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 22 

Supplementary Figure 1. SNP heritability estimates per cohort  23 
SNP-heritability per cohort showing impact of lifetime risk assumptions (with 95% confidence intervals). 24 
Sample size: PGC29 (Ncas=16,823; Ncon=25,632); deCODE (Ncas=1,980; Ncon=9,536); GenScot (Ncas=997; 25 
Ncon=6,358); GERA (Ncas=7,162; Ncon=38,307); iPSYCH (Ncas=18,629; Ncon=17,841); UKBB (Ncas=14,260; 26 
Ncon=15,480); 23andMe (Ncas=70,813; Ncon=217,316); FullMeta (Ncas=130,664; Ncon=330,470); 27 
CONVERGE (Ncas=5,303; Ncon=5,337) 28 
  29 
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a)                                                                                      b) 30 

 31 
c)                                                                                       d) 32 

 33 

Supplementary Figure 2: Leave-one-out genetic risk score analyses of PGC29.  34 

(a) Per sample R2 at varying significance thresholds from logistic regression (1*<0.05; 2*<0.01; 3*<0.005; 35 
4*<0.001; 5*<1.0e-4; 6*<1.0e-8; 7*<1.0e-12). All but one of the samples in PGC29 yielded significant differences in 36 
case-control distributions of GRS. Across all PGC29 samples, GRS explained 1.9% of variance in liability. Sample size 37 
of all PGC29 cohorts: boma (Ncas=586; Ncon=1,062); cof3 (Ncas=120; Ncon=126); col3 (Ncas=507; Ncon=1,445); 38 
edi2 (Ncas=372; Ncon=285); gens (Ncas=1,019; Ncon=1,344); gep3 (Ncas=482; Ncon=2,836); grdg (Ncas=471; 39 
Ncon=470); grnd (Ncas=830; Ncon=474); gsk2 (Ncas=880; Ncon=861); i2b3 (Ncas=806; Ncon=1,067); jjp2 40 
(Ncas=466; Ncon=1,380); mmi2 (Ncas=584; Ncon=517); mmo4 (Ncas=264; Ncon=371); nes1 (Ncas=1,494; 41 
Ncon=1,602); pfm2 (Ncas=281; Ncon=820); qi3c (Ncas=864; Ncon=579); qi6c (Ncas=499; Ncon=590); qio2 42 
(Ncas=565; Ncon=526); rad3 (Ncas=1,872; Ncon=1,528); rage (Ncas=322; Ncon=227); rai2 (Ncas=109; Ncon=340); 43 
rau2 (Ncas=223; Ncon=378); rde4 (Ncas=133; Ncon=516); roc3 (Ncas=271; Ncon=92); rot4 (Ncas=241; 44 
Ncon=1,028); shp0 (Ncas=366; Ncon=1,087); shpt (Ncas=163; Ncon=484); stm2 (Ncas=936; Ncon=934); twg2 45 
(Ncas=1,097; Ncon=2,663); (b) Relation between the number of cases and R2, showing the expected positive 46 
correlation. (c) Major depression GRS (from out-of-sample discovery sets) were significantly higher in cases with: 47 
earlier age at onset; more severe symptoms (based on number of criteria endorsed); Target sample PGC29; Target 48 
sample size: cases with early Age At Onset (AAO)=3,950; cases with late AAO=3,950; cases with moderate 49 
MDD=4,958; cases with severe MDD=3,976; Discovery Sample size: 23andMeD (Ncas=70,813; Ncon=217,316); 50 
FMex23 (full meta-analysis excluding 23andMe and PGC29) (Ncas=43,028; Ncon=87,522); FullMeta (full meta-51 
analysis excluding PGC29) (Ncas=113,841; Ncon=304,838); (d) Major depression GRS (from out-of-sample 52 
discovery sets) were significantly higher in cases with: recurrent compared to single episode. Error bars represent 53 
95% confidence intervals. Target sample iPsych; Target sample size: 5,574 cases of recurrent and 12,968 single 54 
episode MDD Discovery Sample size: 23andMe (Ncas=70,813; Ncon=217,316); FMex23 (full meta-analysis 55 
excluding 23andMe and iPsych) (Ncas=41,222; Ncon=95,313); FullMeta (full meta-analysis excluding iPsych) 56 
(Ncas=112,035; Ncon=312,629). 57 
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a)  59 

b)  60 

Supplementary Figure 3: Circular plots to illustrate DNA-DNA loops.  61 
From the outside, the tracks show hg19 coordinates in Mb, the positions of significant major depression 62 
associations (as -log10(P), outward is more significant), the names and positons of GENCODE genes, and the arcs 63 
show significant DNA-DNA loops (q < 1e-4) from Hi-C on adult cortex (green) and fetal frontal cortex (blue). (a) 64 
chr1:71.5-74.1 Mb suggesting that the two statistically independent associations in the region both implicate 65 
NEGR1. (b) The association in RERE, in contrast, coincides with many DNA-DNA loops and may suggest that this 66 
region contains super-enhancer elements.   67 
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a) 68 

 69 
b) 70 

 71 
c) 72 

 73 
d) 74 

 75 

Supplementary Figure 4: Mendelian randomization analyses.  76 
Supplementary Table 13 shows the GSMR parameter estimates and significance, and these graphs show 77 
scatterplots of the instruments for major depression and (a) BMI, (b) years of education, (c) coronary artery 78 
disease, and (d) schizophrenia. Note the regression line is included for reference,	 ܾ௫௬ are estimated as a 79 
generalized least squares estimates of ܾ௭௬/ ܾ௭௫ . Sample size: BMI=322,135; EduY=405,072; CAD=184,305; 80 
SCZ=(Ncas=36,989; Ncon=113,075); MDD=(Ncas=130,664; Ncon=330,470). 81 
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 83 

Genotyping and quality control.  84 

Genotyping procedures can be found in the primary reports for each cohort (summarized in Supplementary 85 
Table 3). Individual genotype data for all PGC29 samples, GERA, and iPSYCH were processed using the PGC 86 
“ricopili” pipeline (URLs) for standardized quality control, imputation, and analysis. 1 The cohorts from 87 
deCODE, Generation Scotland, UK Biobank, and 23andMe were processed by the collaborating research 88 
teams using comparable procedures. SNPs and insertion-deletion polymorphisms were imputed using the 89 
1000 Genomes Project multi-ancestry reference panel (URLs).2  90 

Quality control and imputation on the PGC29 samples were performed according to standards from the PGC. 91 
The default parameters for retaining SNPs and subjects were: SNP missingness < 0.05 (before sample 92 
removal); subject missingness < 0.02; autosomal heterozygosity deviation (|Fhet|<0.2); SNP missingness < 93 
0.02 (after sample removal); difference in SNP missingness between cases and controls < 0.02; and SNP 94 
Hardy-Weinberg equilibrium (P>10−6 in controls or P>10−10 in cases). These default parameters sufficiently 95 
controlled λ and false positive findings for 16 cohorts (boma, rage, shp0, shpt, edi2, gens, col3, mmi2, qi3c, 96 
qi6c, qio2, rai2, rau2, twg2, grdg, grnd). Two cohorts (gep3 and nes2) needed stricter SNP filtering and 11 97 
cohorts needed additional ancestral matching (rot4, stm2, rde4) or ancestral outlier exclusion (rad2, i2b3, 98 
gsk1, pfm2, jjp2, cof3, roc3, mmo4). An additional cohort of inpatient MDD cases from Münster, Germany 99 
was processed through the same pipeline. 100 

Genotype imputation was performed using the pre-phasing/imputation stepwise approach implemented in 101 
IMPUTE2 / SHAPEIT (chunk size of 3 Mb and default parameters). The imputation reference set consisted of 102 
2,186 phased haplotypes from the 1000 Genomes Project dataset (August 2012, 30,069,288 variants, release 103 
“v3.macGT1”). After imputation, we identified SNPs with very high imputation quality (INFO >0.8) and low 104 
missingness (<1%) for building the principal components to be used as covariates in final association 105 
analysis. After linkage disequilibrium pruning (r2 > 0.02) and frequency filtering (MAF > 0.05), there were 106 
23,807 overlapping autosomal SNPs in the data set. This SNP set was used for robust relatedness testing and 107 
population structure analysis. Relatedness testing identified pairs of subjects with ߨො  > 0.2, and one member 108 
of each pair was removed at random after preferentially retaining cases over controls. Principal component 109 
estimation used the same collection of autosomal SNPs.  110 

Identification of identical samples is easily accomplished given direct access to individual genotypes. 3 Two 111 
concerns are the use of the same control samples in multiple studies (e.g., GAIN or WTCCC controls) 4,5 and 112 
inclusion of closely related individuals. For cohorts where the PGC central analysis team had access to 113 
individual genotypes (PGC29 and GERA), we used SNPs directly genotyped on all platforms to compute 114 
empirical relatedness, and excluded one of each duplicated or relative pair (defined as ߨො  > 0.2). Within all 115 
other cohorts (deCODE, Generation Scotland, iPSYCH, UK Biobank, 23andMe, and CONVERGE), identical and 116 
relative pairs were identified and resolved using similar procedures. Identical individuals between PGC29, 117 
iPSYCH, UK Biobank, and Generation Scotland were identified using genotype-based checksums (URLs), 6 and 118 
an individual on the collaborator’s side was excluded. Checksums were not available for the deCODE and 119 
23andMe cohorts. Related pairs are not detectable by the checksum method but we did not find evidence of 120 
important overlap using LD score regression (the intercept between pairs of cohorts ranged from -0.01 to 121 
+0.01 with no evidence of important sample overlap).  122 

Cohort comparability.  123 

Supplementary Table 3 summarizes the numbers of cases and controls in PGC29 and the six expanded 124 
cohorts. The most direct and important way to evaluate the comparability of these cohorts for a GWA meta-125 
analysis is using SNP genotype data. 7,8  126 

First, there was no indication of important sample overlap. This was directly evaluated as part of genotype 127 
quality control (see below), and confirmed as the LDSC regression intercepts between pairs of cohorts were 128 
always near zero.  129 
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Second, Supplementary Table 3 and Supplementary Fig. 1 show ℎௌேଶ  on the liability scale for each cohort. 130 
In ℎௌேଶ  methodology, the direct estimate is of variation explained in case-control status in the cohort, which 131 
are then transformed to the liability scale using an estimate of lifetime risk. Therefore, these estimates 132 
should be viewed as benchmarking rather than precise as lifetime risk estimate depends on the cohort and 133 
the transformation depends on the level of screening of controls. 9 These estimates demonstrate that 134 
common SNPs genome-wide contribute to variation but are not a suitable statistic for drawing strong 135 
conclusions about impact of phenotyping strategies. The ℎௌேଶ  estimates range from 0.08 (SE 0.01) to 0.26 136 
(SE 0.14) (for lifetime risk 0.15=ܭ) but the confidence intervals largely overlap (Supplementary Fig. 1).  137 

Third, Supplementary Table 3b shows the ݎ values for all pairs of cohorts. In contrast to ℎௌேଶ   estimates 138ݎ ,
are not dependent on estimates of lifetime risk. The median ݎ was 0.80 (interquartile range 0.67-0.96), and 139 
the upper 95% confidence interval on ݎ included 0.75 for all pairwise comparisons. These results indicate 140 
that the common variant genetic architecture of the cohorts overlap strongly, and provide critical support 141 
for the full meta-analysis of all cohorts.  142 

For the PGC29 samples we could evaluate the comparability of the samples using individual level SNP 143 
genotype data. 7,8 The sample sizes were too small to evaluate the common variant genetic correlations (ݎ) 144 
between all pairs of PGC29 samples (>3,000 subjects per sample are recommended). As an alternative, we 145 
used “leave one out” genetic risk scores (GRS, described below). We repeated this procedure by leaving out 146 
each PGC29 sample in turn so that we could evaluate the similarity of the common-variant genetic 147 
architectures of each sample to the rest of the cohort. Supplementary Fig. 2A  and Supplementary Table 4  148 
shows that all but one of the samples in the PGC29 cohort yielded significant differences in case-control GRS 149 
distributions.  150 

Because around half of the major depression cases were identified by self-report (i.e., diagnosis or 151 
treatment for clinical depression by a medical professional), we further evaluated the comparability of the 152 
23andMe cohort with the other cohorts (full meta-analysis excluding 23andMe, “FMex23”) as detailed in 153 
Supplementary Table 5. At the most stringent level, of 11 SNPs reaching genome-wide significance in the 154 
23andMe cohort, three replicate in FMex23 (at P < 0.05/11 comparisons). In the FMex23 cohorts, all five 155 
genome-wide significant loci replicate in 23andMe (at P < 0.05/5 comparisons). Next, of the independent loci 156 
associated at P<10-6 in 23andMe, 19/44 (43%) had P<0.05 in FMex23 (P=8.0 x10-14). Of the independent loci 157 
associated at P<10-6 in FMex23, 13/24 (54%) had P<0.05 in 23andMe (P=1.8 x10-11). Expanding these 158 
analyses further, we observed highly significant sign-test concordances at all tested P-value thresholds with 159 
23andMe as the discovery sample and FMex23 as the target sample and vice versa. We repeated GRS 160 
analyses with 23andMe or FMex23 as discovery samples and the results showed significance (but explained 161 
less variance in out-of-sample prediction than when combined (Fig. 2). Moreover, GRS in 23andMe and 162 
FMex23 were higher in those with more severe MDD (Supplementary Fig. 2). We interpret these results as 163 
supporting this meta-analysis of GWA results for these seven cohorts. Sample size appeared to be a more 164 
potent determinant of the significance than how these phenotypes were assessed.  165 

Trans-ancestry comparison with the Chinese CONVERGE cohort. 166 

The Han Chinese CONVERGE study 10 included clinically ascertained females with severe, recurrent MDD, and 167 
is the largest non-European MDD GWA to date. Neither of the two genome-wide significant loci in 168 
CONVERGE had SNP findings ±250 kb with P < 1x10-6 in the full European major depression results. We used 169 
LDSC with an ancestry-specific LD reference for within ancestry estimation, and POPCORN 11 for trans-170 
ancestry estimation. In the CONVERGE sample, ℎௌேଶ  was reported as 20-29%. 12 Its ݎ with the seven 171 
European major depression cohorts was 0.33 (SE 0.03). 13 For comparison, ݎ for CONVERGE with European 172 
results for schizophrenia was 0.34 (SE 0.05) and 0.45 (SE 0.07) for bipolar disorder. The weighted mean ݎ 173 
between the CONVERGE cohort with the seven cohorts using was 0.31 (SE 0.03). These ݎ estimates should 174 
be interpreted in light of the estimates of ݎ within European MDD cohorts which are variable (Table S3).  175 

Common genetic risk variants for complex biomedical conditions are likely to be shared across ancestries. 176 
14,15 However, lower ݎ have been reported likely reflecting different LD patterns by ancestry. For example, 177 
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European-Chinese ݎ estimates were below one for ADHD (0.39, SE 0.15), 16 rheumatoid arthritis (0.46, SE 178 
0.06), 11 and type 2 diabetes (0.62, SE 0.09), 11 and reflect population differences in LD and population-179 
specific causal variants.  180 

The discovery rate for major depression (44 associations per 135,458 cases or 1:3,078 cases) is similar to that 181 
for severe, recurrent MDD in the CONVERGE study (2 per 5,303 cases or 1:2,650 cases).  182 

Definition of independent loci 183 

The full criteria used for identifying independent loci are: 184 

• All SNPs were high-quality (imputation INFO score ≥ 0.6 and allele frequencies ≥0.01 and ≤0.99).  185 
• We used “clumping” to convert MDD-associated SNPs to associated regions. We identified an index 186 

SNP with the smallest P-value in a genomic window and other SNPs in high LD with the index SNP 187 
using PLINK (--clump-p1 1e-4 --clump-p2 1e-4 --clump-r2 0.1 --clump-kb 3000). This retained SNPs 188 
with association P < 0.0001 and r2 < 0.1 within 3 Mb windows. Only one SNP was retained from the 189 
extended MHC region due to its exceptional LD.  190 

• We used bedtools (URLs) to combine partially or wholly overlapping clumps within 50 kb.  191 
• We reviewed all regional plots, and removed two singleton associations (i.e., only one SNP 192 

exceeding genome-wide significance).  193 
• We conducted conditional analyses. To identify independent associations within a 10 Mb region, we 194 

re-evaluated all SNPs in a region conditioning on the most significantly associated SNP using 195 
summary statistics 17 (superimposing the LD structure from the Atherosclerosis Risk in Communities 196 
Study sample).  197 

Brief review of four key loci, OLFM4, NEGR1, RBFOX1 and LRFN5 198 

The two most significant SNPs are located in or near OLFM4 and NEGR1, which were previously associated 199 
with obesity and body mass index. 18-23 OLFM4 (olfactomedin 4) has diverse functions outside the CNS 200 
including myeloid precursor cell differentiation, innate immunity, anti-apoptotic effects, gut inflammation, 201 
and is over-expressed in diverse common cancers. 24 Many olfactomedins also have roles in 202 
neurodevelopment and synaptic function; 25 e.g., latrophilins form trans-cellular complexes with neurexins 26 203 
and with FLRT3 to regulate glutamatergic synapse number. 27 Olfm4 was highly upregulated after spinal 204 
transection, possibly related to inhibition of subsequent neurite outgrowth. 28 NEGR1 (neuronal growth 205 
regulator 1) influences axon extension and synaptic plasticity in cortex, hypothalamus, and hippocampus, 29-206 
31 and modulates synapse formation in hippocampus 32,33 via regulation of neurite outgrowth. 34,35 High 207 
expression, modulated by nutritional state, is seen in brain areas relevant to feeding, suggesting a role in 208 
control of energy intake. 36 The same SNP alleles are associated with increased risk of obesity and MDD (see 209 
also Mendelian randomization analyses below) and are associated with NEGR1 gene expression in brain 210 
(Supplementary Table 6). The associated SNPs may tag two upstream common deletions (8 and 43 kb) that 211 
delete transcription factor binding sites, 37 although reports differ on whether the signal is driven by the 212 
shorter 18 or the longer deletion. 22 Thus, the top two associations are in or near genes that influence BMI 213 
and may be involved in neurite outgrowth and synaptic plasticity.  214 

Notable associations reported here include RBFOX1 and LRFN5. There are independent associations with 215 
major depression at both the 5’ and the 3’ ends of RBFOX1 (1.7 Mb, RNA binding protein fox-1 homolog 1). 216 
This convergence makes it a strong candidate gene. Fox-1 regulates the expression of thousands of genes, 217 
many of which are expressed at synapses and enriched for autism-related genes. 38 The Fox-1 network 218 
regulates neuronal excitability and prevents seizures. 39 It directs splicing in the nucleus and binds to 3′ UTRs 219 
of target mRNAs in the cytoplasm. 39,40 Of particular relevance, Fox-1 participates in the termination of the 220 
corticotropin releasing hormone response to stress by promoting alternative splicing of the PACAP receptor 221 
to its repressive form. 41 Thus, RBFOX1 as a risk gene for major depression may be consistent with chronic 222 
hypothalamic-pituitary-adrenal axis hyperactivation reported in MDD. 42 LRFN5 (leucine rich repeat and 223 
fibronectin type III domain containing 5) encodes adhesion-like molecules involved in synapse formation. 224 
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Common SNPs in LRFN5 were associated with depressive symptoms in older adults in a gene-based GWA 225 
analysis. 43 LRFN5 induces excitatory and inhibitory presynaptic differentiation in contacting axons and 226 
regulates synaptic strength. 44,45 LRFN5 also limits T-cell response and neuroinflammation (CNS “immune 227 
privilege”) by binding to herpes virus entry mediator; a LRFN5-specific monoclonal antibody increases 228 
activation of microglia and macrophages by lipopolysaccharide and exacerbates mouse experimental 229 
acquired encephalitis; 46 thus, reduced expression (the predicted effect of eQTLs in LD with the associated 230 
SNPs) could increase neuroinflammatory responses.  231 

Genetic risk score (GRS) analysis 232 

To demonstrate the validity of our GWAS results, we conducted a series of GRS prediction analyses. The 233 
GWA summary statistics identified associated SNP alleles and effect sizes which were used to calculate GRS 234 
for each individual in a target sample (i.e., the sum of the count of risk alleles weighted by the natural log of 235 
the odds ratio of the risk allele). In some analyses the target sample had been included as part of PGC29; 236 
here, the discovery samples were meta-analyzed excluding this cohort. As in the PGC schizophrenia report, 1 237 
we excluded uncommon SNPs (MAF < 0.1), low-quality variants (imputation INFO < 0.9), indels, and SNPs in 238 
the extended MHC region (chr6:25-34 Mb). We then LD pruned and “clumped” the data, discarding variants 239 
within 500 kb of, and in LD r2 > 0.1 with the most associated SNP in the region. We generated GRS for 240 
individuals in target subgroups for a range of P-value thresholds (PT: 5x10-8, 1x10-6, 1x10-4, 0.001, 0.01, 0.05, 241 
0.1, 0.2, 0.5, 1.0).  242 

For each GRS analysis, five ways of evaluating the regression of phenotype on GRS are reported 243 
(Supplementary Table 4). 1) The significance of the case-control score difference from logistic regression 244 
including ancestry PCs and a study indicator (if more than one target dataset was analyzed) as covariates. 2) 245 
The proportion of variance explained (Nagelkerke’s R2) computed by comparison of a full model (covariates + 246 
GRS) to a reduced model (covariates only). It should be noted that these estimates of R2 reflect the 247 
proportion of cases in the case-control studies where this proportion may not reflect the underlying risk of in 248 
the population. 3) The proportion of variance on the liability scale explained by the GRS R2 was calculated 249 
from the difference between full and reduced linear models and was then converted to the liability scale of 250 
the population assuming lifetime risk of 15%. These estimates should be approximately comparable across 251 
target sample cohorts, whatever the proportion of cases in the sample. 4) Area under the receiver operator 252 
characteristic curve (AUC; R library pROC) was estimated in a model with no covariates 1 where AUC can be 253 
interpreted as the probability of a case being ranked higher than a control. 5) Odds ratio for 10 GRS decile 254 
groups (these estimates also depend on both risk of MDD in the population and proportion of cases in the 255 
sample). We evaluated the impact of increasing sample size of the discovery sample GWA (Fig. 2) and also 256 
using the schizophrenia GWA study 1 as the discovery sample. We also undertook GRS analysis for a target 257 
sample of MDD cases and controls not included in the meta-analysis (a clinical inpatient cohort of MDD 258 
cases and screened controls collected in Münster, Germany).  259 

We conducted GRS analyses based on prior hypotheses from epidemiology of MDD using clinical measures 260 
available in some cohorts (if needed, the target sample was removed from the discovery GWA). We used 261 
GRS constructed from PT=0.05, selected as a threshold that gave high variance explained across cohorts. 262 
First, we used GRS analyses to test for higher mean GRS in cases with younger age at onset (AAO) of MDD 263 
compared to those with older AAO in PGC29. To combine analyses across samples, we used within-sample 264 
standardized GRS residuals after correcting for ancestry principal components. Heterogeneity in AAO in 265 
PGC29 has been noted, 47 which may reflect study specific definitions of AAO (e.g., age at first symptoms, 266 
first visit to general practitioner, or first diagnosis). Following Power et al., 47 we divided AAO into octiles 267 
within each cohort and combined the first three octiles into the early AAO group and the last three octiles 268 
into the late AAO group.  269 

Second, we tested for higher mean GRS for cases in the PGC29 samples with clinically severe MDD 270 
(endorsing ≥8 of 9 DSM MDD criteria) compared to those with “moderate” MDD (endorsing 5-7 of 9 MDD 271 
criteria) following Verduijn et al. 48 Sample sizes are given in Supplementary Table 3. Third, using iPSYCH as 272 
the target sample, we tested for higher mean GRS in recurrent MDD cases (ICD-10 F33, N=5,574) compared 273 
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to those with single episode MDD cases (ICD-10 F32, N=12,968) in analyses that included ancestry principal 274 
components and genotyping batch as covariates. Finally, following Verduijn et al. 48 using the NESDA sample 275 
(PGC label “nes1”, an ongoing longitudinal study of depressive and anxiety disorders) as the target sample , 276 
we constructed clinical staging phenotypes in which cases were allocated to one of three stages: Stage 2 (n = 277 
388) first episode MDD; stage 3 (n = 562) recurrent/relapse episode MDD; stage 4 (n = 705) 278 
persistent/unremitting chronic MDD, with an episode lasting longer than 2 years before baseline interview 279 
and/or ≥ 80% of the follow-up time with depressive symptoms. We tested for higher mean GRS in stage IV 280 
cases compared to stage II MDD cases.  281 

Mendelian randomization (MR) analyses.  282 

We used MR49  to investigate the relationships between major depression and correlated traits. 283 
Epidemiological studies show that MDD is associated with environmental and life event risk factors as well as 284 
multiple diseases, yet it remains unclear whether such trait outcomes are causes or consequences of MDD 285 
(or prodromal MDD). Genetic variants are present from birth, and hence are far less likely to be confounded 286 
with environmental factors than in epidemiological studies.  287 

Briefly in MR analyses, we take genome-wide significant SNPs for the exposure trait and test for a directional 288 
relationship with effect sizes of these SNPs estimated in the outcome trait Under pleiotropy, SNPs may be 289 
associated in the same direction in the two traits (consistent with the genetic correlation estimated from 290 
genome-wide SNPs), but causality would generate a directional relationship in the size of effect sizes (which 291 
is plausibly less likely under pleiotropy alone). A check for reverse causality takes genome-wide significant 292 
SNPs from major depression and tests for a directional relationship of effect sizes estimated in the exposure 293 
trait. 294 

We conducted bi-directional MR analysis for four traits: years of education (EDY)50, body mass index (BMI) 51, 295 
coronary artery disease (CAD)52, and schizophrenia (SCZ)53. We denote z as a genetic variant (i.e., a SNP) that 296 
is significantly associated with x, an exposure or putative causal trait for y (the disease/trait outcome). The 297 
effect size of x on y can be estimated using a two-step least squares (2SLS) 54 approach: ܾ௫௬ = ܾ௭௬/ ܾ௭௫, 298 
where ܾ௭௫ is the estimated effect size for the SNP-trait association the exposure trait,	and ܾ௭௬ is the effect 299 
size estimated for the same SNP in the GWAS of the outcome trait.  300 

Since SNP-trait effect sizes are typically small, power is increased by using multiple associated SNPs which 301 
allows simultaneous investigation of pleiotropy driving the epidemiologically observed trait associations. 302 
Causality of the exposure trait for the outcome trait implies a consistent relationship between the SNP 303 
association effect sizes of the exposure associated SNPs in the outcome trait.  304 

We conducted bi-directional MR analysis for four traits: years of education (EDY) 55, body mass index (BMI) 305 
18, coronary artery disease (CAD) 56, and schizophrenia (SCZ) 1. Briefly, we denote z as a genetic variant (i.e., a 306 
SNP) that is significantly associated with x, an exposure or putative causal trait for y (the disease/trait 307 
outcome). The effect size of x on y can be estimated using a two-step least squares (2SLS) 57 approach: 308 ܾ௫௬ = ܾ௭௬/ ܾ௭௫, where ܾ௭௫ is the estimated effect size for the SNP-trait association the exposure trait,	and 309 ܾ௭௬ is the effect size estimated for the same SNP in the GWAS of the outcome trait.  310 

Since SNP-trait effect sizes are typically small, power is increased by using multiple associated SNPs which 311 
allows simultaneous investigation of pleiotropy driving the epidemiologically observed trait associations. 312 
Causality of the exposure trait for the outcome trait implies a consistent relationship between the SNP 313 
association effect sizes of the exposure associated SNPs in the outcome trait.  314 

We used generalized summary statistics-based MR (GSMR) to estimate ܾ௫௬ and its standard error from 315 
multiple SNPs associated with the exposure trait at a genome-wide significance level. We conducted bi-316 
directional GSMR analyses for each pair of traits, and report results after excluding SNPs that fail the HEIDI-317 
outlier heterogeneity test (which is more conservative than excluding SNPs that have an outlying association 318 
likely driven by locus-specific pleiotropy). GSMR is more powerful than inverse-weighted MR (IVW-MR) and 319 
MR-Egger because it takes account of the sampling variation of both ܾ௭௫ and ܾ௭௬. GSMR also accounts for 320 
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residual LD between the clumped SNPs. For comparison, we also conducted IVW-MR and MR-Egger 321 
analyses. 58  322 

  323 
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