A Cognitive TV White Space-Broadband Power Line MIMO System for Indoor Communication Networks

Mohammad Heggo*,†, Xu Zhu*,§, Sumei Sun† and Yi Huang*

Abstract—Broadband power line communication (BPLC) is a promising solution to satisfy the growing data rate demands for broadband indoor communication networks. However, the BPLC transmission power spectral density (PSD) is restricted in the very high frequency (VHF) band to avoid harmful interference to the existing wireless services. In this paper, a new hybrid system is proposed utilizing BPLC and cognitive radio over TV white space (TVWS) to enhance the system capacity over BPLC in VHF, forming a VHF TVWS BPLC multiple-input multiple-output (MIMO) system. An iterative precoding algorithm is proposed to satisfy the interference limit at the TV primary user (PU) receiver (Rx) and enhance the ergodic capacity. Moreover, a power allocation algorithm is developed for the MIMO system to achieve the maximum ergodic capacity subject to the average total power constraint and limit of interference to TV PU. Simulation results demonstrate the significant enhancement in the achieved capacity by our proposed system in the VHF band compared to both previous cognitive and hybrid BPLC systems.

Index Terms—Broadband communication, Cognitive radio, Indoor communication, MIMO, VHF.

I. INTRODUCTION

Broadband power line communication (BPLC) has drawn the attention of the researchers in the last decade as it offers the indoor networks a high speed cost-effective solution [1]. However, the electromagnetic compatibility (EMC) with wireless services remains a crucial problem for BPLC transceivers [2]. Hence, in ITU-T G.hn, HomePlug AV2 and IEEE 1901 standards [4] [5], the BPLC transmission power spectral density (PSD) in the very high frequency (VHF) band is restricted to -85 dBm/Hz. The latter constraint significantly limits the capacity of the BPLC in the VHF band and hence is considered as a crucial problem for the BPLC.

Enhancing the BPLC capacity and satisfying the interference limit with wireless devices had been approached in the literature using three methods: 1) multiple-input multiple-output (MIMO) BPLC as in [4] and [6], 2) cognitive BPLC as in [7]–[11], and 3) hybrid wireless BPLC as in [12]. Although MIMO BPLC can offer some enhancement of the system capacity, it still cannot achieve high ergodic capacity in the VHF band due to the transmitter PSD mask forced by [5]. For cognitive BPLC, the BPLC transmitter (Tx) uses its coupling circuit to sense the spectrum before transmission to avoid interference with existing wireless services, and hence improve the overall ergodic capacity of the system. The main drawback in the cognitive BPLC is the weak reception capability of the BPLC coupling circuit to VHF wireless signals, due to the near field coupling loss between the BPLC and the VHF wireless channels as previously addressed in [2]. Besides, even for the MIMO cognitive BPLC, the coupling circuit itself is considered as a passive circuit device that can increase the coupling loss of the wireless signal. Also, weak coupling between the power line signals and the wireless VHF band can lead to a long sensing time that yields a capacity loss.

As for hybrid wireless BPLC, WiFi was proposed in [12] to enhance the capacity of BPLC by building up a hybrid BPLC WiFi transceiver. The solution relies on the cooperation between the BPLC transceiver in the frequency band below 30 MHz with a transmitter PSD of -55 dBm/Hz [5] and the WiFi transceiver in the 2.45 GHz band with transmission power limit of 23 dBm [13], which is equivalent to -50 dBm/Hz for 20 MHz bandwidth. However, when the BPLC transceiver is used in the frequency band beyond 30 MHz, it suffers a lower transmission PSD limit of -85 dBm/Hz [5] while the WiFi transceiver in the 2.45 GHz band still has the same transmission power limit of 23 dBm. This limit difference results in allocation of most transmission power to the WiFi channel which suffers a higher path loss compared to the BPLC channel. This yields overall capacity degradation, compared to the BPLC WiFi capacity in the frequency band below 30 MHz.

Measurements performed by the Federal Communication Committee (FCC) had shown that large portions of the TV spectrum are locally or temporarily unused [14]. Those portions are known as TV white space (TVWS). According to the FCC TVWS standard [14], unlicensed users are allowed to access the TVWS with transmission power up to 100 mW in the VHF band from 54 MHz to 216 MHz and in the ultra-high frequency (UHF) band from 470 MHz to 806 MHz. Furthermore, TVWS suffers lower path loss than the WiFi bands at 2.45 GHz and 5 GHz [15] [16]. Hence, more attention is paid to exploiting the TVWS in high speed indoor network applications such as TV video streaming [17]. In [18], we investigated the ergodic capacity of the hybrid TVWS BPLC communication in the VHF band. This provides a preliminary feasibility study of the cooperation, which relies...
on the channel path loss regardless of the complex channel gain variation and also the availability of the primary user (PU) channel state information (CSI).

In this paper, a new cooperative system between BPLC and TVWS in the VHF band 54 MHz - 88 MHz is proposed. Our work is different in the following aspects. First, the proposed system improves significantly the VHF BPLC capacity through adding the wireless TVWS channel and using the advantage of MIMO channel. Our system is different from the previous MIMO cognitive BPLC system in [4] since the TVWS BPLC Tx can access the VHF band with lower Tx PSD constraints using the TVWS standard [14], which enhances significantly the overall system capacity. It is worth mentioning that, to the best of our knowledge, this is the first work to propose a cognitive BPLC solution that complies with the TVWS standard. The addition of wireless antenna to cognitive BPLC is essential to enable our TVWS BPLC Tx to sense the TV PU at very low power level of -114 dBm, which satisfies the requirement of the TVWS standard [14]. This addition of the TVWS antenna solves the problem of coupling loss that exists in the aforementioned cognitive BPLC solutions. Second, the interference to other wireless services is mitigated using a proposed iterative precoding technique at the Tx. The proposed algorithm takes the advantage of the multiple-input single-output (MISO) channel between the TVWS BPLC Tx and the TV wireless receiver (Rx). Third, an efficient power allocation for the MIMO channel model including the channel model is presented.

In Section II, the power allocation for the MIMO cognitive BPLC system is addressed, in-}

posed system model including the channel model is presented. In Section III, cognitive spectrum access is addressed, in-

duced system model including the channel model is presented. In Section IV, the power allocation for the MIMO channel model is addressed, in-
where \(\hat{z}(n) = \mathbf{Q}^{(n)}z(n) \) and \(\Lambda^{(n)} \) is the matrix of the singular values of the MIMO channel power gain matrix \(\mathbf{S} \) which can be defined as \(\mathbf{S} = \mathbf{H}^{(n)}\mathbf{H}^{(n)^{\dagger}} \).

B. Channel Models

In this paper, we are more focused on the relationship between the capacity of our proposed system and its coverage distance. Hence, we are interested in the average path loss as well as the complete channel gain between the TVWS BPLC Tx and Rx. The power line channel gain and its average path loss have been modelled in the VHF band in [25] for the nine classes of the power line channel [26]. In our research, we consider class 1 power line channel that has been mostly measured and addressed in previous literature [12] [25] [27] [28]. In this paper, we further derive the empirical formula that describes class 1 average channel path loss model in Fig. 4 of our previous work [25]. The empirical formula can be represented as:

\[
PL_{\text{BPLC}}(dB) = (a_1 f^2 + a_2 f + a_3)d_e + (b_1 f^2 + b_2 f + b_3)
\]

where \(f \) is the frequency of operation in MHz, \(d_e \) is the electric separation distance in meters, which is defined as the length of the power line cable between any BPLC Tx and Rx. \(a_1 = -1.14 \times 10^{-4}, a_2 = 6.8 \times 10^{-3}, a_3 = -0.91 \) and \(b_1 = 2.97 \times 10^{-4}, b_2 = -0.061, b_3 = -15.0 \). In our paper, we adopt the class 1 channel generator in [25] to generate random complex channel between the BPLC Tx and Rx.

Also, the wireless channel in the VHF band has been modelled in [16]. Hence, the TVWS-TVWS channel path loss can be represented as

\[
PL_{\text{TVWS}}(dB) = -10 \log_{10} \left(\frac{\lambda f}{4 \pi d_0} \right)^2 + 10l \log_{10} \frac{d_g}{d_0} + \alpha d_g + \text{FAF}
\]

where \(d_g \) is the Tx-Rx geometric separation, \(d_0 \) is the close-in reference distance and it must be chosen to lie in the far field region (i.e., \(d_0 \gg \frac{\lambda f}{2\pi} \), where the longest \(\lambda_f \) is 10 m at a frequency of 30 MHz), \(\lambda_f \) is the wavelength, \(l \) is the path loss exponent, \(\alpha \) is the attenuation constant (dB/m), and FAF is the floor attenuation factor. \(l, \alpha \) and FAF take the values of 1.5, 0.65 and 0, respectively. We have chosen the floor attenuation to be zero, since TVWS and BPLC channels were measured on the same floor. This was forced by the restriction that the BPLC channel must be measured between outlets that belong to the same phase and distribution box to avoid interference between different phases. Each floor has a separate distribution box in the building of Electrical Engineering and Electronics, The University of Liverpool, where our measurements were conducted. In our paper we represent the indoor channel using 3 levels model, which considers three superimposed effects: 1) two-ray Rayleigh fading channel for the multipath effect
H. SVD is used in the idle channel case while a hybrid SVD/P-precoding algorithms are used: 1) SVD; 2) P-SVD [33]. The Tx data according to the TVWS BPLC-TV PU channel. Two later in this Section. The algorithm precodes the TVWS BPLC the TV PUs Rxs by applying Lemma 1 that will be discussed cognitive spectrum access. The algorithm aims to achieve A. Iterative Hybrid SVD/P-SVD Precoding Technique

In our proposed precoding algorithm, both SVD and P-SVD are used jointly according to the CSI of both the TVWS BPLC and TV PU Rxs.

1) Idle Channel: In case of an idle channel, SVD is used as precoding scheme. Although the PU is absent, an interference limit is forced for false detection probability to avoid harmful interference. The TVWS BPLC-TV PU channel $g_{0,k}^{(n)}$ with maximum gain $\max_{n_t} ||g_{0,k}^{(n)}u_{(1)}^{(n)}||^2$ can only be accessed with power level below the interference limit where $k = 1, 2, .. n_t$ and n_t is the number of PUs.

2) Occupied Channel: This case is only applied to the opportunistic mode of operation mentioned in Section II. In this case, the PU is present, while the secondary user is allowed also to access the channel such that the received power at the TV PU Rx is below a certain interference limit Γ. In our proposed algorithm the SVD is also used as a default precoding scheme as in the case of the idle channel. However, the decision is taken to switch the precoding scheme to P-SVD according to the CSI of the TV PU Rx. The decision is taken to satisfy two conditions: 1) Achieve the interference limit at the TV PU Rx; 2) Achieve high SNR at the TVWS BPLC Rx. Hence, the previous two conditions can be satisfied knowing the CSI as follows. Let’s assume that the interference limit is the minimum threshold for the signal to be detected by the Rx. Hence, the interference to the PU shall be below this threshold in order not to affect the PU reception, while the signal received at the TVWS BPLC Rx shall be above that threshold in order to be detected.

Lemma 1. Let γ be the signal to noise ratio (SNR) at the TVWS BPLC Rx and Γ be the interference limit at the TV PU Rx. In order to achieve $\gamma \geq \Gamma$ while satisfying the interference limit at the TV PU Rx, the following condition shall be satisfied

$$\det \begin{bmatrix} \frac{\lambda(n)}{\rho} - \alpha_{1,k}^{(n)} & \cdots & -\alpha_{n_{r},k}^{(n)} \\ \vdots & \ddots & \vdots \\ -\alpha_{1,k}^{(n)} & \cdots & \frac{\lambda(n)}{\rho} - \alpha_{n_{r},k}^{(n)} \end{bmatrix} \geq 0$$

where the matrix diagonal is positive such that $\frac{\lambda(n)}{\rho} \geq \alpha_{k}^{(n)}$, ρ is a constant that satisfies $\rho \geq 1$ and $\alpha_{k} = ||g_{1,k}^{(n)}u_{1}^{(n)}||^2$ of the k-th PU. Lemma 1 implies that the TVWS BPLC MIMO channel gain represented by its singular values $\lambda(n)$ shall be greater than gain of the interference channel with the PU represented by α_{k}. The ρ constant controls the gap between both channel gains.

Proof. See Appendix A.

Lemma 1 shall be satisfied for the use of SVD. If this condition is violated, then P-SVD is used to eliminate the interference at one TV PU Rx. The eliminated PU is selected to satisfy $\max_{n_t} \{||\alpha_{k}^{(n)}||^2\}$. Hence, the algo-
C. Cognitive Spectrum Sensing

It is known that the sensing time is considered as a challenging issue for the cognitive systems. In our proposed system we achieve the optimum sensing time for a MIMO cognitive system through achieving the optimum detection probability for each MIMO sub-channel. This can be clarified in the following Lemma 2. Let \(\mathcal{P}_d \) represent the target detection probability of the MIMO cognitive Rx using the energy detection method. Also, let the OR rule (i.e., the channel is detected occupied if the PU is detected using either the BPLC Rx or the TVWS Rx) be adopted for MIMO cognitive sensing. Hence, the relationship between the detection probability of each sub-channel and the target detection probability of the MIMO channel can be expressed as

Lemma 2.

\[
\Pi_{i=1}^N \left(1 - Q\left(\frac{\gamma_m - \gamma_i}{\gamma_m \sqrt{2\gamma_i + 1}}\right) Q^{-1}(\mathcal{P}_{fa}) + Q^{-1}(\mathcal{P}_{dm}) \right) = 1 - \mathcal{P}_d
\]

(8)

where \(\mathcal{P}_{dm} \) is the detection probability of the \(m \)-th MIMO sub-channel, \(\gamma_m \) and \(\gamma_i \) are the SNR of the \(m \)-th and \(i \)-th sub-channels, respectively for \(i, m = 1, \ldots, r \). \(\mathcal{P}_{fa} \) is the target false alarm of each MIMO sub-channel and \(Q(\cdot) \) is the complementary error function.

Proof. See Appendix B.

Using Lemma 2, \(\mathcal{P}_{dm} \) can be derived numerically for any MIMO sub-channel. Let \(N_{min} = \tau_{min} \cdot f_s \) be the minimum number of samples requested to achieve the target detection probability \(\mathcal{P}_d \), \(f_s \) is the sampling frequency and \(\tau_{min} \) is the minimum sensing time. \(N_{min} \) can be expressed as [34]

\[
N_{min} = \frac{1}{\tau_{min}} \left(Q^{-1}(\mathcal{P}_{fa}) - Q^{-1}(\mathcal{P}_{dm}) \sqrt{2\gamma_m + 1} \right)^2
\]

(9)

\(N_{min} \) and \(\tau_{min} \) can be directly evaluated after obtaining \(\mathcal{P}_{dm} \) numerically using Lemma 2.

IV. CAPACITY MAXIMIZATION BASED POWER ALLOCATION

In this section, we present the capacity model and the power allocation algorithm that have been adopted to represent the MIMO TVWS BPLC channel.

A. Capacity Analysis

In [35], a system model was proposed for the cognitive spectrum access, where the secondary user could access the cognitive band with two power levels \(P_{0}^{(n)} \) and \(P_{1}^{(n)} \) in the TV PU absence and presence, respectively. In our work, we extend the algorithm in [35] to derive the allocated power for each sub-channel in a MIMO cognitive TVWS BPLC system, taking into consideration the use of SVD/P-SVD as a precoding technique. Also, the model is modified to represent the MISO interference channel between TVWS BPLC and TV PU. Hence, the spectral efficiencies (SEs) on the \(n \)-th subcarrier for the four scenarios are given as

\[
r_{c,d}^{(n)} = \frac{1}{N} \sum_{i=1}^{N} \log_2 \left(1 + \frac{\lambda_{d,i}^{(n)} P_{d,i}^{(n)}}{\sigma_d^2 + \sigma_{P}^2 P_{fa}^{(n)} + \sigma_p^2} \right)
\]

(10)

where \(c \) and \(d \) can take the values of 0 and 1 for the idle and occupied channel status, respectively. \(\sigma_d^2 \) and \(\sigma_p^2 \) are the noise power and the PU power, respectively. \(\sigma_{P}^2 \) is the variance of the channel estimation error \(E_{fa}^{(n)} \) and \(P_{fa}^{(n)} \) is the maximum average power allowed for the TVWS BPLC Tx for subcarrier \(n \), \(\lambda_{d,i}^{(n)} \) and \(P_{d,i}^{(n)} \) are the singular value and the TVWS BPLC Tx signal power of the \(i \)-th MIMO sub-channel and \(n \)-th subcarrier assigned to each detected channel status \(d \).

Hence, we can conclude the MIMO ergodic SE as

\[
R^{(n)} = \frac{N T}{\tau} \sum_{i=1}^{N} E_{fa}^{(n)} \{ \mathcal{P}(H_0)(1 - \mathcal{P}_{fa}) r_{00}^{(n)} + \mathcal{P}(H_1)(1 - \mathcal{P}_d) r_{10}^{(n)} + \mathcal{P}(H_1) \mathcal{P}_{fa} r_{11}^{(n)} \}
\]

(11)

Hence, the overall capacity in (bits per seconds) for all the subcarriers can be expressed as

\[
C = \frac{B N T}{\tau} \sum_{i=1}^{N} E_{fa}^{(n)} \{ \mathcal{P}(H_0)(1 - \mathcal{P}_{fa}) r_{00}^{(n)} + \mathcal{P}(H_1)(1 - \mathcal{P}_d) r_{10}^{(n)} + \mathcal{P}(H_1) \mathcal{P}_{fa} r_{11}^{(n)} \}
\]

(12)

where \(\mathcal{P}(H_0) \) and \(\mathcal{P}(H_1) \) are the probabilities of TV PU absence and presence, respectively, \(\mathcal{P}_d \) and \(\mathcal{P}_{fa} \) are the TV PU detection probability and false alarm probability, respectively. \(T \) is the symbol time duration and \(\tau \) is the TV PU detection time duration. \(\Pi_f \) is the steady-state probability of the non-burst impulsive state \(f_0 \) of the BPLC channel [30]. It is worth mentioning that due to low occurrence probability of impulsive bursts, \(\Pi_f \) can take values which are close to one [30]. \(B \) is the total channel bandwidth of the OFDM symbol and \(N \) is the total number of subcarriers. For a constrained power communication system, the average MIMO power of
the TVWS BPLC per subcarrier shall be less than a pre-defined value \(P_{av} \), as

\[
\mathbb{E}_{\mathbf{H}^{(n)}, \mathbf{g}^{(s)}} \{ P(\mathcal{H}_0)(1 - P_{fa}) \Sigma_{i=0}^{n_r} P_{0,i}^{(n)} + P(\mathcal{H}_0)P_{fa} \Sigma_{i=1}^{n_r} P_{1,i}^{(n)} + P(\mathcal{H}_1)(1 - P_{d}) \Sigma_{i=1}^{n_r} P_{0,i}^{(n)} + P(\mathcal{H}_1)P_{d} \Sigma_{i=1}^{n_r} P_{1,i}^{(n)} \} \leq P_{av}
\]

(13)

Also, the MISO interference of each subcarrier to the TV PU is limited to a certain value \(\Gamma \) as

\[
\mathbb{E}_{\mathbf{H}^{(n)}, \mathbf{g}^{(s)}} \{ P(\mathcal{H}_1)(1 - P_{d}) \Sigma_{i=0}^{n_r} \mathbf{g}_0^{(n)} \mathbf{U}_0^{(n)} \|^{2} \mathbf{P}_0^{(n)} + + P(\mathcal{H}_1)P_{d} \Sigma_{i=1}^{n_r} \mathbf{g}_1^{(n)} \mathbf{U}_1^{(n)} \|^{2} \mathbf{P}_1^{(n)} \} \leq \Gamma
\]

(14)

\(\mathbf{U}_0^{(n)} \) and \(\mathbf{U}_1^{(n)} \) are the precoding matrices in case of TV PU absence and TV PU presence, respectively. Also \(\mathbf{g}_0^{(n)} \) and \(\mathbf{g}_1^{(n)} \) are the selected TVWS BPLC-TV PU channel gain for the cases of TV PU absence and presence, respectively. The criterion of selection is according to the preceding scheme as mentioned in Section III. \(P_{0,i}^{(n)} \) and \(P_{1,i}^{(n)} \) are the TVWS BPLC signal power vectors in case of TV PU absence and presence, respectively where \(P_{0,i}^{(n)} \) and \(P_{1,i}^{(n)} \) are their \(i \)-th elements, respectively.

B. Power Allocation

In [35] a power allocation algorithm was proposed for SISO cognitive system. In our work, we extend the algorithm in [35] to derive the allocated power for each sub-channel in a MIMO cognitive TVWS BPLC system, taking into consideration the use of SVD/P-SVD as a precoding technique. The power is allocated to each sub-channel in both cases of TV PU presence and absence. The power allocation is done in a way to maximize the TVWS BPLC MIMO capacity for each subcarrier and satisfy both TVWS BPLC average power and TV PU Rx interference power limit. Hence, the problem of allocating the power can be formulated as

\[
\max_{P_{0,i}^{(n)}, P_{1,i}^{(n)}} \{ R^{(n)} \} = \left(\frac{T - \tau}{T} \right) \mathbb{E}_{\mathbf{H}^{(n)}, \mathbf{g}^{(s)}} \{ P(\mathcal{H}_0)(1 - P_{fa}) r_{00}^{(n)} + P(\mathcal{H}_0)P_{fa} r_{01}^{(n)} + P(\mathcal{H}_1)(1 - P_{d}) r_{10}^{(n)} + P(\mathcal{H}_1)P_{d} r_{11}^{(n)} \}
\]

(15)

Subject to (13), (14) and \(P_{0,i}^{(n)}, P_{1,i}^{(n)} \geq 0 \), where the \(\frac{P_{av}}{\Sigma} \) is omitted to simplify the derivation. The dual Lagrangian function can be represented as

\[
L(\lambda_{0,i}, \lambda_{1,i}, \alpha, \beta, u, v) =
\]

\[
\left(\frac{T - \tau}{T} \right) \mathbb{E}_{\mathbf{H}^{(n)}, \mathbf{g}^{(s)}} \{ P(\mathcal{H}_0)(1 - P_{fa}) r_{00}^{(n)} + P(\mathcal{H}_0)P_{fa} r_{01}^{(n)} + P(\mathcal{H}_1)(1 - P_{d}) r_{10}^{(n)} + P(\mathcal{H}_1)P_{d} r_{11}^{(n)} \}
\]

\[
+ P(\mathcal{H}_1)(1 - P_{d}) r_{10}^{(n)} + P(\mathcal{H}_1)P_{d} r_{11}^{(n)} + u \mathbf{P}_0^{(n)} - v \mathbb{E}_{\mathbf{H}^{(n)}, \mathbf{g}^{(s)}} \{ P(\mathcal{H}_1)(1 - P_{d}) \mathbf{g}_0^{(n)} \mathbf{U}_0^{(n)} \|^{2} \mathbf{P}_0^{(n)} + P(\mathcal{H}_1)P_{d} \mathbf{g}_1^{(n)} \mathbf{U}_1^{(n)} \|^{2} \mathbf{P}_1^{(n)} \} + u \Gamma
\]

(16)

The dual problem can be represented as

\[
d(v, u) = \sup_{\lambda_{0,i}^{(n)}, \lambda_{1,i}^{(n)}} L(\lambda_{0,i}^{(n)}, \lambda_{1,i}^{(n)}, v, u)
\]

(17)

In order to obtain the supremum of the Langrangian with respect to the transmission powers we can use the primal dual decomposition. Let \(i = 1, 2, ..., n_r \) be an index for the MIMO sub-channel and \(j \in 0, 1 \) be an index for the TV PU status (i.e., 0 in case of absence and 1 in case of presence). Also, let \(\eta_0 = P(\mathcal{H}_0)(1 - P_{fa}), \eta_1 = P(\mathcal{H}_0)P_{fa}, \beta_0 = P(\mathcal{H}_1)(1 - P_{d})\) and \(\beta_1 = P(\mathcal{H}_1)P_{d} \). Using the primal dual decomposition, we can subdivide the joint variable optimization problem into \(n_r \times 2 \) single variable convex optimization problems as

\[
\max_{P_{j,i}^{(n)}} \{ f(P_{j,i}^{(n)}) \} = \left(\frac{T - \tau}{T} \right) \mathbb{E}_{\mathbf{H}^{(n)}, \mathbf{g}^{(s)}} \{ \eta_j f_{0,j,i}^{(n)} + \beta_j f_{1,j,i}^{(n)} \}
\]

\[
- v \mathbb{E}_{\mathbf{H}^{(n)}, \mathbf{g}^{(s)}} \{ \eta_j + \beta_j \} P_{j,i}^{(n)} - u \mathbb{E}_{\mathbf{H}^{(n)}, \mathbf{g}^{(s)}} \{ \beta_j \alpha_{j,i,k}^{(n)} P_{j,i}^{(n)} \}
\]

(18)

Using the subgradient method, the solution to each problem can be addressed as

\[
P_{j,i}^{(n)} = [A_{i,j} + \sqrt{B_{i,j}}]^{+}
\]

(19)

where

\[
A_{i,j} = \left(\frac{T - \tau}{T} \right) \log_2(e) (\eta_j + \beta_j) + \frac{2(\sigma_z^2 + \sigma_E P_{av}^{(n)}) + \sigma_p^2}{\lambda_{j,i}^{(n)}}
\]

\[
B_{i,j} = A_{i,j}^2 - \frac{4}{\lambda_{j,i}^{(n)}} \left[(\sigma_z^2 + \sigma_E P_{av}^{(n)}) + \sigma_p^2 \right]
\]

\[
\left(\frac{T - \tau}{T} \right) \log_2(e) (\eta_j + \beta_j) + \frac{2(\sigma_z^2 + \sigma_E P_{av}^{(n)}) + \sigma_p^2}{\lambda_{j,i}^{(n)}}
\]

(20)

V. SIMULATION RESULTS

A. Simulation Setup

In this section, the simulation results are presented for our proposed system compared to the MIMO BPLC [4] and the BPLC WiFi [12]. The OFDM symbol duration \(T \) is taken to be 5 ms. It is assumed that the BPLC channel as well as its noise has cyclostationary behavior with a coherence time which is typically half of the mains period (i.e., 10 ms) [3]. For the VHF wireless channel, we assume a Rayleigh fading channel with average path loss as in (4), the \(l, \alpha \) and \(d_0 \) are set to 1.5, 0.65 and 12 m, respectively [16]. The total bandwidth from 54 MHz to 88 MHz is divided into 5 channels. Each channel has 6 MHz bandwidth. The transmission PSDs for the TVWS BPLC, MIMO BPLC and BPLC WiFi are set to -47 dBm/Hz, -85 dBm/Hz and -50 dBm/Hz, respectively. The received SNR (i.e., the ratio of the received signal power to the power sum of the AWGN and the channel estimation error variance, regardless of the PU interference power) varies from 20 dB to 40 dB. The requested probability of false alarm and detection probability are 10^{-7} and 0.9999, respectively. Also,
the probability of TV PU presence is 0.4. The received PU SNR is assumed to be -14 dB. \(n_r \) and \(n_t \) are assumed to be equal 2. Also, energy detection algorithm is adopted for cognitive sensing and the OR-rule technique is adopted for MIMO sensing.

For the simulation of the power line environment, we use the random topology generator presented in [36]. Each iteration, a random power line topology is generated and 4 points are randomly selected to represent TVWS BPLC Tx and Rx and two TV PU Rxs.

B. Simulation Results

1) Capacity and spectral efficiency at different frequency bands coverage: In Fig. 3, the capacity complementary cumulative distribution function (CCDF) of the MIMO BPLC [4] and the BPLC WiFi [12] is compared for different frequency bands. The degradation in the performance is observed in the case of using VHF BPLC compared to the conventional BPLC. In the conventional BPLC, both the high frequency (HF) band below 30 MHz and the VHF band are allowed. Hence, more transmission power can be allocated to the HF band of the conventional BPLC leading to more capacity compared to the VHF BPLC.

2) TVWS BPLC spectral efficiency: In Fig. 4, the average SE of our proposed system is compared to the MIMO BPLC [4] and the BPLC WiFi [12] in the VHF band. Two notable observations can be addressed: First, our proposed system significantly improves the SE compared to the MIMO BPLC and the BPLC WiFi. This is due to compliance with the TVWS standard, which allows a transmission power of 100 mW per 6 MHz channel and yet a PSD of -47 dBm/Hz. This yields a 38 dB increase in the PSD in the VHF band compared to the IEEE 1901 standard used in the MIMO BPLC. Also, the VHF band has better channel gain than the 2.45 GHz band used in the BPLC WiFi. Second, a slight degradation in the performance in the TVWS BPLC for the non opportunistic case compared to the opportunistic case. This is due to the PU user interference in the opportunistic case that decreases the achievable capacity in the presence of the PU.

In Fig. 5, our proposed TVWS BPLC SE shows a rapid saturation to the maximum as the distance ratio increases. This proves that our proposed system including the two modes of operation are less interfering to the PU Rx even if they are located at very close distance to the PU Rx. This is due to the use of our proposed iterative precoding algorithm that has the ability to mitigate the interference with the nearby TV PU Rx. The figure also reflects a slower increase in the SE for distance ratios above 3. However, the SE curve does not reach a saturation point until a distance ratio value becomes 100. This is because the distance ratio is bounded by the small areas inside the indoor environment. Hence, the TV PU Rx distance from our TVWS BPLC Tx is in the range of few tens of meters, which could limit the TVWS BPLC Tx transmission power and its spectral efficiency to avoid interference with
the TV PU Rx. Hence, as the indoor distance between the TV PU Rx and the TVWS BPLC Tx increases, the TVWS BPLC spectral efficiency increases.

3) Ergodic capacity of the VHF band: In this part, we compute the ergodic capacity for the VHF band between 54 MHz and 88 MHz.

In Fig. 6, the complementary cumulative distribution function (CCDF) is presented versus the capacity. It can be observed that for the conventional cognitive BPLC system less than 0.2 % of the users can achieve 200 Mbps, for the BPLC WiFi 10 % can achieve the 200 Mbps and for the MIMO BPLC 30 % can achieve the same capacity. However, for our proposed system more than 95 % of the users can achieve 200 Mbps and more than 50 % can achieve 400 Mbps.

VI. Conclusion

In this paper, a novel hybrid TVWS BPLC system has been proposed for the indoor communication networks. The proposed system offers a cost-effective solution for enhancing the BPLC capacity in the VHF band. Also, an iterative precoding algorithm has been proposed to mitigate the interference with the TV PU Rxs in the VHF band. Moreover, a MIMO power allocation algorithm has been developed for the cognitive radio system. Through simulations it has been shown that our proposed system improves the BPLC capacity significantly. In the simulations, a single BPLC subchannel has been considered to form a 2 × 2 TVWS BPLC system. The capacity of the proposed system can be further enhanced by using MIMO BPLC together with the TVWS wireless channel. We have also shown that the capacity enhancement has been preserved under small separation distances from the TV PU Rx. Moreover, the proposed system demonstrates robust performance against the variation in the BPLC coupling loss which affects the cognitive BPLC sensing time and capacity in the VHF band.

APPENDIX A: PROOF OF LEMMA 1

Let \(\alpha_{i,k}^{(n)} \) be the \(i \)-th component of the interference vector \(\alpha_k \). In order to satisfy the interference power limit at the TV PU Rx, while maintaining good SNR at the Rx

\[
\Sigma_{i=1}^{n_r} \alpha_{i,k}^{(n)} p_{i,k}^{(n)} \leq 1, \quad \Lambda^{(n)}(P)^{1} \geq \sigma_n^2 + \sigma_p^2
\]

(22)

Let \(\Gamma \leq \sigma_p^2 \) to avoid harmful interference. Also let \(\sigma_n^2 + \sigma_p^2 = \rho \). Hence, the following equation can be concluded

\[
\Lambda^{(n)}(P)^{1} \geq \rho \alpha_{i,k}^{(n)}
\]

(23)

This can be translated in the following matrix form

\[
\begin{bmatrix}
\frac{\lambda^{(n)}}{\rho} - \alpha_{1,k}^{(n)} & \cdots & -\alpha_{n_r,k}^{(n)} \\
\vdots & \ddots & \vdots \\
-\alpha_{1,k}^{(n)} & \cdots & \frac{\lambda^{(n)}}{\rho} - \alpha_{n_r,k}^{(n)}
\end{bmatrix}
\begin{bmatrix}
P_1^{(n)} \\ \vdots \\ P_{n_r}^{(n)}
\end{bmatrix} \geq 0
\]

(24)

Directly, the condition in (7) can be concluded.

APPENDIX B: PROOF OF LEMMA 2

Using the OR decision rule for MIMO channel we get

\[
P_{d,1} = 1 - \Pi_{i=1}^{n_r} (1 - P_{d,i})
\]

(25)

where \(P_{d,i} \) can be expressed as follows for the energy detection method [34]

\[
P_{d,i} = Q\left(\frac{\gamma_i - \gamma_i - 1}{\sqrt{2\gamma_i + 1}}\right)
\]

(26)

where \(\epsilon \) is the detection threshold. \(N_{min} \) is assumed to be equal for all the MIMO sub-channels. Hence, relationship between the detection probabilities of two MIMO sub-channels \(i \) and \(m \) can be expressed as follows using (9)

\[
P_{d,i} = Q\left(\frac{\gamma_i - \gamma_i - 1}{\sqrt{2\gamma_i + 1}}\right) + Q^{-1}\left(P_{f,i}\right) + Q^{-1}\left(P_{d,m}\right)\sqrt{2\gamma_i + 1}
\]

(27)

Substituting (27) into (25), we can directly get Lemma 2.

REFERENCES

