Modelling impacts of tidal stream turbines on surface waves



Li, Xiaorong, Li, Ming ORCID: 0000-0002-4825-6385, Jordan, Laura-Beth, McLelland, Stuart, Parsons, Daniel R, Amoudry, Laurent O ORCID: 0000-0002-6592-6790, Song, Qingyang and Comerford, Liam
(2019) Modelling impacts of tidal stream turbines on surface waves. RENEWABLE ENERGY, 130. pp. 725-734.

[img] Text
1-s2.0-S0960148118306232-main.pdf - Author Accepted Manuscript

Download (778kB)

Abstract

A high resolution Computational Flow Dynamics (CFD) numerical model is built based on a laboratory experiment in this research to study impacts of tidal turbines on surface wave dynamics. A reduction of ∼3% in wave height is observed under the influence of a standalone turbine located 0.4 m from the free surface. The artificial wave energy dissipation routine ‘OBSTACLE’ within FVCOM is shown to effectively capture the correct level of wave height reduction, reproducing the CFD results with significantly less computational effort. The turbine simulation system is then applied to a series of test cases to investigate impact of a standalone turbine on bed shear stress. Results suggest an apparent increase in bed stress (∼7%) upstream of the turbine due to the inclusion of surface waves. However, in the immediate wake of the turbine, bed stress is dominated by the presence of the turbine itself, accounting for a ∼50% increase, with waves having a seemingly negligible effect up to 9D (D is the turbine diameter) downstream of the turbine. Beyond this point, the effect of waves on bed shear stress become apparent again. The influence of OBSTACLE on bed stress is also noticeable in the far wake, showing a reduction of ∼2% in wave height.

Item Type: Article
Uncontrolled Keywords: Tidal stream energy, Oceanographic model, Wave-current coupling, Bottom shear stress
Depositing User: Symplectic Admin
Date Deposited: 22 Jun 2018 10:05
Last Modified: 19 Jan 2023 01:32
DOI: 10.1016/j.renene.2018.05.098
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3022597