform-1, isoform-7 and Gly539fs*4 mutant using FuGene HD (Roche). Transfected cells were harvested after 48 hr by washing with ice-cold phosphate-buffered saline (PBS) followed by rapid lysis in situ using 1 ml of lysis buffer (50 mM Tris.HCl [pH 7.4], 150 mM NaCl, 50 mM NaF, 1 mM NaPPI, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, 1% [v/v] Triton X-100) containing Complete protease inhibitor cocktail (Roche). Cellular debris was removed by centrifugation and total protein in the cell lysate was determined using the Bradford method.
protein assay (Pierce). Recombinant CaMKK2 was purified from 10 µg of cell lysate using 10 µl of anti-Flag M2 agarose (50% v/v) (Sigma) pre-equilibrated in lysis buffer, followed by successive washes in lysis buffer containing 1 M NaCl, and finally into 50 mM HEPES [pH 7.4]. The immobilized CaMKK2 was then sedimented by centrifugation and used for kinase assays.

8.5.3 CaMKK2 Assay

CaMKK2 activity was measured using a synthetic peptide substrate (CaMKKtide) (318). Briefly, 10 µl of recombinant CaMKK2 immobilized on anti-Flag M2 agarose beads (50% v/v) was incubated in assay buffer (50 mM HEPES [pH 7.4], 1 mM DTT, 0.02% [v/v] Brij-35) containing 200 µM CaMKKtide, 50 µM CaCl₂, 1 µM CaM (Sigma), 200 µM [γ-32P]-ATP (Perkin Elmer) and 5 mM MgCl₂ in a standard 30 µl assay for 10 min at 30 °C. Reactions were terminated by spotting 15 µl onto P81 phosphocellulose paper and washing extensively in 1% phosphoric acid. Radioactivity was quantified by liquid scintillation counting, and CaMKK2 activity was corrected for minor differences in expression as determined by immunoblotting using an anti-Flag antibody and Odyssey Infrared Imager.

Kinase activity of CaMKK2 isoforms and pGly539*fs4 mutant was measured over a range of CaM concentrations (0-1000 nM) in the presence of 50 µM Ca²⁺. CaMKK2 activity was expressed in nmol.min⁻¹.mg⁻¹ of cell lysate.
8.5.4 Immunoblotting

50 µg of total COS7 cell lysate containing recombinant CaMKK2 was denatured in SDS sample buffer, resolved on a 4-15% Mini-Protean Gradient gel (Bio-Rad), before transferring onto Immobilon PVDF membrane (Millipore). The membrane was blocked for 30 min in PBS/1% Tween-20 (PBS-T) supplemented with 2% non-fat milk, and then incubated with rabbit anti-Flag antibody (Cell Signalling; Cat No 2368S; Lot No 6; 100 ng/ml) for a further 30 min. The membrane was then briefly washed in PBS-T, followed by incubation with goat anti-rabbit IgG IRDye680 (Li-Cor) for 30 min. After successive washing with PBS-T, the membrane was scanned with an Odyssey CLx Infrared Imager (Li-Cor).

8.5.5 CaMKK2 isoform-7 (c.1611_1614dupAAAA) (pG539fs*4) mutation

Exome sequencing of family C (proband and the unaffected parents) identified a total of 13 de novo variants (IGFN1, CNOT6L, ABCE1, STOX2, NUP153, PEX7, KMT2C, VPS13B, SPATC1, ORM2, KMT2D, EFNB3, CaMKK2). A review of literature suggested a potential role of CaMKK2 in insulin secretion from pancreatic β-cells and thus segregating with the phenotype of CHI in proband C. The de novo heterozygous mutation (c.1611_1614dupAAAA) in CaMKK2 isoform-7 (NM_001270486.1) that results in a frameshift at glycine-539 (pG539fs*4), producing CaMKK2 isoform-7 with a short alternate C-terminal sequence (Figure 8.4 A). None of the other variants segregated with the patient’s phenotype and thus were not studied further.
By immunoblotting, it was demonstrated that the pG539fs*4 mutant can be readily expressed in COS7 cells to a similar level as WT CaMKK2(isoform 7) and CaMKK2(isoform 1) (Figure 8.4 B).

The measurement of Ca\(^{2+}\)-CaM dependent kinase activities showed that pG539fs*4 mutant had significantly higher basal and maximal Ca\(^{2+}\)-CaM dependent kinase activities (2.86 and 1.38-fold, respectively) relative to WT CaMKK2 isoform 7 (Figure 8.4 C). Furthermore, both WT CaMKK2(isoform 7) and the pG539fs*4 mutant have considerably higher basal activities compared with WT CaMKK2(isoform 1), the most abundant isoform in the majority of tissues. Although the pG539fs*4 mutant has increased kinase activity relative to the other isoforms, the concentration of CaM required for half-maximal stimulation of the pG539fs*4 mutant is similar to WT CaMKK2.7 and WT CaMKK2.1, indicating that CaM sensitivity is unaffected (Table 8.2).
Table 8.2: Ca$^{2+}$-CaM stimulated activities of CaMKK2.1 (isoform 1), CaMKK2.7 (isoform 7) and pG539*fs4 mutant measured over a range of CaM concentrations (0-1000 nM) in the presence of a fixed concentration of Ca$^{2+}$ (50 nM), expressed relative to activity in the absence of CaM. Data are presented as mean ± SEM; n=4.

<table>
<thead>
<tr>
<th>CaMKK2 Isoform</th>
<th>Concentration of CaM required for half-maximal stimulation (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaMKK2.1</td>
<td>62.1 ± 5.93</td>
</tr>
<tr>
<td>CaMKK2.7</td>
<td>51.3 ± 7.99</td>
</tr>
<tr>
<td>CaMKK2.7</td>
<td>63.8 ± 10.2</td>
</tr>
<tr>
<td>pG539*fs4</td>
<td></td>
</tr>
</tbody>
</table>
Figure 8.4 A: Linear domain structure of the CaMKK2 isoforms showing the kinase domain, autoinhibitory sequence (AIS), calmodulin-binding (CaMBS) sequence, and divergent C-terminal sequences (CTS).
Figure 8.4 B: Immunoblotting with rabbit anti-Flag antibody demonstrating the expression of pG539fs*4 mutant at a similar level as wild-type(Wt) isoform-7 in COS7 cells.
Figure 8.4 C: pG539fs*4 mutant showing a significantly higher baseline and Ca2+-CaM dependent kinase activity compared with Wt isoform-7. Both isoform-7(CaMKK2.7) and the pG539fs*4 mutant have elevated baseline activity compared with isoform-1(CaMKK2.1)
8.6 DISCUSSION

WES in proband C identified a frameshift mutation (c.1611_1614dupAAAA) found in our study occurs within the last exon (exon 16) of CaMKK2 isoform 7. Isoform 1 is the most characterized of the CaMKK2 isoforms. A little is known about isoform 7 which has 16 exons. The occurrence of the frame-shift mutation in the last exon results in a shorter C-terminal sequence.

Nonsense mediated decay (NMD) is a post-transcriptional surveillance mechanism that degrades transcripts with nonsense mutations (320). As a result of NMD the synthesis of the C-terminally truncated protein is limited. However, the synthesis of the truncated protein depends on the position of the nonsense mutation. The mutations that occur in the beginning of mRNA or residing at least 50 nucleotide 5′ to an exon junction direct the affected mRNA to rapid decay (320). Mutations that occur within the last exon do not activate NMD and yield a stable mRNA that directs the synthesis of C-terminally truncated polypeptides. These aberrant translated protein can act in a dominant negative fashion (321, 322).

The frameshift mutation (c.1611_1614dupAAAA) found in proband C occurs within the last exon (exon 16) of CaMKK2.7, and thus may potentially escape NMD mRNA decay and be translated into protein. Consistent with this view, the data from this study demonstrate that the CaMKK2.7 pG539fs*4 mutant can be readily expressed in mammalian cells to similar levels as WT CaMKK2.7 (Figure 8.4 B), therefore it is reasonable to consider that the pG539fs*4 mutant would be stably translated and functional in the pancreatic β-cells.
Intracellular Ca$^{2+}$ plays a key role in mediating glucose-stimulated insulin secretion, insulin biosynthesis and acts as the key mediator for glucose-stimulated insulin secretion (323-325). Calcium also plays an important role in the transcription of insulin gene and there is evidence this is mediated in part by CaMKs, as treatment of islets or insulin-secreting HIT cells with the CaM antagonist KN-62 blocks Ca$^{2+}$-dependent stimulation of insulin gene transcription (326, 327). The cAMP responsive elements of the human insulin gene is regulated by a transcription factor called activating transcription factor-2(ATF), the activation of which is enhanced by Ca$^2+$/CaM-KIV (328). Thus there is increasing body of evidence from the literature that Calcium dependent Calmodulin Kinases (CaMKs) have a potentially important role in the insulin secretion from the pancreatic β-cells.

CaMK1 and CaMK4 are activated by CaM KK2 through phosphorylation of a conserved threonine residue within the activation loop of the protein (329). In mice lacking CaM KK2 in their islets, insulin levels were significantly higher when compared to their wild-type littermates, suggesting that CaM KK2 and Ca$^{2+}$-signalling play an important role in the regulation of insulin production from the pancreatic β-cells (330). Yu et al demonstrated the role of CaM dependent protein kinase cascade in glucose up-regulation of insulin secretion by exposing INS-1 cells to glucose (11.2 mmol/L) (319). This caused an increase in insulin promoter activity and stimulation of CaM KK1 and CaM K4 activity, indicating a role for the CaM-KK/CaM-KIV cascade in the transcriptional activation of the insulin gene (319).
CaMK2 isoform 1 is the most abundantly expressed isoform in many tissues. There is only limited information available in the literature about isoform-7. Studies in murine pancreatic islet cells and in the insulin-secreting cell line, INS-1 have demonstrated expression of mRNA encoding CaMK4 and its upstream kinase, CaMKK (319). The mutation found in proband C, occurs in isoform-7. Therefore, comparison of Wt isoform 7, Wt isoform 1 and the mutant pG539fs*4 in COS7 cells using immunoblot demonstrated that the pG539fs*4 mutant can be readily expressed in COS7 cells to a similar level as wild-type(Wt) isoform-7 (Figure 8.4 B).

CaMK2 requires Ca2+ and CaM for maximal activity and in the case of CaMKK2.7, the activity rises from 1.8 nmol.min.mg to 10 in the presence of Ca2+-CaM (Figure 8.4 C). The basal activity of the pG539fs*4 mutant is approximately 40% of the WT CaMKK2.7 maximum activity (Figure 8.4 C), indicating that the regulatory pathways downstream of CaMK2 would be substantially switched on in the presence of the pG539fs*4 mutant. CaMK2 is an upstream activator of CaMK4, which has been reported to play a role in enhancing insulin gene expression in response to glucose stimulation in pancreatic β-cells. Expression of a constitutively active CaMK4 mutant in the pancreatic cell line INS-1 was shown to stimulate the insulin gene promoter, whereas this effect was completely blunted by expression of a dominant negative CaMK4 mutant (319). One possibility is that insulin gene expression is increased by this CaMK2-CaMK4 pathway in proband C carrying the pG539fs*4 frameshift mutant. Since the frame-shift mutation results in a significant increase in the kinase activity when compared with the wild type, it is hypothesised that the increase in CaMK2 activity as a result of the pG539fs*4 mutation, to be increasing the insulin secretion (Figure 8.5), probably via the up-regulated transcription of INS-1 gene.
In vivo experiments, examining the effect pancreatic β-cell specific inhibition of CaMKII activity in transgenic mice demonstrated that CaMKII inhibition significantly impaired the glucose tolerance by reducing L-type Ca\(^{2+}\) facilitation, Ca\(^{2+}\) entry and insulin secretion\((331)\). Whilst the inhibition of CaMKII has been shown to reduce the insulin secretion from in vivo studies, it is plausible that an increased activity of CaMKK2 as a result of the mutation pG539fs*4 demonstrated in our study is contributing to high insulin secretion seen in the proband C. Furthermore, Dadi et.al also demonstrated that CaMKII inhibition did not have any detectable effect on the K\(^{+}\) channel activities in β cells implying that CaMKII modulates glucose stimulated insulin secretion downstream of K\(_{ATP}\) channels\((331)\).

Diazoxide is the first line medication used in the treatment of CHI that acts as an agonist of K\(_{ATP}\) channel, thus reducing the insulin secretion. Proband C is currently responding to high dose of diazoxide (10 mg/kg/day). Calcium channel antagonists (such as nifedipine) could be potentially considered in patients with CaMKK2 mutation if they do not respond or tolerate diazoxide.
Figure 8.5: Schematic representation of the mechanism of excess insulin release from β-cell via increased activation of the kinase cascade by *CaMK2* (pG539fs*4*).
Thus CaMKK2 is a potential candidate gene for CHI. Screening for more patients with CHI for mutations in CaMKK2 will help in more understanding of the genotype-phenotype correlation. CaMKK2 isoform 1 is the predominant isoform and much less is known on CaMKK2 isoform 7. Developing CaMKK2 isoform-7 specific antibody and studying the expression in pancreatic islets will be useful to understand the specific role of CaMKK2 isoform 7 in modulating the insulin secretion. In this study, the direct relationship between the increased kinase activity and insulin secretion has not been explored. Development of mouse model and with the application of gene editing technologies such as CRISPR/CAS9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated system) (380), it is now potentially possible to study the direct effect of the frame-shift mutation and examine the relationship between the increased kinase activity and insulin secretion.
CHAPTER 9

CLINICAL PHENOTYPE AND WHOLE EXOME SEQUENCING RESULTS

(FAMILIES D, E, F)
9.1 SUMMARY OF CHAPTER 9

Chapter 9 begins with the detailed description of the phenotypes of proband D, E, and F from families D, E, F followed by the results from whole exome sequencing.
FAMILY D

9.2 CLINICAL INFORMATION (PROBAND D)

Proband D, a female infant was born at 34 weeks gestation with a birth weight of 1.9 kg to non-consanguineous Caucasian parents. The antenatal history was unremarkable. She was noted to have a cloacal anomaly with a posterior cloaca which was subsequently corrected by urogenital mobilisation reconstructive surgery at 2 years of age. She also has congenital sensorineural deafness, ventricular septal defect and pulmonary stenosis requiring surgical correction. Her renal ultrasound was normal. At 4 years of age, she was diagnosed with growth hormone (GH) deficiency because of her short stature (<2.5SD) and poor linear growth velocity and suboptimal response to glucagon stimulation test (peak GH 3.7 ug/L). She was subsequently commenced on GH with a good response (figure 9.2). The MRI of the pituitary gland showed small anterior pituitary. The other pituitary hormones were within the normal range. She was investigated for recurrent hypoglycaemic episodes and the results of the investigations following a prolonged control fasting were consistent with ketotic hypoglycaemia. The investigations of prolonged fast are summarised in the table below (Table 9.1). She had multiple dysmorphic features such as anteverted nares, small upturned nose, hypertelorism, slight frontal bossing, short proximal bones, femur, humerus, hypermobile joints and down slanting palpebral fissures. There was a history of short stature and dysmorphism in father’s side and learning difficulty in mother. There was also a history of still-born previous sibling with midline cleft palate, absent uvula, small jaw, depressed nasal bridge, abnormalities on MRI brain with absence of the inferior cerebellar vermis, partial agenesis of corpus callosum, congenital heart defects and short bones.
Due to persistent hypoglycaemia, a targeted exome sequencing of genes associated with disorders of ketogenesis, ketolysis, carbohydrate metabolism, fatty acid oxidation defects and hyperammonaemia performed at the University of Manchester molecular genetics department did not identify any pathogenic mutations. The genes that were sequenced for the above disorders are as follows:

ABAT, ACAD9, ACADM, ACADS, ACADVL, ACAT1, ACAT2, AHCY, ARG1, ASL, ASS1, CPS1, CPT1A, CPT2, DECR1, ETFA, ETFB, ETFDH, GLUD1, HADHA, HADHB, HMGCL, HMGCS2, IVD, MMAA, MMAB, MMACHC, MMADHC, MUT, NAGS, OTC, OXCT1, PCCA, PCCB, SLC22A5, SLC25A13, SLC25A15, SLC25A20, AGL, ALDOA, ENO3, EPM2A, FBP1, G6PC, G6PC3, GALE, GALK1, GALT, GBE1, GYS1, LAMP2, LDHA, NHLRC1, PFKM, PGAM2, PGK1, PGM1, PHKA1, PHKA2, PHKB, PHKG1, PHKG2, PRKAG2, PYGL, PYGM, SLC2A1, SLC2A2, SLC37A4.

Table 9.1: Results of investigations following a 19 hour fast:

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>True blood glucose</td>
<td>2.3mmol/L</td>
</tr>
<tr>
<td>Insulin</td>
<td><14pmol/L</td>
</tr>
<tr>
<td>C-peptide</td>
<td><33pmol/L</td>
</tr>
<tr>
<td>Plasma Free fatty acids</td>
<td>2673umol/L</td>
</tr>
<tr>
<td>3 hydroxy butyrate</td>
<td>1205umol/L</td>
</tr>
<tr>
<td>Plasma free carnitine</td>
<td>13.2umol/L</td>
</tr>
<tr>
<td>17 OHP</td>
<td><1nmol/L</td>
</tr>
<tr>
<td>Plasma amino acids</td>
<td>Normal</td>
</tr>
<tr>
<td>Urinary organic acids</td>
<td>Normal</td>
</tr>
</tbody>
</table>
Figure 9.1 Pedigree of Family D

Figure 9.2: Growth chart of Proband D showing a good response to GH
9.3 WHOLE EXOME SEQUENCING RESULTS FROM FAMILY D

In this family, whole-exome sequencing was performed on the affected child and biological mother as biological father was unavailable. Filters were applied to whole-exome data as shown in the figure 9.3. The potential candidate variants are listed in the table 9.2.

Figure 9.3: Variant analysis of Family D

<table>
<thead>
<tr>
<th>Count</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>55355</td>
<td>Total Variants in 2 Family Members</td>
</tr>
<tr>
<td>2533</td>
<td>Novel Variants*</td>
</tr>
<tr>
<td>645</td>
<td>Predicted Deleterious**</td>
</tr>
<tr>
<td>203</td>
<td>Genetic Analysis***</td>
</tr>
<tr>
<td>7</td>
<td>Biological context****</td>
</tr>
</tbody>
</table>

Variant Analysis of Proband D (* Novel variants include variants present in at least 5% minor allele frequency in 1000 Genomes Project, ExAC and NHLBI ESP exomes excluded; ** Predicted deleterious variants included nonsynonymous coding, splice site, frameshift, stop gain variants; *** Variants present in heterozygous state in the child; **** Variants with biological role related to the clinical phenotype of short stature, facial dysmorphia, skeletal abnormalities and congenital heart defects).
Table 9.2 List of variants from proband D

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Gene region</th>
<th>Protein variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COL24A1</td>
<td>Exonic</td>
<td>p.R635W</td>
</tr>
<tr>
<td>3</td>
<td>PLXND1</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TECRL</td>
<td>Exonic</td>
<td>p.E11D</td>
</tr>
<tr>
<td>8</td>
<td>EBF2</td>
<td>Exonic</td>
<td>p.N477H</td>
</tr>
<tr>
<td>10</td>
<td>ABLIM1</td>
<td>Exonic</td>
<td>p.D169H</td>
</tr>
<tr>
<td>11</td>
<td>B3GAT3</td>
<td>Splice site</td>
<td></td>
</tr>
</tbody>
</table>

A brief description of the genes is given below

COL24A1

This gene is a member of the collagen gene family, encoding Collagen Type XXIV Alpha 1 Chain. This protein has a specific regulatory role in type I collagen fibrillogenesis during foetal development. The gene is associated with a disease such as Miller-Dieker Lissencephaly which consists of muscular dystrophic symptoms. COL24A1 is associated with osteoblast differentiation through interacting with a transmembrane integrin β3, whilst silencing expression of Smad7 and inhibiting the phosphorylation of the Smad2/3 (332).

PLXND1

PLXND1 contributes towards the development of the cardiovascular, nervous and immune systems. It is suggested that Plexin D1 interacts with Sema through paracrine signalling to guide axonal and other tissues patterning (333). Throughout embryogenesis PLXND1 is dynamically activated to ensure this patterning structure.
TECRL
This gene encodes Trans-2,3-Enoyl-CoA Reductase Like protein. Symptoms associated with this gene include ventricular tachycardia, catecholaminergic polymorphic 3 and catecholaminergic polymorphic ventricular tachycardia. TECRL has been quoted as a ‘new sudden death gene’ (334)

EBF2
This gene encodes Early B-Cell Factor 2, as part of the Collier/Olf/EBF (COE) family of genes to produce helix-loop-helix transcription factors. Kieslinger et al. demonstrated that EBF2 regulates osteoblast and osteoclasts through activation of the RANK decoy receptor (335).

ABLIM1
This gene encodes Actin Binding LIM Protein 1, playing a key role in regulation of developmental pathways through its LIM domain. Abnormal splicing of ABLIM1 has been reported in cases of myotonic dystrophy type 1 (336).

9.4 B3GAT3
B3GAT3, encoding β-1,3-glucuronyltransferase 3, has an important role in proteoglycan biosynthesis. Homozygous B3GAT3 mutations have been associated with short stature, skeletal deformities and congenital heart defects. As this gene appears to segregate with the clinical phenotype of proband D, it has been described in detail along with the splice site mutation (c.888+262T>G) in the sections below.
9.4.1 B3GAT3 mutation (c.888+262T>G)

A heterozygous B3GAT3 mutation (c.888+262T>G) in the invariant “GT” splice donor site was identified in proband D. This variant is considered to be pathogenic as it decreases the splicing efficiency in the mRNA as predicted by a MaxEntScan score decrease of 100% (from 11.01 to -0.14) thereby creating an alternative splice site resulting in a frame shift and truncation of the protein through misfolding.

9.4.2 Biological Function of B3GAT3

B3GAT3 is involved in glycosaminoglycan (GAG) biosynthesis, which provides structural support within the extracellular matrix surrounding the cells(337). Genetic defects can thus lead to multi-system disorders. Several papers have classified a homozygous mutation in B3GAT3 as the reason for their patients’ congenital heart defects, short stature, and mild dysmorphic features (337-340).

A comparison of the phenotype of proband D with that of patients with B3GAT3 mutations reported in the literature is shown below in the table 9.3.
Table 9.3: Comparison of clinical features between proband D and patients with \textit{B3GAT3} mutations reported in the literature

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Skeletal Malformations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Stature</td>
<td>×</td>
<td>×</td>
<td>(5/5)</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Fractures</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Anteverted Nares</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Small Upturned Nose</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Hypertelorism</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Frontal Bossing</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Short Proximal Bones</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Hypermobile Joints</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Dislocating Joints</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Joint Laxity</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Diffuse Demineralisation</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Down Slanting Palperbral Fissures</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Congenital Heart Defects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventricular Septal Defect</td>
<td>×</td>
<td>×</td>
<td>(2/5)</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Pulmonary Stenosis</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Bicuspid Aortic Valve</td>
<td>×</td>
<td>×</td>
<td>(3/5)</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Aortic Root Dilatation</td>
<td>×</td>
<td>×</td>
<td>(3/5)</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Mitral Valve Prolapse</td>
<td>×</td>
<td>×</td>
<td>(4/5)</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Neurological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Anterior Pituitary</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Partially Empty Sella</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Other Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSH Abnormality</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Cognitive Delay</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Still-Born Sibling</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>GH Deficiency</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Congenital Sensorineural Deafness</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Ketotic Hypoglycaemia</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
Proteoglycans are an influential component of the extracellular matrix, orchestrating the cell-cell and cell-matrix interactions (337). Without a functional B3GAT3 gene, the loss of β-1,3-glucurononyltransferase 3 causes incomplete proteoglycan production due to the final glucuronic acid linkage stage being absent (339). Cell signalling pathways, most notably developmental pathways, may become disrupted and processes such as skeletal development and cardiovascular maturation will halt before they are fully complete (339). Proteoglycans are produced through the secretory pathway in the endoplasmic reticulum followed by the construction of the glycosaminoglycan (GAG) side chain within the Golgi complex (341). Multiple post-translational modifications occur in the Golgi complex; including the addition of disaccharides as well as epimerisation and sulfation of saccharide units, all performed by various glycosyltransferases, epimerasers and sulfotransferases (341).

β-1,3-glucurononyltransferase 3 (GlcAT-I), encoded by B3GAT3 is located on chromosome 11q12.3 and consists of 335 amino acids with one N-linked glycan chain. GlcAT-I is a glucurononyltransferase involved in the biosynthesises of GAG-protein linkers for proteoglycans. Specifically, GlcAT-I contributes to the addition of the terminal four saccharides –xylose-galactose-galactose-glucuronic acid, hence its presence in the cis-Golgi(342). The addition of this tetra saccharide provides an external face for binding by extracellular signals.

Homozygous mutations in B3GAT3 have previously been reported throughout the literature with Larsen-like syndrome symptoms. Larsen syndrome is defined as a development disorder of the bones throughout the body, individuals frequently express symptoms such as skeletal dislocations, hearing loss and facial dysmorphism (depressed nasal bridge, frontal bossing and telecanthus) (338).
9.5 DISCUSSION

B3GAT3 transcribes the 335 amino acid glucuronyltransferase I (GlcAT-I) protein which catalyses the final step in proteoglycan biosynthesis through the addition of a xylose-galactose-galactose-glucuronic acid tetra saccharide linkage molecule(340). Homozygous missense mutations in *B3GAT3* have previously been described as ‘linkeropathies’. Glycosaminoglycan linkeropathies are characterised by their enzymatic inability to synthesise the common linker region which joins the core protein with its respective glycosaminoglycan side chain(343). Proteoglycans are crucial for effective communication between cells. Disruption of the linkage region caused by mutations in *B3GAT3* have been reported to cause severe developmental defects.

A novel heterozygous splice site mutation in *B3GAT3* (c.888+262T>G) in the invariant “GT” splice donor site was found in proband D. *In silico* modelling of this variant categorised the variant as pathogenic. This variant decreases the splicing efficiency of the mRNA; as predicted by a MaxEntScan score decrease of 100 % (from 11.01 to -0.14). MaxEntScan is an *in silico* splicing defect prediction tool used to analyse the affinity of an intronic sequence to the splicing machinery (344). A decrease of 100 % suggests that the splice site is completely lost, thus incurring a frameshift. Subsequent truncation of the protein would lead to incomplete biosynthesis of the xylose-galactose-galactose-glucuronic acid terminus of the glycosaminoglycan side chain of the proteoglycan.

After extensive reviewing of current literature (332-334, 336, 345, 346) it was found that the biological function of the filtered genes such as *COL24A1, PLXND1, TECRL, EBF2, ABLIM1*, and *POSTN* did not segregate with the clinical phenotype whereas *B3GAT3* showed notable traits.
The phenotype of proband D aligns with several other phenotypic features described to be associated with B3GAT3 mutation (table 9.3). All reported cases of B3GAT3 have short stature, anteverted nares, down slanting palpebral fissures and ventricular septal defects. However, these have all been associated with homozygous missense mutations such as c.671 T>A (p.Leu224Gln) [2], c.830 G>A (p.Arg277Gln) [1] and c.667 G>A (p.Gly223Ser) [3]. Splice site mutations contributing to B3GAT3 phenotype as encountered in proband D has not been described in the literature.

In addition to some similarities in phenotypic features shown in table 9.3, proband D also has growth hormone deficiency and recurrent ketotic hypoglycaemia. An initial targeted exome sequencing experiment was conducted to discover any mutated genes involved in ketogenesis, ketolysis, carbohydrate metabolism, fatty acid oxidation defects and hyperammonaemia; no pathogenic mutations were identified.

It is noteworthy to mention that the patient’s biological father was also short with facial dysmorphism and short bones. Besides, a history of stillborn elder sibling with facial dysmorphism, short bones and heart defects suggests a likely strong penetrance of a monogenic genetic aetiology in the family. The genetic analysis in the biological father and the elder sibling would have convincingly established the underlying monogenic aetiology. However, this has not been possible due to the non-availability of the DNA samples. After filtering the WES data from proband D, the splice site mutation in B3GAT3 segregated with many of the phenotypic features. Further functional studies are required to fully characterise the role of this splice site variant in B3GAT3.
FAMILY E

9.6 CLINICAL INFORMATION (FAMILY E)

Proband E is a 7-year-old boy who was referred for an endocrinology consultation for severe short stature (height: -3.5 SDS). He was born at 39 weeks gestation to non-consanguineous, healthy British parents with a birth weight of 2.5 kg. There were no neonatal concerns. There was no evidence of dysmorphism or skeletal dysplasia. The investigations to look into the cause for the short stature revealed a persistently low IGF1 of 5-8nmol/L (12-62). An IGF-1 regeneration test following 33ug/kg of GH did not result in the improvement of serum IGF1 concentration. A growth hormone stimulation test, using glucagon showed a good GH response of 11.2ug/L. A trial of high dose rGH treatment(40ug/kg/day) was commenced with a reasonable response (height: -2.5SDS) (figure 9.5). CGH microarray did not reveal any copy number changes. Targeted sequencing of IGF1, IGF1R and GHR performed at Barts, London, did not reveal any mutations.

Figure 9.4: Pedigree of Family E
9.7 WHOLE EXOME SEQUENCING RESULTS FROM FAMILY E

In this family, whole-exome sequencing was performed on both the parents (unaffected) and the affected child. Assuming a *de novo* inheritance pattern, filters were applied to whole-exome data as shown in the figure 9.6. The potential candidate variants are listed in the table 9.4.
De Novo Variant Analysis of proband E (* Novel variants include variants present in at least 5% minor allele frequency in 1000 Genomes Project, ExAC and NHLBI ESP exomes excluded; ** Predicted deleterious variants included nonsynonymous coding, splice site, frameshift, stop gain variants; *** Variants present in heterozygous state in the child and not present in both the parents)
The potential candidate gene variants and their locations in proband E are shown in table 9.4

Table 9.4: List of Genes with Novel, Predicted Deleterious Variants Not Present in both the parents

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Gene region</th>
<th>Protein variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>TSGA10</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>YTHDC2</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SAR1B</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NOTCH4</td>
<td>Exonic</td>
<td>p.L16del</td>
</tr>
<tr>
<td>8</td>
<td>VPS13B</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SKA3</td>
<td>Splice site</td>
<td></td>
</tr>
</tbody>
</table>

A brief description of these genes is presented next. From the available biological information about these genes, the phenotype of proband E could not be explained with variations in these genes.

TSGA10 (Testis specific protein 10)
Northern blot analysis detected the expression of this gene in testis and may play a role in the formation of sperm tail fibrous sheath (347).

YTHDC2 (YTH Domain Containing 2)
Members of this family function in RNA processing and metabolism, including transcription, alternative splicing, and degradation (348).

SAR1B (Secretion Associated Ras Related GTPase 1B)
Recessive SAR1B mutations have been reported to cause chylomicron retention disease (349).
NOTCH4 (Neurogenic Locus Notch Homolog Protein 4)

The NOTCH4 gene encodes a member of Notch family. The members of this family are transmembrane proteins with an extracellular domain consisting of multiple epidermal growth factor-like (EGF) repeats, and an intracellular domain of various different types (350). In Drosophila, the members of Notch family interacts with its cell-bound ligands (delta, serrate) and this interaction plays a key role in development. In humans, Notch4 functions as a receptor for membrane bound ligands Jagged 1, Jagged 2 and Delta 1(351). By studying the Notch-4 deficient mouse, Krebs et al. concluded that Notch4 and Notch1 genes have partially overlapping roles during embryogenesis (352). Mutants mice with constitutive overexpression of Notch4 developed brain arteriovenous malformations, suggesting Notch pathway to be an inhibitor of vessel sprouting (353).

VPS13B (Vacuolar Protein Sorting 13 Homolog B)

Homozygous mutations in this gene causes autosomal recessive condition, Cohen syndrome (354)

SKA3 (Spindle And Kinetochore Associated Complex Subunit 3)

This gene encodes a component of the spindle and kinetochore-associated protein complex that regulates microtubule attachment to the kinetochores during mitosis. The encoded protein localizes to the outer kinetochore and may be required for normal chromosome segregation and cell division (355).
Assuming a recessive inheritance, the filtering strategy applied to whole-exome sequencing data

Figure 9.7: Recessive Inheritance Analysis

Recessive Variant Analysis of Proband E (* Novel variants include variants present in at least 3% minor allele frequency in 1000 Genomes Project, ExAC and NHLBI ESP exomes excluded; ** Predicted deleterious variants included nonsynonymous coding, splice site, frameshift, stop gain variants; *** Variants present in homozygous/compound heterozygous state in the child).

- Total variants in 3 family members
- Novel variants*
- Predicted deleterious**
- Genetic analysis***
Table 9.5: List of Genes with Novel, recessive predicted deleterious variants (Family E)

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Gene region</th>
<th>Protein variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MST1L</td>
<td>Exonic</td>
<td>p.G300fs*89</td>
</tr>
<tr>
<td>4</td>
<td>ZNF141</td>
<td>Exonic</td>
<td>p.L70fs34/p.K69fs4</td>
</tr>
<tr>
<td>10</td>
<td>CFAP46</td>
<td>Exonic</td>
<td>p.G1162R/p.D1126G</td>
</tr>
<tr>
<td>13</td>
<td>SACS</td>
<td>Exonic</td>
<td>p.R2844H/p.P2651Q</td>
</tr>
<tr>
<td>17</td>
<td>GH1</td>
<td>Promoter</td>
<td>c.-93delG</td>
</tr>
</tbody>
</table>

A brief description of these genes is presented next.

MST1L (Macrophage Stimulating 1 Like)

There is only a limited biological information available in the literature.

ZNF141 (Zinc Finger Protein 141)

Defects in this gene have been associated with autosomal recessive postaxial polydactyly type A (356).

CFAP46 (Cilia And Flagella Associated Protein 46)

This gene is thought to play an important role in ciliary movement

CAPZA3 (Capping Actin Protein of Muscle Z-Line Alpha Subunit 3)

The gene encodes a protein that is localized to the neck and tail region of the spermatozoa and may play a role in male fertility (357).

SACS (Sacsin Molecular Chaperone)

This protein is thought to integrate the ubiquitin-proteasome system and Hsp70 chaperone machinery and implicated in the processing of ataxin-1(358). Homozygous mutations are implicated in Spastic ataxia, Charlevoix-Saguenay type (359).
9.8 GH1 (Growth Hormone 1)

Growth hormone (GH), encoded by GH1, is a member of the somatotropin family of hormones (360) which stimulates growth during early postnatal somatic development (361). GH regulates glucose, protein and fat metabolism in the body and is essential for tissue maintenance and repair throughout the duration of an individual’s life (362). GH consists of 191 amino acids, weighing 22 kDa, arranged in four α-helices connected by two cysteine bridges; forming two distinct domains which have different affinities for binding to growth hormone receptor (GHR) (363).

Binding of GH to GHR induces receptor dimerization leading to transphosphorylation of the intracellular domains of the receptors. Phosphate groups for SH2/SH3 domains of intracellular second messengers to bind are then present on the intracellular side of the plasma membrane. Janus kinase 2 (Jak2) interacts through its SH2 domain and activates a downstream effector, signal transducer and activator of transcription (STAT5) (364). Phosphorylation of STAT5 causes its dissociation from GHR and the phosphorylated STAT5 translocates to the nucleus to activate transcription (365).

Short stature is frequently characterised by a deficiency in growth hormone, known as isolated growth hormone deficiency (IGHD) (366). IGHD is caused by genetic mutations in the promoter region of the GH1 gene.

Since the biological function of GH1 segregates with the clinical phenotype of proband E, a detailed description of the mutation GH1(c.-93delG) is given in the next section.
9.8.1 GH1 promoter variant(c.-93delG)

Proband E has a homozygous promoter region variant (c.-93delG) in the GH1 gene that could be potentially contributing to the impaired transcription of the GH1 leading to short stature. An impairment of transcription due to promoter mutation usually causes GHD. Although proband E had a normal GH response to glucagon stimulation test, he responded well to exogenous rGH with subsequent normalisation of IGF1. It is therefore hypothesised that the promoter mutation in proband E to be contributing to the production of biologically inactive GH.

Bioinactive GH was first reported by Kowarski et al. when they noted two children who expressed: normal-high immunoassayable GH levels, low basal IGF-1 levels and an increase in IGF-1 circulating concentrations as well as improved somatic growth following exogenous GH administration (367). Bioinactive GH is a rare condition in which there is significant difference between physiological concentrations of GH and the activity that is generated due to them. Bioinactive GH is associated with low insulin-like growth factor-1 (IGF-1), short stature and a response to exogenous GH treatment (368).

Homozygous point mutation in the promoter region of GH1(c.-233C>T) has been shown to reduce the GH1 expression, leading to isolated GH deficiency(366). Beeson et.al identified a homozygous missense GH1 mutation in a patient with severe short stature(height:-3.6SDS), persistent low basal IGF1, normal GH response on provocation test and a good improvement in height velocity after administration of rGH(111). The authors proposed that the mutation led to the disruption of the disulphide bridge Cys-53 to Cys-165 in the GH peptide leading to the production of biologically inactive GH. By in vitro experiments it was demonstrated that GHR binding
and Jak2/Stat5 signalling pathway was significantly reduced in the mutant GH1 when compared to the wild type GH1(111).

Proband E has similar phenotypic features as the patient described by Beeson et.al. It is therefore possible that the improvement in height velocity to rGH with normal endogenous GH peak on provocation test is probably because of biologically inactive endogenous GH. The pathogenic effect of the homozygous promoter variant (c.-93delG) identified in proband E on GH1 is currently unclear. Future functional work such as GH binding assay may be needed to study the pathogenicity of the variant.
FAMILY F

9.9 CLINICAL INFORMATION (FAMILY F)

Proband F, a 15-year-old boy presented with a long standing history of tiredness and lethargy. He was born to non-consanguineous British parents and does not have any significant past medical history. His height and weight were appropriate for his age and the systemic examinations were normal, apart from high blood pressure (150/90mm Hg). His elder sibling passed away due to Hurler’s disease.

Further investigations revealed a high serum calcium and parathyroid hormone (PTH) concentration, low vitamin D, low albumin and a low urinary calcium creatinine ratio. The investigations are charted in detail in the table below (Table 9.6). The serum calcium profile and PTH from both the parents were within the normal range. The hypercalcemia persisted in the range between 2.82-2.93mmol/L with an unsuppressed PTH and proband F continued to exhibit symptoms of persistent tiredness and lethargy. The vitamin D concentration was persistently low despite the administration of 300,000 IU of ergocalciferol injection. The urinary calcium creatinine ratio was consistently low (<0.01). A differential diagnosis of familial hypocalciuric hypercalcemia and primary hyperparathyroidism was considered. Microarray did not identify any copy number variants. Genetic testing for familial hypocalciuric hypercalcemia did not identify any pathogenic mutations in CASR, GNA11 and AP2S1. Targeted sequencing for genes associated with familial isolated hyperparathyroidism did not detect any mutation in MEN1, RET, CDC73, CDKN1A, CDK1B, CDK2B and CDKN2C. Sestamibi parathyroid scan to localise parathyroid adenoma was negative. Subsequently the patient was recruited into the study for WES to identify a potential monogenic etiology for hypercalcemia.
Further investigations for persistent hypalbuminaemia included a renal biopsy which showed a slight increase in the mesangial cell matrix and mild increase in the mesangial cell numbers with no evidence of endocapillary crescents. The electron microscopy of the basement membrane showed a variable thickness of the basement membrane with electron-dense deposits. This was consistent with a form of nephrotic syndrome and currently being managed by losartan.

Table 9.6: Summary of investigations in proband F

<table>
<thead>
<tr>
<th>Investigation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum calcium</td>
<td>2.82 mmol/L to 2.93 mmol/L (2.15-2.74)</td>
</tr>
<tr>
<td>PTH</td>
<td>11.6-14.6 pmol/L (1.1-6.9)</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>6-10 nmol/L (>50)</td>
</tr>
<tr>
<td>Urine calcium creatinine ratio</td>
<td><0.01</td>
</tr>
<tr>
<td>Albumin</td>
<td>23-25 g/L (40-60)</td>
</tr>
<tr>
<td>Phosphate</td>
<td>Normal</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.66 mmol/L (0.78-1.02)</td>
</tr>
<tr>
<td>Thyroid Function</td>
<td>Normal</td>
</tr>
<tr>
<td>Urine dipstick</td>
<td>2+ blood, 3+ protein</td>
</tr>
<tr>
<td>Ultrasound renal tract</td>
<td>Normal</td>
</tr>
<tr>
<td>Liver function test</td>
<td>Normal</td>
</tr>
<tr>
<td>Renal functions (Urea, creatinine)</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Figure 9.8 Pedigree of Family F
9.10 WHOLE EXOME SEQUENCING RESULTS FROM FAMILY F

In this family, whole-exome sequencing was performed on the both the parents (unaffected) and the affected child. Assuming a de novo inheritance pattern, filters were applied to whole-exome data as shown in the figure 9.9.

Figure 9.9 De Novo variant analysis of Family F

- Total variants in 3 family members
- Novel variants *
- Predicted deleterious variants **
- Genetic analysis ***

De Novo Variant Analysis of Proband F (* Novel variants include variants present in at least 5% minor allele frequency in 1000 Genomes Project, ExAC and NHLBI ESP exomes excluded; ** Predicted deleterious variants included nonsynonymous coding, splice site, frameshift, stop gain variants; *** Variants present in heterozygous state in the child and not present in both the parents)
The potential candidate gene variants and their locations in family F are shown in table 9.7

Table 9.7: List of Genes with Novel, Predicted Deleterious Variants Not Present in both the parents (Family F)

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Gene region</th>
<th>Protein variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AGPS</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ABCE1</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MGAM2</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SYT16</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TTLL5</td>
<td>Exonic</td>
<td>p.D219V</td>
</tr>
<tr>
<td>20</td>
<td>SLC4A11</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CPSF3L</td>
<td>Exonic</td>
<td>p.A13G</td>
</tr>
<tr>
<td>6</td>
<td>FAM8A1</td>
<td>Exonic</td>
<td>p.L135P</td>
</tr>
<tr>
<td>7</td>
<td>AUTS2</td>
<td>Exonic</td>
<td>p.Q449H</td>
</tr>
<tr>
<td>13</td>
<td>PABPC3</td>
<td>Exonic</td>
<td>p.E372G</td>
</tr>
<tr>
<td>17</td>
<td>MPDU1</td>
<td>Exonic</td>
<td>p.R169fs*44</td>
</tr>
<tr>
<td>17</td>
<td>SRCIN1</td>
<td>Exonic</td>
<td>p.R1011P</td>
</tr>
</tbody>
</table>

A brief description of these genes is presented next. From the available biological information about these genes, the phenotype of proband F could not be explained with variations in these genes.
AGPS (Alkylglycerone-phosphate synthase)
AGPS catalyzes the second step of ether lipid biosynthesis. Mutations in this gene have been associated with rhizomelic chondrodysplasia punctata, type 3 and Zellweger syndrome (369).

ABCE1 (ATP Binding Cassette Subfamily E Member 1)
ABCE1 belongs to the superfamily of ATP binding cassette proteins and plays an important role in protein translation initiation, elongation, termination, and ribosome recycling in eukaryotes (370).

MGAM2 (Maltase-Glucoamylase 2 (Putative))
No information is currently available on the biological function of this gene.

SYT16 (Synaptotagmin 16)
SYT16 may have a role in the trafficking and exocytosis of secretory vesicles in non-neuronal tissues. Is Ca(2+)-independent. RT-PCR detected highest SYT16 expression in mouse heart and testis, with weaker expression in kidney and lung (371).

TTLL5 (Tubulin Tyrosine Ligase Like 5)
TTLL5 may act as a co-regulator of glucocorticoid receptor mediated gene induction and repression. Recessive mutations in TTL5 have been associated with cone-rod dystrophy (372).

SLC4A11 (Solute Carrier Family 4 Member 11)
This gene encodes a voltage-regulated, electrogenic sodium-coupled borate cotransporter that is essential for borate homeostasis, cell growth and cell proliferation. Recessive mutations have been associated with corneal endothelial dystrophy and perceptive deafness (373).
CPSF3L (Cleavage and Polyadenylation-Specific Factor 3-Like Protein)

It is a part of integrator complex and involved in the processing of small nuclear RNAs U1 and U2.(374)

FAM8A1 (Family with Sequence Similarity 8 Member A1)

It is a protein coding gene with limited information on its biological function.

AUTS2 (Autism Susceptibility Candidate 2)

AUTS2 has been implicated in neurodevelopment and as a candidate gene for numerous neurological disorders, including autism spectrum disorders and autosomal dominant intellectual disability (375).

PABPC3 (Poly(A) Binding Protein Cytoplasmic 3)

Poly(A)-binding proteins (PABP) are involved in messenger RNA stability and initiation of translation. By Northern blot analysis of multiple tissues, it was found to have weak but distinct testis-specific expression (376)

MPDU1 (Mannose-P-Dolichol Utilization Defect 1)

MPDU1 encodes an endoplasmic reticulum membrane protein and plays a role in the synthesis of lipid-linked oligosaccharides and glycosylphosphatidylinositol. Mutations in this gene result in congenital disorder of glycosylation type If (377)

SRCIN1 (SRC Kinase Signaling Inhibitor 1)

SRC kinase signalling inhibitor 1 acts as a negative regulator of SRC and downstream signalling, leading to impaired cell spreading and migration (378).
Assuming a recessive inheritance, the filtering strategy applied to whole-exome sequencing data

Figure 9.10: Recessive Inheritance Analysis

Recessive Variant Analysis of Proband F (* Novel variants include variants present in at least 3% minor allele frequency in 1000 Genomes Project, ExAC and NHLBI ESP exomes excluded; ** Predicted deleterious variants included nonsynonymous coding, splice site, frameshift, stop gain variants; *** Variants present in homozygous/compound heterozygous state in the child).

- Total variants in 3 family members
- Novel variants *
- Predicted deleterious variants **
- genetic analysis ***
Table 9.8: List of Genes with novel, recessive Predicted Deleterious Variants (Family F)

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Gene region</th>
<th>Protein variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTS11</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CFAP65</td>
<td>Promoter</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ABCB6</td>
<td>Exonic</td>
<td>p.A446T,p492T</td>
</tr>
<tr>
<td>5</td>
<td>PDZD2</td>
<td>Exonic</td>
<td>p.A1649V</td>
</tr>
<tr>
<td>9</td>
<td>BRINP1</td>
<td>Exonic</td>
<td>p.R358H</td>
</tr>
<tr>
<td>11</td>
<td>DRD4</td>
<td>Promoter</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MRPL16</td>
<td>Exonic</td>
<td>p.R199Q</td>
</tr>
<tr>
<td>16</td>
<td>HAS3</td>
<td>Exonic</td>
<td>p.R173H</td>
</tr>
<tr>
<td>13</td>
<td>SKA3</td>
<td>Splice site</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PABPC3</td>
<td>Splice site</td>
<td></td>
</tr>
</tbody>
</table>

A brief description of the above genes is given as below

INTS11 (Integrator Complex Subunit 11)

This gene associates with the C-terminal domain of RNA polymerase II large subunit and mediates the 3-prime end processing of small nuclear RNAs U1 and U2 (374).

CFAP65 (Cilia and Flagella associated protein)

Tang et al. (2017) identified homozygous nonsense mutation, in CFAP65, in man with morphological abnormalities of the flagella in spermatozoa (379).

ABCB6 (ATP binding cassette subfamily B, member 6)

This gene has a role in the transport of porphyrins into the mitochondria(380).
PDZD2 (PDZ domain containing 2)
This gene interacts with the PKP4 PDZ domain and Ma et al. (2006) localized rat PDZD2 specifically to pancreatic beta cells, with no expression detected in alpha cells (381).

BRINP1 (Bone Morphogenetic Protein/Retinoic Acid Inducible Neural-Specific 1)
Diseases associated with this gene mutation include transitional cell carcinoma and bladder carcinoma. The 5' CpG island in the gene is a frequent target for hypermethylation, and it may undergo hypermethylation-based silencing in some bladder cancers (382).

DRD4 (Dopamine receptor D4)
This gene is localised at 11p15.5 and is associated with dominantly inherited attention deficit hyperactivity disorder (383).

MRPL16 (Mitochondrial ribosomal protein L-16)
This gene has an essential role in the oxidative phosphorylation in the mitochondria (384).

HAS3 (Hyaluronon synthase 3)
This gene has been implicated to have an important role in the biosynthesis of hyaluronon (385).

Based on the known biological functions of these genes, the phenotype of proband F could not be explained with variations in these genes.
CHAPTER 10

GENERAL DISCUSSION, CONCLUSIONS
AND FUTURE DIRECTIONS
10.1 GENERAL DISCUSSION

The use of next generation sequencing in children with undiagnosed or unidentified syndromic disorders is becoming more popular in the recent years and increasing the ability to discover novel genes and mutations contributing to novel clinical phenotypes. WES is a cost effective technique in comparison to whole genome sequencing and has the ability to target the coding regions of the genome and thus has an increased chance of uncovering a potential underlying genetic etiology especially in rare undiagnosed diseases. WES has been used increasingly in the field of paediatric endocrinology over the last decade contributing to the discovery of novel genes and genetic pathways. In this study a cohort of patients with varied phenotypes such as persistent CHI, congenital hypopituitarism, dysmorphic short stature with primary IGF1 deficiency, short stature with cardiac and other dysmorphic features, severe short stature with persistent low IGF1 and disorder of calcium metabolism was recruited for WES to identify the underlying genetic etiology. The results from the study have revealed the following:

1. A novel mutation in the transcription factor FOXA2 that has been shown to cause hypopituitarism and CHI by further functional studies.
2. A novel compound heterozygous mutation in ASXL3 contributing to Bainbridge Ropers like syndrome in association with primary IGF1 deficiency.
3. A novel frame-shift mutation in CaMKK2 contributing to increased insulin secretion in a patient with CHI.
4. A novel splice site mutation in B3GAT3 potentially contributing to severe short stature, facial dysmorphism and skeletal abnormalities.
5. A homozygous mutation in the promoter region of GH1 possibly causing severe short stature.
The pituitary gland is a master regulator of vital physiological functions such as growth, puberty, lactation, metabolism, stress response and reproduction. The development of the pituitary gland is tightly controlled by signalling molecules and transcription factors that dictate pituitary cell lineage specification, cell proliferation and terminal differentiation into hormone-producing cell (56, 386). Abnormal pituitary development can lead to congenital hypopituitarism (CH) resulting in deficiency in one of more pituitary hormones. CH comprises of a spectrum of disorders with variable phenotypes that can range in severity, from isolated hormone deficiency [isolated growth hormone deficiency being the most common] to combined pituitary hormone deficiency (CPHD) when two or more pituitary hormones are deficient. Hypopituitarism may present as part of a syndrome with abnormalities in structures that share a common embryological origin with the pituitary gland, such as the forebrain and eyes, leading to septo-optic dysplasia (SOD) or holoprosencephaly (HPE) (386). SOD is a rare condition with a prevalence of 1:10,000 (387) live births and comprises the following features: optic nerve hypoplasia, midline forebrain defects and hypopituitarism (388, 389). Mutations in transcription factors such as $HESX1$ (68), $PROP1$ (390), $POU1F1$ (266), $LHX3$ (84), $LHX4$ (391), $PITX1$, $PITX2$ (392), $OTX2$ (393), $SOX2$ (394) and $SOX3$ (395, 396) have been associated with CH in mouse and humans. However, these mutations account only for a small proportion of CH patients with the majority of patients having an unknown genetic cause for their symptoms.

CHI is a rare condition with an estimated prevalence of 1 in 50,000 live births, characterized by an inappropriate secretion of insulin from the β-cells of the pancreas during hypoglycaemia (264). CHI is the most common cause of severe and persistent hypoglycaemia in the neonatal period. The identification and appropriate
management of this condition is very important to avoid hypoglycaemic episodes and prevent the consequent neurological impairment. Mutations in genes \textit{ABCC8} (150, 253-256), \textit{KCNJ11} (150, 253-256), \textit{GLUD1} (397), \textit{GCK} (398), \textit{HADH} (171), \textit{UCP2} (399), \textit{HNF4A} (400), \textit{HNF1A} (400), \textit{MCT1} (189), \textit{HK1} (194) and \textit{PGM1} (197) have been associated with genetic forms of CHI (265). However, the genetic cause for many CHI patients remains elusive.

The combination of CHI and CHI in a single patient is extremely rare and the underlying genetic etiology causing this complex phenotype is unknown. In this study, a \textit{de novo} heterozygous mutation in the developmental transcription factor, Forkhead box A2, \textit{FOXA2} (c.505T>C, p. S169P) was identified in proband A who presented with CHI, CH, craniofacial dysmorphic features, choroidal coloboma and endoderm-derived organ malformations in liver, lung and gastrointestinal tract. The mutation is at a highly conserved residue within the DNA binding domain. A strong expression of \textit{Foxa2} mRNA was demonstrated in the developing hypothalamus, pituitary, pancreas, lungs and oesophagus of mouse embryos using \textit{in situ} hybridization. Expression profiling on human embryos by immunohistochemistry showed strong expression of hFOXA2 in the neural tube, third ventricle, diencephalon and in the pancreas. Transient transfection of HEK293T cells with Wt (Wild type) hFOXA2 or mutant hFOXA2 showed impairment in transcriptional reporter activity by the mutant hFOXA2. Further analyses using western blot assays showed that the \textit{FOXA2} p.(S169P) variant is pathogenic resulting in lower expression levels when compared with Wt hFOXA2.

The results thus demonstrate, the causative role of \textit{FOXA2} in a complex congenital syndrome with CH, CHI and endoderm-derived organ abnormalities.
As discussed before, in around 50% of the patients with persistent CHI, the underlying molecular genetic etiology is unknown (217). Due to the heterogeneity of CHI, WES studies have been less successful in identifying novel genes involved in the secretion of insulin from the pancreatic β-cell, the mutation of which might result in CHI. The downstream signalling pathway that follows the entry of calcium into β-cell, triggered by membrane depolarisation is not fully understood. In this study, a de novo heterozygous frameshift mutation (p.G539fs*4) was found at the terminal exon (exon 16) of CaMKK2 (NM_001270486.1) (isoform-7) in proband C with persistent CHI with no known genetic etiology. Ca²⁺/calmodulin-dependent protein kinase 2 (CaMKK2) belongs to the Serine/Threonine protein kinase family and alternative splicing results in multiple transcripts encoding distinct isoforms.

Calcium has been found to have a key role in mediating glucose stimulated insulin secretion via the action of multifunctional kinases (CaM-KI and CaM-KIV), activated by CaMKK2, an upstream kinase (329). The entry of calcium into the β-cell via the voltage gated calcium channel triggers the cascade of kinases, regulated by an upstream kinase, encoded by CaMKK2. The frameshift mutation in CaMKK2 (p.G539fs*4) causes an excess insulin secretion by increasing the Ca²⁺/calmodulin-dependent protein kinase activity. This was shown by expressing CaMKK2 isoform-7 (WT) and the pG539fs*4 mutant in COS7 cells and it was found that pG539fs*4 mutant was noted to have significantly higher basal and Ca²⁺-CaM dependent kinase activity compared with WT isoform-7. Furthermore, the isoform-7 and the pG539fs*4 mutant have elevated basal activity compared with isoform-1, the major CaMKK2 isoform expressed in most tissues. It is therefore hypothesised that the increase in the Ca²⁺-CaM dependent kinase activity as a result of the mutation, to be increasing the insulin secretion, probably via upregulated transcription of INS-1.
De novo truncating and splicing mutations in the additional sex combs-like 3 (ASXL3) gene have been implicated in the development of Bainbridge-Ropers syndrome (BRPS) characterised by severe developmental delay, feeding problems, short stature and characteristic facial features (280). In this study, a novel compound heterozygous mutation in ASXL3 was found in proband B with severe short stature, learning difficulties, feeding difficulties and dysmorphic features with. Additionally, the patient also has primary insulin like growth factor-1 (IGF1) deficiency. The mutations occur in exon 11 and proximal part of exon 12 and are strongly conserved at the protein level across various species. In silico analyses using PolyPhen-2 and SIFT predict the amino acid substitutions to be potentially deleterious to the protein function. Detailed bioinformatics analysis show that the molecular defects caused by the two compound heterozygous mutations synergistically impact on two points of the molecular interaction network of ASXL3.

Homozygous missense mutations in B3GAT3 have previously been described as ‘linkeropathies’ characterized by short stature, skeletal deformities and congenital heart defects (340) and also been described in patients with Larsen-like syndrome, defined as a development disorder of the bones throughout the body; individuals frequently express symptoms such as skeletal dislocations, hearing loss and facial dysmorphism(338). In this study, a novel heterozygous splice site mutation in B3GAT3 was identified in proband D with severe short stature, growth hormone (GH) deficiency, facial dysmorphism and congenital heart defects amongst other symptoms. The heterozygous mutation in B3GAT3 (c.888+262T>G) in the invariant “GT” splice donor is predicted to be pathogenic as it decreases the splicing efficiency in the mRNA that might result in the formation of truncated protein.
Homozygous mutation in the promoter region of GH1 has been described in the literature before to be causing an isolated growth hormone deficiency(366). In this study, a homozygous GH1 promoter mutation was identified in a child with severe short stature and persistent low IGF1. Although there was no evidence of GH deficiency on dynamic stimulation test, the child demonstrated a good response to a trial of recombinant GH. This may suggest the possibility of bio-inactive GH which has been previously reported in children with short stature(111). However, the mechanism of the promoter mutation leading to the production of biologically in-active GH peptide is currently unclear and requires further functional studies.
10.2 CONCLUSIONS

WES is a useful and powerful technique in identifying novel genetic etiologies and pathways in rare endocrine disorders in children.

In this study, a novel genetic etiology (FOXA2) is characterised for the first time as a cause for an extremely rare phenotype of CHI and CH. *In vitro* studies demonstrated a strong expression of pattern of FOXA2 not only during the various stages of murine pituitary development but also during human pituitary development and pancreas.

A novel type of mutation contributing to BRPS was demonstrated in this study and characterized by detailed bioinformatics methods. Only *de novo* truncating and splice site mutation have been described so far in BRPS. This study identified a compound heterozygous mutation in ASXL3, contributing to BRPS with an expanding clinical spectrum of primary IGF1 deficiency.

A novel frameshift mutation in CaMKK2 contributing to increased insulin secretion in a patient with persistent CHI was characterised in this study by demonstrating an increase in the kinase activity induced by the frameshift variant when compared to the wild type.

This study also identified a novel splice site invariant in B3GAT3 contributing to short stature, facial dysmorphism, congenital heart defects segregating with phenotypic features previously defined in patients with homozygous mutation in B3GAT3.

A homozygous mutation in the promoter region of GH1 possibly contributing to short stature with the production of biologically inactive GH was identified in a patient with severe short stature and low IGF1.
10.3 FUTURE DIRECTIONS

The identification of FOXA2 mutation in an individual with an extremely rare complex phenotype of CHI, cranio-facial dysmorphic features and CH will certainly provide valuable insights into the molecular mechanisms underlying pituitary development β-cell physiology. Screening more patients with similar phenotype will give further insight into the role of this transcription factor in the insulin secretion and in related diseases like neonatal diabetes mellitus and maturity onset diabetes of the young (MODY). Furthermore, this will provide more information on genotype-phenotype correlations in patients with FOXA2 mutations.

CaMKK2 has various isoforms generated by alternative splicing of the mRNA. The frameshift mutation pG539fs*4 leading to an increased insulin secretion is at the terminal C-sequence of CaMKK2 isoform 7. However, a very little is known about CaMKK2 isoform 7. Screening for mutations in CaMKK2 in patients with persistent CHI without known genetic etiology will help in understanding the precise role of CaMKK2 in governing the insulin secretion thereby establishing the precise function of isoform 7. Furthermore, clinical trials will help to establish the efficacy of nifedipine (calcium channel antagonist) in patients with persistent CHI and CaMKK2 mutation especially when patients do not respond to diazoxide or develop significant side effects.

Advances in CRISPR/Cas9 gene editing technology has enabled the induction of target modifications in a variety of model organisms (381, 401). CRISPR/Cas9 system can potentially be used as a genetic tool in studying the specific molecular mechanisms of the FOXA2 mutation in regulating the insulin secretion and its role in pituitary development.
In addition, the blood or skin cells from the patients with CaMKK2 pG539fs*4 mutation can be used to generate induced pluripotent stem cells in vitro that can differentiate into insulin secreting cells. The insulin secretion can be measured from these cells under basal and glucose stimulated conditions. Using CRISPR technology, the pG539fs*4 can be repaired back to wild-type sequence to examine if the insulin secretion returns back to normal.

The biological role of the splice site invariant (c.888+262T>G) in B3GAT3 causing the typical phenotypic features in proband D is not well understood. Further functional studies are required needed to fully characterise the role of this splice site variant mutation in B3GAT3. Similarly, the role of GH1 promoter variant (c.-93delG), causing severe short stature in proband E with persistent low IGF1, normal endogenous GH secretion on stimulation test but a good response to exogenous recombinant GH is not entirely clear. Further in vitro experiments involving GHR binding and Janus kinase (Jak)2/signal transducer and activator of transcription (Stat)5 activation will be required to study the impact of the promoter mutation (111).

263

185. Fajans SS, Bell GI. Macrosomia and neonatal hypoglycaemia in RW pedigree subjects with a mutation (Q268X) in the gene encoding hepatocyte nuclear factor 4alpha (HNF4A). Diabetologia. 2007;50(12):2600-1.

307. Chen J, Chiang YC, Denis CL. CCR4, a 3'-5' poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J. 2002;21(6):1414-26.

CHAPTER 12

APPENDIX
29 October 2015

Dr Senthil Senniappan
Consultant Paediatric Endocrinologist & Honorary Senior Lecturer
Alder Hey Children’s Hospital NHS Foundation Trust
Department of Paediatric Endocrinology
Alder Hey Children’s Hospital
Eaton Road
Liverpool
L12 2AP

Dear Dr Senniappan

Study title: Whole Exome Sequencing in Rare Endocrine disorders
REC reference: 15/NW/0758
IRAS project ID: 179435

Thank you for responding to the Committee’s request for further information on the above research and submitting revised documentation.

The further information has been considered on behalf of the Committee by the Vice-Chair.

We plan to publish your research summary wording for the above study on the HRA website, together with your contact details. Publication will be no earlier than three months from the date of this opinion letter. Should you wish to provide a substitute contact point, require further information, or wish to make a request to postpone publication, please contact the REC Manager, Mrs Carol Ebenezer, nrescommittee.northwest-liverpoolcentral@nhs.net.

Confirmation of ethical opinion

On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for the above research on the basis described in the application form, protocol and supporting documentation as revised, subject to the conditions specified below.

Conditions of the favourable opinion

The favourable opinion is subject to the following conditions being met prior to the start of the study.
Dr Senthil Senniappan
Consultant Paediatric Endocrinologist & Honorary Senior Lecturer
Alder Hey Children’s Hospital NHS Foundation Trust
Department of Paediatric Endocrinology
Alder Hey Children’s Hospital
Eaton Road
Liverpool
L12 2AP

RE: Whole Exome Sequencing in Rare Endocrine disorders
REC Ref: 15/NW/0758
R&D Ref: 15/25/RE

Dear Dr Senniappan,

Thank you for submitting the above application to the Research & Development Office. It has now been reviewed against the requirements of the Research Governance Framework for Health and Social Care and relevant legislation. I am pleased to confirm that following completion of these checks approval is now granted for the study to commence within the Alder Hey Children’s NHS Foundation Trust.

All NHS Trusts are performance managed by the National Institute for Health Research (NIHR) by benchmarks which measure the time taken to recruit the first patient into a research study and the local site’s recruitment to time and target. All investigators within the Trust are supported by Data Managers within the Clinical Research Business Unit who can interpret these benchmarks for you and advise you on the timing and format in which data should be submitted to the CRBU. R&D approval is conditional upon these data being submitted in a timely fashion each month.

It will be the responsibility of the local Principal Investigator to comply with the responsibilities laid down, in the Research Governance Framework for Health and Social Care, by the Department of Health. Please see the enclosed leaflet for further information.

A full copy of the Research Governance Framework for Health and Social Care can also be obtained from the Department of Health website at www.doh.gov.uk or the R&D Office.

Yours sincerely,

[Signature]
Professor Matthew Peak
Director of Research

v2.0 07/08/2014
Parents of participating children Information Sheet

Aim of the project

The aim of this project is to investigate the genetic causes of endocrine problem (hormonal problem) in newborn, infants and children. Previous research has already identified a number of abnormalities in certain genes that can contribute to endocrine disorder(s) but we still don’t know the cause in the majority of children. The aim of this study is to unravel further genetic causes that can cause or contribute to endocrine disorders.

Why has been my child identified to participate in this study?

Your child has been identified as having an endocrinological (hormonal) problem for which a potential genetic diagnosis is not known. We feel that, by this project we may be able to identify the genetic diagnosis, which may help in the future management of the condition.

How is the study being done?

If you agree to participate in this study, your child will have an additional blood sample taken when they are having their routine investigations. We will use this blood sample to extract DNA (genetic material). The DNA will then be used to analyse certain genes by the method of whole exome sequencing. The extra blood sample that we take will do no harm to your child, as the amount of blood that we will take is extremely small. As a part of the study, we might request blood samples from you or other related family members. This blood sample will be used to extract DNA that will be used only for the purpose of establishing a genetic cause for your child’s hormonal problem.

What are the risks and discomfort?

No risk to the child can be foreseen. Your child might have a cannula inserted for routine medical treatment and we will then take the blood sample from the cannula. There is discomfort from the insertion of the cannula but we would normally numb the skin anyway with a local anaesthetic cream.

For further understanding and information about genes/DNA/whole exome sequencing, please refer to the information below.

1. What are Genes?

The human body is made of cells. The cells contain DNA. The DNA is made of genes. Genes are chemical instructions that tell a cell what job to perform. A gene is like a recipe for making a particular protein. Proteins do important jobs in every cell of the body. Genes are written in code, with four chemicals (represented by the letters A, T, C, and G) that spell out the instructions to make a protein. People generally have two copies of most genes, one copy from each parent.
2. What is a genome and what is an exome?
Most genes are made up of introns and exons. Exons are the parts of the gene that contain the information used to make a protein. They are the “coding” part of the gene. Introns are regions of DNA in between exons and do not code for proteins.
The genome includes a person’s entire DNA, both the introns and the exons. The exome includes only the exons (the parts used to make proteins). The introns and other non-coding sequences of DNA are not part of the exome.

3. What is whole exome sequencing (WES)?
Some genetic tests “read” the genetic code of a single gene to see if that gene has any changes. Other genetic tests look for extra or missing pieces of DNA. Whole exome sequencing reads through the exons of most of the genes all at once. The exome is estimated to comprise approximately 1% of the genome, yet contains approximately 85% of disease-causing pathogenic variants.

4. What is the purpose of WES?
The purpose of whole exome sequencing is to try to find a genetic cause of your child’s signs and symptoms. Because WES looks at more genes than most genetic tests, it may find a genetic cause for your child’s signs and symptoms even if previous genetic testing did not.

5. How is the WES performed?
This test requires 3mls (about 1 teaspoon) of blood from the patient having WES. Sometimes blood samples from parents or other family members are also tested. The laboratory will isolate DNA from the blood sample. The exons (coding parts) of most genes will be examined. This is done for both the person having exome sequencing and for any family members that give DNA for comparison.

6. How is WES interpreted?
Your child’s DNA will be compared to a normal “reference” DNA sequence and (if applicable) to family members’ DNA. WES will identify some changes in the DNA that differ from the normal sequence. The researcher will use the clinical information, as well as many different scientific tools in the laboratory, to decide which genetic changes are likely to be responsible for your child’s signs and symptoms.

7. What are the benefits of WES?
WES may find a genetic cause for your child’s signs and symptoms. This may help guide medical care. A genetic diagnosis may give your family information about the chance that you could have other children affected with the same condition. This information may also be useful for other family members.
8. What are the limitations of WES?
It is possible that this test will not always find a reason for your child’s signs and symptoms. WES may reveal information that is unexpected or unwanted. Approximately 85-92% of the exons are sequenced by this test. This test does not sequence every exon well enough to find all mutations in each exon.

9. What kind of results can I expect from WES?
The results could either show that there is a change to the usual sequence of the genetic material found in your child’s sample (a variant) or there is not. If a variant is found, laboratory scientists will check to see if that specific variant has been found in other people who have a similar condition to your child. We all have some variations in our genetic material; no two people have exactly the same DNA sequence. However, many of the variations are completely normal and have no clinical effect, others enable us to have different characteristics and features. At this stage of our understanding of genetics, we do not always know if a rare variant could be harmful or not. Depending on the answer to this, you may receive one of the following results:

- The variant is thought to be definitely the cause of your child’s condition or contributes to it in some way. Usually we know this because it has been found in many others with the same condition. Professionals call this a pathogenic or disease-causing variant.
- There is a variant but it is not certain if this is connected with your child’s condition. This is sometimes called a variant of unknown significance and we may have to wait until science has advanced further to find out what it means for your child.
- The variant is thought to be harmless and not the cause of your child’s condition. This is called a polymorphism or benign variant.
- If we don’t find a variant, it does not necessarily mean there is no genetic cause for your condition. We still do not have enough understanding of genetics to recognise the underlying causes for all conditions.

10. What are secondary findings?
A secondary finding is a test result that is not expected and is not related to the reason for doing the test. For example, a mutation in a gene that is not related to the patient’s condition is considered a secondary finding. Secondary findings may have important implications for your or your child’s health.

Some genetic disorders do not have any effective treatment and may lead to death or lifelong disability. These types of results can be incidentally picked up during the research study. In whole exome sequencing the chance of finding an unexpected variant has been estimated to be three in every 100 tests performed.

11. Can I opt out from receiving the secondary findings?
Yes. The findings that are related to the disease/condition that is being tested for will be reported. You will have an option to choose not to receive (or receive) the information while signing the consent form about the secondary findings that are not related to the condition that is being tested for.
12. Could there be results that affect others in my family?

With any genetic test, there could be results that affect your blood relatives. For example, your condition may be one that could be inherited, and this might then be of importance to your children, brothers and sisters or parents. If this is the case, your health professional will explain this.

13. Do I have to take part in this study?

If you decide, now or at a later stage, that you do not wish to participate in this research project, that is entirely your right and will not in any way prejudice any present or future treatment.

14. Who do I speak to if problems arise?

If you have any complaints about the way in which this research project has been, or is being conducted, please, in the first instance, discuss them with the research team.

Thank you for your help and cooperation

Dr Dinesh Giri
Clinical Research Fellow in Paediatric Endocrinology
Alder Hey Children’s Hospital & Institute of Child Health, University of Liverpool
Eaton Road
Liverpool L12 2AP. Email:Dinesh.Giri@alderhey.nhs.uk
PATIENT INFORMATION SHEET FOR CHILDREN AGED UPTO 8 YEARS

Whole Exome Sequencing in rare Endocrine Disorders

Version 2.0, 15.10.2015
We would like you to read this with your mum or dad. The doctors can also help you.

You are invited to join a research study. Ask your mum and dad or the doctors if you have any questions.

What is a research study?

Research studies help us learn new things. We can test new ideas. By doing research we try to find an answer to a scientific question.
Why are we doing this research?

Genes are information passed on by your Mum and Dad. They decide everything about you and how your body works. Genes tell our bodies how to keep us healthy. But sometimes things go wrong and people may develop a problem that can make them become ill. Imagine, you are baking a cake and following the instructions from the recipe book. The genes are like the instructions in the recipe book. If you put the wrong thing in the cake then it doesn’t turn out how you expected. Similarly, if there is something wrong in the genes and if the genes do not work properly, then it may cause people to become ill. This research is to try and find out if there is anything wrong in the way the genes work.

This is how the genes look like.

Why me?

Hormones are special chemicals your body makes to help it do certain things - like growing up. They are important and keep us healthy and strong. We are doing this research to find out more about your hormone problem and to see if it the problem is caused by some of your genes that don’t work right.
What would happen if I join this research?

If you decide to be in the research, we will need to take a small amount of your blood. We will try to get blood at the same time when you are having blood test in the clinic. If we cannot do this we will ask your permission to take a separate blood test, for this we will put special cream on to numb the skin beforehand. We will look at your past doctor visits and use information about your care.

What will you do with my blood?

There are very small building blocks in your body called cells. The cells are so small you can’t even see them. We will get some of your cells out of your blood. We need to get your body’s recipe out of your cells. Then we need to look at what it tells your body to do.
What other things can happen if I want to join the study?

If we have to take a separate blood test, this will hurt a little, but we will put numbing cream on first. Sometimes the needle can leave a bruise on the skin.

You can say ‘no’ to what we ask you to do for the research at any time and we will stop.

Could the research help me?

This research may not help you immediately. We do hope to learn something from this research though. And someday we hope it will help other kids who have similar problems like you do.

What else should I know about this research?

If you don’t want to be in the study, you don’t have to be. It is also OK to say yes and change your mind later. You can stop being in the research at any time. If you want to stop, please tell the research doctors. We will still take good care of you no matter what you decide.
Thank You for reading this. Please ask any questions.
This paper talks about our research. Please ask us any questions that you have.
What is a research study?
Research studies help us learn new things. We can test new ideas. First, we ask a question. Then we try to find the answer.

Why are we doing this research?
Genes are information passed on by your Mum and Dad. They decide everything about you and how your body works. There are over 30,000 genes on each chromosome which act as special carrier for your genes. They are tightly packed inside the cells which are body’s building blocks. They are so small that you can only see them under a microscope. The genes give out instructions to the body that tells it to work properly. The instructions are also called as proteins. Sometimes, faulty instructions can cause problems. We are doing this research to find out more about your hormone problem and to see if it the problem is caused by some of your genes that don't work right.
Why have I been asked to take part?
As you may know, that you are seeing your Doctor in the hospital because you have hormone problem. Hormones are special chemicals your body makes to help it do certain things - like growing up. They are important and keep us healthy and strong. There are different hormones in our body, each of which has a specific role of action. We are doing this research to find out more about your hormone problem and to see if it the problem is caused by some of your genes that don't work right.

What would happen if I join this research?
If you decide to be in the research, we will ask you to do the following:
- Blood test: We will try to get blood at the same time when you are having blood test in the clinic without a new needle. If we cannot do this we will ask your permission to take a separate blood test, for this we will put special cream on to numb the skin beforehand.
- Medical records: We will look at your past doctor visits and use information about your care.

Are there any risks if join the study?
No. The needle used to test your blood can hurt. Sometimes the needle can leave a bruise on the skin. We can put a cream on your skin before we take blood. This cream would help so it won't hurt as much.

You can say 'no' to what we ask you to do for the research at any time and we will stop.
Could the research help me?
This research may not help you immediately. We do hope to learn something from this research though. And someday we hope it will help other kids who have similar problems like you do.

What else should I know about this research?
If you don’t want to be in the study, you don’t have to be. It is also OK to say yes and change your mind later. You can stop being in the research at any time. If you want to stop, please tell the research doctors.

Thank You for reading this. Please ask us if you have any questions.
PATIENT INFORMATION SHEET FOR YOUNG PEOPLE AGED 13-15 YEARS

Whole Exome Sequencing in rare Endocrine Disorders

Version 2.0, 15.10.2015
You are invited to join a research project. Ask your mum and dad or the doctors if you have any questions.

Why have I been asked to take part?

Hormones are special chemicals your body makes to help it do certain things - like growing up. They are important and keep us healthy and strong. There are different hormones in our body, each of which has a specific role of action. We are doing this research to find out more about your hormone problem and to see if it the problem is caused by some of your genes that don't work right.

Why are we doing this research?

Genes are information passed on by your Mum and Dad. They decide everything about you and how your body works. So, if you have a genetic problem, it might be because certain genes don't work properly. There are over 30,000 genes on each chromosome which act as special carrier for your genes. Genes are made of DNA. DNA contains four chemicals (adenine, thymine, cytosine, and guanine — called A, T, C, and G for short) and different patterns of A, T, G, and C code for the instructions for making things your body needs to function (like the enzymes to digest food or the specific action of a particular hormone). Imagine, if there is a problem in giving a right instruction code (like a spelling mistake in the DNA) then it may result in a particular problem or illness. We are doing this research to find out if there is a genetic reason for the hormonal problem.
What would happen if I join this research?

If you decide to be in the research, we will need to take a small amount of your blood (about one teaspoon). We will try to get blood at the same time when you are having blood test in the clinic.

We will look at your health records and use information about your care.

What will you do with my blood?

We will use your blood sample to get DNA from your cells and also to run tests to find out if there are any problems in the instructions code(sequence) of the DNA that make up your genes.
Could the research help me?
This research may not help you immediately. We do hope to learn something from this research though. And someday we hope it will help other kids who have similar problems like you do.

Do I have to take part?
If you and your parents talk about it and together you decide not to take part, that’s OK. If there are things that you are worried about it, talk to the research team about how you feel. Tell your parents and the doctors and nurses if you don’t want to join. It’s OK if you decide to be in the Project and then change your mind.

Is there any risk involved?
No risk is involved. The needle used to test your blood can hurt. Sometimes the needle can leave a bruise on the skin. We can put a numbing cream on your skin before we take blood. This cream would help so it won’t hurt as much. You can say ‘no’ to what we ask you to do for the research at any time and we will stop.

What else should I know about this research?
If you don’t want to be in the study, you don’t have to be. It is also OK to say yes and change your mind later. You can stop being in the research at any time. If you want to stop, please tell the research doctors. If you stop taking part, won’t be affected.

Thank You for reading this. Please ask if you have any questions.
PATIENT/PARTICIPANT CONSENT FORM

<table>
<thead>
<tr>
<th>Title of Project:</th>
<th>Whole Exome Sequencing in rare Endocrine disorders.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Team:</td>
<td>Dr Senthil Senniappan, Consultant Paediatric Endocrinologist & Honorary Senior Lecturer & Dr Dinesh Giri, Clinical Research Fellow, Paediatric Endocrinology</td>
</tr>
</tbody>
</table>

Please tick the boxes as appropriate

I have read and understood the Information Sheet for parents of participating children dated __/__/__ (version__). I have had the opportunity to consider this information, ask questions and I have had these answered satisfactorily.

I understand that my child’s participation in this study is my decision and that I am free to withdraw at any time without giving any reason. If I do withdraw consent now or later, I don't need to give any reason and my child’s present or future medical care or legal rights will not be affected.

I understand that sections of any of my child’s medical notes may be looked at by research team, where it is relevant to my child taking part in research. I give permission for these individuals to have access to the records.

I understand information on my child will be stored on a computer database for the purposes of research only. I give permission for information to be stored on the database.

I understand that this research project will involve collecting blood sample from my child. I agree for the blood sample to be collected from my child for this purpose.

I understand that it is not possible to guarantee that any genetic results of significance for my child will be found through this project and I also understand that the results may not be able to provide a clinical diagnosis.

I agree for my child's blood samples to be stored at the end of this project for future research after obtaining further informed consent.

Secondary Findings

I choose to receive results about genetic disorders that are not related to my or my child’s current signs and symptoms.

I choose not to receive results about genetic disorders that are not related to my or my child’s current signs and symptoms. I understand that I will not have access to these results later.

<table>
<thead>
<tr>
<th>Name of the Child</th>
<th>Date of Birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Patient/Parent</td>
<td>Date</td>
</tr>
<tr>
<td>Name of Person taking Consent</td>
<td>Date</td>
</tr>
</tbody>
</table>
PARENT CONSENT FORM

Title of Project: Whole Exome Sequencing in rare Endocrine disorders.
Research Team: Dr Senthil Senniappan, Consultant Paediatric Endocrinologist & Honorary Senior Lecturer & Dr Dinesh Giri, Clinical Research Fellow, Paediatric Endocrinology

Please tick the boxes as appropriate

I have read and understood the Information Sheet for parents of participating children dated __/__/__ (version__). I have had the opportunity to consider this information, ask questions and I have had these answered satisfactorily.

I understand that my participation in this study is my decision and that I am free to withdraw at any time without giving any reason. If I do withdraw consent now or later, I don’t need to give any reason and my present or future medical care or legal rights will not be affected.

I agree to give a sample of blood for the purpose of this research study.

I understand that samples, DNA sequence, and information from my health records from hospital/GP and any other information will be looked into by research team.

I understand that by giving my blood sample, my DNA sequence will be compared to that of my affected child’s DNA sequence.

I understand my health information will be stored on a computer database for the purposes of research only. I give permission for information to be stored on the database

Name of Parent __________________________ Date ______
Signature __________________________
Relationship to the child: Mum/Dad

Name of the Child __________________________ Date of Birth ______

Name of Person taking Consent __________________________ Date ______
Signature __________________________
LIST OF PUBLICATIONS

- **D.Giri**, R.Jayaram, S.Senniappan. Hypothyroidism and subcutaneous calcifications-Is there a missing link?- *Arch Dis Child Educ Pract Ed edpract-2016-311834*

312

Novel FOXA2 Mutation Causes Hyperinsulinism, Hypopituitarism with Craniofacial and Endoderm-Derived Organ Abnormalities
Dinesh Giril, Maria Lillina Vignola, Angelica Guaitieri, Valerio Scagliotti, Paul McNamara, Matthew Peak, Mohammed Didi, Carles Gaston-Massuet, Senthil Senniappan

Human Molecular Genetics, ddx318, https://doi.org/10.1093/hmg/ddx318
Published: 24 August 2017 Article history

Abstract
Congenital hypopituitarism (CH) is characterised by the deficiency of one or more pituitary hormones and can present alone or in association with complex disorders. Congenital hyperinsulinism (CHI) is a disorder of unregulated insulin secretion despite hypoglycemia that can occur in isolation or as part of a wider syndrome. Molecular diagnosis is unknown in many cases of CH and CHI. The underlying genetic etiology causing the complex phenotype of CH and CHI is unknown. In this study, we identified a de novo heterozygous mutation in the developmental transcription factor, forkhead box A2, FOXA2 (c.505T>C, p.S169P) in a child with CHI and CH with craniofacial dysmorphic features, choroidal coloboma and endoderm-derived organ malformations in liver, lung and gastrointestinal tract by whole exome sequencing. The mutation is at a highly conserved residue within the DNA binding domain. We demonstrated strong expression of Foxa2 mRNA in the developing hypothalamus, pituitary, pancreas, lungs and oesophagus of mouse embryos by in situ hybridization. Expression profiling on human embryos by immunohistochemistry showed strong expression of hFOXA2 in the neural tube, third ventricle, diencephalon and pancreas. Transient transfection of HEK293T cells with Wt(Wild type) hFOXA2 or mutant hFOXA2 showed an impairment in transcriptional reporter activity by the mutant hFOXA2. Further analyses using western blot assays showed that the FOXA2 p.(S169P) variant is pathogenic resulting in lower expression levels when compared with Wt hFOXA2. Our results show, for the first time, the causative role of FOXA2 in a complex congenital syndrome with hypopituitarism, hyperinsulinism and endoderm-derived organ abnormalities.
Abstract 933: CALCIUM/CALMODULIN DEPENDENT PROTEIN KINASE 2 (CAMK2) MUTATION – A NOVEL GENETIC CAUSE OF CONGENITAL HYPERINSULINISM

Primary Topics: Fetal and Neonatal Endocrinology and Metabolism, including Hypoglycemia

CALCIUM/CALMODULIN DEPENDENT PROTEIN KINASE 2 (CAMK2) MUTATION – A NOVEL GENETIC CAUSE OF CONGENITAL HYPERINSULINISM

Dinesh Giri, FRCPCH. University of Liverpool & Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom; John W Scott, PhD, University of Melbourne, Melbourne, Australia; Bruce E Kemp, PhD, Australian Catholic University, Melbourne, Australia; Anthony R Means, PhD, Baylor College of Medicine, Houston, TX, United States; Senthil Somiappan, PhD, University of Liverpool & Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom

Objectives

Ca2+/calmodulin-dependent protein kinase 2 (CaMK2) belongs to the Serine/Threonine protein kinase family and alternative splicing results in multiple transcripts encoding distinct isoforms. CaMK2 mRNA has been shown to express in mouse pancreatic islets and loss of CaMK2 increases the glucose mediated insulin secretion. We report, for the first time, CaMK2 mutation as a novel genetic cause of congenital hyperinsulinism (CHI).

Methods

A Caucasian child born to non-consanguineous parents at 33 weeks gestation presented with hypoglycaemic seizures at 7 months of age requiring intravenous glucose load up to 15mg/kg/min. The investigations confirmed CHI (plasma insulin concentration of 37pmol/L and suppressed 3 hydroxy butyrate (<100nmol/L) during hypoglycaemia). No mutation was identified in ABCC8, KCNJ11 or GCK. The 18-Fluoro-DOPA PET CT scan suggested diffuse CHI and the patient responded well to diazoxide therapy. At the age of 5 years, the patient requires 10mg/kg/day of diazoxide and has features of developmental and speech delay.

Results

Whole exome sequencing was performed on the genomic DNA of the patient and the biological parents. A de novo heterozygous frameshift mutation (p.G539fs*4) was found at the terminal exon (exon 16) of CaMK2 (NM_001270488.1) (isoform-7). CaMK2 isoform-7 (WT) and the p.G539fs*4 mutant were expressed in COS7 cells and the p.G539fs*4 mutant was noted to have significantly higher basal and Ca2+/CaM dependent kinase activity compared with WT isoform-7. Both isoform-7 and the p.G539fs*4 mutant have elevated basal activity compared with isoform-1, the major CaMK2 isoform expressed in most tissues.

Conclusions

We describe for the first time, CaMK2 mutation as a novel genetic cause of persistent CHI. The potential mechanism is likely to involve alteration in the AMPK (substrate for CaMK2) regulated insulin secretion driven specifically by isoform 7. This has wider implications in understanding the molecular genetic aetiology of CHI as well as monogenic diabetes mellitus.
Abstract #78: A NOVEL DENOVOS FORKHEAD BOX A2 (FOXA2) MUTATION LEADS TO CONGENITAL HYPERINSULINISM, CRANIOFACIAL DYSMORPHIC FEATURES AND CONGENITAL HYPOPITUITARISM

Primary Topic: Neuroendocrinology including Hypothalamic Hypothalactic Hypothalamic Hypothalactic H
Abstract: NOVEL COMPOUND HETEROZYGOUS ASXL3 MUTATION CAUSING BAINBRIDGE-Ropers LIKE SYNDROME AND PRIMARY IGF1 DEFICIENCY

Primary Topic: Syndromes
Secondary Topic: Growth and GH/IGF Axis

NOVEL COMPOUND HETEROZYGOUS ASXL3 MUTATION CAUSING BAINBRIDGE-Ropers LIKE SYNDROME AND PRIMARY IGF1 DEFICIENCY

Dinesh Gn, FRCPCH, University of Liverpool & Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Daniel Rigden, PhD, University of Liverpool, Liverpool, United Kingdom; Paul McNamara, PhD, University of Liverpool, Liverpool, United Kingdom; Matthew Peak, PhD, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Mohammed Didi, MRCPCH, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom; Benhill Bennamenn, PhD, University of Liverpool & Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom

Objectives

De novo truncating and splicing mutations in the additional sex comb-like 3 (ASXL3) are implicated in Bainbridge-Ropers syndrome (BRPS) characterised by severe developmental delay, short stature and characteristic facial features. We describe, for the first time, a patient with severe short stature secondary to IGF1 deficiency, learning difficulties, feeding difficulties and dysmorphic features with a novel compound heterozygous mutation in ASXL3.

Methods

A 7-year-old boy had severe short stature (-3.5 SDS), dysmorphic features [downward slanting of eyes, low set ears, short neck, hypospadias low set testicles, shortened metacarpals and ring finger], severe learning difficulties, and speech delay. Peak growth hormone (GH) was 11.7 μg/L after arginine stimulation and bone age was delayed by 5 years. The rest of the pituitary function was normal. IGF1 was persistently low at 4.9 μg/mL (-3.1 SDS) with no increase on IGF1 generation test. A trial of high dose GH (50 μg/kg/day) was ineffective and recombinant IGF1 therapy was commenced. CGH microarray did not reveal any copy number changes.

Results

Whole exome sequencing revealed two novel heterozygous ASXL3 mutations (p.Arg993Gly), p.Lys1026Asn) in the patient, inherited from his unaffected mother and his unaffected father respectively. The missense mutations affect highly conserved amino acid residues across several species and in silico analysis predict the changes to be deleterious (SIFT), disease causative and probably damaging (MutationTaster, PolyPhen and SiFT) on protein function. Detailed bioinformatic analysis showed that the molecular defects caused by the mutations affect phosphorylation and interaction of ASXL3 with proteins regulating cell cycle, thus synergistically impacting on two points of the molecular interaction network of ASXL3.

Conclusions

ASXL3 is a putative Polycomb group (PoG) protein that is required to maintain the transcriptionally repressive state of homeotic genes throughout development. We hypothesise that ASXL3 potentially has a role in transcriptional activation of IGF1 in signalling pathways that regulate cell proliferation, which could potentially be contributing to short stature encountered in these patients.
Novel Splicing Mutation in B3GAT3 associated with Short Stature, GH deficiency, Hypoglycaemia, Developmental delay and Multiple Congenital Anomalies

Samuel Bloor, Dinesh Giri, Mohammed Didi, Senthil Senniappan

Introduction
B3GAT3, encoding β-1,3-glucuronyltransferase 3, has an important role in proteoglycan biosynthesis. Homozygous B3GAT3 mutations have been associated with short stature, skeletal deformities and congenital heart defects. We describe for the first time, a novel heterozygous splice site mutation in B3GAT3 contributing to severe short stature, growth hormone (GH) deficiency, recurrent ketotic hypoglycaemia, facial dysmorphism and congenital heart defects.

Patient and Methods
A female infant, born at 34 weeks gestation to non-consanguineous Caucasian parents with a birth weight of 1.9kg was noted to have cloacal abnormality, ventricular septal defect and pulmonary stenosis and congenital sensorineural deafness. She also had recurrent hypoglycaemic episodes and the results were consistent with severe ketotic hypoglycaemia. At 4 years of age, she was diagnosed with GH deficiency due to her short stature (height<2.5SD) and commenced on GH therapy. MRI of the pituitary gland revealed small anterior pituitary. She has multiple dysmorphic features: anteverted nares, small upturned nose, hypertelorism, slight frontal bossing, short proximal bones, hypermobile joints and down slanting palpebral fissures. There is a history of short stature and dysmorphism in father and a stillborn previous sibling with multiple dysmorphic features, congenital heart defects and short bones. Targeted exome sequencing of genes associated with ketogenesis, ketolysis, carbohydrate metabolism and fatty acid oxidation was negative for pathogenic mutations. Whole exome sequencing (WES) was performed on the genomic DNA from the patient but the DNA samples from biological parents were unavailable.

Results
A heterozygous B3GAT3 mutation (c.888+262T>G) in the invariant “GT” splice donor site was identified. This variant is considered to be pathogenic as it decreases the splicing efficiency in the mRNA as predicted by a MaxEntScan score decrease of 100% (from 11.01 to -0.14) thereby creating an alternative splice site resulting in a frame shift and truncation of the protein through misfolding.

Conclusion
B3GAT3 is involved in glycosaminoglycan (GAG) biosynthesis, which provides structural support within the extracellular matrix surrounding the cells. Genetic defects can thus lead to multi-system disorders. We report a novel splice site mutation in B3GAT3 associated with short stature, GH deficiency and multiple congenital anomalies.
Novel FOXA2 mutation causes Hyperinsulinism, Hypopituitarism with Craniofacial and Endoderm-derived organ abnormalities

Dinesh Giri1,2, Maria Lillina Vignola3, Angelica Gualtieri3, Valeria Scagliotti3, Paul McNamara2, Matthew Peak4, Mohammed Didi1, Carles Gaston-Massuet3 and Senthil Senniappan1,2,*

1Department of Paediatric Endocrinology, Alder Hey Children’s Hospital NHS Foundation Trust, Liverpool, UK, 2Department of Women and Children’s Health, Institute in the Park, University of Liverpool, Liverpool L12 2AP, UK, 3Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK and 4NIHR Alder Hey Clinical Research Facility for Experimental Medicine, Alder Hey Children’s NHS Foundation Trust, Liverpool, L12 2AP, UK

*To whom correspondence should be addressed at: Department of Paediatric Endocrinology, Alder Hey Children’s Hospital NHS Trust, Eaton Road, Liverpool, UK. Tel: +441512525281; Fax: +441512824606; Email: senthilks@yahoo.co.uk

Abstract

Congenital hypopituitarism (CH) is characterized by the deficiency of one or more pituitary hormones and can present alone or in association with complex disorders. Congenital hyperinsulinism (CHI) is a disorder of unregulated insulin secretion despite hypoglycaemia that can occur in isolation or as part of a wider syndrome. Molecular diagnosis is unknown in many cases of CH and CHI. The underlying genetic etiology causing the complex phenotype of CH and CHI is unknown. In this study, we identified a de novo heterozygous mutation in the developmental transcription factor, forkhead box A2, FOXA2 (c.505T>C, p.S169P) in a child with CHI and CH with craniofacial dysmorphic features, choroidal coloboma and endoderm-derived organ malformations in liver, lung and gastrointestinal tract by whole exome sequencing. The mutation is at a highly conserved residue within the DNA binding domain. We demonstrated strong expression of Foxa2 mRNA in the developing hypothalamus, pituitary, pancreas, lungs and oesophagus of mouse embryos using in situ hybridization. Expression profiling on human embryos by immunohistochemistry showed strong expression of hFOXA2 in the neural tube, third ventricle, diencephalon and pancreas. Transient transfection of HEK293T cells with Wt (Wild type) hFOXA2 or mutant hFOXA2 showed an impairment in transcriptional reporter activity by the mutant hFOXA2. Further analyses using western blot assays showed that the FOXA2 p.(S169P) variant is pathogenic resulting in lower expression levels when compared with Wt hFOXA2. Our results show, for the first time, the causative role of FOXA2 in a complex congenital syndrome with hypopituitarism, hyperinsulinism and endoderm-derived organ abnormalities.

Received: June 19, 2017. Revised: July 31, 2017. Accepted: July 31, 2017

© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
HNF4A (consequent neurological impairment. Mutations in genes cation and appropriate management of this condition is very during hypoglycemia (CHI) patients with the majority of patients (having an unknown genetic cause for their symptoms.

Congenital hyperinsulinism (CHI) is a rare condition with an estimated prevalence of 1 in 50,000 live births and comprises the following features: optic nerve hypoplasia, midline forebrain defects and hypopituitarism (4,5). Mutations in transcription factors such as HESX1 (6), PROP1 (7), FOXP1 (8), LHX3 (9), LHX4 (10), PITX1, PITX2 (11), OTX2 (12), SOX2 (13) and SOX3 (14,15) have been associated with CHI in mouse and humans. However, these mutations account only for a small proportion of CHI patients with the majority of patients having an unknown genetic cause for their symptoms.

Congenital hyperinsulinism (CHI) is a rare condition with an estimated prevalence of 1 in 50,000 live births, characterized by an inappropriate secretion of insulin from the β-cells of the pancreas during hypoglycemia (16). CHI is the most common cause of severe and persistent hypoglycaemia in the neonatal period. The identification and appropriate management of this condition is very important to avoid hypoglycaemic episodes and prevent the consequent neurological impairment. Mutations in genes ABCB8 (17–21), KCNJ11 (17–21), GLUD1 (22), GCK (23), ADRH (24), UCP2 (25), HNF4A (26), HNF1A (26), MCT1 (27), HIF1 (28) and PGM1 (29) have been associated with genetic forms of CHI (30). However, the genetic cause for many CHI patients remains elusive.

FOXA2 (formerly hepatocyte nuclear factor-3β, HNF-3β) belongs to the family of the forkhead class of transcription factors that has an essential role in embryogenesis during the formation of the node, notochord and floor plate (31,32), which are important for the development of the vertebrate body axis. Thus, Foxa2 null mice embryos die during early gestation, at embryonic day 9.5, and fail to form axial mesoderm (31). Later during organogenesis, Foxa2 co-operates with Foxa1 and are required for the formation of endoderm-derived organs such as the liver (33), lung (34), pancreas (35) and gastrointestinal tract (36). Foxa2 has been shown to be important in the development of anterior forebrain structures, which have the same embryonic origin as the pituitary gland (37). Data from murine genetic studies have shown a genetic interaction between Foxa2 and Sonic Hedgehog (Shh) signalling pathway with overlapping expression pattern of Foxa2 and Shh in the notochord and floor plate at e8.5. Foxa2 can modulate Shh signalling, contributing to the specification of ventral motor neuron progenitor identity (38). The secretion of Shh by the notochord and floor plate is an important morphogenetic signal that is required for the development of central nervous system including the pituitary gland (39). In the islet cells of mature pancreas, Foxa2 has been shown to activate components of insulin secretion, such as sulfonylurea receptor1 [sur1], (40) and the inward rectifier potassium channel member 6.2 [Kir 6.2] (40). In humans, mutations in ABCB8 [encoding SUR1] and KCNJ11 [encoding Kir 6.2] (17–21) are the most common causes of genetic forms of CHI. Notably, tissue-specific deletion of Foxa2 from the pancreatic β-cells (Foxa2_{cre+;Ins-Cre}) has shown to the development of CHI in mouse (41).

Thus, FOXA2 is an important developmental transcription factor required for the formation of ventral midline structures such as the floorplate and forebrain, as well as endoderm-derived organs including the pancreas, and regulating glucose homeostasis in mature pancreatic β-cells. To date, mutations in FOXA2 causing disorders of glucose homeostasis, endoderm abnormalities and CH have not been described in humans. In this study, we report for the first time, a ‘de novo’ heterozygous mutation in FOXA2 in a patient with unique clinical phenotype of CH, persistent CHI, craniofacial dysmorphism, abnormalities in the liver, heart, lung and the gastrointestinal tract. This finding brings a new insight into the underlying molecular cause of a complex clinical phenotype that will serve as a tool to elucidate the pathogenesis of these congenital malformations and to better understand the development and function of the pituitary gland and the pancreas.

Results

Clinical findings

Our patient, a 5-year-old girl, was born to non-consanguineous Caucasian British parents at 42 weeks’ gestation with a birth weight of 4.185 kg (<1.72 SDS). The pregnancy was normal and the 20-week antenatal scan showed polyhydramnios. The delivery was complicated by shoulder dystocia, needing resuscitation. She was found to be persistently hypoglycaemic (blood glucose <2.5 mmol/l) requiring a total glucose load of 25 mg/kg/min (normal: 4–6 mg/kg/min) to maintain normoglycaemia (blood glucose >3.5 mmol/l). She had low free thyroxine (FT4) (5.3 pmol/l) and suppressed thyroid-stimulating hormone (TSH) (<0.03 mu/l) that persisted even after the phase of acute severe illness. She also had an undetectable adrenocorticotrophic hormone (ACTH) (<1.1 pmol/l) with no cortisol response to synacthen stimulation (peak cortisol to synacthen <50nmol/l). Hydrocortisone replacement (10mg/m²/day) was commenced followed by levodopa therapy. The MRI scan of the brain showed a hypoplastic anterior pituitary, absent posterior pituitary, interrupted pituitary stalk and a thin corpus callosum (Fig. 1B). The hypoglycaemia persisted and further investigations showed an inappropriately high plasma insulin (200 pmol/l) and C-peptide (1500 pmol/l) and an abnormal free fatty acid (<100µmol/l) and beta hydroxy butyrate (<100µmol/l) during hypoglycaemia (blood glucose: 1.2 mmol/l) confirming the diagnosis of CHI. The Growth hormone (GH) was undetectable at the time of hypoglycaemia (<0.05 µg/l). A trial of diazoxide (5 mg/kg/day) was commenced along with chlorothiazide (7 mg/kg/day). However, the patient suffered from significant fluid retention leading to discontinuation of diazoxide. Commencement of ocreotide (10mcg/kg/day) caused a derangement of liver enzymes and therefore had to be discontinued after which the liver enzymes returned to normal levels. She developed significant feed intolerance due to severe gastroesophageal reflux which persisted despite maximum medical treatment. A gastro-jejunostomy tube was inserted to support feeding. Normoglycaemia was maintained by continuous feed via the gastro-jejunostomy tube. Genetic analysis was negative for ABCB8, KCNJ11, HNF4A and GCK mutations. The 18F-DOPA PET-CT scan of the pancreas suggested a diffuse uptake.
The facial dysmorphic features comprise of a single median maxillary central (SMMC) incisor (Fig. 1A), congenital nasal pyriform aperture stenosis (CNPAS), which was conservatively managed, and a left choroidal coloboma. She does not have any vision abnormalities. The cardiac echocardiogram revealed pulmonary stenosis which required balloon dilatation. She had a persistent oxygen requirement (0.5–1 l via nasal cannulae) of unknown etiology [negative for respiratory infections, normal chest imaging (CT) and bronchoscopy] from birth. At 1.5 years of age she was diagnosed with GH deficiency [height < -3 SDS, IGF1 < 3.3 nmol/l and a peak GH of 1.1 μg/l (normal > 7 μg/l) to arginine stimulation] and was commenced on rGH (recombinant GH) therapy. She demonstrated a good response to treatment with rGH (25 mcg/kg/day) with an improvement in the height SDS.

She developed persistently elevated liver transaminases when she was 3 years old, with a negative autoimmune hepatitis and infection screen. The liver biopsy showed dense chronic inflammation with portal-portal bridging fibrosis.

The clinical features are summarized in Table 1.

Mutation analysis

A novel heterozygous FOXA2 mutation (c.505T>C, p.S169P) was identified in the affected child but not in the parents by whole exome sequencing. To further validate our results, the mutation was confirmed by Sanger sequencing (Fig. 1D). The variant is not present in control databases (ExAc, dbSNP, 1000 genome). Multiple sequence alignment shows that the serine residue at position 169 is highly conserved across different species such as drosophila, human, mouse, chicken and frog. The clinical features are summarized in Table 1.

She is currently 5 years old, with persistent CHI, motor, speech and developmental delay and continues to be on rGH, levothyroxine and hydrocortisone replacements. There are no symptoms suggestive of diabetes insipidus and the biochemistry has been completely normal. She has shown response to the reintroduction of diazoxide (5 mg/kg/day) and chlorothiazide without any features of fluid retention, which has enabled her to come off continuous feeds for 6 h.

Figure 1. Picture of the patient’s face showing single central incisor tooth (A, arrowhead). (B) Sagittal view of the MRI scan of the brain: The normal pituitary gland cannot be identified, the sella turcica is shallow and poorly defined with possibly a very hypoplastic anterior pituitary gland (arrowhead). Also, there is no evidence of the normal high signal of the posterior pituitary. There is a very short and thin pituitary stalk in its superior third (arrow) which is suggestive of an interrupted pituitary stalk. The corpus callosum is also noted to be thin (arrowhead). (C) The patient’s linear growth curve compared with British contemporary references. Recombinant GH was started at 1.5 years of age when the linear height was -3 SDS. A good response to GH treatment is seen subsequently with an improvement in the height SDS. (D) Electropherograms show the wild type (WT FOXA2) and the presence of the missense mutation (thymine to cytosine) in the patient at the nucleotide position 505. (E) The evolutionary conservation of the amino acid residue serine at position 169 is shown across different species such as drosophila, human, mouse, chicken and frog. Abbreviations: standard deviation score, SDS; wild-type, WT; growth hormone, GH; drosophila, DROME; frog, XENTR.
Table 1. Summary of clinical features

<table>
<thead>
<tr>
<th>Face</th>
<th>Single median maxillary central incisor, congenital nasal pyriform aperture stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye</td>
<td>Left choroidal coloboma</td>
</tr>
<tr>
<td>Heart</td>
<td>Supra-valvular pulmonary stenosis</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Feed intolerance, severe gastro-esophageal reflux disease requiring gastro-jejunostomy feeding</td>
</tr>
<tr>
<td>Liver</td>
<td>Portal-portal bridging fibrosis, elevated transaminases</td>
</tr>
<tr>
<td>Lung</td>
<td>Persistent oxygen requirement of unknown etiology</td>
</tr>
<tr>
<td>Pancreas</td>
<td>Persistent form of hyperinsulinism</td>
</tr>
<tr>
<td>Pituitary</td>
<td>ACTH, GH and TSH deficiencies</td>
</tr>
<tr>
<td>Neuro-developmental</td>
<td>Speech and motor developmental delay</td>
</tr>
</tbody>
</table>

Functional analysis

To further characterize the possible role of FOXA2 in the observed clinical phenotype, we studied the expression of FOXA2 at the mRNA level during mouse embryonic development. FOXA2 mRNA transcripts were detected in the midbrain, ventral forebrain, ventral hindbrain, epithelial structures lining the main bronchus, lungs and the esophagus from embryonic day e11.5 (Fig. 2). Importantly, the expression of FOXA2 mRNA was detected in the pituitary gland from e13.5 (Fig. 2C-C) in the anterior lobe. From e15.5, FOXA2 mRNA expression was stronger with robust expression in the ventral diencephalon, and anterior lobe of the pituitary gland (Fig. 2D-D'). At embryonic day e18.5, FOXA2 mRNA transcripts were localized in the hypothalamic-pituitary axis, with transcripts strongly expressed in the ventral hypothalamus and anterior pituitary (Fig. 2E-E'). Analysis of hFOXA2 expression in human embryos by immunohistochemistry revealed expression of hFOXA2 in the ventral neural tube (Fig. 3A) and in the diencephalon (Fig. 3A') at six weeks (Carnegie stage 16), and around the third ventricle at 8 weeks (Carnegie stage 23) (Fig. 3B'). hFOXA2 was specifically localized in the cytoplasm of cells scattered in the pancreatic parenchyma at 13 weeks of gestation (Fig. 3C-C'). In summary, our expression analysis shows expression of FOXA2 mRNA in hypothalamic-pituitary axis and lungs during mice embryonic development. hFOXA2 expression was detected in midline neural tube and pancreas.

FOXA2 has been previously shown to bind and activate the human glucose transporter type 2 (GLUT2) [42]. To determine the pathogenic effect of FOXA2 p.S169P variant, we performed transcriptional activation assays using the GLUT2 promoter coupled to luciferase (pGLT2-234-promoter-luc). We used transiently transfected HEK293T cells with equal quantities of Wt hFOXA2 or mutant hFOXA2 p.S169P and demonstrated that the hFOXA2 p.S169P significantly impairs the transcriptional activation of the GLUT2 luciferase reporter (Fig. 4A). We also performed quantification of protein expression using western blot and showed that the mutant hFOXA2 p.S169P results in significantly reduced protein expression levels compared to the Wt hFOXA2 (Fig. 4B). Using double immunofluorescence on transiently transfected HEK293T cells, we demonstrated that both the Wt hFOXA2 and mutant hFOXA2 are expressed in the nucleus and the mutation did not result in changes to cellular localization (Fig. 5). Together the results indicate that the hFOXA2 p.S169P variant results in lower transcriptional activity due to an effect of the mutation on the FOXA2 protein levels.

Discussion

We have characterized a ‘de novo’ heterozygous mutation in the developmental transcription factor FOXA2 that causes a rare and unique clinical phenotype of hypopituitarism, CHI, dysmorphic features, liver, pancreas, heart and gastrointestinal abnormalities. The c.505T>C, p.S169P genetic variant occurs at the conserved forkhead DNA binding domain of the FOXA2. This region binds to the DNA and may provide tissue-specific gene regulation important for the development of multiple organs. Our data has confirmed that the mutation impairs the transcriptional activation of FOXA2. Importantly, FOXA2 is localized at the cytogenetic location 20p11.2 and some studies have linked chromosomal deletions within this region with the clinical phenotype of hypopituitarism, central nervous system (CNS) defects, hypoglycaemia, facial dysmorphic features and congenital abnormalities of the heart, liver and gastrointestinal tract [43–47]. Chromosomal deletions of the 20p11.2 are rare [46] and recent studies have mapped the minimal critical region which contains 20 genes [43], including FOXA2. All the patients reported to have the 20p11.2 chromosomal deletion have hypopituitarism, CNS abnormalities and facial dysmorphic features as shared features, strongly indicating that a gene or multiple genes within this chromosome region have a key role in CNS, pituitary and facial development. We have identified the gene responsible for the clinical phenotype of hypopituitarism at the 20p11.2 region as FOXA2 and confirmed the causative role with functional analysis.

In our study, we show that FOXA2 mutation causes the clinical phenotype of hypopituitarism, CHI and facial dysmorphic features that overlaps with the clinical data published in patients with 20p11.2 deletions [43–47]. The mutation in hFOXA2 p.S169P is pathogenic, as it results in impaired transcriptional activation of the phGT2-234-promoter-luc reporter and significant reduction in the protein expression compared to wild type hFOXA2. Interestingly, FOXA2 has been shown to regulate key signalling pathways important in ventral midline, pituitary and CNS development such as Shh signalling [38]. Data from in vivo studies using Wnt1:Cre; Foxa2^{lox/lox} embryos showed that Foxa2 has an early role in the initiation of Shh expression. Foxa2, in combination with Foxa1, downregulates the expression of intracellular transducers and downstream targets of Shh signalling such as Ptc1, Gli1 and Gli2, which regulate the patterning of the ventral midbrain [38]. Hence, we hypothesize that hFOXA2 could mediate its role in pituitary development by regulating Shh expression. Moreover, the midline anomalies in our patient including SMMC, CNPAS are often associated with pituitary abnormalities, as described in an extensive literature review by Lo et al. [48], where hypopituitarism or growth hormone deficiency were identified in 43–48% of patients with CNPAS or SMMC. This is consistent with the clinical presentation of our patient, who has hypopituitarism along with hypoplastic pituitary, thin corpus callosum and thin pituitary stalk on the MRI.
Figure 2. mRNA expression of Foxa2 during mouse embryonic development. A-D represent sagittal sections, with anterior to the left side, and E is a coronal section. A', C', D', E' show higher-magnification views of the boxed areas in A, C, D, E, respectively. At embryonic day e11.5 (A) Foxa2 mRNA transcripts were expressed within the midbrain (MB) and ventral hindbrain (HB) (arrowheads) and also in a few cells localized in the forebrain (asterisk) (FB). At this stage of development no transcripts were detected in the primordium of the anterior pituitary gland, the Rathke’s pouch (RP dotted line in A and A'), or in the infundibulum (Inf). A' shows an enlarged image of the squared area in A, confirming undetectable expression of Foxa2 at this stage in the RP and Inf. At e12.5 (B and B') Foxa2 mRNA transcripts were detected in the epithelial structures lining the main bronchus (MBr) (B, arrowhead) and in the epithelium lining the lung (Lu) and oesophagus (OE) (B', arrowheads). By e13.5, expression of Foxa2 appears localized in the ventral side of the anterior lobe of the developing pituitary gland (AL, arrow) with transcripts localized in the ventral marginal zone (arrowheads in C). Foxa2 mRNA expression becomes stronger at e15.5 (D) with robust expression in the ventral diencephalon (VD, asterisk), posterior lobe (PL) and anterior lobe (AL, arrowheads in D') of the pituitary gland. At embryonic day e18.5 (E), expression was found widely spread in the central nervous system, with strong expression in the lumen surrounding the lateral ventricles (LV, arrowheads) and the third ventricle (TV, asterisks). Enlarged image of the boxed area in E shows mRNA expression localized in the hypothalamic area (Hyp) (E', arrowheads) with distinct pattern in the luminal area where the hypothalamic precursors...
The detection of Foxa2 mRNA transcripts from the early stages of mouse pituitary and brain embryonic development suggests a potential role in the development of these structures. Furthermore, the detection of hFOXA2 by immunohistochemistry in human embryos at various developmental stages, along with the biochemical experiments demonstrating that the variant p.S169P mutation in FOXA2 impairs transcriptional activation and protein expression levels, strongly indicate that FOXA2 has a pivotal role in hypothalamic-pituitary axis formation in humans.

The co-existence of hypopituitarism along with a persistent form of hyperinsulinism, as encountered in our patient, is extremely uncommon. Hypoglycaemia in CHI is caused by unregulated insulin secretion while in hypopituitarism it is due to the lack of counter-regulatory hormonal response due to the deficiency of ACTH and GH. Diagnosis can often be challenging, as the hallmark of CHI is detectable insulin in the presence of hypoketotic hypoglycaemia while hypopituitarism causes ketotic hypoglycaemia. Almost half of the patients with persistent CHI do not have mutations in the already recognized genes known to cause CHI. Genetic diagnosis is important as it will inform the prognosis, recurrence risk and guide the medical management besides providing valuable insight into β-cell physiology. The negative mutations in the known CHI genes in our patient together with strong biochemical evidence of CHI, makes it highly likely that the CHI in our patient is due to a novel genetic aetiology (FOXA2). We have further confirmed this by demonstrating the expression of hFOXA2 in the developing human pancreas.

Glucose-stimulated insulin secretion occurs by the closure of ATP dependent KATP channels situated on the β-cell membrane with the resultant depolarization of the membrane causing the exocytosis of the insulin granules (16,30). KATP channels consist of 2 subunits, SUR1 and Kir6.2, encoded by ABCC8 and KCNJ11 respectively, the mutations of which cause defects in the channels resulting in the most common form of genetic CHI (16,30). Lantz et al. demonstrated that when SUR1 or Kir6.2 promoter/luciferase reporter was transfected with Foxa2 tanycytes reside (arrowheads in F). mRNAs transcripts were also localized in both the posterior (PL) and anterior (AL) lobes of the pituitary gland (arrows in E'). Abbreviations: midbrain, MB; hindbrain, HB; forebrain, FB; Rathke's pouch, RP; infundibulum, Inf; main bronchus, MBr; lung, Lu; oesophagus, OE; ventral diencephalon, VD; pituitary gland posterior lobe, P; pituitary gland anterior lobe, AL; lateral ventricles, LV; third ventricle, TV; hypothalamus, Hyp. Scale bars represent: 50 μm (A, B, C’, D’); 100 μm (B’, 250 μm (A, C, D, F); 500 μm (B).
expression plasmids, Foxa2-Sur1 and Foxa2-Kir6.2 promoter constructs showed 6-fold and 4-fold activation respectively demonstrating a vital role of Foxa2 in the transcriptional activation of the KATP subunits (40). Hence, a FOXA2 mutation could potentially alter the expression of SUR1 and/or Kir6.2 leading to hyperinsulinsim although the precise mechanism is yet to be explored. The other possible mechanism could be linked to HADH that encodes L-3-Hydroxyacyl-CoA-dehydrogenase (HADH), an enzyme involved in the penultimate step of the beta-oxidation pathway (8). Mutations in HADH cause CHI in humans. It has been demonstrated in mice that Foxa2 directly targets HADH causing its transcriptional activation (49). Sund et al. demonstrated that Foxa2 knocked out from the β-cells in mice resulted in a 3-fold downregulation of Hadh mRNA leading to severe hyperinsulinaemic hypoglycaemia (41,42). The third possibility could be linked to GLUT2, which is expressed in the plasma membrane of the pancreatic β-cells, liver, kidney and intestine to facilitate insulin secretion by transporting the glucose across the cell membrane (29). Wang et al. showed that GLUT2 plays an important role in the insulin secretion from the β-cells as its mRNA level is influenced by the plasma concentrations of glucose and insulin (50). Cha et al. demonstrated that GLUT2 has binding sites for FOXA2 and showed that the promoter activity of GLUT2 is synergistically activated by FOXA2 in NIH3T3 cells (42). FOXA2 also plays a critical role in the tissue specific expression of GLUT2 (42). The reduction in the transcriptional activation of the GLUT2 reporter (phGT2-294-promoter-luc) activity by the mutant hFOXA2 (p.S169P) shown in our transcriptional assay experiment, could imply that the GLUT2 tissue expression is reduced in the pancreatic β-cells of patients with FOXA2 mutation. However, the precise mechanism by which this leads to hyperinsulinaemic hypoglycaemia is not yet understood.

It is also plausible that Foxa2 plays a role in the development of the pancreas. Foxa2 has been shown to regulate Pdx1, a homeobox gene essential for pancreatic development (49). Foxa2 has also been linked to regulating the mRNA levels of pancreatic transcription factors such as Hnf6a and Hnf1a, mutations of which can cause monogenic forms of diabetes mellitus. However, some studies contradict that Foxa2 is an upstream regulator of Pdx1, Hnf6a and Hnf1a (50). While it has been shown that β-cell-specific deletion of Foxa2 in mice causes a phenotype of hypoglycaemia (41), it also has been demonstrated that it can cause downregulation of Pdx1 mRNA causing the reduction of PDX-1 protein levels in the pancreatic islets (51) and a targeted β-cell-specific deletion of Pdx1 results in diabetes in transgenic mice (52). Thus, FOXA2 is a crucial transcription factor that controls the expression of multiple genes involved both in glucose sensing and glucose homeostasis and therefore has a potential role in diseases involving insulin secretion and glucose homeostasis.

Diazoxide is used as an effective treatment in majority of patients with CHI except in those with mutations abolishing the KATP channel activity (ABCC8 or KCNJ11) or activating mutations in GCK. Our patient has shown response to diazoxide treatment which could potentially imply that the variant p.S169P has not completely abolished the KATP channel activity or increased the GCK expression.

Whilst it is difficult to speculate the progression of abnormalities in glucose homeostasis in patients with FOXA2 mutation, screening more patients with similar phenotype will give further insights into the role of this transcription factor in the insulin secretion and in related diseases like neonatal diabetes mellitus and maturity onset diabetes of the young (MODY). The main limitation of our study is the lack of more patients with similar phenotype. As the combination of the phenotype comprising CHI and hypopituitarism is extremely rare, we were unable to recruit more patients for this study. However we are hopeful that the dissemination of the findings from this study will alert the researchers from across the world to screen for FOXA2 mutations in patients with similar phenotype, thereby enabling a better understanding of genotype-phenotype correlations.
In conclusion, we have identified the first disease-causing mutation in FOXA2 in an individual with an extremely rare complex phenotype of CHI, cranio-facial dysmorphic features, CH, cardiac, liver and gastrointestinal abnormalities. Identification of the genetic cause contributing to such a unique clinical phenotype will help medical management and provide valuable insights into molecular mechanisms underlying pituitary development and \(\beta \)-cell physiology.

Materials and Methods

Patient enrolment

The patient was recruited to the ‘Whole exome sequencing for rare endocrine disorders’ study following written consent from the parents. The study was given favorable ethical opinion by the North West – Liverpool Central Research Ethics Committee (REC Reference: 15/NW/0758) and site study approval was granted by the Clinical Research Business Unit at Alder Hey Children’s NHS Foundation Trust, Liverpool, UK.

DNA extraction

DNA was obtained from blood samples of the child and both the biological parents (trio) using the QIAMP DNA blood Midi Kit (Qiagen, Hilden, Germany) as per the manufacturer’s instructions and subjected to whole exome sequencing. The quality and the quantity of the genomic DNA were assessed using the Qubit (ThermoFisher Scientific) and the NanoDrop (ThermoFisher Scientific).

Library preparation, exon capture and sequencing

The samples (3 \(\mu \)g/sample) were sheared with the Picoruptor to a size of approximately 150–200bp. The samples were cleaned with 1.8× AMPure beads (Agencourt) and end repaired at 20 °C for 30 min. The products were A tailed by incubation at 37 °C for 30 min, cleaned with AMPure beads again and ligated to index adapters at 30 °C for 10 min to make a pre-capture library using the Agilent Sureselect XT target enrichment system for Illumina. Enrichment was achieved by five rounds of PCR using Herculase II fusion DNA polymerase. The libraries were checked on an Agilent HS Bioanalyser chip and quantified by Qubit Assay. 750 ng of pre-capture library was used for the hybridization. Samples were lyophilized to attain the required volume. Libraries were then mixed with hybridization buffer, baits from the Human All Exon 5 kit and incubated overnight (24 h) at 65 °C. The samples were then mixed with washed streptavidin beads (Dynabeads MyOne Streptavidin T10) and the captured products were washed and pooled. The quantity and quality of the pool was assessed by Bioanalyzer and subsequently by qPCR using the Illumina Library Quantification Kit from Kapa on a Roche Light Cycler LC480II, according to manufacturer’s instructions. The template DNA was denatured according to the protocol described in the Illumina cBot user guide and loaded at 300 pM concentration. Sequencing was carried out on one lane of an Illumina HiSeq4000 at 2 × 150 bp paired-end sequencing with v1 chemistry.

Bioinformatics

The sequence data were aligned to the reference genome (GRCh37/hg19). Reads were mapped to the reference sequences using BWA mem version 0.7.5a (53) with default parameters. The mean depth of the coverage was 100×. In order to retain only confidently aligned reads, alignments were filtered to remove reads with a mapping quality lower than 10. The mapped reads were locally re-aligned to improve the alignments around small insertions/deletions (indels) using the Genome Analysis Tool Kit (GATK) version 2.1.13 (54). Base quality scores were
recalibrated using GATK Base Quality Score Recalibrator (BQSR). BQSR is a module of GATK to create more accurate base qualities, which in turn improves the accuracy of our variant calls. The variants identified were annotated using SnpEff. The variants present in at least 1% minor allele frequency in 1000 Genomes Project, Exome aggregation consortium (ExAC), dbSNP142 and NHLBI ESP exomes were excluded. The predicted deleterious variants included non-synonymous coding, splice site, frameshift and stop gain variants. The analysis of variants was performed using the ingenuity variant analysis (Qiagen bioinformatics) software. The identified potential variant segregating with the patient’s phenotype was subsequently confirmed by Sanger sequencing.

Mice
All mice were housed with a 12 h light/12 h dark cycle in a temperature- and humidity-controlled room (21 °C, 55% humidity) with constant access to food and water. Timed pregnancies were achieved by mating females and males overnight and, the presence of vaginal plug the following morning, was considered as embryonic day (e) 0.5. All experiments were conducted under the regulations, licenses and local ethical review of the UK Animals (Scientific Procedures) Act 1986.

Immunohistochemistry
Paraffin-embedded human tissue samples at 6, 8 and 13 weeks of gestation were obtained from the Human Developmental Biology Resource (Institute of Genetic Medicine, Newcastle and Institute of Child Health, London; www.hdbr.org). Immunohistochemistry was performed by deparaffinization of the sections followed by rehydration through decreasing ethanol dilutions. Heat-induced antigen retrieval was performed with a microwave in 10 mM sodium citrate buffer (pH 6). Samples were left to cool down at room temperature before incubating them for 1 h in blocking buffer [1% BSA, 0.1% Triton X-100, 5% Normal Goat Serum (Vector Laboratories)]. Endogenous hFOXA2 was detected with a primary rabbit monoclonal antibody against hFOXA2 (Thermo Fisher Scientific; 701698; 1:250) followed by a secondary biotinylated goat anti-rabbit antibody (Vector Laboratories; BA-1000; 1:300). Staining was achieved using DAB Peroxidase Substrate Kit (Vector Laboratories; SK-4100). The colorimetric reaction was stopped with washes in water and the sections were counterstained using Haematoxylin (Sigma-Aldrich). Images were acquired using a Leica microscope and figures were done using Adobe Photoshop CS6.

In situ hybridization
Wild type mouse embryos were collected at different embryonic stages of mouse development (e11.5, e12.5, e13.5, e15.5 and e18.5), fixed with 4% paraformaldehyde (PFA) and washed in PBS before proceeding with paraffin embedding. Paraffin-embedded mouse embryos were sectioned at 7 μm thickness for histochemical evaluation. In situ hybridization was performed by processing the slides with a pre-hybridization treatment. Sections were deparaffinised, rehydrated through decreasing ethanol dilutions, fixed with 4% PFA, incubated with proteinase K, fixed again with 4% PFA and finally incubated with 0.1 M triethanolamine, 0.1% acetic anhydride. The mouse Foxa2 gene fragment (1567 bp) plasmid was kindly provided by www.hdbr.org. The digoxigenin-labeled anti-sense probe for mFoxa2 was generated by in vitro transcription using T3 RNA polymerase (Roche). Hybridization with 100 ng of the digoxigenin-labeled probe was carried out overnight at 65 °C. Sections were washed in 0.1 M Tris-HCl Buffer (pH ≈ 7.5, 0.15 M Sodium) followed by 1 h blocking at room temperature and overnight incubation at 4 °C with anti-Dig antibody (Sigma-Aldrich). Detection of murine Foxa2 was achieved by colorimetric reaction using 4-Nitro blue tetrazonium chloride solution (NBT, Sigma-Aldrich) and 5-Bromo-4-chloro-3-indolyl phosphate disodium salt (BCIP, Sigma-Aldrich). Images were acquired using a Leica microscope and figures were done using Adobe Photoshop CS6.

Plasmids and site-direct mutagenesis
Full length cDNA of human FOXA2 (GENE Bank RefSeq NM 021784.4) was cloned in ORF mammalian expression vector pCMV3 (pCMV3-hFOXA2, Sino Biological Inc.). E. coli DH5α competent cells were transformed with hFOXA2 (cDNA size: 1392 bp). The detected mutation was introduced by site-directed mutagenesis using QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies) according to the manufacturer’s instructions (primers used, Forward strand: 5’-CAAGGGGCCC TACCGTACATTCGCTC-3’. Reverse strand: 5’-GAGGCGAGATG TAGGGTATGGGCGCTTTG-3’). Sanger sequencing confirmed the point mutation.

Cell culture and luciferase assays
HEK293T cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% FBS. 2.5 × 105 cells/well were seeded in 24-well plates. 200 ng of pCH2-294-promoter-luc reporter (kindly provided by Professor Yong-Ho Ahn) and 100 ng of Renilla SV-40 were transiently co-transfected with either i) equal amounts (50 and 75 ng) of Wt or mutant p.S169P hFOXA2 expression plasmids or ii) both Wt and mutant p.S169P hFOXA2 expression plasmid (25 or 37.5 ng of each plasmid) using Lipofectamine 2000 (Life Technologies) according to the manufacturer’s instructions. The total amount of DNA transfected was kept constant at 500 ng by adding pBluescript plasmid. The cells were harvested 24 h after transfection and the luciferase activity was measured using the Dual-Luciferase Reporter Assay System (Promega) in a BMG LABTECH Microplate reader (Omega, Germany) according to manufacturer’s instructions. Firefly luciferase activity was normalized to the Renilla luciferase expression from pRL-SV40 (Promega). The experiments were independently repeated four times in triplicates and statistical analysis was performed using one-way ANOVA.

Western blotting
1.75 × 105 cells/well were seeded in 24-well plates and transiently transfected with equal amounts (200 ng) of Wt or mutant p.S169P hFOXA2 expression plasmids using Lipofectamine 2000 according to the manufacturer’s instructions. 300 ng of pBluescript plasmid were added to each transfection mix to maintain the total amount of DNA constant at 500 ng. The cells were harvested 24 h after the transfection in a lysis buffer containing 50 mM Tris-Base (pH 7.6), 150 mM NaCl, 1% Triton X-100, protease inhibitor cocktail (Complete Mini, EDTA-free tablets, Roche) at a 1:6 ratio and 1% phosphatase inhibitor Cocktail III (Sigma-Aldrich). Samples containing 20 μg of total proteins were loaded on 12% polyacrylamide gel. The proteins were
transferred on a nitrocellulose membrane and nonspecific binding sites were blocked for 1 h with 5% dried skimmed milk in PBS-T (1× PBS, 0.1% Tween 20). The membrane was incubated overnight at 4 °C with the primary antibody (rabbit anti-FOXA2; Thermo Fisher Scientific; 701698, 1:5000 dilution in 5% dried skimmed milk in PBS-T), followed by one hour incubation with IRDye 800CW Donkey anti-rabbit antibody (LI-COR Biosciences; 1:5000). Anti-GAPDH (Santa Cruz; 1:5000, rabbit polyclonal) levels were used to normalize the total level of protein. Blots were analyzed using Odyssey 2.1 Imaging System (LI-COR Biosciences). The experiments were independently repeated six times and the statistical analysis was performed using one-way ANOVA.

Immunofluorescence

1 × 10^5 cells/well were seeded in 4-well cell culture slide (Millipore, Fisher Scientific) and transiently transfected with 200 ng of Wt or mutant p.5169p hFOXA2 expression plasmids and 300 ng of pBluescript plasmid using Lipofectamine 2000 according to the manufacturer’s instructions. 24 h after transfection, the cells were fixed in 2% PFA in 1× PBS for 10 min and washed with 1× PBS three times. Samples were permeabilized with 0.1% Triton X-100 in 1× PBS for 30 min and blocked with blocking buffer (5% Normal Goat Serum in 1× PBS) for 30 min. The staining was performed by incubating the samples with α-FOXA2 antibody (Thermo Fisher Scientific; 701698, 2 μg/ml) in blocking buffer for 1 h, followed by a 30 min incubation with goat α-rabbit Alexa fluoro 594 (ThermoFisher Scientific; 1:250) and α-PHALLOIDIN Alexa fluoro 488 (Molecular Probes; 1:1000) antibodies. The cell nuclei were stained with DAPI (4’,6-diamidino-2-phenylindole). Images were acquired using a fluorescence microscope (Leica microsystem, Germany) and processed using Adobe Photoshop CS6.

Acknowledgements

The human embryonic and fetal material was provided by the Joint Medical Research Council (MRG)/Wellcome Trust Human Developmental Biology Resource (www.hdbr.org) (Grant 099175). M.L.V., A.G., have been funded by Action Medical Research (Grant Number GN2272); Barts and the London Charity (BTLC; Grant Number 417/2238); V.S and C.G.M. are currently funded by Early Career Fellowship from the Medical College of Saint Bartholomew’s Hospital Trust and Action Medical Research. D.G is funded by a research grant from Sandoz (UK) and supported by Clinical Research Facility (CRF) at Alder Hey Children’s NHS Foundation Trust, patients and families for supporting this study.

Conflict of interest statement. None declared.

References

Novel compound heterozygous ASXL3 mutation causing Bainbridge-ropers like syndrome and primary IGF1 deficiency

Dinesh Giri1,3, Daniel Rigden2, Mohammed Didi3, Matthew Peak1,4, Paul McNamara1 and Senthil Senniappan1,3*

Abstract

Background: De novo truncating and splicing mutations in the additional sex combs-like 3 (ASXL3) gene have been implicated in the development of Bainbridge-Ropers syndrome (BRPS) characterised by severe developmental delay, feeding problems, short stature and characteristic facial features.

Case presentation: We describe, for the first time, a patient with severe short stature, learning difficulties, feeding difficulties and dysmorphic features with a novel compound heterozygous mutation in ASXL3. Additionally the patient also has primary insulin like growth factor-1 (IGF1) deficiency. The mutations occur in exon 11 and proximal part of exon 12 and are strongly conserved at the protein level across various species. In-silico analyses using PolyPhen-2 and SIFT predict the amino acid substitutions to be potentially deleterious to the protein function. Detailed bioinformatics analysis show that the molecular defects caused by the two compound heterozygous mutations synergistically impact on two points of the molecular interaction network of ASXL3.

Conclusion: We hypothesise that ASXL3 potentially has a role in transcriptional activation of IGF1 involved in signalling pathways that regulate cell proliferation and growth, which could be contributing to short stature encountered in these patients.

Keywords: ASXL3, Bainbridge-Ropers syndrome, IGF-1 deficiency
consanguineous Caucasian healthy British parents. The antenatal scans were normal and the birth weight was 4.1 kg (1.84 SDS). He was admitted to the neonatal unit due to respiratory distress. Whilst in the neonatal unit, he had persistent feeding difficulties and required tube feeding. He was noted to have scaphocephaly that required surgical fixation at 4 months of age. He also developed severe constipation from 5 weeks of age requiring daily bowel washouts from 18 months of age and colostomy at 3 years. He had bilateral undescended testes requiring orchidopexy. He has a normal muscle tone and normal deep tendon reflexes. Inclusion criteria for the study were age ≥12 years, height < -2.5 SDS, weight < -2.30 SDS). He has dysmorphic features including prominent long nasal bridge and forehead, small lower jaw, thin lips, low set cupped ears, strabismus and downslinking palpebral fissures (Fig. 1). He was found to have a normal growth hormone (GH) response (peak GH 11.7 μg/L (Normal: >6.7 μg/L) to an arginine stimulation test. He had a bone age delay of 3 years and the IGF1 was persistently low at 4.9 nmol/L (−3.2 SDS). TSH (Thyroid stimulating hormone), Free T4 (thyroxine), ACTH (Adreno corticotrophic hormone), prolactin and cortisol concentrations were all within the normal range. A trial of rhGH (recombinant human growth hormone) (50 μg/kg/day) for a period of 1 year was ineffective in improving height velocity (Fig. 2a). An IGF1 (insulin growth factor-1) generation test after 33 μg/kg of rhGH did not produce any response. Subsequently, recombinant IGF1 (rIGF1) therapy (mecasermin) was commenced at 12.5 years which resulted in improvement of height velocity to -3SDS (Fig. 2a). He has a normal muscle tone and normal deep tendon reflexes. His cranial MRI scan of brain and spine were normal. The hearing has been normal. His echocardiogram and renal ultrasound did not identify any abnormalities. The plasma amino acids, urine organic acids, pyruvic acid analysis were within the normal limits. CGH microarray did not reveal any copy number changes. Targeted sequencing of IGF1, IGF1R and GHR did not reveal any mutations. Currently, the patient continues to require rIGF1 therapy to support growth. The weight gain continues to be suboptimal (Fig. 2b).

Material and methods

This study was given favourable ethical opinion by the North West - Liverpool Central Research Ethics Committee (REC Reference: 15/NW/0758) and site study approval was granted by the Clinical Research Business Unit at Alder Hey Children's NHS Foundation Trust, Liverpool, UK. Informed and written consent was obtained from the parents. DNA was extracted from blood samples of the child and both the biological parents (trio). Exons were captured using SureSelect XT Human All Exon V5 capture library and DNA sequencing was carried out using the Illumina HiSeq4000 at 2 × 150 bp paired-end sequencer. The sequence data were aligned to the reference genome (GRCh37/hg19). The variants present in at least 1% minor allele frequency in 1000 Genomes Project, dbSNP142, and NHLBI ESP exomes were excluded. The predicted deleterious variants included non-synonymous coding, splice site, frameshift, stop gain variants.

Results

Two novel heterozygous mutations in ASXL3 [NM_030632.1]: c.2965C > G, p.R989G inherited from the mother and c.3078G > C, p.K1026 N, inherited from the father were found in the patient. The mutations were subsequently confirmed by Sanger sequencing (Fig. 3). The mutations occur in exon 11 and proximal part of exon 12 (Fig. 4). Multiple sequence alignment visualisation using the UCSC Genome Browser showed that both mutated positions are strongly conserved at the protein level across vertebrates as diverse as lemur, bat, fish and frog, implying that mutation could potentially affect the protein structure or function. *In silico* analyses using PolyPhen-2 and SIFT predict the amino acid substitutions to be potentially deleterious to the protein function.

Discussion

Loss of function mutations in ASXL3 in the form of de-novo truncating dominant mutations and splicing mutations have been implicated in BRPS. Here we report for the first time, a compound heterozygous ASXL3 mutation in a patient with BRPS-like features and associated with primary IGF1 deficiency. Pathogenic mutations in ASXL3 have been reported to occur predominantly in exon 11 and proximal part of exon 12. All the described mutations retain the ASXN and ASXH domains. The compound heterozygous mutations in our patient also lie on exon 11 and proximal exon 12, retaining the ASXN and ASXH domains similar to previously described mutations (Fig. 4).
Fig. 2

a Height and its response to GH and IGF1 treatment
b Weight

Fig. 3 Electropherograms showing the compound heterozygous mutations
Both these mutations occur on the conserved ASXM1 domain in ASXL3 (Fig. 4). Both the variants are extremely rare and have a population frequency < 0.01, as indicated from the ExAC browser. The synergistic effect of both of these rare mutations potentially contributes to the loss of function of the protein contributing to the BRPS like phenotype. Our patient has multiple dysmorphic features that overlap with those described in previous reported cases of BRPS such as short stature, failure to thrive, feeding difficulties, cranio-facial features, developmental delay and learning difficulties (Table 1).

ASXL3 belongs to the gene family of ASXL genes, the mammalian homologues of Drosophila Asx. ASXL includes three orthologues: ASXL1, ASXL2 and ASXL3 that encode the Putative Polycomb group (PcG) protein that has a role in regulating the homeotic genes (Hox) [6]. PcG proteins can act either as transcriptional repressors or activators of Hox genes [6]. The genes in the ASXL family share a common domain architecture consisting of ASXN, ASXH, ASXM1, ASXM2 domains and a PHD finger, and act by forming complexes with other proteins via methylation of histones [4, 6, 7]. ASXL3 has been implicated in the deubiquitination of histone H2A lysine 119(H2AK119Ub1), a component of the polycomb repressive deubiquitination (PR-DUB) complex [4]. The formation of PR-DUB complex is critical for normal function. ASXL3 interacts with BAP1, a ubiquitin terminal hydroxylase and removes the mono-ubiquitin (Ub1) from the H2AK119Ub1 [8]. Patients with BRPS have been found to have a significant increase in the H2AK119Ub1 in their fibroblasts because of the impaired deubiquitination [4]. ASXL3 has a similar expression pattern in human tissues as ASXL1 but at a relatively lesser levels, which may explain the overlap of some phenotypic features seen in BRPS and BOS [9]. Within the human brain, ASXL3 expression has been found within the white matter, insula, cingulate gyrus and amygdala [10]. The spinal cord, kidney, bone marrow and liver also express ASXL3, but at a lower level when compared to ASXL1 [9].

Detailed bioinformatics analysis suggests a possible molecular mechanism by which the first of the mutations R989G would lead to a functional defect. A scan against the ELM(Eukaryotic Linear Motif) database shows a stretch of amino-acid residues from the position 989 to 997 within the wild-type ASXL3 that matches with an interaction motif (LIG_14–3-3_CanoR_1; Accession ELME000417) that describes canonical phosphopeptide binding motif of 14–3-3 group of proteins. 14–3-3 proteins are important cell regulators [11], best known for their role in cell cycle control. The mutated Arginine at position 989 together with a phosphorylated Serine residue, 3–5 residues downstream are the main determinants of interaction with 14–3-3 proteins. These proteins are also characterised as histone modification readers [12]. This links suggestively to the recently determined role of ASXL3 in histone deubiquitination [4]. According to this hypothesis, mutation of R989 to glycine would prevent the interaction of ASXL3 with an as-yet unidentified 14–3-3 protein, thereby damaging function through impairing its ability to scaffold epigenetic protein complexes [6]. Although the molecular mechanism of the second mutation K1026 N, is unclear it is possible that this mutation affects phosphorylation of ASXL3 through its location within recognition motifs for kinases (PIKK group, motif from 1024 to 1030 or GSK3, motif from 1024 to 1031); The molecular defects caused by the two mutations would specify the disorder additively or synergistically by simultaneously impacting on two points of the molecular interaction network of ASXL3 contributing to its loss of function.

The association of primary IGF1 deficiency in BRPS has not been described before. IGF-1 is a 70-amino acid peptide hormone and growth factor that is structurally homologous to proinsulin [13]. In normal individuals, IGF-1 circulates as part of a ternary complex with a molecular weight of 150 kDa. The complex consists of IGF-1, an acid-labile subunit (ALS), and a protein that binds IGF-1 (IGFBP-3). Primary IGF1 deficiency is defined as basal
IGF-1 and height of ≤ -3 SDS with normal or elevated levels of GH [13]. The primary action of IGF1 is mediated by binding to its specific receptor, the insulin-like growth factor 1 receptor (IGF1R), which is present in many tissues. IGF1R is a receptor tyrosine kinase and binding of IGF1 to IGF1R initiates intracellular signalling. IGF-1 is

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Our Patient</th>
<th>Bainbridge et al. [1]. 4 patients</th>
<th>Dinwiddie et al. [2]. 1 patient</th>
<th>Srivastava et al. [4]. 3 patients</th>
<th>Hori et al. [3]. 1 patient</th>
<th>Balasubramanian et al. [17]. 12 patients</th>
<th>Kuechler et al. [18]. 6 patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeding problems</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>9/12</td>
<td>6/6</td>
</tr>
<tr>
<td>Failure to thrive</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3/6</td>
<td></td>
</tr>
<tr>
<td>Short stature</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>2/12</td>
<td>2/6</td>
<td></td>
</tr>
<tr>
<td>IUGR</td>
<td>–</td>
<td>3/4</td>
<td>+</td>
<td>2/3</td>
<td>+</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Craniofacial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigonocephaly</td>
<td>–</td>
<td>1/4</td>
<td>+</td>
<td>1/3</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Microcephaly</td>
<td>–</td>
<td>2/4</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>1/6</td>
</tr>
<tr>
<td>Scaphocephaly</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Palate</td>
<td>High arched</td>
<td>1/4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>High arched (9/12)</td>
<td>High arched (5/6)</td>
</tr>
<tr>
<td>Prominent forehead</td>
<td>+</td>
<td>2/4</td>
<td>ND</td>
<td>1/3</td>
<td>ND</td>
<td>+</td>
<td>5/6</td>
</tr>
<tr>
<td>Prominent eyes</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Palpebral fissures</td>
<td>downslanting</td>
<td>upslanting</td>
<td>downslanting (2/3)</td>
<td>–</td>
<td>downslanting-10/12</td>
<td>upslanting-2/12</td>
<td>downslanting</td>
</tr>
<tr>
<td>Nasal bridge</td>
<td>long</td>
<td>–</td>
<td>depressed</td>
<td>Broad (1/3)</td>
<td>depressed</td>
<td>long, prominent</td>
<td>6/6 (prominent columella)</td>
</tr>
<tr>
<td>Low set ears</td>
<td>+</td>
<td>1/4</td>
<td>NA</td>
<td>1/3</td>
<td>–</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Posteriorly rotated ears</td>
<td>Cupped</td>
<td>2/4</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Anteverted nares</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>1/3</td>
<td>–</td>
<td>ND</td>
<td>5/6</td>
</tr>
<tr>
<td>Small chin</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>2/3</td>
<td>+</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Ophthalmic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strabismus</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>1/3</td>
<td>+</td>
<td>7/12</td>
<td>5/6</td>
</tr>
<tr>
<td>Astigmatism</td>
<td>myopia</td>
<td>ND</td>
<td>Myopia (1/3)</td>
<td>Hyperopia (1/3)</td>
<td>myopia</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Neurological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developmental delay</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>12/12</td>
<td>6/6</td>
</tr>
<tr>
<td>Intellectual deficit</td>
<td>+</td>
<td>+</td>
<td>2/3</td>
<td>+</td>
<td>12/12</td>
<td>5/6</td>
<td></td>
</tr>
<tr>
<td>Seizures</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>1/3</td>
<td>3/12</td>
<td>2/6</td>
<td></td>
</tr>
<tr>
<td>Autism</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>+</td>
<td>9/12</td>
<td>not formally diagnosed</td>
</tr>
<tr>
<td>Other Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large fontanelle</td>
<td>+</td>
<td>1/4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Undescended testes</td>
<td>+</td>
<td>1/4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Chronic constipation</td>
<td>+</td>
<td>ND</td>
<td>1/3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND: not described. +: present. -: absent
one of the most potent natural activators of the Akt signalling pathway, which stimulates cellular growth and proliferation [14]. Transcriptome analysis of ASXL3 fibroblasts from patients with BRPS examining the differentially expressed genes (DEGs) has shown that the genes regulating the cellular proliferation are downregulated [4]. IGF1 plays a vital role in activating the Akt signalling pathway, a potent stimulator for cell proliferation and growth [15]. We therefore hypothesise that ASXL3 potentially has a role in transcriptional activation of IGF1 involved in this pathway potentially via epigenetic mechanisms [16], which could be contributing to short stature encountered in these patients.

Conclusions
The compound heterozygous mutations potentially contribute to the loss of function in ASXL3, causing a phenotype similar to BRPS. Although with our current knowledge, the molecular interaction between ASXL3 and IGF1 is unclear, it may important to look for IGF1 deficiency in the patients with ASXL3 mutation.

Consent
Written informed consent was obtained from the patient’s legal guardian(s) for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Abbreviations
ASXL3: additional sex comb-like 3; BAP1: BRCA1 Associated Protein 1; BOS: Bohring-Opitz syndrome; BRPS: Bainbridge Ropers syndrome; EV4C: Exome Aggregation Consortium; GHT: Growth hormone; IGF-1: Insulin Growth Factor-1; SDS: Standard deviation score; Ub1: mono-ubiquitin

Acknowledgements
We thank the staff at Clinical Research Facility (CRF) at Alder Hey Children’s NHS Foundation Trust for supporting this study.

Funding
No funds were obtained for this case report.

Availability of data and materials
Not applicable.

Authors’ contributions
DG wrote the initial draft of the manuscript. DR contributed to the bioinformatics section and the revision of the manuscript. PM, MP and MD edited, reviewed and revised the manuscript. SS oversaw the case report, reviewed and revised the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
This study was given favourable ethical opinion by the North West - Liverpool Central Research Ethics Committee (REC Reference: 15/NW/0758) and site study approval was granted by the Clinical Research Business Unit at Alder Hey Children’s NHS Foundation Trust, Liverpool, UK. Informed and written consent was obtained from the parents.

Consent for publication
A written informed consent was obtained from the parents regarding the publication of the case report and the images.

Competing interests
The authors declare that they have no competing interests.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Institute in the Park, Alder Hey Children’s NHS Foundation Trust, University of Liverpool, Eaton Road, Liverpool, UK. 2Institute of Integrative Biology, University of Liverpool, Liverpool, UK. 3Department of Paediatric Endocrinology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK.

Received: 8 May 2017 Accepted: 27 July 2017

References