Ultrathin Grafts for DSAEK With a Single Microkeratome Pass

To the Editor:

We read with interest the article by Choulakian et al1 regarding the predictability and reproducibility of stromal bed thickness for ultrathin DSAEK grafts.2,3 These authors have highlighted the advantages of single-step techniques and normograms for preparing ideal stromal bed thickness. The authors mention the use of variable cutting heads and predetermined pressure within the artificial anterior chamber to achieve targeted donor button thickness. There is, however, no mention of discussion of artificial anterior chamber pressure and the normogram used, which are important parameters in this setting to allow the application of the presented results by clinicians. In our experience, artificial anterior chamber pressure can vary dramatically depending on the chosen settings and plays a crucial role in the preparation of an ultrathin DSAEK graft.2,3 Additionally, the selection of the right cutting head is only 1 of 2 established steps when trying to achieve a thin graft. Thinning of the donor cornea to a certain pre-cut target thickness is equally important along with graft size. Various techniques and normograms have been proposed and used for this purpose.

The authors chose 3 graft thickness groups including a cut-off of <91 μm for the thinnest targeted stromal bed thickness. The rationale for these 3 specific categories although reasonable, should be scrutinized. As reported in the literature, ultrathin grafts are associated with faster visual recovery and a postoperative visual acuity comparable with Descemet membrane endothelial keratoplasty over time.4,5 An inverse association between the quantity of transplanted stromal tissue and visual outcome has also been reported in pre-Descemetic deep anterior lamellar keratoplasty.6,7 In addition, we have observed a decreased rate of intra- and perioperative (unpublished data) complications when using ultrathin large-diameter DSAEK grafts. Graft diameter is an important variable associated with increased graft survival,8 and the techniques used to produce an ultrathin DSAEK need to ensure that they are also applicable to producing 9.5-mm graft diameters.

Financial disclosures/conflicts of interest: None reported.

Vito Romano, MD*
Bernhard Steger, MD†
Matthias Brunner, MD*
Stephen B. Kaye, MD, FRCS,
FRCOphth*‡

*Department of Corneal and External Eye Diseases, St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
†Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
‡Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom

REFERENCES