Residual flow patterns and morphological changes along a macro- and meso-tidal coastline

Nicoletta Leonardi¹, and Andrew James Plater¹

¹Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Roxby Building, Chatham St., Liverpool L69 7ZT, UK

Abstract

The hydrodynamic and residual transport patterns arising from oscillating tidal motion have important consequences for the transport of sediments, and for the evolution of the shoreline, especially under macro- and meso-tidal conditions. For many locations there are significant uncertainties about residual currents and sediment transport characteristics, and their possible influence on the morphological evolution of the coastline and on the character of the bed. Herein we use the coastline of SE England as a test case to investigate possible changes in residual currents, and residual transport patterns from neap to spring tide, the reciprocal interaction between residuals and the character of the bed, and the morphological evolution of the coastline at a century timescale. We found that in the long term the morphology of the system evolves toward a dynamic equilibrium configuration characterized by smaller, and spatially constant residual transport patterns. While the spatial distribution of residual currents maintains a similar trend during both neap and spring tide, during spring tide and for large areas residual currents switch between northerly and southerly directions, and their magnitude is doubled. Residual eddies develop in regions characterized by the presence of sand bars due to the interaction of the tide with the varying topography. Residual transport patterns are also computed for various sediment fractions, and based on the hydrodynamics and sediment availability at the bottom. We found that the distribution of sediments on the bed is significantly correlated with the intensity of residuals. Finally, the majority of long-
term morphological changes tend to develop or augment sand banks features, with an
increase in elevation and steepening of the bank contours.

Introduction

Tidal dynamics and residual circulation are important for the fate and transport of sediments,
contaminants, and potentially have important consequences for the morphodynamic evolution
of the coastline. The coastline of SE England is a region of enormous importance from an
economic point of view; and due to the natural alternation of different shoreline types, such
as saltmarsh, soft cliff and sand dunes, it is also unusual from an environmental and tourist
standpoint (e.g. Schans et al., 2001). Understanding the physical processes acting along these
shorelines is fundamental for a correct management of the ecosystem, and to determine the
impact of human activities and climate change upon them (e.g. Schans et al., 2001; Androsov
et al., 2002; Robinson et al., 2007; Liang et al., 2013; Brooks and Spencer, 2014; Armstrong
et al., 2015; Hackney et al., 2015; Brooks et al., 2017).

Using a hydrodynamic and morphological model, this paper aims to explore residual
transport patterns for the coastline of SE England, as well as possible long-term
morphological changes in the area. Even though this coast has been the subject of several
insightful studies (e.g. Horillo-Caraballo and Reeve, 2008; Dyer and Moffat, 1992; Robinson,
1965; Dyer, and Huntley, 1999), our understanding of residual transport and sediment
distribution patterns remains unclear. The majority of existing studies are based on relatively
large scale and coarse-resolution models developed at the scale of the North Sea rather than
at a coastline scale, and in terms of field measurements some classic limitations are present
which are connected to the fact that, even in case of extensive field campaigns, only a
discrete number of measurements can be collected and a compromise between spatial or
temporal resolution need to be found. Furthermore, for the area of interest, some existing
modelling studies have focused mainly on the hydrodynamics of the system and have
neglected the resuspension of sediments at the bottom, and tide-induced morphological
changes (e.g. Chini et al., 2010; Stanev et al., 2009).

Along coastal environments tides can interact with the variable bathymetry and a complex
residual flow can be created due to varying topography, bottom friction, and tidal
asymmetries (e.g. Brown et al., 2014; Brown and Davies, 2010). Eulerian residual currents
are defined as the velocity at a fixed location, and averaged over multiple tidal cycles. These
second-order currents, driven by non-linear tidal dynamics, have been recognized as a
significant component of the flow field, and can be relevant to sediment dynamics (e.g.
Burchard and Hetland, 2010; Iannelolo et al, 1979; Nihou and Rodnay, 1975; Zimmermann,
1981; Leonardi et al., 2013, 2015). Embedded within the southeast part of the North Sea, the
large-scale residual circulation of the area has been studied for a long time: the southern
portion of the Suffolk and Essex coastline is characterized by northwest directed surface
currents coming from the English Channel, while the northern portion is partially affected by
the large anticlockwise gyre generated by the North Atlantic mixing water (e.g. Mathis et al.,
2015; Svendsen et al., 1991; Winther and Johannessen, 2006). Residual currents can be also
explained in terms of vorticity transfer from the oscillating to the average flow field: for a
non-vanishing residual circulation there needs to be some vorticity production as well as a net
flux of vorticity over a closed boundary and over a tidal cycle. In the case of topographic
features such as sand ridges, by considering a closed line around the ridge there is a net influx
of clockwise vorticity (or outflux or anti-clockwise), generated by the torque induced by both
Coriolis and frictional forces which are stronger on the shallower than on the deeper side, and
which creates residual eddies (Zimmermann, 1981).

This paper is organized as follows: a general description of the study area is provided,
followed by a methodology section illustrating the numerical model set-up. The results
The section is organized into two main parts: an initial part dealing with the main features of the system in terms of hydrodynamics and residual currents, and a second part dealing with sediment transport patterns and morphological changes. A set of discussions and conclusions is finally presented.

Study site

The coastline of SE England is of great importance from a social and ecological point of view, and it is characterized by a variety of shorelines, from sandy beaches, saltmarshes, shingle banks and soft cliffs (cf. Schans et al., 2001). The northeast portion of the coastline is characterized by soft chalk cliffs, which dip seaward and go below mean sea level near Sheringham where the chalk is succeeded by Tertiary deposits covered by glacial beds. North Norfolk is characterized by both back-barrier and open coast saltmarshes, with low angle sand flats (Steers et al., 1926; Moeller et al., 1999). The marshland comes to an end at Weybourn, and from there until the Thurne River, the area becomes characterized by soft cliffs of varying height, which are subject to erosion processes. The coastline is interrupted by large cuspate projections, i.e. ‘nesses’, representing depositional features largely built of sand, rather than originating from more resistant rocks. Sandbanks are common in the North Sea as well. Following the classification proposed by Dyer and Huntley (1999), the Norfolk coastline is characterized by headland associated banks in the form of alternating ridges with recessional headlands (type 3B according to the classification); the Suffolk coastline is instead characterized by banner banks related to non-recessional banks (type 3A). The mouth of the Thames comprises wide mouth ridges (type 2A), and the area immediately south of the Thames is characterized by both alternating ridges with recessional headlands, and banner banks. South of the Thames, several others shoreline features alternate, i.e. narrow sand and shell beaches around the Isle of Grain, pocket beaches or sandstone cliffs around Thanet and
Dover districts, gravel beaches around Dungeness. The entire SE England coast is also characterized by large human interventions, and hard engineering structures such as seawalls or groins are present.

The tides in the North Sea are mainly semi-diurnal, and progress anticlockwise, with the largest amplitudes present along the eastern England and German Bight coasts (Huthnance, 1991). The tidal range for the SE England coasts varies from meso- to macro-tidal, and both tidal range and tidal phase vary significantly along the area due to vicinity with North-Sea amphidromic systems (Figure 1A). Within the area of interest several turbidity studies have identified offshore locations with high sediment concentration: the East Anglian plume. This plume is more pronounced in winter, and the highest concentrations occur around the Norfolk banks (e.g. Dyer and Moffat, 1998). For the coastline as a whole, the fluvial sediment supply is generally considered negligible (e.g. McCave, 1987). For the North Sea in general, sediment supplies include the ones coming from the North Atlantic and from the English Channel (quantified as $10 \times 10^6 \text{ t}^{-1}$), and from seafloor erosion ($6-7.5 \times 10^6 \text{ t}^{-1}$). A contribution to suspended sediments can also come from the erosion of Norfolk cliffs ($6.65 \times 10^5 \text{ t}^{-1}$). Due to difficulties in closing the sediment budget, large uncertainties of around ± 50% characterize these estimates of sediment budget (Dyer and Moffat, 1995; McCave, 1987).

Methods

Herein we use the computational fluid dynamics package Delft3D (e.g. Lesser et al., 2004).

Delft3D is made of a number of integrated modules allowing the coupled simulation of hydrodynamic, sediment transport and morphological processes. The Delft3D-FLOW module constitutes the package core and solves the unsteady shallow water equations, following the Boussinesq approximation. The vertical momentum equation is reduced to the hydrostatic pressure relation because vertical accelerations are assumed to be small compared to the gravitational one (Lesser et al., 2004).
The model is here used in 2D depth averaged mode with Delft3D default eddy diffusivity value, equal to $10 \text{ m}^2/\text{s}$. The model accounts for wetting and drying of areas which are not permanently under water. For more details about the hydrodynamic module we refer to (Lesser et al., 2004).

Sediment transport and morphology modules support both non-cohesive, and cohesive sediment fractions, and both bed-load and suspended load. In case of cohesive sediments, the Partheniades–Krone formulation is used: the erosive flux is modelled as proportional to an erosion parameter, and to a Heaviside function which depends on the exceedance shear stress with respect to a critical shear stress for erosion (Partheniades 1965); the depositional flux is given by bottom concentration per settling velocity values (Winterwerp 2007). In the original Partheniades 1965 formulation, the critical shear stress for erosion is always greater than or equal to the one for deposition; therefore, intermediate shear-stress conditions may exist for which neither erosion nor deposition occurs. This is in contrast to common observations and assumptions for non-cohesive sediments, according to which deposition and erosion always occur simultaneously (Sanford and Halka 1993). Winterwerp (2007) more recently reviewed the cohesive-sediment paradigm by means of literature data, and concluded that the so-called critical shear stress for deposition does not exist, but is simply a threshold for resuspension. The latter consideration was also postulated by Krone in his original report (Krone 1962). These findings are in agreement with observations of Sanford and Halka (1993) in the upper Chesapeake Bay. Therefore, we choose to assume a gross sedimentation rate of cohesive sediments equal to their settling flux, which is the approach recommended for the used numerical framework (Winterwerp 2007). For the transport of non-cohesive sediments we followed the default formulation, i.e. Van Rijn et al., 2003, 2004. The erosive flux of sediments is proportional to the following: i) a vertical sediment mixing coefficient, ii) the concentration gradient along the vertical. The mixing coefficient depends on a factor (β)
proportional to: i) settling velocity, ii) critical shear velocity at the bottom (Van Rijn, 1984).

The concentrations at the bottom, and concentration gradient are calculated following a standard Rouse profile which starts from a reference height, \(a \), and concentration, \(c_0 \). The deposition flux is proportional to the concentration and settling velocity. The reference height, concentration, and settling velocity are calculated following Van Rijn 1993 (Van Rijn 1993; Hydraulics, D., 2014). For more information about the numerical model specifications in regard to sediment transport we also refer to Hydraulics, D., 2014.

Bathymetry data are based on tiles with size 30x30 m of the product Arcsecond Gridded Bathymetry (ASC geospatial data), retrieved from the EDINA Marine Digimap download service (http://digimap.edina.ac.uk/). For areas covering the shoreline, DTM data from LiDAR surveys at 2 m resolution were used, which were downloaded from the UK Environment Agency’s LiDAR data archive. Bathymetric data were referred to Lowest Astronomical Tide and LiDAR data to Ordnance Datum, and spatially varying Vertical Offshore Reference Frame (VORF) corrections as provided by the UK Hydrographic Office were applied.

Sediment transport and morphology modules in Delft3D allow accounting for multiple sediment fractions. The transport of each sediment class is separately calculated taking into account the availability of each fraction in the bed. The erodible bed is divided into 3 vertically mixed layers (one base layer, one under layer, and a transport layer). A minimum of three layers is required to have a spatially varying sediment distribution in the model. The thickness of the transport layer is 0.1 m. At every time step the exposed layer (the transport layer) is the one providing sediments to the flow, and for every time step layers thickness is updated. If the thickness of the transport layer exceeds 0.1 m, the exceedance is incorporated into the under layer; however, if the transport layer is eroded, the latter is replenished from the under-layer. The total initial bed thickness is around 300 m to be sure to avoid to exceed
sediments availability through scour. The under layer is 100m, and the base layer 200m. The number of layers was limited to three due to computational reasons. The input for the initial spatial distribution of sediments at the bottom (constant across the three layers) was created starting from the British Geological Survey (BGS) GIS-maps for seabed sediments and parent material (near-surface geology) for the more landward side of the domain (Figure 2). BGS datasets provide detailed information with regard to Lithology, Texture, Mineralogy (and others), and in this regard sediment types are divided into numerous classes. In relation to the number of grain classes used in the computation, the dataset was simplified and reduced to four main sediment classes, i.e. sand, gravel, mud, rock. Standard settling velocities, median grain diameters and critical shear strength values were attributed to each sediment class. Sand and gravel sediment diameter is set equal to 200 µm for sand, and 2000 µm for gravel, and the critical shear stress for erosion for mud is set constant and equal to 0.5 N/m2 and the erosion parameter equal to 0.0001 kg/m2/s as default. Figure 2 illustrates the distribution of sediments within the domain; sand is the most abundant fraction, especially for more offshore areas, but gravel is present as well and gravel-sand mixtures characterize a great part of the coastline, while the mud fraction is mostly present within the Thames estuary.

The model is divided into two separate domains (Figure 1b, c) which are fully coupled through the domain decomposition option, and exchange information along internal boundaries. Domain decomposition methods are techniques for solving partial differential equations based on a decomposition of the spatial domain of the problem into several subdomains whose computations are carried out concurrently. Domain decomposition allows local grid refinement (e.g. Chan et al., 1994; Hydraulics, D., 2014). The domain decomposition option was adopted to maximize the spatial resolution along part of the coastline without compromising the computational time. Average grid cell size for the exterior domain is 1500 x 500 m, and for the smaller domain is 400 x 200 m.
Simulations are run from June 2008 to July 2009. Results are mainly presented in relation to the highest spring tide (11 February 2009), and lowest neap tide (8 October, 2008) of the simulation period. When taking the morphological evolution into account a morphological scale factor, \(n \), of 100 is considered. This factor simply increases the incremental depth changes at each time step by a constant \(n \), so that after simulating one tidal cycle, the simulation is actually representative of the morphological changes which are expected to happen after \(n \) cycles; this is similar to the concept of elongated tide proposed by Latteux (1995). According to the lengthening of the tide concept of Latteux, 1995, \(N \) successive tides can be simulated by a single one extended \(N \) times, i.e. by lumping together successive tidal cycles after computing the hydrodynamic at a proper time scale. As the hydrodynamic vary much more slowly than the morphology, the longer time step obtained by combining the \(N \) cycles is such that after this time, the evolution of the bed is not negligible anymore, and bed level and flow conditions are adjusted accordingly.

Exterior boundary conditions are provided by the Extended Area Continental Shelf Model fine grid (CS3X) which has 1/9° latitude by 1/6° longitude (approximately 12 km) resolution, and covers areas from 40° 07'N to 62° 53' N, and from 19° 50'W to 12° 50'E. The CS3X model makes use of meteorological data from the UK Met Office Operational Storm Surge model. Pressure and wind input data for the Delft3D model were generated from the same UK Met Office model; the resolution of wind and pressure data are based on two different computational grids having size of approximately 12, and 48 km respectively. The boundary conditions for Delft3D were provided every hour. Hourly water level data from different buoys for the calibration of the Delft3D model were retrieved from the British Oceanographic Data Centre (https://www.bodc.ac.uk/data/online_delivery/ntslf/processed/).

The accuracy of the spatial distribution of water elevation was evaluated following classical harmonic analysis, and Skill Score values based on root mean square error and standard
deviation values. Specifically, we used the Brier Skill Score (Murphy and Epstein, 1989) defined as:

\[BSS = \frac{\alpha - \beta - \gamma + \varepsilon}{1 + \varepsilon} \]

where \(\alpha = r_{XY}^2, \beta = \left(r_{XY} - \frac{\sigma_Y}{\sigma_X} \right)^2, \gamma = \left(\frac{\langle X \rangle - \langle Y \rangle}{\sigma_X} \right)^2, \varepsilon = \left(\frac{\langle X \rangle}{\sigma_X} \right)^2 \) for which \(r \) is the correlation coefficient, \(\sigma \) is the standard deviation, \(\varepsilon \) is a normalization term, and \(X \) and \(Y \) are observed and model values. The skill class was assumed to be excellent for BSS in the interval 1-0.65, very good for 0.65–0.5, good for 0.5–0.2, and poor for 0.2-0, based on the related literature (e.g. Allen et al. 2007; Ralston et al. 2010; Sutherland et al. 2004; Zafer and Ganju, 2014).

Results

A comparison between modelled tidal elevations and buoy data is presented in Figure 3 (and Figure S1), for 5 buoy stations (site locations in Figure 1b). Modelled tidal levels generally show good agreement with the instrumental data, and Brier Skill Scores are excellent with values ranging from 0.84 to 0.97. For visualization purposes, Figure 3 only shows values for 75 days of simulation time. We further conducted harmonic tidal analysis of both Delft3D, and buy data tidal constituents using T_Tide, an open source toolbox developed by Pawlowicz et al., 2002. The toolbox uses the least square error method to conduct classic harmonic analysis for periods less than one year, and by also using nodal corrections; results from the harmonic analysis are presented in table S1 according to which the model reproduces satisfactory results in terms of both tidal amplitude, and phase.

Figure 4 shows maximum bed shear stress values for the lowest neap tide (8 October, 2008; panel A, D), and highest spring tide (11 February 2009; panel B, E) of the run period. Maximum bed shear stress values during the spring tide reach 9.2 N/m², and are 2.6 times
larger than the maximum shear stress values during neap tide. Greatest differences in shear
stress between spring and neap tide occur around the areas of Lowestoft and Dover (panel C).

Figure 5 shows residual currents during neap tide (A, D, E), spring tide (B, F, G), and
differences in the two (C) for the exterior and inner domain. Residual currents and residual
transport patterns were calculated by averaging these over 5 tidal cycles, two tidal cycles
before and two after the lowest and highest neap and spring tidal cycles.

Several mechanisms contribute to the formation of tidal residual currents, which can be
decomposed into three main contributions (e.g. Burchard et al., 2010; Cheng et al., 2011): (1)
the density driven flow which depends on buoyancy gradient; (2) symmetrical tidal mixing,
which is connected to the correlation between eddy viscosity and vertical shear, and thus to
tidal straining, relevant to tidal asymmetry; and (3) vertically averaged tidal mean velocity,
connected to the residual riverine flow and to non-linear flow mechanisms related to the
various terms in the the De Saint–Venant equations, namely the non-linear frictional and
advective terms in the momentum equation (e.g. Parker, 1991; Tee 1977). Residual currents
calculated here are depth averaged, and are thus only representative of the third mechanism
described above. The presented residual currents maintain a similar pattern during spring and
neap tide (e.g., compare Figure 5A with 5B), but maximum spring values increase up to 54%
with respect to neap tide, and average residual values increase by 113%. The maximum
differences between the residual currents at spring and neap tide is 0.25 m/s. For the higher
resolution inner domain (panels D to G), the formation of classic gyre circulations around bar
axes is noteworthy. In fact, for a tidal flow oscillating along varying water depth contours
more friction is felt on the more gently sloping side, and a frictional torque is developed
(Pingree and Maddock, 1985; Zimmermann, 1981). Residual current magnitudes around sand
bars largely increase during spring tides. Residual currents are also visualized with respect to
bathymetry values to highlight the vorticity trend around the bars (Figure 5E, G). During both
neap and spring tides, channels areas are flood-dominated (residual currents directed South West) while intertidal mudflats are ebb-dominated (residual currents directed North East). During the spring tide the extent of flood-dominated areas largely increase (Figure 6E, to F). Even if residuals are higher during the spring tide, recirculating gyres are identifiable, and maintain the same organization during both spring and neap tide.

Figure 6 shows the angle of residual currents during neap (panel A, E) and spring tides (panel B, F), and corresponding frequency distribution of magnitude. During the neap tide, the direction of residual currents of the external domain is more uniformly distributed and mostly directly north-eastward, apart from the northern portion of the domain and channel areas within the Thames estuary. For these areas residuals are south-westerly and directed landward, while for the rest of the domain they are mostly directed seaward. During the spring tide, residual currents within the entire domain assume a bimodal distribution around 45 degrees and 250 degrees, indicating more southerly directed currents. Moreover, during spring tide large areas within the Thames transition from ebb to flood dominance, and a large portion of the system becomes flood-dominated. This can be also observed by looking at the frequency distribution of residual currents directions (compare panels C and D, and panels G and H).

Changes in the magnitude of residual currents from neap to spring tide are also presented as a function of the bed level (Figure 7, deepest areas to the left). Grey points refer to the entire domain, while blue points refer to the smaller, higher resolution domain. A significant relationship between the two variables (changes in residuals magnitude and bed level) can be found indicating that strongest changes in residual currents are typically found around the deepest areas. In contrast, no relationship could be found in between changes in residual current direction and water depth.

Sediment transport and morphology
The transport of sediments, as well as morphological changes, are dictated by both hydrodynamic conditions and sediments availability. Figure 8 shows the relationship between the initial percentage of the different sediment fractions at the bottom and the following variables: residual velocity values (Figure 8, panels A to C), mean bottom shear stress (panels D to F), and maximum bottom shear stress (panels G to I) during spring tide. These three variables are the ones most commonly used for the description of the velocity field in tidally dominated environments. Correlation exists between mud availability and the intensity of residual currents, with the presence of mud decreasing with residual currents intensity. A similar inverse relationship can be found between mud availability and mean and maximum shear stress values. A positive correlation is instead present in case of gravel, and sand. The relationships presented in Figure 8 have been obtained by accounting for the fact that different portions of the domain can have very different water depths; therefore, the bed level has been divided into depth ranges of around 10 cm; each depth interval was then associated to average values for the hydrodynamic variables of interest, and average sediment fractions percentages. Similar relationships can be found without considering depth intervals (Figure S2), indicating that these correlations stand over areas with different features such as water depth, vicinity to the coastline, and sediment sources proximity; however, the latter might be relevant and responsible for data noise.

Residual sediment transport patterns for the spring tidal cycle of interest (11 February 2009) are presented in figure 9. The first set of panels (A to D) refers to the residual suspended load transport, while the second set (E to H) refers to the residual bed load. Residual bed load and suspended load are presented for both spring and neap tide. During neap tide both bed load and suspended load transport patterns are one order of magnitude lower than during spring tide. For each sediment fraction, the highest transport rates are throughout Lowestoft and Dover. Due to the lower settling velocity, the residual suspended transport of mud is higher
and more uniformly distributed around the domain, as compared with other fractions whose residual transport appears patchier.

Figure 10 illustrates morphological changes in the area after one year of simulation and by using a morphological scale factor of 100; the morphological changes might thus be considered representative of the ones occurring over a century. Morphological changes occur at a time scale which is much longer (ranging from months to century), with respect to the time scale of the hydrodynamics. For this reason, morphological acceleration factors are widely used; values of the order of 100 are common for coastal areas simulations, and can be generally used without changing the solution of the problem (Lesser et al., 2004). Changes occurring during one tidal cycle can be assumed to have occurred after 100 tidal cycles in real life, and the number of time steps is thus reduced by a factor of 100 compared to a full 1:1 simulation (Lesser et al., 2004; Latteux, 2005). Noteworthy, morphological changes occur in the northeastern portion of the domain with the deposition of new and accretion of existing offshore sandbanks, which are a typical feature of the area. While sandbanks tend to accrete, there is a slight steepening and erosion of areas located more nearby the coastline. The central part of the domain, which is covered by the higher resolution grid (Figure 10 C, D), is also characterized by a marked steepening of the mouth ridges which become more defined with higher central islands and deeper surrounding channels. New small ridges also start forming around and above 52 degree latitude (panels C, D). Slight changes and a relatively low seaward advancement of areas shallower than 20 m occur in the most south portion of the domain. Qualitative agreement can be found between the coastline erosion predicted by the model and beach profiles collected along the Suffolk coastline since 1991 at around 1km intervals and according to which nearly half of the coastline shows an erosional trend for the period from 1991-2011, with the most significant erosion occurring from south of Benabcre ness to the north of Southwold (Environmental Agency, 2011). Qualitative agreement can be
also found between the morphological changes from the numerical model and data presented by Pye and Blott, 2006 in relation to sandbanks located near the Minsmere Reserve. The volume of the latter increased by 2.3% from 1868 to 1992, with sandbanks maintaining their height but also getting narrower; indeed, in 1940, the Sizewell, and Dunwich banks were a unique bank, which by the 1960 became separated. Similarly, sandbanks features predicted by the model tend to become more pronounced, and to increase their elevation while also gradually separating into more distinct and new features (e.g. Figure 10D). For the offshore sandbanks in the northeaster part of the model domain, results are supported by DTM-derived bathymetric charts for the period from 1846 to 2000 (Horrillo-Caraballo and Reeve, 2008), showing a consistent trend in sandbanks elevation increase and enlargement.

The morphological changes observed in Figure 10 were correlated with the same variables than the sediment fraction availability at the bottom, i.e. intensity of residual currents, mean shear stress, and maximum shear stress during the spring tide (Figure 11). A significant relationship between morphological changes and these variables is found and the highest correlation coefficient (0.96) is found for mean shear stress values and bed elevation changes.

Results from Lanzoni and Seminara, 2002, Toffolon and Lanzoni, 2010, and Seminara et al., 2010 suggest that in tidally dominated systems the morphological evolution of the bottom asymptotically tends toward a dynamic equilibrium configuration characterized by a relatively small and spatially constant residual sediment flux. The hypothesis of dynamic equilibrium conditions has been initially explored for single funnel-shaped channels, and has been later extended to whole systems, such as the Gange Delta, Bangladesh (Fagherazzi, 2008), and Fly river delta, Papua New Guinea (Canestrelli et al., 2010), as well as to conditions were a riverine flow is also present (e.g., Bolla Pittaluga et al., 2015). Figure 12, shows the cumulative frequency distribution of the total residual sediment transport for spring tide, before and after the morphological evolution of the system, e.g. same hydrodynamic
forcing, but different bathymetries (Figure 10). It can be noticed that once the system has morphologically evolved, the cumulative distribution becomes narrower (similar residual transport everywhere), and skewed toward smaller values, which is in agreement with literature results for other environments suggesting the tendency of the system to approach a dynamic equilibrium configurations.

Discussion

In this paper we have been focusing on the coastline of SE England, and investigated residual transport patterns, their connection to the availability of sediments within the domain, as well as the morphological evolution of the area. Results in relation to the morphological evolution of the system and sediment transport patterns suggest that, under tidally dominated conditions, the system might tend toward a dynamic equilibrium configuration characterized by relatively small and spatially constant residual sediment fluxes (e.g. Lanzoni and Seminara, 2002; Toffolon and Lanzoni, 2010). Indeed, numerical results suggest that when the same hydrodynamic forcing is applied to the system after a long term, century scale, morphological evolution, the residual transport of sediments is more uniformly distributed and smaller (Figure 12). Previous work on tidal channels has shown that this equilibrium condition is controlled by the temporal symmetry of the flow field as suggested by the numerical solution of the one-dimensional equations, as well as by field observations (Lanzoni and Seminara, 2002; Seminara et al., 2010). It has been also noted that this dynamic equilibrium condition is compatible with the higher order contributions of settling and scour effects to the channel profile (Pritchard and Hogg, 2003). It is also worthwhile to observe that a real equilibrium condition is only asymptotically achieved and, for real scenarios, an evolution of the system is generally present due to variations into external forcing induced, for instance, by storms occurrence or relative sea
level variations (e.g. Pritchard and Hogg, 2003; Toffolon and Lanzoni, 2010; Canestrelli et al., 2010).

Among the others, uncertainties in relation to riverine inputs and surge occurrence are important to evaluate when making considerations in regard to the achievement of an equilibrium configuration.

We found that residual currents magnitude maintains a similar spatial distribution during spring and neap tide, with maximum values occurring around Lowestoft and north of Dover. Average residual currents intensities increase up to 113% during the spring tide. The highest differences in residual currents occur in the deepest portions of the domain, and a significant relationship exists between differences in the intensity of residuals during neap and spring tides, and water depth. Changes in the direction of residual currents also occur when transitioning from neap to spring tide: during the neap tide, the majority of residuals are directed northeastwards, while during the spring tide a bimodal distribution in residual currents direction is present, with many locations characterized by southerly oriented residuals, and large portions of the Thames estuary becoming flood-dominated, especially the channels areas.

Flood/ebb dominance and the direction of residual currents in general are relevant for the net transport of sediments. Results presented in this manuscript demonstrate that residual currents can significantly change from neap to spring tide. We suggest that these differences should be taken into account when considering the interaction of the tidal flow with nonperiodic, and irregular sediment signals such as riverine inputs, or sediment resuspension by storms in order to understand whether these can effectively function as sediment sources to the shoreline.

The intensity of residuals was found to be an indicator of sediment fractions availability at the bottom. Specifically, a significant negative correlation was found between the intensity of
residual currents and the percentage of mud, and a positive correlation was found between the percentage of available gravel and sand and the residuals. Understanding the spatial distribution of sediment grain size is relevant to determine locations where sediments can be more easily re-suspended and to possibly determine the spatial distribution of pollutants which are more likely to adhere to mud due to its cohesiveness and chemical properties (e.g. Wolanski et al., 2000). Residual currents can be thus considered as a possible indicator to localize the deposition of the finest fractions, and possible pollutants accumulations. For the Thames region residual currents are characterized by the formation of clockwise eddies in agreement with existing literature data and theoretical studies according to which residual eddies can form due to the interaction of the oscillating flow with a varying bathymetry, and are caused by the imbalance between out-flux and influx vorticity trough the ridge contour (e.g. Zimmerman, 1981; Dyer and Huntley, 1997; Horillo-Caraballo and Revee, 2008). Residual sediment transport patterns and morphological changes for the area have been also simulated by taking into account the presence of the different sediment fractions at the bottom. In terms of morphological changes, a numerical simulation intended to account for morphological changes over a century timescale was conducted. Numerical models like the one presented in this paper, can be useful tools to investigate complex hydrodynamic and sediment transport dynamics, but results always need to be treated cautiously. Particularly in terms of sediment dynamics, large uncertainties exist in regard to the complex sediment budget in the area, that might have not been fully reproduced within the present modelling framework. Uncertainties also come from the fact that some sediment fluxes including sources from rivers, seabed erosion, and cliff erosion might be difficult to quantify. For instance, the resolution of the domain, as well as the modelled dynamics, might have underestimated the amount of fluxes coming from the erosion of soft cliffs. Furthermore, residual currents are second order features, and some inaccuracy in their representation might
come from even very small errors into the velocity field. Another limitation comes from the
fact that this modelling framework only accounts for water level changes and does not
consider wind generated waves, and the littoral drift. Considering the vertical structure
associated to waves velocity, the latter are expected to be mainly relevant for the shallower
areas, while their contribution to well submerged banks might be secondary with respect to
tidal motion (Horillo-Caraballo and Reeve, 2008).

Wind waves can increase bottom shear stress, enhance both sediments resuspension and
erosion, and contribute to the littoral drift; in this sense waves can be responsible for changes
in sediment pathways, as well as sediment recirculation within sand bank systems (e.g. Lee et
al., 2004). For example, Christie et al., 1999 used short term measurements to show that for
the Humber Estuary (UK), typical tidal currents were causing accretions of the order of few
millimetres and onshore fluxes, while waves can cause the erosion of several centimetres of
sediments and an increase in seaward transport. However, the effects of short term wave
events tended to cancel out in time such that net seasonal changes were of the order of calm
conditions (Christie et al., 1999). Waves can be also important when dealing with the
sandbanks-shoreline interaction, as debate is present on whether the presence of sandbanks
could reduce wave action and, as a consequence, shoreline erosion (e.g. Pye and Blott.,
2006). For instance, Robinson et al., 1980, sustained that a reduction in coastline erosion was
attributable to the growth of sandbanks, and their reduction in wave energy, while Halcrow
Maritime, 2000 concluded that the sandbanks are not as important in reducing the energy that
reaches the shoreline under normal weather conditions.

In terms of riverine inputs, for the Thame estuary, which occupy large part of the modelled
domain, the flow rate is relatively small and generally vary between a 10 percentile of 10m3/s
to a 95 percentile of 0.97 m3/s, with a mean of 3.9 m3/s (e.g. Neal et al., 2005). For the
coastline as a whole, the fluvial sediment supply is generally considered negligible (e.g.
Nevertheless, riverine inputs, especially during large floods can affect both the hydrodynamic and morphodynamic features of a system. From a morphodynamic point of view, under macro tidal conditions, the presence of a riverine flow has been found to promote shoal widening and an initial faster accretion of sand deposits, producing wider and shallower shoals (Leonardi et al., 2013). Horrevoets et al., 2004 demonstrated analytically that river discharge influences tidal damping, and that the critical point starting from which the system becomes river dominated depends on flow magnitude, with the effect of riverine flow being friction dominated. Using ADCP field measurements it has been shown that even in micro-tidal and very shallow conditions, residual currents can be relevant and that under extreme river discharge periods, residual currents are amplified and almost double with respect to the no-discharge case, and this can contributed to an outward transport of sediments (Leonardi et al., 2015).

Morphological results indicate a steepening of existing sand banks, especially in the Thames and in the northeastern portion of the domain, where the existing banks tend to become higher and more pronounced and new ones tend to form. For the northeastern portion of the study area, the coastlines adjacent to the accreting sand banks tend to partially erode, while no significant sediment removal from the coastline areas can be noticed for the southernmost portion. The enhancement of sandbanks features has been connected to residual currents exhibiting closed circulation patterns having direction parallel to the shore; in fact, the convergence of the circulating stream causes the potential accumulation of sand on the top of sand banks. The existence of circulation gyres has been long recognized (e.g. Zimmermann, 1981); for this test case, the major axis of the main recirculating gyres ranged from around 10 to 35 km, and the minor axis ranged from around 2 to 4 km. This is relevant considering the economic importance of sand banks which are a cause of refraction for incoming waves and
can help protecting many shoreline stretches from erosion; on the other hand, banks might also create hazards to navigation.

Conclusions

The coastline of SE England was used as a test case to investigate possible changes in residual currents, and residual transport patterns from neap to spring tide, the reciprocal interaction between residuals and the character of the bed, and the morphological evolution of the coastline at a century timescale. The numerical model Delft 3D was used for this investigation.

We found that the intensity of residual currents maintains a similar spatial distribution during both spring and neap tide, with maximum values occurring around Lowestoft and north of Dover. The average intensity of residual currents is doubled during spring tide. The highest differences in residuals occur in the deepest portions of the domain, and a significant relationship exists between differences in the intensity of residual currents during neap and spring tides, and water depth.

The intensity of residuals was found to be an indicator of sediment fractions availability at the bottom. Specifically, a significant negative correlation was found between the intensity of residual currents and the percentage of mud, and a positive correlation was found between the percentage of available gravel and sand and the residuals.

Changes in the direction of residual currents also occur when transitioning from neap to spring tide; for instance, during spring tide, large portions of the Thames estuary become flood-dominated, especially the channels areas.

For the Thames region residual currents are also characterized by the formation of clockwise eddies in agreement with existing literature data and theoretical studies according to which residual eddies can form due to the interaction of the oscillating flow with a varying
bathymetry, and are caused by the imbalance between out-flux and influx vorticity through the
term of morphological changes, a numerical simulation intended to account for
morphological changes over a century timescale was conducted, suggesting that the
morphological evolution of the system tends to enhance sand banks features, with an increase
in elevation and steepening of the bank contours. Furthermore, the long term the morphology
of the system evolves toward a dynamic equilibrium configuration characterized by smaller,
and spatially constant residual transport patterns.

Acknowledgment
All data are available upon request to the first Author. This work was partially supported by
the NERC Award: NE/N015614/1. We acknowledge the MET office for providing pressure
and wind data for this model, the British Geological Survey (BGS) for the GIS-maps for the
bed, and the UK Hydrographic Office for the VORF corrections.

References
modelling of barotropic tidal dynamics in the strait of Messina. Advances in water
resources, 25(4), pp.401-415.
Allen, J.I., Somerfield, P.J. and Gilbert, F.J., 2007. Quantifying uncertainty in high-
resolution coupled hydrodynamic-ecosystem models. Journal of Marine Systems, 64(1),
pp.3-14.
Bolla Pittaluga, M., Tambroni, N., Canestrelli, A., Slingerland, R., Lanzoni, S. and
Seminara, G., 2015. Where river and tide meet: The morphodynamic equilibrium of
Brooks, S.M., Spencer, T. and Christie, E.K., 2017. Storm impacts and shoreline recovery:
Brooks, S.M. and Spencer, T., 2014. Importance of decadal scale variability in shoreline
response: examples from soft rock cliffs, East Anglian coast, UK. Journal of coastal
conservation, 18(5), pp.581-593.

Schans, H., Möller, I. and Spencer, T., 2001. Large-scale classification of the East Anglian coastline, UK. In Coastal Dynamics' 01 (pp. 683-692).

Figure captions

Figure 1 A) Location of the study area (red box); solid lines are co-phase lines, and dashed lines are co-range lines (values in cm) (adapted from Roos et al., 2011). B, C) Model domain; red, and blue contours indicate model exterior, and interior boundaries respectively. Blue points indicate buoy stations: Cromer (CRO), Lowestoft (LOW), Dover (DOV), Newhaven (NEW), Sheerness (SHEER) C) Higher resolution domain: the area within blue lines is the one indicated in panel B.

Figure 2 Percentage values of the sediment fractions at the bottom.

Figure 3 Modelled water levels (red line), and Buoys data (blue points). Station locations is indicated in Figure 1B.

Figure 4 Maximum bed shear stress values during neap (A, D) and spring tide (B, E), and their difference (C, F). The second row of panels refers to the higher resolution domain.

Figure 5 Residual currents during neap tide (A, D, E), spring tide (B, F, G), and their difference (C). The second row of panels refers to the higher resolution domain. Background colours refer to the intensity of the residual currents apart from panels E, and G where colours refer to bathymetric values.

Figure 6 Residual currents direction (panels A, B, E, F), and corresponding frequency magnitude distribution (panels C, D, G and H).
Figure 7 Relationship between Bed level (m), and changes in residual currents from neap to spring tide. Grey points refer to the largest domain, while blue points are for the higher resolution domain.

Figure 8 Relationship between sediment fractions (mud, sand, gravel) availability at the bottom, and the following variables: residual currents intensity (panels A, B, C), mean (panels D, E, F) and maximum bed shear stress (panels G, H, I). Pearson coefficients are always < 0.05.

Figure 9 Residual suspended (panels A, B, C and D) and bed load (panels E, F, G, H) transport (m³/s/m) for different sediment fractions.

Figure 10 Initial bed level (A), and bed level after one year simulation with 100 morphological factor.

Figure 11 Relationship between morphological changes, and the following: residual currents intensity, mean shear stress and maximum shear stress during spring tide.

Figure 12 Cumulative distribution of the percentage areas characterized by a given residual total transport before and after the morphological evolution given the same hydrodynamic forcing of the spring tidal cycles considered in the manuscript.

Table S1 harmonic analysis of Delft3D outputs and buoy data for the five locations indicated in Figure 1b, and the three major harmonic constituents.

Figure S1 Difference in modelled water levels, and buoy data (station locations indicated in Figure 1).
Figure S2 Relationship between sediment fractions (mud, sand, gravel) availability at the bottom, and the following variables: residual currents intensity (panels A, B, C), mean (panels D, E, F) and maximum bed shear stress (panels G, H, I). For each panel, first R² values refer to the raw data, while values in parenthesis refer to the binned data. Bins have been done by dividing the horizontal axis into 100 regular intervals, and percentage fractions and velocity/ bed shear stress values have been averaged for each bin. Pearson coefficients are always<0.05.
$R^2 = 0.60, p < 0.005$

$R^2 = 0.77, p < 0.005$
Spring tide residual velocity (m/s)

Spring tide mean shear stress (N/m2)

Spring tide max shear stress (N/m2)

% mud

% gravel

% sand

$R^2=0.60$

$R^2=0.70$

$R^2=0.67$

$R^2=0.82$

$R^2=0.90$

$R^2=0.95$

$R^2=0.64$

$R^2=0.65$

$R^2=0.70$

$R^2=0.84$

$R^2=0.84$

$R^2=0.90$

$R^2=0.90$
residual suspended-sediment transport

residual bed load transport

spring tide

neap tide

A
mud

B
sand

C
mud

D
sand

E
sand

F
gravel

G
sand

H
gravel
Graphs and Data Analysis

- **Graph A**
 - Residual currents spring tide (m/s)
 - Morphological changes after 100 yrs (m)
 - $R^2 = -0.87$

- **Graph B**
 - Mean shear stress spring tide (N/m²)
 - Morphological changes after 100 yrs (m)
 - $R^2 = -0.96$

- **Graph C**
 - Max shear stress spring tide (N/m²)
 - Morphological changes after 100 yrs (m)
 - $R^2 = -0.95$
Spring tide residual velocity (m/s)

- A: $R^2 = 0.66 (0.82)$
- B: $R^2 = 0.34 (0.52)$
- C: $R^2 = 0.25 (0.50)$

Spring tide mean shear stress (N/m2)

- D: $R^2 = 0.58 (0.86)$
- E: $R^2 = 0.32 (0.51)$
- F: $R^2 = 0.12 (0.35)$

Spring tide max shear stress (N/m2)

- G: $R^2 = 0.53 (0.59)$
- H: $R^2 = 0.33 (0.60)$
- I: $R^2 = 0.19 (0.48)$
<table>
<thead>
<tr>
<th>Location</th>
<th>Delft3D amp (m)</th>
<th>pha (deg)</th>
<th>Buoy data amp (m)</th>
<th>pha (deg)</th>
<th>Δamp (m)</th>
<th>Δphase (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOVER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>2.239</td>
<td>337.967</td>
<td>M2</td>
<td>2.264</td>
<td>0.024</td>
<td>1.324</td>
</tr>
<tr>
<td>S2</td>
<td>0.691</td>
<td>29.102</td>
<td>S2</td>
<td>0.712</td>
<td>0.021</td>
<td>1.497</td>
</tr>
<tr>
<td>N2</td>
<td>0.394</td>
<td>317.750</td>
<td>N2</td>
<td>0.407</td>
<td>0.014</td>
<td>1.347</td>
</tr>
<tr>
<td>CROMER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>1.600</td>
<td>190.481</td>
<td>M2</td>
<td>1.576</td>
<td>0.024</td>
<td>0.461</td>
</tr>
<tr>
<td>S2</td>
<td>0.531</td>
<td>235.857</td>
<td>S2</td>
<td>0.529</td>
<td>0.002</td>
<td>0.557</td>
</tr>
<tr>
<td>N2</td>
<td>0.310</td>
<td>168.598</td>
<td>N2</td>
<td>0.297</td>
<td>0.013</td>
<td>0.638</td>
</tr>
<tr>
<td>LOWESTOFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>0.696</td>
<td>252.431</td>
<td>M2</td>
<td>0.678</td>
<td>0.018</td>
<td>2.060</td>
</tr>
<tr>
<td>K1</td>
<td>0.163</td>
<td>319.484</td>
<td>K1</td>
<td>0.153</td>
<td>0.010</td>
<td>3.300</td>
</tr>
<tr>
<td>S2</td>
<td>0.146</td>
<td>281.029</td>
<td>S2</td>
<td>0.149</td>
<td>0.002</td>
<td>2.579</td>
</tr>
<tr>
<td>NEWHAVEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>2.173</td>
<td>325.350</td>
<td>M2</td>
<td>2.236</td>
<td>0.064</td>
<td>1.149</td>
</tr>
<tr>
<td>S2</td>
<td>0.684</td>
<td>15.691</td>
<td>S2</td>
<td>0.756</td>
<td>0.072</td>
<td>0.646</td>
</tr>
<tr>
<td>N2</td>
<td>0.390</td>
<td>305.033</td>
<td>N2</td>
<td>0.373</td>
<td>0.018</td>
<td>1.656</td>
</tr>
<tr>
<td>SHEERNESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>2.015</td>
<td>32.418</td>
<td>M2</td>
<td>2.042</td>
<td>0.027</td>
<td>1.429</td>
</tr>
<tr>
<td>S2</td>
<td>0.758</td>
<td>116.586</td>
<td>S2</td>
<td>0.769</td>
<td>0.011</td>
<td>1.671</td>
</tr>
<tr>
<td>N2</td>
<td>0.236</td>
<td>241.771</td>
<td>N2</td>
<td>0.228</td>
<td>0.008</td>
<td>2.892</td>
</tr>
</tbody>
</table>